| //===-- CGValue.h - LLVM CodeGen wrappers for llvm::Value* ------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // These classes implement wrappers around llvm::Value in order to |
| // fully represent the range of values for C L- and R- values. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef CLANG_CODEGEN_CGVALUE_H |
| #define CLANG_CODEGEN_CGVALUE_H |
| |
| #include "clang/AST/Type.h" |
| |
| namespace llvm { |
| class Constant; |
| class Value; |
| } |
| |
| namespace clang { |
| class ObjCPropertyRefExpr; |
| |
| namespace CodeGen { |
| |
| /// RValue - This trivial value class is used to represent the result of an |
| /// expression that is evaluated. It can be one of three things: either a |
| /// simple LLVM SSA value, a pair of SSA values for complex numbers, or the |
| /// address of an aggregate value in memory. |
| class RValue { |
| llvm::Value *V1, *V2; |
| // TODO: Encode this into the low bit of pointer for more efficient |
| // return-by-value. |
| enum { Scalar, Complex, Aggregate } Flavor; |
| |
| // FIXME: Aggregate rvalues need to retain information about whether they are |
| // volatile or not. |
| public: |
| |
| bool isScalar() const { return Flavor == Scalar; } |
| bool isComplex() const { return Flavor == Complex; } |
| bool isAggregate() const { return Flavor == Aggregate; } |
| |
| /// getScalar() - Return the Value* of this scalar value. |
| llvm::Value *getScalarVal() const { |
| assert(isScalar() && "Not a scalar!"); |
| return V1; |
| } |
| |
| /// getComplexVal - Return the real/imag components of this complex value. |
| /// |
| std::pair<llvm::Value *, llvm::Value *> getComplexVal() const { |
| return std::pair<llvm::Value *, llvm::Value *>(V1, V2); |
| } |
| |
| /// getAggregateAddr() - Return the Value* of the address of the aggregate. |
| llvm::Value *getAggregateAddr() const { |
| assert(isAggregate() && "Not an aggregate!"); |
| return V1; |
| } |
| |
| static RValue get(llvm::Value *V) { |
| RValue ER; |
| ER.V1 = V; |
| ER.Flavor = Scalar; |
| return ER; |
| } |
| static RValue getComplex(llvm::Value *V1, llvm::Value *V2) { |
| RValue ER; |
| ER.V1 = V1; |
| ER.V2 = V2; |
| ER.Flavor = Complex; |
| return ER; |
| } |
| static RValue getComplex(const std::pair<llvm::Value *, llvm::Value *> &C) { |
| RValue ER; |
| ER.V1 = C.first; |
| ER.V2 = C.second; |
| ER.Flavor = Complex; |
| return ER; |
| } |
| static RValue getAggregate(llvm::Value *V) { |
| RValue ER; |
| ER.V1 = V; |
| ER.Flavor = Aggregate; |
| return ER; |
| } |
| }; |
| |
| |
| /// LValue - This represents an lvalue references. Because C/C++ allow |
| /// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a |
| /// bitrange. |
| class LValue { |
| // FIXME: alignment? |
| |
| enum { |
| Simple, // This is a normal l-value, use getAddress(). |
| VectorElt, // This is a vector element l-value (V[i]), use getVector* |
| BitField, // This is a bitfield l-value, use getBitfield*. |
| ExtVectorElt, // This is an extended vector subset, use getExtVectorComp |
| PropertyRef // This is an Objective-C property reference, use |
| // getPropertyRefExpr |
| } LVType; |
| |
| llvm::Value *V; |
| |
| union { |
| // Index into a vector subscript: V[i] |
| llvm::Value *VectorIdx; |
| |
| // ExtVector element subset: V.xyx |
| llvm::Constant *VectorElts; |
| |
| // BitField start bit and size |
| struct { |
| unsigned short StartBit; |
| unsigned short Size; |
| bool IsSigned; |
