blob: a1cd43ac23fc543ba4ad6dfdb32d5ac51505fd02 [file] [log] [blame]
//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for C++ expressions.
//
//===----------------------------------------------------------------------===//
#include "clang/Sema/SemaInternal.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/Initialization.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/ParsedTemplate.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/TemplateDeduction.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/Preprocessor.h"
#include "llvm/ADT/STLExtras.h"
using namespace clang;
using namespace sema;
ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
IdentifierInfo &II,
SourceLocation NameLoc,
Scope *S, CXXScopeSpec &SS,
ParsedType ObjectTypePtr,
bool EnteringContext) {
// Determine where to perform name lookup.
// FIXME: This area of the standard is very messy, and the current
// wording is rather unclear about which scopes we search for the
// destructor name; see core issues 399 and 555. Issue 399 in
// particular shows where the current description of destructor name
// lookup is completely out of line with existing practice, e.g.,
// this appears to be ill-formed:
//
// namespace N {
// template <typename T> struct S {
// ~S();
// };
// }
//
// void f(N::S<int>* s) {
// s->N::S<int>::~S();
// }
//
// See also PR6358 and PR6359.
// For this reason, we're currently only doing the C++03 version of this
// code; the C++0x version has to wait until we get a proper spec.
QualType SearchType;
DeclContext *LookupCtx = 0;
bool isDependent = false;
bool LookInScope = false;
// If we have an object type, it's because we are in a
// pseudo-destructor-expression or a member access expression, and
// we know what type we're looking for.
if (ObjectTypePtr)
SearchType = GetTypeFromParser(ObjectTypePtr);
if (SS.isSet()) {
NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
bool AlreadySearched = false;
bool LookAtPrefix = true;
// C++ [basic.lookup.qual]p6:
// If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
// the type-names are looked up as types in the scope designated by the
// nested-name-specifier. In a qualified-id of the form:
//
// ::[opt] nested-name-specifier ~ class-name
//
// where the nested-name-specifier designates a namespace scope, and in
// a qualified-id of the form:
//
// ::opt nested-name-specifier class-name :: ~ class-name
//
// the class-names are looked up as types in the scope designated by
// the nested-name-specifier.
//
// Here, we check the first case (completely) and determine whether the
// code below is permitted to look at the prefix of the
// nested-name-specifier.
DeclContext *DC = computeDeclContext(SS, EnteringContext);
if (DC && DC->isFileContext()) {
AlreadySearched = true;
LookupCtx = DC;
isDependent = false;
} else if (DC && isa<CXXRecordDecl>(DC))
LookAtPrefix = false;
// The second case from the C++03 rules quoted further above.
NestedNameSpecifier *Prefix = 0;
if (AlreadySearched) {
// Nothing left to do.
} else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
CXXScopeSpec PrefixSS;
PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
isDependent = isDependentScopeSpecifier(PrefixSS);
} else if (ObjectTypePtr) {
LookupCtx = computeDeclContext(SearchType);
isDependent = SearchType->isDependentType();
} else {
LookupCtx = computeDeclContext(SS, EnteringContext);
isDependent = LookupCtx && LookupCtx->isDependentContext();
}
LookInScope = false;
} else if (ObjectTypePtr) {
// C++ [basic.lookup.classref]p3:
// If the unqualified-id is ~type-name, the type-name is looked up
// in the context of the entire postfix-expression. If the type T
// of the object expression is of a class type C, the type-name is
// also looked up in the scope of class C. At least one of the
// lookups shall find a name that refers to (possibly
// cv-qualified) T.
LookupCtx = computeDeclContext(SearchType);
isDependent = SearchType->isDependentType();
assert((isDependent || !SearchType->isIncompleteType()) &&
"Caller should have completed object type");
LookInScope = true;
} else {
// Perform lookup into the current scope (only).
LookInScope = true;
}
TypeDecl *NonMatchingTypeDecl = 0;
LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
for (unsigned Step = 0; Step != 2; ++Step) {
// Look for the name first in the computed lookup context (if we
// have one) and, if that fails to find a match, in the scope (if
// we're allowed to look there).
Found.clear();
if (Step == 0 && LookupCtx)
LookupQualifiedName(Found, LookupCtx);
else if (Step == 1 && LookInScope && S)
LookupName(Found, S);
else
continue;
// FIXME: Should we be suppressing ambiguities here?
if (Found.isAmbiguous())
return ParsedType();
if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
QualType T = Context.getTypeDeclType(Type);
if (SearchType.isNull() || SearchType->isDependentType() ||
Context.hasSameUnqualifiedType(T, SearchType)) {
// We found our type!
return ParsedType::make(T);
}
if (!SearchType.isNull())
NonMatchingTypeDecl = Type;
}
// If the name that we found is a class template name, and it is
// the same name as the template name in the last part of the
// nested-name-specifier (if present) or the object type, then
// this is the destructor for that class.
// FIXME: This is a workaround until we get real drafting for core
// issue 399, for which there isn't even an obvious direction.
if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
QualType MemberOfType;
if (SS.isSet()) {
if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
// Figure out the type of the context, if it has one.
if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
MemberOfType = Context.getTypeDeclType(Record);
}
}
if (MemberOfType.isNull())
MemberOfType = SearchType;
if (MemberOfType.isNull())
continue;
// We're referring into a class template specialization. If the
// class template we found is the same as the template being
// specialized, we found what we are looking for.
if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
if (ClassTemplateSpecializationDecl *Spec
= dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
Template->getCanonicalDecl())
return ParsedType::make(MemberOfType);
}
continue;
}
// We're referring to an unresolved class template
// specialization. Determine whether we class template we found
// is the same as the template being specialized or, if we don't
// know which template is being specialized, that it at least
// has the same name.
if (const TemplateSpecializationType *SpecType
= MemberOfType->getAs<TemplateSpecializationType>()) {
TemplateName SpecName = SpecType->getTemplateName();
// The class template we found is the same template being
// specialized.
if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
return ParsedType::make(MemberOfType);
continue;
}
// The class template we found has the same name as the
// (dependent) template name being specialized.
if (DependentTemplateName *DepTemplate
= SpecName.getAsDependentTemplateName()) {
if (DepTemplate->isIdentifier() &&
DepTemplate->getIdentifier() == Template->getIdentifier())
return ParsedType::make(MemberOfType);
continue;
}
}
}
}
if (isDependent) {
// We didn't find our type, but that's okay: it's dependent
// anyway.
// FIXME: What if we have no nested-name-specifier?
QualType T = CheckTypenameType(ETK_None, SourceLocation(),
SS.getWithLocInContext(Context),
II, NameLoc);
return ParsedType::make(T);
}
if (NonMatchingTypeDecl) {
QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
<< T << SearchType;
Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
<< T;
} else if (ObjectTypePtr)
Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
<< &II;
else
Diag(NameLoc, diag::err_destructor_class_name);
return ParsedType();
}
/// \brief Build a C++ typeid expression with a type operand.
ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
SourceLocation TypeidLoc,
TypeSourceInfo *Operand,
SourceLocation RParenLoc) {
// C++ [expr.typeid]p4:
// The top-level cv-qualifiers of the lvalue expression or the type-id
// that is the operand of typeid are always ignored.
// If the type of the type-id is a class type or a reference to a class
// type, the class shall be completely-defined.
Qualifiers Quals;
QualType T
= Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
Quals);
if (T->getAs<RecordType>() &&
RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
return ExprError();
return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
Operand,
SourceRange(TypeidLoc, RParenLoc)));
}
/// \brief Build a C++ typeid expression with an expression operand.
ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
SourceLocation TypeidLoc,
Expr *E,
SourceLocation RParenLoc) {
bool isUnevaluatedOperand = true;
if (E && !E->isTypeDependent()) {
QualType T = E->getType();
if (const RecordType *RecordT = T->getAs<RecordType>()) {
CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
// C++ [expr.typeid]p3:
// [...] If the type of the expression is a class type, the class
// shall be completely-defined.
if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
return ExprError();
// C++ [expr.typeid]p3:
// When typeid is applied to an expression other than an glvalue of a
// polymorphic class type [...] [the] expression is an unevaluated
// operand. [...]
if (RecordD->isPolymorphic() && E->Classify(Context).isGLValue()) {
isUnevaluatedOperand = false;
// We require a vtable to query the type at run time.
MarkVTableUsed(TypeidLoc, RecordD);
}
}
// C++ [expr.typeid]p4:
// [...] If the type of the type-id is a reference to a possibly
// cv-qualified type, the result of the typeid expression refers to a
// std::type_info object representing the cv-unqualified referenced
// type.
Qualifiers Quals;
QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
if (!Context.hasSameType(T, UnqualT)) {
T = UnqualT;
ImpCastExprToType(E, UnqualT, CK_NoOp, CastCategory(E));
}
}
// If this is an unevaluated operand, clear out the set of
// declaration references we have been computing and eliminate any
// temporaries introduced in its computation.
if (isUnevaluatedOperand)
ExprEvalContexts.back().Context = Unevaluated;
return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
E,
SourceRange(TypeidLoc, RParenLoc)));
}
/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
ExprResult
Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
// Find the std::type_info type.
if (!StdNamespace)
return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
if (!CXXTypeInfoDecl) {
IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
LookupQualifiedName(R, getStdNamespace());
CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
if (!CXXTypeInfoDecl)
return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
}
QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
if (isType) {
// The operand is a type; handle it as such.
TypeSourceInfo *TInfo = 0;
QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
&TInfo);
if (T.isNull())
return ExprError();
if (!TInfo)
TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
}
// The operand is an expression.
return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
}
/// Retrieve the UuidAttr associated with QT.
static UuidAttr *GetUuidAttrOfType(QualType QT) {
// Optionally remove one level of pointer, reference or array indirection.
const Type *Ty = QT.getTypePtr();;
if (QT->isPointerType() || QT->isReferenceType())
Ty = QT->getPointeeType().getTypePtr();
else if (QT->isArrayType())
Ty = cast<ArrayType>(QT)->getElementType().getTypePtr();
// Loop all class definition and declaration looking for an uuid attribute.
CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
while (RD) {
if (UuidAttr *Uuid = RD->getAttr<UuidAttr>())
return Uuid;
RD = RD->getPreviousDeclaration();
}
return 0;
}
/// \brief Build a Microsoft __uuidof expression with a type operand.
ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
SourceLocation TypeidLoc,
TypeSourceInfo *Operand,
SourceLocation RParenLoc) {
if (!Operand->getType()->isDependentType()) {
if (!GetUuidAttrOfType(Operand->getType()))
return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
}
// FIXME: add __uuidof semantic analysis for type operand.
return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
Operand,
SourceRange(TypeidLoc, RParenLoc)));
}
/// \brief Build a Microsoft __uuidof expression with an expression operand.
ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
SourceLocation TypeidLoc,
Expr *E,
SourceLocation RParenLoc) {
if (!E->getType()->isDependentType()) {
if (!GetUuidAttrOfType(E->getType()) &&
!E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
}
// FIXME: add __uuidof semantic analysis for type operand.
return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
E,
SourceRange(TypeidLoc, RParenLoc)));
}
/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
ExprResult
Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
// If MSVCGuidDecl has not been cached, do the lookup.
if (!MSVCGuidDecl) {
IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
LookupQualifiedName(R, Context.getTranslationUnitDecl());
MSVCGuidDecl = R.getAsSingle<RecordDecl>();
if (!MSVCGuidDecl)
return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
}
QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
if (isType) {
// The operand is a type; handle it as such.
TypeSourceInfo *TInfo = 0;
QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
&TInfo);
if (T.isNull())
return ExprError();
if (!TInfo)
TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
}
// The operand is an expression.
return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
}
/// ActOnCXXBoolLiteral - Parse {true,false} literals.
ExprResult
Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
"Unknown C++ Boolean value!");
return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
Context.BoolTy, OpLoc));
}
/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
ExprResult
Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
}
/// ActOnCXXThrow - Parse throw expressions.
ExprResult
Sema::ActOnCXXThrow(SourceLocation OpLoc, Expr *Ex) {
// Don't report an error if 'throw' is used in system headers.
if (!getLangOptions().CXXExceptions &&
!getSourceManager().isInSystemHeader(OpLoc))
Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
if (Ex && !Ex->isTypeDependent() && CheckCXXThrowOperand(OpLoc, Ex))
return ExprError();
return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc));
}
/// CheckCXXThrowOperand - Validate the operand of a throw.
bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *&E) {
// C++ [except.throw]p3:
// A throw-expression initializes a temporary object, called the exception
// object, the type of which is determined by removing any top-level
// cv-qualifiers from the static type of the operand of throw and adjusting
// the type from "array of T" or "function returning T" to "pointer to T"
// or "pointer to function returning T", [...]
if (E->getType().hasQualifiers())
ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
CastCategory(E));
DefaultFunctionArrayConversion(E);
// If the type of the exception would be an incomplete type or a pointer
// to an incomplete type other than (cv) void the program is ill-formed.
QualType Ty = E->getType();
bool isPointer = false;
if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
Ty = Ptr->getPointeeType();
isPointer = true;
}
if (!isPointer || !Ty->isVoidType()) {
if (RequireCompleteType(ThrowLoc, Ty,
PDiag(isPointer ? diag::err_throw_incomplete_ptr
: diag::err_throw_incomplete)
<< E->getSourceRange()))
return true;
if (RequireNonAbstractType(ThrowLoc, E->getType(),
PDiag(diag::err_throw_abstract_type)
<< E->getSourceRange()))
return true;
}
// Initialize the exception result. This implicitly weeds out
// abstract types or types with inaccessible copy constructors.
const VarDecl *NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
// FIXME: Determine whether we can elide this copy per C++0x [class.copy]p32.
InitializedEntity Entity =
InitializedEntity::InitializeException(ThrowLoc, E->getType(),
/*NRVO=*/false);
ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
QualType(), E);
if (Res.isInvalid())
return true;
E = Res.takeAs<Expr>();
// If the exception has class type, we need additional handling.
const RecordType *RecordTy = Ty->getAs<RecordType>();
if (!RecordTy)
return false;
CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
// If we are throwing a polymorphic class type or pointer thereof,
// exception handling will make use of the vtable.
MarkVTableUsed(ThrowLoc, RD);
// If a pointer is thrown, the referenced object will not be destroyed.
if (isPointer)
return false;
// If the class has a non-trivial destructor, we must be able to call it.
if (RD->hasTrivialDestructor())
return false;
CXXDestructorDecl *Destructor
= const_cast<CXXDestructorDecl*>(LookupDestructor(RD));
if (!Destructor)
return false;
MarkDeclarationReferenced(E->getExprLoc(), Destructor);
CheckDestructorAccess(E->getExprLoc(), Destructor,
PDiag(diag::err_access_dtor_exception) << Ty);
return false;
}
CXXMethodDecl *Sema::tryCaptureCXXThis() {
// Ignore block scopes: we can capture through them.
// Ignore nested enum scopes: we'll diagnose non-constant expressions
// where they're invalid, and other uses are legitimate.
// Don't ignore nested class scopes: you can't use 'this' in a local class.
DeclContext *DC = CurContext;
while (true) {
if (isa<BlockDecl>(DC)) DC = cast<BlockDecl>(DC)->getDeclContext();
else if (isa<EnumDecl>(DC)) DC = cast<EnumDecl>(DC)->getDeclContext();
else break;
}
// If we're not in an instance method, error out.
CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC);
if (!method || !method->isInstance())
return 0;
// Mark that we're closing on 'this' in all the block scopes, if applicable.
for (unsigned idx = FunctionScopes.size() - 1;
isa<BlockScopeInfo>(FunctionScopes[idx]);
--idx)
cast<BlockScopeInfo>(FunctionScopes[idx])->CapturesCXXThis = true;
return method;
}
ExprResult Sema::ActOnCXXThis(SourceLocation loc) {
/// C++ 9.3.2: In the body of a non-static member function, the keyword this
/// is a non-lvalue expression whose value is the address of the object for
/// which the function is called.
CXXMethodDecl *method = tryCaptureCXXThis();
if (!method) return Diag(loc, diag::err_invalid_this_use);
return Owned(new (Context) CXXThisExpr(loc, method->getThisType(Context),
/*isImplicit=*/false));
}
ExprResult
Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
SourceLocation LParenLoc,
MultiExprArg exprs,
SourceLocation RParenLoc) {
if (!TypeRep)
return ExprError();
TypeSourceInfo *TInfo;
QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
if (!TInfo)
TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
}
/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
/// Can be interpreted either as function-style casting ("int(x)")
/// or class type construction ("ClassType(x,y,z)")
/// or creation of a value-initialized type ("int()").
ExprResult
Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
SourceLocation LParenLoc,
MultiExprArg exprs,
SourceLocation RParenLoc) {
QualType Ty = TInfo->getType();
unsigned NumExprs = exprs.size();
Expr **Exprs = (Expr**)exprs.get();
SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc);
if (Ty->isDependentType() ||
CallExpr::hasAnyTypeDependentArguments(Exprs, NumExprs)) {
exprs.release();
return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
LParenLoc,
Exprs, NumExprs,
RParenLoc));
}
if (Ty->isArrayType())
return ExprError(Diag(TyBeginLoc,
diag::err_value_init_for_array_type) << FullRange);
if (!Ty->isVoidType() &&
RequireCompleteType(TyBeginLoc, Ty,
PDiag(diag::err_invalid_incomplete_type_use)
<< FullRange))
return ExprError();
if (RequireNonAbstractType(TyBeginLoc, Ty,
diag::err_allocation_of_abstract_type))
return ExprError();
// C++ [expr.type.conv]p1:
// If the expression list is a single expression, the type conversion
// expression is equivalent (in definedness, and if defined in meaning) to the
// corresponding cast expression.
//
if (NumExprs == 1) {
CastKind Kind = CK_Invalid;
ExprValueKind VK = VK_RValue;
CXXCastPath BasePath;
if (CheckCastTypes(TInfo->getTypeLoc().getSourceRange(), Ty, Exprs[0],
Kind, VK, BasePath,
/*FunctionalStyle=*/true))
return ExprError();
exprs.release();
return Owned(CXXFunctionalCastExpr::Create(Context,
Ty.getNonLValueExprType(Context),
VK, TInfo, TyBeginLoc, Kind,
Exprs[0], &BasePath,
RParenLoc));
}
InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
InitializationKind Kind
= NumExprs ? InitializationKind::CreateDirect(TyBeginLoc,
LParenLoc, RParenLoc)
: InitializationKind::CreateValue(TyBeginLoc,
LParenLoc, RParenLoc);
InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs);
ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(exprs));
// FIXME: Improve AST representation?
return move(Result);
}
/// doesUsualArrayDeleteWantSize - Answers whether the usual
/// operator delete[] for the given type has a size_t parameter.
static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
QualType allocType) {
const RecordType *record =
allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
if (!record) return false;
// Try to find an operator delete[] in class scope.
DeclarationName deleteName =
S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
S.LookupQualifiedName(ops, record->getDecl());
// We're just doing this for information.
ops.suppressDiagnostics();
// Very likely: there's no operator delete[].
if (ops.empty()) return false;
// If it's ambiguous, it should be illegal to call operator delete[]
// on this thing, so it doesn't matter if we allocate extra space or not.
if (ops.isAmbiguous()) return false;
LookupResult::Filter filter = ops.makeFilter();
while (filter.hasNext()) {
NamedDecl *del = filter.next()->getUnderlyingDecl();
// C++0x [basic.stc.dynamic.deallocation]p2:
// A template instance is never a usual deallocation function,
// regardless of its signature.
if (isa<FunctionTemplateDecl>(del)) {
filter.erase();
continue;
}
// C++0x [basic.stc.dynamic.deallocation]p2:
// If class T does not declare [an operator delete[] with one
// parameter] but does declare a member deallocation function
// named operator delete[] with exactly two parameters, the
// second of which has type std::size_t, then this function
// is a usual deallocation function.
if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
filter.erase();
continue;
}
}
filter.done();
if (!ops.isSingleResult()) return false;
const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
return (del->getNumParams() == 2);
}
/// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.:
/// @code new (memory) int[size][4] @endcode
/// or
/// @code ::new Foo(23, "hello") @endcode
/// For the interpretation of this heap of arguments, consult the base version.