| } BitfieldData; |
| |
| // Obj-C property reference expression |
| const ObjCPropertyRefExpr *PropertyRefExpr; |
| }; |
| |
| bool Volatile:1; |
| // FIXME: set but never used, what effect should it have? |
| bool Restrict:1; |
| |
| private: |
| static void SetQualifiers(unsigned Qualifiers, LValue& R) { |
| R.Volatile = (Qualifiers&QualType::Volatile)!=0; |
| R.Restrict = (Qualifiers&QualType::Restrict)!=0; |
| } |
| |
| public: |
| bool isSimple() const { return LVType == Simple; } |
| bool isVectorElt() const { return LVType == VectorElt; } |
| bool isBitfield() const { return LVType == BitField; } |
| bool isExtVectorElt() const { return LVType == ExtVectorElt; } |
| bool isPropertyRef() const { return LVType == PropertyRef; } |
| |
| bool isVolatileQualified() const { return Volatile; } |
| bool isRestrictQualified() const { return Restrict; } |
| |
| // simple lvalue |
| llvm::Value *getAddress() const { assert(isSimple()); return V; } |
| // vector elt lvalue |
| llvm::Value *getVectorAddr() const { assert(isVectorElt()); return V; } |
| llvm::Value *getVectorIdx() const { assert(isVectorElt()); return VectorIdx; } |
| // extended vector elements. |
| llvm::Value *getExtVectorAddr() const { assert(isExtVectorElt()); return V; } |
| llvm::Constant *getExtVectorElts() const { |
| assert(isExtVectorElt()); |
| return VectorElts; |
| } |
| // bitfield lvalue |
| llvm::Value *getBitfieldAddr() const { assert(isBitfield()); return V; } |
| unsigned short getBitfieldStartBit() const { |
| assert(isBitfield()); |
| return BitfieldData.StartBit; |
| } |
| unsigned short getBitfieldSize() const { |
| assert(isBitfield()); |
| return BitfieldData.Size; |
| } |
| bool isBitfieldSigned() const { |
| assert(isBitfield()); |
| return BitfieldData.IsSigned; |
| } |
| // property ref lvalue |
| const ObjCPropertyRefExpr *getPropertyRefExpr() const { |
| assert(isPropertyRef()); |
| return PropertyRefExpr; |
| } |
| |
| static LValue MakeAddr(llvm::Value *V, unsigned Qualifiers) { |
| LValue R; |
| R.LVType = Simple; |
| R.V = V; |
| SetQualifiers(Qualifiers,R); |
| return R; |
| } |
| |
| static LValue MakeVectorElt(llvm::Value *Vec, llvm::Value *Idx, |
| unsigned Qualifiers) { |
| LValue R; |
| R.LVType = VectorElt; |
| R.V = Vec; |
| R.VectorIdx = Idx; |
| SetQualifiers(Qualifiers,R); |
| return R; |
| } |
| |
| static LValue MakeExtVectorElt(llvm::Value *Vec, llvm::Constant *Elts, |
| unsigned Qualifiers) { |
| LValue R; |
| R.LVType = ExtVectorElt; |
| R.V = Vec; |
| R.VectorElts = Elts; |
| SetQualifiers(Qualifiers,R); |
| return R; |
| } |
| |
| static LValue MakeBitfield(llvm::Value *V, unsigned short StartBit, |
| unsigned short Size, bool IsSigned, |
| unsigned Qualifiers) { |
| LValue R; |
| R.LVType = BitField; |
| R.V = V; |
| R.BitfieldData.StartBit = StartBit; |
| R.BitfieldData.Size = Size; |
| R.BitfieldData.IsSigned = IsSigned; |
| SetQualifiers(Qualifiers,R); |
| return R; |
| } |
| |
| // FIXME: It is probably bad that we aren't emitting the target when |
| // we build the lvalue. However, this complicates the code a bit, |
| // and I haven't figured out how to make it go wrong yet. |
| static LValue MakePropertyRef(const ObjCPropertyRefExpr *E, |
| unsigned Qualifiers) { |
| LValue R; |
| R.LVType = PropertyRef; |
| R.PropertyRefExpr = E; |
| SetQualifiers(Qualifiers,R); |
| return R; |
| } |
| }; |
| |
| } // end namespace CodeGen |
| } // end namespace clang |
| |
| #endif |