ExprResult
Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
SourceLocation PlacementRParen, SourceRange TypeIdParens,
Declarator &D, SourceLocation ConstructorLParen,
MultiExprArg ConstructorArgs,
SourceLocation ConstructorRParen) {
bool TypeContainsAuto = D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
Expr *ArraySize = 0;
// If the specified type is an array, unwrap it and save the expression.
if (D.getNumTypeObjects() > 0 &&
D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
DeclaratorChunk &Chunk = D.getTypeObject(0);
if (TypeContainsAuto)
return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
<< D.getSourceRange());
if (Chunk.Arr.hasStatic)
return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
<< D.getSourceRange());
if (!Chunk.Arr.NumElts)
return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
<< D.getSourceRange());
ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
D.DropFirstTypeObject();
}
// Every dimension shall be of constant size.
if (ArraySize) {
for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
break;
DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
if (Expr *NumElts = (Expr *)Array.NumElts) {
if (!NumElts->isTypeDependent() && !NumElts->isValueDependent() &&
!NumElts->isIntegerConstantExpr(Context)) {
Diag(D.getTypeObject(I).Loc, diag::err_new_array_nonconst)
<< NumElts->getSourceRange();
return ExprError();
}
}
}
}
TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0, /*OwnedDecl=*/0,
/*AllowAuto=*/true);
QualType AllocType = TInfo->getType();
if (D.isInvalidType())
return ExprError();
return BuildCXXNew(StartLoc, UseGlobal,
PlacementLParen,
move(PlacementArgs),
PlacementRParen,
TypeIdParens,
AllocType,
TInfo,
ArraySize,
ConstructorLParen,
move(ConstructorArgs),
ConstructorRParen,
TypeContainsAuto);
}
ExprResult
Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal,
SourceLocation PlacementLParen,
MultiExprArg PlacementArgs,
SourceLocation PlacementRParen,
SourceRange TypeIdParens,
QualType AllocType,
TypeSourceInfo *AllocTypeInfo,
Expr *ArraySize,
SourceLocation ConstructorLParen,
MultiExprArg ConstructorArgs,
SourceLocation ConstructorRParen,
bool TypeMayContainAuto) {
SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
// C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
if (TypeMayContainAuto && AllocType->getContainedAutoType()) {
if (ConstructorArgs.size() == 0)
return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
<< AllocType << TypeRange);
if (ConstructorArgs.size() != 1) {
Expr *FirstBad = ConstructorArgs.get()[1];
return ExprError(Diag(FirstBad->getSourceRange().getBegin(),
diag::err_auto_new_ctor_multiple_expressions)
<< AllocType << TypeRange);
}
QualType DeducedType;
if (!DeduceAutoType(AllocType, ConstructorArgs.get()[0], DeducedType))
return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
<< AllocType
<< ConstructorArgs.get()[0]->getType()
<< TypeRange
<< ConstructorArgs.get()[0]->getSourceRange());
AllocType = DeducedType;
AllocTypeInfo = Context.getTrivialTypeSourceInfo(AllocType, StartLoc);
}
// Per C++0x [expr.new]p5, the type being constructed may be a
// typedef of an array type.
if (!ArraySize) {
if (const ConstantArrayType *Array
= Context.getAsConstantArrayType(AllocType)) {
ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
Context.getSizeType(),
TypeRange.getEnd());
AllocType = Array->getElementType();
}
}
if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
return ExprError();
QualType ResultType = Context.getPointerType(AllocType);
// C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral
// or enumeration type with a non-negative value."
if (ArraySize && !ArraySize->isTypeDependent()) {
QualType SizeType = ArraySize->getType();
ExprResult ConvertedSize
= ConvertToIntegralOrEnumerationType(StartLoc, ArraySize,
PDiag(diag::err_array_size_not_integral),
PDiag(diag::err_array_size_incomplete_type)
<< ArraySize->getSourceRange(),
PDiag(diag::err_array_size_explicit_conversion),
PDiag(diag::note_array_size_conversion),
PDiag(diag::err_array_size_ambiguous_conversion),
PDiag(diag::note_array_size_conversion),
PDiag(getLangOptions().CPlusPlus0x? 0
: diag::ext_array_size_conversion));
if (ConvertedSize.isInvalid())
return ExprError();
ArraySize = ConvertedSize.take();
SizeType = ArraySize->getType();
if (!SizeType->isIntegralOrUnscopedEnumerationType())
return ExprError();
// Let's see if this is a constant < 0. If so, we reject it out of hand.
// We don't care about special rules, so we tell the machinery it's not
// evaluated - it gives us a result in more cases.
if (!ArraySize->isValueDependent()) {
llvm::APSInt Value;
if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) {
if (Value < llvm::APSInt(
llvm::APInt::getNullValue(Value.getBitWidth()),
Value.isUnsigned()))
return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
diag::err_typecheck_negative_array_size)
<< ArraySize->getSourceRange());
if (!AllocType->isDependentType()) {
unsigned ActiveSizeBits
= ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
Diag(ArraySize->getSourceRange().getBegin(),
diag::err_array_too_large)
<< Value.toString(10)
<< ArraySize->getSourceRange();
return ExprError();
}
}
} else if (TypeIdParens.isValid()) {
// Can't have dynamic array size when the type-id is in parentheses.
Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
<< ArraySize->getSourceRange()
<< FixItHint::CreateRemoval(TypeIdParens.getBegin())
<< FixItHint::CreateRemoval(TypeIdParens.getEnd());
TypeIdParens = SourceRange();
}
}
ImpCastExprToType(ArraySize, Context.getSizeType(),
CK_IntegralCast);
}
FunctionDecl *OperatorNew = 0;
FunctionDecl *OperatorDelete = 0;
Expr **PlaceArgs = (Expr**)PlacementArgs.get();
unsigned NumPlaceArgs = PlacementArgs.size();
if (!AllocType->isDependentType() &&
!Expr::hasAnyTypeDependentArguments(PlaceArgs, NumPlaceArgs) &&
FindAllocationFunctions(StartLoc,
SourceRange(PlacementLParen, PlacementRParen),
UseGlobal, AllocType, ArraySize, PlaceArgs,
NumPlaceArgs, OperatorNew, OperatorDelete))
return ExprError();
// If this is an array allocation, compute whether the usual array
// deallocation function for the type has a size_t parameter.
bool UsualArrayDeleteWantsSize = false;
if (ArraySize && !AllocType->isDependentType())
UsualArrayDeleteWantsSize
= doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
llvm::SmallVector<Expr *, 8> AllPlaceArgs;
if (OperatorNew) {
// Add default arguments, if any.
const FunctionProtoType *Proto =
OperatorNew->getType()->getAs<FunctionProtoType>();
VariadicCallType CallType =
Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
if (GatherArgumentsForCall(PlacementLParen, OperatorNew,
Proto, 1, PlaceArgs, NumPlaceArgs,
AllPlaceArgs, CallType))
return ExprError();
NumPlaceArgs = AllPlaceArgs.size();
if (NumPlaceArgs > 0)
PlaceArgs = &AllPlaceArgs[0];
}
bool Init = ConstructorLParen.isValid();
// --- Choosing a constructor ---
CXXConstructorDecl *Constructor = 0;
Expr **ConsArgs = (Expr**)ConstructorArgs.get();
unsigned NumConsArgs = ConstructorArgs.size();
ASTOwningVector<Expr*> ConvertedConstructorArgs(*this);
// Array 'new' can't have any initializers.
if (NumConsArgs && (ResultType->isArrayType() || ArraySize)) {
SourceRange InitRange(ConsArgs[0]->getLocStart(),
ConsArgs[NumConsArgs - 1]->getLocEnd());
Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
return ExprError();
}
if (!AllocType->isDependentType() &&
!Expr::hasAnyTypeDependentArguments(ConsArgs, NumConsArgs)) {
// C++0x [expr.new]p15:
// A new-expression that creates an object of type T initializes that
// object as follows:
InitializationKind Kind
// - If the new-initializer is omitted, the object is default-
// initialized (8.5); if no initialization is performed,
// the object has indeterminate value
= !Init? InitializationKind::CreateDefault(TypeRange.getBegin())
// - Otherwise, the new-initializer is interpreted according to the
// initialization rules of 8.5 for direct-initialization.
: InitializationKind::CreateDirect(TypeRange.getBegin(),
ConstructorLParen,
ConstructorRParen);
InitializedEntity Entity
= InitializedEntity::InitializeNew(StartLoc, AllocType);
InitializationSequence InitSeq(*this, Entity, Kind, ConsArgs, NumConsArgs);
ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
move(ConstructorArgs));
if (FullInit.isInvalid())
return ExprError();
// FullInit is our initializer; walk through it to determine if it's a
// constructor call, which CXXNewExpr handles directly.
if (Expr *FullInitExpr = (Expr *)FullInit.get()) {
if (CXXBindTemporaryExpr *Binder
= dyn_cast<CXXBindTemporaryExpr>(FullInitExpr))
FullInitExpr = Binder->getSubExpr();
if (CXXConstructExpr *Construct
= dyn_cast<CXXConstructExpr>(FullInitExpr)) {
Constructor = Construct->getConstructor();
for (CXXConstructExpr::arg_iterator A = Construct->arg_begin(),
AEnd = Construct->arg_end();
A != AEnd; ++A)
ConvertedConstructorArgs.push_back(*A);
} else {
// Take the converted initializer.
ConvertedConstructorArgs.push_back(FullInit.release());
}
} else {
// No initialization required.
}
// Take the converted arguments and use them for the new expression.
NumConsArgs = ConvertedConstructorArgs.size();
ConsArgs = (Expr **)ConvertedConstructorArgs.take();
}
// Mark the new and delete operators as referenced.
if (OperatorNew)
MarkDeclarationReferenced(StartLoc, OperatorNew);
if (OperatorDelete)
MarkDeclarationReferenced(StartLoc, OperatorDelete);
// FIXME: Also check that the destructor is accessible. (C++ 5.3.4p16)
PlacementArgs.release();
ConstructorArgs.release();
return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
PlaceArgs, NumPlaceArgs, TypeIdParens,
ArraySize, Constructor, Init,
ConsArgs, NumConsArgs, OperatorDelete,
UsualArrayDeleteWantsSize,
ResultType, AllocTypeInfo,
StartLoc,
Init ? ConstructorRParen :
TypeRange.getEnd(),
ConstructorLParen, ConstructorRParen));
}
/// CheckAllocatedType - Checks that a type is suitable as the allocated type
/// in a new-expression.
/// dimension off and stores the size expression in ArraySize.
bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
SourceRange R) {
// C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
// abstract class type or array thereof.
if (AllocType->isFunctionType())
return Diag(Loc, diag::err_bad_new_type)
<< AllocType << 0 << R;
else if (AllocType->isReferenceType())
return Diag(Loc, diag::err_bad_new_type)
<< AllocType << 1 << R;
else if (!AllocType->isDependentType() &&
RequireCompleteType(Loc, AllocType,
PDiag(diag::err_new_incomplete_type)
<< R))
return true;
else if (RequireNonAbstractType(Loc, AllocType,
diag::err_allocation_of_abstract_type))
return true;
else if (AllocType->isVariablyModifiedType())
return Diag(Loc, diag::err_variably_modified_new_type)
<< AllocType;
return false;
}
/// \brief Determine whether the given function is a non-placement
/// deallocation function.
static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
if (FD->isInvalidDecl())
return false;
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
return Method->isUsualDeallocationFunction();
return ((FD->getOverloadedOperator() == OO_Delete ||
FD->getOverloadedOperator() == OO_Array_Delete) &&
FD->getNumParams() == 1);
}
/// FindAllocationFunctions - Finds the overloads of operator new and delete
/// that are appropriate for the allocation.
bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
bool UseGlobal, QualType AllocType,
bool IsArray, Expr **PlaceArgs,
unsigned NumPlaceArgs,
FunctionDecl *&OperatorNew,
FunctionDecl *&OperatorDelete) {
// --- Choosing an allocation function ---
// C++ 5.3.4p8 - 14 & 18
// 1) If UseGlobal is true, only look in the global scope. Else, also look
// in the scope of the allocated class.
// 2) If an array size is given, look for operator new[], else look for
// operator new.
// 3) The first argument is always size_t. Append the arguments from the
// placement form.
llvm::SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
// We don't care about the actual value of this argument.
// FIXME: Should the Sema create the expression and embed it in the syntax
// tree? Or should the consumer just recalculate the value?
IntegerLiteral Size(Context, llvm::APInt::getNullValue(
Context.Target.getPointerWidth(0)),
Context.getSizeType(),
SourceLocation());
AllocArgs[0] = &Size;
std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
// C++ [expr.new]p8:
// If the allocated type is a non-array type, the allocation
// function's name is operator new and the deallocation function's
// name is operator delete. If the allocated type is an array
// type, the allocation function's name is operator new[] and the
// deallocation function's name is operator delete[].
DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
IsArray ? OO_Array_New : OO_New);
DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
IsArray ? OO_Array_Delete : OO_Delete);
QualType AllocElemType = Context.getBaseElementType(AllocType);
if (AllocElemType->isRecordType() && !UseGlobal) {
CXXRecordDecl *Record
= cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
AllocArgs.size(), Record, /*AllowMissing=*/true,
OperatorNew))
return true;
}
if (!OperatorNew) {
// Didn't find a member overload. Look for a global one.
DeclareGlobalNewDelete();
DeclContext *TUDecl = Context.getTranslationUnitDecl();
if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
OperatorNew))
return true;
}
// We don't need an operator delete if we're running under
// -fno-exceptions.
if (!getLangOptions().Exceptions) {
OperatorDelete = 0;
return false;
}
// FindAllocationOverload can change the passed in arguments, so we need to
// copy them back.
if (NumPlaceArgs > 0)
std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
// C++ [expr.new]p19:
//
// If the new-expression begins with a unary :: operator, the
// deallocation function's name is looked up in the global
// scope. Otherwise, if the allocated type is a class type T or an
// array thereof, the deallocation function's name is looked up in
// the scope of T. If this lookup fails to find the name, or if
// the allocated type is not a class type or array thereof, the
// deallocation function's name is looked up in the global scope.
LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
if (AllocElemType->isRecordType() && !UseGlobal) {
CXXRecordDecl *RD
= cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
LookupQualifiedName(FoundDelete, RD);
}
if (FoundDelete.isAmbiguous())
return true; // FIXME: clean up expressions?
if (FoundDelete.empty()) {
DeclareGlobalNewDelete();
LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
}
FoundDelete.suppressDiagnostics();
llvm::SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
// Whether we're looking for a placement operator delete is dictated
// by whether we selected a placement operator new, not by whether
// we had explicit placement arguments. This matters for things like
// struct A { void *operator new(size_t, int = 0); ... };
// A *a = new A()
bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1);
if (isPlacementNew) {
// C++ [expr.new]p20:
// A declaration of a placement deallocation function matches the
// declaration of a placement allocation function if it has the
// same number of parameters and, after parameter transformations
// (8.3.5), all parameter types except the first are
// identical. [...]
//
// To perform this comparison, we compute the function type that
// the deallocation function should have, and use that type both
// for template argument deduction and for comparison purposes.
//
// FIXME: this comparison should ignore CC and the like.
QualType ExpectedFunctionType;
{
const FunctionProtoType *Proto
= OperatorNew->getType()->getAs<FunctionProtoType>();
llvm::SmallVector<QualType, 4> ArgTypes;
ArgTypes.push_back(Context.VoidPtrTy);
for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
ArgTypes.push_back(Proto->getArgType(I));
FunctionProtoType::ExtProtoInfo EPI;
EPI.Variadic = Proto->isVariadic();
ExpectedFunctionType
= Context.getFunctionType(Context.VoidTy, ArgTypes.data(),
ArgTypes.size(), EPI);
}
for (LookupResult::iterator D = FoundDelete.begin(),
DEnd = FoundDelete.end();
D != DEnd; ++D) {
FunctionDecl *Fn = 0;
if (FunctionTemplateDecl *FnTmpl
= dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
// Perform template argument deduction to try to match the
// expected function type.
TemplateDeductionInfo Info(Context, StartLoc);
if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
continue;
} else
Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
Matches.push_back(std::make_pair(D.getPair(), Fn));
}
} else {
// C++ [expr.new]p20:
// [...] Any non-placement deallocation function matches a
// non-placement allocation function. [...]
for (LookupResult::iterator D = FoundDelete.begin(),
DEnd = FoundDelete.end();
D != DEnd; ++D) {
if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
if (isNonPlacementDeallocationFunction(Fn))
Matches.push_back(std::make_pair(D.getPair(), Fn));
}
}
// C++ [expr.new]p20:
// [...] If the lookup finds a single matching deallocation
// function, that function will be called; otherwise, no
// deallocation function will be called.
if (Matches.size() == 1) {
OperatorDelete = Matches[0].second;
// C++0x [expr.new]p20:
// If the lookup finds the two-parameter form of a usual
// deallocation function (3.7.4.2) and that function, considered
// as a placement deallocation function, would have been
// selected as a match for the allocation function, the program
// is ill-formed.
if (NumPlaceArgs && getLangOptions().CPlusPlus0x &&
isNonPlacementDeallocationFunction(OperatorDelete)) {
Diag(StartLoc, diag::err_placement_new_non_placement_delete)
<< SourceRange(PlaceArgs[0]->getLocStart(),
PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
<< DeleteName;
} else {
CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
Matches[0].first);
}
}
return false;
}
/// FindAllocationOverload - Find an fitting overload for the allocation
/// function in the specified scope.
bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
DeclarationName Name, Expr** Args,
unsigned NumArgs, DeclContext *Ctx,
bool AllowMissing, FunctionDecl *&Operator) {
LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
LookupQualifiedName(R, Ctx);
if (R.empty()) {
if (AllowMissing)
return false;
return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
<< Name << Range;
}
if (R.isAmbiguous())
return true;
R.suppressDiagnostics();
OverloadCandidateSet Candidates(StartLoc);
for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
Alloc != AllocEnd; ++Alloc) {
// Even member operator new/delete are implicitly treated as
// static, so don't use AddMemberCandidate.
NamedDecl *D = (*Alloc)->getUnderlyingDecl();
if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
/*ExplicitTemplateArgs=*/0, Args, NumArgs,
Candidates,
/*SuppressUserConversions=*/false);
continue;
}
FunctionDecl *Fn = cast<FunctionDecl>(D);
AddOverloadCandidate(Fn, Alloc.getPair(), Args, NumArgs, Candidates,
/*SuppressUserConversions=*/false);
}
// Do the resolution.
OverloadCandidateSet::iterator Best;
switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
case OR_Success: {
// Got one!
FunctionDecl *FnDecl = Best->Function;
MarkDeclarationReferenced(StartLoc, FnDecl);
// The first argument is size_t, and the first parameter must be size_t,
// too. This is checked on declaration and can be assumed. (It can't be
// asserted on, though, since invalid decls are left in there.)
// Watch out for variadic allocator function.
unsigned NumArgsInFnDecl = FnDecl->getNumParams();
for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
ExprResult Result
= PerformCopyInitialization(InitializedEntity::InitializeParameter(
Context,
FnDecl->getParamDecl(i)),
SourceLocation(),
Owned(Args[i]));
if (Result.isInvalid())
return true;
Args[i] = Result.takeAs<Expr>();
}
Operator = FnDecl;
CheckAllocationAccess(StartLoc, Range, R.getNamingClass(), Best->FoundDecl);
return false;
}
case OR_No_Viable_Function:
Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
<< Name << Range;
Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
return true;
case OR_Ambiguous:
Diag(StartLoc, diag::err_ovl_ambiguous_call)
<< Name << Range;
Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
return true;
case OR_Deleted:
Diag(StartLoc, diag::err_ovl_deleted_call)
<< Best->Function->isDeleted()
<< Name
<< Best->Function->getMessageUnavailableAttr(
!Best->Function->isDeleted())
<< Range;
Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
return true;
}
assert(false && "Unreachable, bad result from BestViableFunction");
return true;
}
/// DeclareGlobalNewDelete - Declare the global forms of operator new and
/// delete. These are:
/// @code
/// void* operator new(std::size_t) throw(std::bad_alloc);
/// void* operator new[](std::size_t) throw(std::bad_alloc);
/// void operator delete(void *) throw();
/// void operator delete[](void *) throw();
/// @endcode
/// Note that the placement and nothrow forms of new are *not* implicitly
/// declared. Their use requires including \<new\>.
void Sema::DeclareGlobalNewDelete() {
if (GlobalNewDeleteDeclared)
return;
// C++ [basic.std.dynamic]p2:
// [...] The following allocation and deallocation functions (18.4) are
// implicitly declared in global scope in each translation unit of a
// program
//
// void* operator new(std::size_t) throw(std::bad_alloc);
// void* operator new[](std::size_t) throw(std::bad_alloc);
// void operator delete(void*) throw();
// void operator delete[](void*) throw();
//
// These implicit declarations introduce only the function names operator
// new, operator new[], operator delete, operator delete[].
//
// Here, we need to refer to std::bad_alloc, so we will implicitly declare
// "std" or "bad_alloc" as necessary to form the exception specification.
// However, we do not make these implicit declarations visible to name
// lookup.
if (!StdBadAlloc) {
// The "std::bad_alloc" class has not yet been declared, so build it
// implicitly.
StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
getOrCreateStdNamespace(),
SourceLocation(), SourceLocation(),
&PP.getIdentifierTable().get("bad_alloc"),
0);
getStdBadAlloc()->setImplicit(true);
}
GlobalNewDeleteDeclared = true;
QualType VoidPtr = Context.getPointerType(Context.VoidTy);
QualType SizeT = Context.getSizeType();
bool AssumeSaneOperatorNew = getLangOptions().AssumeSaneOperatorNew;
DeclareGlobalAllocationFunction(
Context.DeclarationNames.getCXXOperatorName(OO_New),
VoidPtr, SizeT, AssumeSaneOperatorNew);
DeclareGlobalAllocationFunction(
Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
VoidPtr, SizeT, AssumeSaneOperatorNew);
DeclareGlobalAllocationFunction(
Context.DeclarationNames.getCXXOperatorName(OO_Delete),
Context.VoidTy, VoidPtr);
DeclareGlobalAllocationFunction(
Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
Context.VoidTy, VoidPtr);
}
/// DeclareGlobalAllocationFunction - Declares a single implicit global
/// allocation function if it doesn't already exist.
void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
QualType Return, QualType Argument,
bool AddMallocAttr) {
DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
// Check if this function is already declared.
{
DeclContext::lookup_iterator Alloc, AllocEnd;
for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
Alloc != AllocEnd; ++Alloc) {
// Only look at non-template functions, as it is the predefined,
// non-templated allocation function we are trying to declare here.
if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
QualType InitialParamType =
Context.getCanonicalType(
Func->getParamDecl(0)->getType().getUnqualifiedType());
// FIXME: Do we need to check for default arguments here?
if (Func->getNumParams() == 1 && InitialParamType == Argument) {
if(AddMallocAttr && !Func->hasAttr<MallocAttr>())
Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
return;
}
}
}
}
QualType BadAllocType;
bool HasBadAllocExceptionSpec
= (Name.getCXXOverloadedOperator() == OO_New ||
Name.getCXXOverloadedOperator() == OO_Array_New);
if (HasBadAllocExceptionSpec) {
assert(StdBadAlloc && "Must have std::bad_alloc declared");
BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
}
FunctionProtoType::ExtProtoInfo EPI;
if (HasBadAllocExceptionSpec) {
EPI.ExceptionSpecType = EST_Dynamic;
EPI.NumExceptions = 1;
EPI.Exceptions = &BadAllocType;
} else {
EPI.ExceptionSpecType = EST_DynamicNone;
}
QualType FnType = Context.getFunctionType(Return, &Argument, 1, EPI);
FunctionDecl *Alloc =
FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
SourceLocation(), Name,
FnType, /*TInfo=*/0, SC_None,
SC_None, false, true);
Alloc->setImplicit();
if (AddMallocAttr)
Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
SourceLocation(), 0,
Argument, /*TInfo=*/0,
SC_None, SC_None, 0);
Alloc->setParams(&Param, 1);
// FIXME: Also add this declaration to the IdentifierResolver, but
// make sure it is at the end of the chain to coincide with the
// global scope.
Context.getTranslationUnitDecl()->addDecl(Alloc);
}
bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
DeclarationName Name,
FunctionDecl* &Operator) {
LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
// Try to find operator delete/operator delete[] in class scope.
LookupQualifiedName(Found, RD);
if (Found.isAmbiguous())
return true;
Found.suppressDiagnostics();
llvm::SmallVector<DeclAccessPair,4> Matches;
for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
F != FEnd; ++F) {
NamedDecl *ND = (*F)->getUnderlyingDecl();
// Ignore template operator delete members from the check for a usual
// deallocation function.
if (isa<FunctionTemplateDecl>(ND))
continue;
if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
Matches.push_back(F.getPair());
}
// There's exactly one suitable operator; pick it.
if (Matches.size() == 1) {
Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
Matches[0]);
return false;
// We found multiple suitable operators; complain about the ambiguity.
} else if (!Matches.empty()) {
Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
<< Name << RD;
for (llvm::SmallVectorImpl<DeclAccessPair>::iterator
F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
Diag((*F)->getUnderlyingDecl()->getLocation(),
diag::note_member_declared_here) << Name;
return true;
}
// We did find operator delete/operator delete[] declarations, but
// none of them were suitable.
if (!Found.empty()) {
Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
<< Name << RD;
for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
F != FEnd; ++F)
Diag((*F)->getUnderlyingDecl()->getLocation(),
diag::note_member_declared_here) << Name;
return true;
}
// Look for a global declaration.
DeclareGlobalNewDelete();
DeclContext *TUDecl = Context.getTranslationUnitDecl();
CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
Expr* DeallocArgs[1];
DeallocArgs[0] = &Null;
if (FindAllocationOverload(StartLoc, SourceRange(), Name,
DeallocArgs, 1, TUDecl, /*AllowMissing=*/false,
Operator))
return true;
assert(Operator && "Did not find a deallocation function!");
return false;
}
/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
/// @code ::delete ptr; @endcode
/// or
/// @code delete [] ptr; @endcode
ExprResult
Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
bool ArrayForm, Expr *Ex) {
// C++ [expr.delete]p1:
// The operand shall have a pointer type, or a class type having a single
// conversion function to a pointer type. The result has type void.
//
// DR599 amends "pointer type" to "pointer to object type" in both cases.
FunctionDecl *OperatorDelete = 0;
bool ArrayFormAsWritten = ArrayForm;
bool UsualArrayDeleteWantsSize = false;
if (!Ex->isTypeDependent()) {
QualType Type = Ex->getType();
if (const RecordType *Record = Type->getAs<RecordType>()) {
if (RequireCompleteType(StartLoc, Type,
PDiag(diag::err_delete_incomplete_class_type)))
return ExprError();
llvm::SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions;
CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions();
for (UnresolvedSetImpl::iterator I = Conversions->begin(),
E = Conversions->end(); I != E; ++I) {
NamedDecl *D = I.getDecl();
if (isa<UsingShadowDecl>(D))
D = cast<UsingShadowDecl>(D)->getTargetDecl();
// Skip over templated conversion functions; they aren't considered.
if (isa<FunctionTemplateDecl>(D))
continue;
CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
QualType ConvType = Conv->getConversionType().getNonReferenceType();
if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
ObjectPtrConversions.push_back(Conv);
}
if (ObjectPtrConversions.size() == 1) {
// We have a single conversion to a pointer-to-object type. Perform
// that conversion.
// TODO: don't redo the conversion calculation.
if (!PerformImplicitConversion(Ex,
ObjectPtrConversions.front()->getConversionType(),
AA_Converting)) {
Type = Ex->getType();
}
}
else if (ObjectPtrConversions.size() > 1) {
Diag(StartLoc, diag::err_ambiguous_delete_operand)
<< Type << Ex->getSourceRange();
for (unsigned i= 0; i < ObjectPtrConversions.size(); i++)
NoteOverloadCandidate(ObjectPtrConversions[i]);
return ExprError();
}
}
if (!Type->isPointerType())
return ExprError(Diag(StartLoc, diag::err_delete_operand)
<< Type << Ex->getSourceRange());
QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
if (Pointee->isVoidType() && !isSFINAEContext()) {
// The C++ standard bans deleting a pointer to a non-object type, which
// effectively bans deletion of "void*". However, most compilers support
// this, so we treat it as a warning unless we're in a SFINAE context.
Diag(StartLoc, diag::ext_delete_void_ptr_operand)
<< Type << Ex->getSourceRange();
} else if (Pointee->isFunctionType() || Pointee->isVoidType())
return ExprError(Diag(StartLoc, diag::err_delete_operand)
<< Type << Ex->getSourceRange());
else if (!Pointee->isDependentType() &&
RequireCompleteType(StartLoc, Pointee,
PDiag(diag::warn_delete_incomplete)
<< Ex->getSourceRange()))
return ExprError();
// C++ [expr.delete]p2:
// [Note: a pointer to a const type can be the operand of a
// delete-expression; it is not necessary to cast away the constness
// (5.2.11) of the pointer expression before it is used as the operand
// of the delete-expression. ]
ImpCastExprToType(Ex, Context.getPointerType(Context.VoidTy),
CK_NoOp);
if (Pointee->isArrayType() && !ArrayForm) {
Diag(StartLoc, diag::warn_delete_array_type)
<< Type << Ex->getSourceRange()
<< FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
ArrayForm = true;
}
DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
ArrayForm ? OO_Array_Delete : OO_Delete);
QualType PointeeElem = Context.getBaseElementType(Pointee);
if (const RecordType *RT = PointeeElem->getAs<RecordType>()) {
CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
if (!UseGlobal &&
FindDeallocationFunction(StartLoc, RD, DeleteName, OperatorDelete))
return ExprError();
// If we're allocating an array of records, check whether the
// usual operator delete[] has a size_t parameter.
if (ArrayForm) {
// If the user specifically asked to use the global allocator,
// we'll need to do the lookup into the class.
if (UseGlobal)
UsualArrayDeleteWantsSize =
doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
// Otherwise, the usual operator delete[] should be the
// function we just found.
else if (isa<CXXMethodDecl>(OperatorDelete))
UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
}
if (!RD->hasTrivialDestructor())
if (CXXDestructorDecl *Dtor = LookupDestructor(RD)) {
MarkDeclarationReferenced(StartLoc,
const_cast<CXXDestructorDecl*>(Dtor));
DiagnoseUseOfDecl(Dtor, StartLoc);
}
}
if (!OperatorDelete) {
// Look for a global declaration.
DeclareGlobalNewDelete();
DeclContext *TUDecl = Context.getTranslationUnitDecl();
if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
&Ex, 1, TUDecl, /*AllowMissing=*/false,
OperatorDelete))
return ExprError();
}
MarkDeclarationReferenced(StartLoc, OperatorDelete);
// Check access and ambiguity of operator delete and destructor.
if (const RecordType *RT = PointeeElem->getAs<RecordType>()) {
CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
if (CXXDestructorDecl *Dtor = LookupDestructor(RD)) {
CheckDestructorAccess(Ex->getExprLoc(), Dtor,
PDiag(diag::err_access_dtor) << PointeeElem);
}
}
}
return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
ArrayFormAsWritten,
UsualArrayDeleteWantsSize,
OperatorDelete, Ex, StartLoc));
}
/// \brief Check the use of the given variable as a C++ condition in an if,
/// while, do-while, or switch statement.
ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
SourceLocation StmtLoc,
bool ConvertToBoolean) {
QualType T = ConditionVar->getType();
// C++ [stmt.select]p2:
// The declarator shall not specify a function or an array.
if (T->isFunctionType())
return ExprError(Diag(ConditionVar->getLocation(),
diag::err_invalid_use_of_function_type)
<< ConditionVar->getSourceRange());
else if (T->isArrayType())
return ExprError(Diag(ConditionVar->getLocation(),
diag::err_invalid_use_of_array_type)
<< ConditionVar->getSourceRange());
Expr *Condition = DeclRefExpr::Create(Context, NestedNameSpecifierLoc(),
ConditionVar,
ConditionVar->getLocation(),
ConditionVar->getType().getNonReferenceType(),
VK_LValue);
if (ConvertToBoolean && CheckBooleanCondition(Condition, StmtLoc))
return ExprError();
return Owned(Condition);
}
/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
bool Sema::CheckCXXBooleanCondition(Expr *&CondExpr) {
// C++ 6.4p4:
// The value of a condition that is an initialized declaration in a statement
// other than a switch statement is the value of the declared variable
// implicitly converted to type bool. If that conversion is ill-formed, the
// program is ill-formed.
// The value of a condition that is an expression is the value of the
// expression, implicitly converted to bool.
//
return PerformContextuallyConvertToBool(CondExpr);
}
/// Helper function to determine whether this is the (deprecated) C++
/// conversion from a string literal to a pointer to non-const char or
/// non-const wchar_t (for narrow and wide string literals,
/// respectively).
bool
Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
// Look inside the implicit cast, if it exists.
if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
From = Cast->getSubExpr();
// A string literal (2.13.4) that is not a wide string literal can
// be converted to an rvalue of type "pointer to char"; a wide
// string literal can be converted to an rvalue of type "pointer
// to wchar_t" (C++ 4.2p2).
if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
if (const BuiltinType *ToPointeeType
= ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
// This conversion is considered only when there is an
// explicit appropriate pointer target type (C++ 4.2p2).
if (!ToPtrType->getPointeeType().hasQualifiers() &&
((StrLit->isWide() && ToPointeeType->isWideCharType()) ||
(!StrLit->isWide() &&
(ToPointeeType->getKind() == BuiltinType::Char_U ||
ToPointeeType->getKind() == BuiltinType::Char_S))))
return true;
}
return false;
}
static ExprResult BuildCXXCastArgument(Sema &S,
SourceLocation CastLoc,
QualType Ty,
CastKind Kind,
CXXMethodDecl *Method,
NamedDecl *FoundDecl,
Expr *From) {
switch (Kind) {
default: assert(0 && "Unhandled cast kind!");
case CK_ConstructorConversion: {
ASTOwningVector<Expr*> ConstructorArgs(S);
if (S.CompleteConstructorCall(cast<CXXConstructorDecl>(Method),
MultiExprArg(&From, 1),
CastLoc, ConstructorArgs))
return ExprError();
ExprResult Result =
S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
move_arg(ConstructorArgs),
/*ZeroInit*/ false, CXXConstructExpr::CK_Complete,
SourceRange());
if (Result.isInvalid())
return ExprError();
return S.MaybeBindToTemporary(Result.takeAs<Expr>());
}
case CK_UserDefinedConversion: {
assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
// Create an implicit call expr that calls it.
ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Method);
if (Result.isInvalid())
return ExprError();
return S.MaybeBindToTemporary(Result.get());
}
}
}
/// PerformImplicitConversion - Perform an implicit conversion of the
/// expression From to the type ToType using the pre-computed implicit
/// conversion sequence ICS. Returns true if there was an error, false
/// otherwise. The expression From is replaced with the converted
/// expression. Action is the kind of conversion we're performing,
/// used in the error message.
bool
Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
const ImplicitConversionSequence &ICS,
AssignmentAction Action, bool CStyle) {
switch (ICS.getKind()) {
case ImplicitConversionSequence::StandardConversion:
if (PerformImplicitConversion(From, ToType, ICS.Standard, Action,
CStyle))
return true;
break;
case ImplicitConversionSequence::UserDefinedConversion: {
FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
CastKind CastKind;
QualType BeforeToType;
if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
CastKind = CK_UserDefinedConversion;
// If the user-defined conversion is specified by a conversion function,
// the initial standard conversion sequence converts the source type to
// the implicit object parameter of the conversion function.
BeforeToType = Context.getTagDeclType(Conv->getParent());
} else {
const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
CastKind = CK_ConstructorConversion;
// Do no conversion if dealing with ... for the first conversion.
if (!ICS.UserDefined.EllipsisConversion) {
// If the user-defined conversion is specified by a constructor, the
// initial standard conversion sequence converts the source type to the
// type required by the argument of the constructor
BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
}
}
// Watch out for elipsis conversion.
if (!ICS.UserDefined.EllipsisConversion) {
if (PerformImplicitConversion(From, BeforeToType,
ICS.UserDefined.Before, AA_Converting,
CStyle))
return true;
}
ExprResult CastArg
= BuildCXXCastArgument(*this,
From->getLocStart(),
ToType.getNonReferenceType(),
CastKind, cast<CXXMethodDecl>(FD),
ICS.UserDefined.FoundConversionFunction,
From);
if (CastArg.isInvalid())
return true;
From = CastArg.takeAs<Expr>();
return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
AA_Converting, CStyle);
}
case ImplicitConversionSequence::AmbiguousConversion:
ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
PDiag(diag::err_typecheck_ambiguous_condition)
<< From->getSourceRange());
return true;
case ImplicitConversionSequence::EllipsisConversion:
assert(false && "Cannot perform an ellipsis conversion");
return false;
case ImplicitConversionSequence::BadConversion:
return true;
}
// Everything went well.
return false;
}
/// PerformImplicitConversion - Perform an implicit conversion of the
/// expression From to the type ToType by following the standard
/// conversion sequence SCS. Returns true if there was an error, false
/// otherwise. The expression From is replaced with the converted
/// expression. Flavor is the context in which we're performing this
/// conversion, for use in error messages.
bool
Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
const StandardConversionSequence& SCS,
AssignmentAction Action, bool CStyle) {
// Overall FIXME: we are recomputing too many types here and doing far too
// much extra work. What this means is that we need to keep track of more
// information that is computed when we try the implicit conversion initially,
// so that we don't need to recompute anything here.
QualType FromType = From->getType();
if (SCS.CopyConstructor) {
// FIXME: When can ToType be a reference type?
assert(!ToType->isReferenceType());
if (SCS.Second == ICK_Derived_To_Base) {
ASTOwningVector<Expr*> ConstructorArgs(*this);
if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
MultiExprArg(*this, &From, 1),
/*FIXME:ConstructLoc*/SourceLocation(),
ConstructorArgs))
return true;
ExprResult FromResult =
BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
ToType, SCS.CopyConstructor,
move_arg(ConstructorArgs),
/*ZeroInit*/ false,
CXXConstructExpr::CK_Complete,
SourceRange());
if (FromResult.isInvalid())
return true;
From = FromResult.takeAs<Expr>();
return false;
}
ExprResult FromResult =
BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
ToType, SCS.CopyConstructor,
MultiExprArg(*this, &From, 1),
/*ZeroInit*/ false,
CXXConstructExpr::CK_Complete,
SourceRange());
if (FromResult.isInvalid())
return true;
From = FromResult.takeAs<Expr>();
return false;
}
// Resolve overloaded function references.
if (Context.hasSameType(FromType, Context.OverloadTy)) {
DeclAccessPair Found;
FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
true, Found);
if (!Fn)
return true;
if (DiagnoseUseOfDecl(Fn, From->getSourceRange().getBegin()))
return true;
From = FixOverloadedFunctionReference(From, Found, Fn);
FromType = From->getType();
}
// Perform the first implicit conversion.
switch (SCS.First) {
case ICK_Identity:
// Nothing to do.
break;
case ICK_Lvalue_To_Rvalue:
// Should this get its own ICK?
if (From->getObjectKind() == OK_ObjCProperty) {
ConvertPropertyForRValue(From);
if (!From->isGLValue()) break;
}
// Check for trivial buffer overflows.
CheckArrayAccess(From);
FromType = FromType.getUnqualifiedType();
From = ImplicitCastExpr::Create(Context, FromType, CK_LValueToRValue,
From, 0, VK_RValue);
break;
case ICK_Array_To_Pointer:
FromType = Context.getArrayDecayedType(FromType);
ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay);
break;
case ICK_Function_To_Pointer:
FromType = Context.getPointerType(FromType);
ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay);
break;
default:
assert(false && "Improper first standard conversion");
break;
}
// Perform the second implicit conversion
switch (SCS.Second) {
case ICK_Identity:
// If both sides are functions (or pointers/references to them), there could
// be incompatible exception declarations.
if (CheckExceptionSpecCompatibility(From, ToType))
return true;
// Nothing else to do.
break;
case ICK_NoReturn_Adjustment:
// If both sides are functions (or pointers/references to them), there could
// be incompatible exception declarations.
if (CheckExceptionSpecCompatibility(From, ToType))
return true;
ImpCastExprToType(From, ToType, CK_NoOp);
break;
case ICK_Integral_Promotion:
case ICK_Integral_Conversion:
ImpCastExprToType(From, ToType, CK_IntegralCast);
break;
case ICK_Floating_Promotion:
case ICK_Floating_Conversion:
ImpCastExprToType(From, ToType, CK_FloatingCast);
break;
case ICK_Complex_Promotion:
case ICK_Complex_Conversion: {
QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
CastKind CK;
if (FromEl->isRealFloatingType()) {
if (ToEl->isRealFloatingType())
CK = CK_FloatingComplexCast;
else
CK = CK_FloatingComplexToIntegralComplex;
} else if (ToEl->isRealFloatingType()) {
CK = CK_IntegralComplexToFloatingComplex;
} else {
CK = CK_IntegralComplexCast;
}
ImpCastExprToType(From, ToType, CK);
break;
}
case ICK_Floating_Integral:
if (ToType->isRealFloatingType())
ImpCastExprToType(From, ToType, CK_IntegralToFloating);
else
ImpCastExprToType(From, ToType, CK_FloatingToIntegral);
break;
case ICK_Compatible_Conversion:
ImpCastExprToType(From, ToType, CK_NoOp);
break;
case ICK_Pointer_Conversion: {
if (SCS.IncompatibleObjC && Action != AA_Casting) {
// Diagnose incompatible Objective-C conversions
Diag(From->getSourceRange().getBegin(),
diag::ext_typecheck_convert_incompatible_pointer)
<< From->getType() << ToType << Action
<< From->getSourceRange();
}
CastKind Kind = CK_Invalid;
CXXCastPath BasePath;
if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
return true;
ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath);
break;
}
case ICK_Pointer_Member: {
CastKind Kind = CK_Invalid;
CXXCastPath BasePath;
if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
return true;
if (CheckExceptionSpecCompatibility(From, ToType))
return true;
ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath);
break;
}
case ICK_Boolean_Conversion: {
CastKind Kind = CK_Invalid;
switch (FromType->getScalarTypeKind()) {
case Type::STK_Pointer: Kind = CK_PointerToBoolean; break;
case Type::STK_MemberPointer: Kind = CK_MemberPointerToBoolean; break;
case Type::STK_Bool: llvm_unreachable("bool -> bool conversion?");
case Type::STK_Integral: Kind = CK_IntegralToBoolean; break;
case Type::STK_Floating: Kind = CK_FloatingToBoolean; break;
case Type::STK_IntegralComplex: Kind = CK_IntegralComplexToBoolean; break;
case Type::STK_FloatingComplex: Kind = CK_FloatingComplexToBoolean; break;
}
ImpCastExprToType(From, Context.BoolTy, Kind);
break;
}
case ICK_Derived_To_Base: {
CXXCastPath BasePath;
if (CheckDerivedToBaseConversion(From->getType(),
ToType.getNonReferenceType(),
From->getLocStart(),
From->getSourceRange(),
&BasePath,
CStyle))
return true;
ImpCastExprToType(From, ToType.getNonReferenceType(),
CK_DerivedToBase, CastCategory(From),
&BasePath);
break;
}
case ICK_Vector_Conversion:
ImpCastExprToType(From, ToType, CK_BitCast);
break;
case ICK_Vector_Splat:
ImpCastExprToType(From, ToType, CK_VectorSplat);
break;
case ICK_Complex_Real:
// Case 1. x -> _Complex y
if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
QualType ElType = ToComplex->getElementType();
bool isFloatingComplex = ElType->isRealFloatingType();
// x -> y
if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
// do nothing
} else if (From->getType()->isRealFloatingType()) {
ImpCastExprToType(From, ElType,
isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral);
} else {
assert(From->getType()->isIntegerType());
ImpCastExprToType(From, ElType,
isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast);
}
// y -> _Complex y
ImpCastExprToType(From, ToType,
isFloatingComplex ? CK_FloatingRealToComplex
: CK_IntegralRealToComplex);
// Case 2. _Complex x -> y
} else {
const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
assert(FromComplex);
QualType ElType = FromComplex->getElementType();
bool isFloatingComplex = ElType->isRealFloatingType();
// _Complex x -> x
ImpCastExprToType(From, ElType,
isFloatingComplex ? CK_FloatingComplexToReal
: CK_IntegralComplexToReal);
// x -> y
if (Context.hasSameUnqualifiedType(ElType, ToType)) {
// do nothing
} else if (ToType->isRealFloatingType()) {
ImpCastExprToType(From, ToType,
isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating);
} else {
assert(ToType->isIntegerType());
ImpCastExprToType(From, ToType,
isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast);
}
}
break;
case ICK_Block_Pointer_Conversion: {
ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast, VK_RValue);
break;
}
case ICK_Lvalue_To_Rvalue:
case ICK_Array_To_Pointer:
case ICK_Function_To_Pointer:
case ICK_Qualification:
case ICK_Num_Conversion_Kinds:
assert(false && "Improper second standard conversion");
break;
}
switch (SCS.Third) {
case ICK_Identity:
// Nothing to do.
break;
case ICK_Qualification: {
// The qualification keeps the category of the inner expression, unless the
// target type isn't a reference.
ExprValueKind VK = ToType->isReferenceType() ?
CastCategory(From) : VK_RValue;
ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
CK_NoOp, VK);
if (SCS.DeprecatedStringLiteralToCharPtr)
Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
<< ToType.getNonReferenceType();
break;
}
default:
assert(false && "Improper third standard conversion");
break;
}
return false;
}
ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
SourceLocation KWLoc,
ParsedType Ty,
SourceLocation RParen) {
TypeSourceInfo *TSInfo;
QualType T = GetTypeFromParser(Ty, &TSInfo);
if (!TSInfo)
TSInfo = Context.getTrivialTypeSourceInfo(T);
return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
}
static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT, QualType T,
SourceLocation KeyLoc) {
// FIXME: For many of these traits, we need a complete type before we can
// check these properties.
assert(!T->isDependentType() &&
"Cannot evaluate traits for dependent types.");
ASTContext &C = Self.Context;
switch(UTT) {
default: assert(false && "Unknown type trait or not implemented");
case UTT_IsPOD: return T->isPODType();
case UTT_IsLiteral: return T->isLiteralType();
case UTT_IsClass: // Fallthrough
case UTT_IsUnion:
if (const RecordType *Record = T->getAs<RecordType>()) {
bool Union = Record->getDecl()->isUnion();
return UTT == UTT_IsUnion ? Union : !Union;
}
return false;
case UTT_IsEnum: return T->isEnumeralType();
case UTT_IsPolymorphic:
if (const RecordType *Record = T->getAs<RecordType>()) {
// Type traits are only parsed in C++, so we've got CXXRecords.
return cast<CXXRecordDecl>(Record->getDecl())->isPolymorphic();
}
return false;
case UTT_IsAbstract:
if (const RecordType *RT = T->getAs<RecordType>())
return cast<CXXRecordDecl>(RT->getDecl())->isAbstract();
return false;
case UTT_IsEmpty:
if (const RecordType *Record = T->getAs<RecordType>()) {
return !Record->getDecl()->isUnion()
&& cast<CXXRecordDecl>(Record->getDecl())->isEmpty();
}
return false;
case UTT_HasTrivialConstructor:
// http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
// If __is_pod (type) is true then the trait is true, else if type is
// a cv class or union type (or array thereof) with a trivial default
// constructor ([class.ctor]) then the trait is true, else it is false.
if (T->isPODType())
return true;
if (const RecordType *RT =
C.getBaseElementType(T)->getAs<RecordType>())
return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialConstructor();
return false;
case UTT_HasTrivialCopy:
// http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
// If __is_pod (type) is true or type is a reference type then
// the trait is true, else if type is a cv class or union type
// with a trivial copy constructor ([class.copy]) then the trait
// is true, else it is false.
if (T->isPODType() || T->isReferenceType())
return true;
if (const RecordType *RT = T->getAs<RecordType>())
return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyConstructor();
return false;
case UTT_HasTrivialAssign:
// http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
// If type is const qualified or is a reference type then the
// trait is false. Otherwise if __is_pod (type) is true then the
// trait is true, else if type is a cv class or union type with
// a trivial copy assignment ([class.copy]) then the trait is
// true, else it is false.
// Note: the const and reference restrictions are interesting,
// given that const and reference members don't prevent a class
// from having a trivial copy assignment operator (but do cause
// errors if the copy assignment operator is actually used, q.v.
// [class.copy]p12).
if (C.getBaseElementType(T).isConstQualified())
return false;
if (T->isPODType())
return true;
if (const RecordType *RT = T->getAs<RecordType>())
return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyAssignment();
return false;
case UTT_HasTrivialDestructor:
// http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
// If __is_pod (type) is true or type is a reference type
// then the trait is true, else if type is a cv class or union
// type (or array thereof) with a trivial destructor
// ([class.dtor]) then the trait is true, else it is
// false.
if (T->isPODType() || T->isReferenceType())
return true;
if (const RecordType *RT =
C.getBaseElementType(T)->getAs<RecordType>())
return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor();
return false;
// TODO: Propagate nothrowness for implicitly declared special members.
case UTT_HasNothrowAssign:
// http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
// If type is const qualified or is a reference type then the
// trait is false. Otherwise if __has_trivial_assign (type)
// is true then the trait is true, else if type is a cv class
// or union type with copy assignment operators that are known
// not to throw an exception then the trait is true, else it is
// false.
if (C.getBaseElementType(T).isConstQualified())
return false;
if (T->isReferenceType())
return false;
if (T->isPODType())
return true;
if (const RecordType *RT = T->getAs<RecordType>()) {
CXXRecordDecl* RD = cast<CXXRecordDecl>(RT->getDecl());
if (RD->hasTrivialCopyAssignment())
return true;
bool FoundAssign = false;
bool AllNoThrow = true;
DeclarationName Name = C.DeclarationNames.getCXXOperatorName(OO_Equal);
LookupResult Res(Self, DeclarationNameInfo(Name, KeyLoc),
Sema::LookupOrdinaryName);
if (Self.LookupQualifiedName(Res, RD)) {
for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
Op != OpEnd; ++Op) {
CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
if (Operator->isCopyAssignmentOperator()) {
FoundAssign = true;
const FunctionProtoType *CPT
= Operator->getType()->getAs<FunctionProtoType>();
if (!CPT->isNothrow()) {
AllNoThrow = false;
break;
}
}
}
}
return FoundAssign && AllNoThrow;
}
return false;
case UTT_HasNothrowCopy:
// http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
// If __has_trivial_copy (type) is true then the trait is true, else
// if type is a cv class or union type with copy constructors that are
// known not to throw an exception then the trait is true, else it is
// false.
if (T->isPODType() || T->isReferenceType())
return true;
if (const RecordType *RT = T->getAs<RecordType>()) {
CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
if (RD->hasTrivialCopyConstructor())
return true;
bool FoundConstructor = false;
bool AllNoThrow = true;
unsigned FoundTQs;
DeclContext::lookup_const_iterator Con, ConEnd;
for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
Con != ConEnd; ++Con) {
// A template constructor is never a copy constructor.
// FIXME: However, it may actually be selected at the actual overload
// resolution point.
if (isa<FunctionTemplateDecl>(*Con))
continue;
CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
if (Constructor->isCopyConstructor(FoundTQs)) {
FoundConstructor = true;
const FunctionProtoType *CPT
= Constructor->getType()->getAs<FunctionProtoType>();
// FIXME: check whether evaluating default arguments can throw.
// For now, we'll be conservative and assume that they can throw.
if (!CPT->isNothrow() || CPT->getNumArgs() > 1) {
AllNoThrow = false;
break;
}
}
}
return FoundConstructor && AllNoThrow;
}
return false;
case UTT_HasNothrowConstructor:
// http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
// If __has_trivial_constructor (type) is true then the trait is
// true, else if type is a cv class or union type (or array
// thereof) with a default constructor that is known not to
// throw an exception then the trait is true, else it is false.
if (T->isPODType())
return true;
if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) {
CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
if (RD->hasTrivialConstructor())
return true;
DeclContext::lookup_const_iterator Con, ConEnd;
for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
Con != ConEnd; ++Con) {
// FIXME: In C++0x, a constructor template can be a default constructor.
if (isa<FunctionTemplateDecl>(*Con))
continue;
CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
if (Constructor->isDefaultConstructor()) {
const FunctionProtoType *CPT
= Constructor->getType()->getAs<FunctionProtoType>();
// TODO: check whether evaluating default arguments can throw.
// For now, we'll be conservative and assume that they can throw.
return CPT->isNothrow() && CPT->getNumArgs() == 0;
}
}
}
return false;
case UTT_HasVirtualDestructor:
// http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
// If type is a class type with a virtual destructor ([class.dtor])
// then the trait is true, else it is false.
if (const RecordType *Record = T->getAs<RecordType>()) {
CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
return Destructor->isVirtual();
}
return false;
}
}
ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
SourceLocation KWLoc,
TypeSourceInfo *TSInfo,
SourceLocation RParen) {
QualType T = TSInfo->getType();
// According to http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
// all traits except __is_class, __is_enum and __is_union require a the type
// to be complete, an array of unknown bound, or void.
if (UTT != UTT_IsClass && UTT != UTT_IsEnum && UTT != UTT_IsUnion) {
QualType E = T;
if (T->isIncompleteArrayType())
E = Context.getAsArrayType(T)->getElementType();
if (!T->isVoidType() &&
RequireCompleteType(KWLoc, E,
diag::err_incomplete_type_used_in_type_trait_expr))
return ExprError();
}
bool Value = false;
if (!T->isDependentType())
Value = EvaluateUnaryTypeTrait(*this, UTT, T, KWLoc);
return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
RParen, Context.BoolTy));
}
ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT,
SourceLocation KWLoc,
ParsedType LhsTy,
ParsedType RhsTy,
SourceLocation RParen) {
TypeSourceInfo *LhsTSInfo;
QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo);
if (!LhsTSInfo)
LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT);
TypeSourceInfo *RhsTSInfo;
QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo);
if (!RhsTSInfo)
RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT);
return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen);
}
static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT,
QualType LhsT, QualType RhsT,
SourceLocation KeyLoc) {
assert((!LhsT->isDependentType() || RhsT->isDependentType()) &&
"Cannot evaluate traits for dependent types.");
switch(BTT) {
case BTT_IsBaseOf: {
// C++0x [meta.rel]p2
// Base is a base class of Derived without regard to cv-qualifiers or
// Base and Derived are not unions and name the same class type without
// regard to cv-qualifiers.
const RecordType *lhsRecord = LhsT->getAs<RecordType>();
if (!lhsRecord) return false;
const RecordType *rhsRecord = RhsT->getAs<RecordType>();
if (!rhsRecord) return false;
assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
== (lhsRecord == rhsRecord));
if (lhsRecord == rhsRecord)
return !lhsRecord->getDecl()->isUnion();
// C++0x [meta.rel]p2:
// If Base and Derived are class types and are different types
// (ignoring possible cv-qualifiers) then Derived shall be a
// complete type.
if (Self.RequireCompleteType(KeyLoc, RhsT,
diag::err_incomplete_type_used_in_type_trait_expr))
return false;
return cast<CXXRecordDecl>(rhsRecord->getDecl())
->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
}
case BTT_TypeCompatible:
return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
RhsT.getUnqualifiedType());
case BTT_IsConvertibleTo: {
// C++0x [meta.rel]p4:
// Given the following function prototype:
//
// template <class T>
// typename add_rvalue_reference<T>::type create();
//
// the predicate condition for a template specialization
// is_convertible<From, To> shall be satisfied if and only if
// the return expression in the following code would be
// well-formed, including any implicit conversions to the return
// type of the function:
//
// To test() {
// return create<From>();
// }
//
// Access checking is performed as if in a context unrelated to To and
// From. Only the validity of the immediate context of the expression
// of the return-statement (including conversions to the return type)
// is considered.
//
// We model the initialization as a copy-initialization of a temporary
// of the appropriate type, which for this expression is identical to the
// return statement (since NRVO doesn't apply).
if (LhsT->isObjectType() || LhsT->isFunctionType())
LhsT = Self.Context.getRValueReferenceType(LhsT);
InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
Expr::getValueKindForType(LhsT));
Expr *FromPtr = &From;
InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
SourceLocation()));
// Perform the initialization within a SFINAE trap at translation unit
// scope.
Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
InitializationSequence Init(Self, To, Kind, &FromPtr, 1);
if (Init.getKind() == InitializationSequence::FailedSequence)
return false;
ExprResult Result = Init.Perform(Self, To, Kind, MultiExprArg(&FromPtr, 1));
return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
}
}
llvm_unreachable("Unknown type trait or not implemented");
}
ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT,
SourceLocation KWLoc,
TypeSourceInfo *LhsTSInfo,
TypeSourceInfo *RhsTSInfo,
SourceLocation RParen) {
QualType LhsT = LhsTSInfo->getType();
QualType RhsT = RhsTSInfo->getType();
if (BTT == BTT_TypeCompatible) {
if (getLangOptions().CPlusPlus) {
Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus)
<< SourceRange(KWLoc, RParen);
return ExprError();
}
}
bool Value = false;
if (!LhsT->isDependentType() && !RhsT->isDependentType())
Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc);
// Select trait result type.
QualType ResultType;
switch (BTT) {
case BTT_IsBaseOf: ResultType = Context.BoolTy; break;
case BTT_TypeCompatible: ResultType = Context.IntTy; break;
case BTT_IsConvertibleTo: ResultType = Context.BoolTy; break;
}
return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo,
RhsTSInfo, Value, RParen,
ResultType));
}
QualType Sema::CheckPointerToMemberOperands(Expr *&lex, Expr *&rex,
ExprValueKind &VK,
SourceLocation Loc,
bool isIndirect) {
const char *OpSpelling = isIndirect ? "->*" : ".*";
// C++ 5.5p2
// The binary operator .* [p3: ->*] binds its second operand, which shall
// be of type "pointer to member of T" (where T is a completely-defined
// class type) [...]
QualType RType = rex->getType();
const MemberPointerType *MemPtr = RType->getAs<MemberPointerType>();
if (!MemPtr) {
Diag(Loc, diag::err_bad_memptr_rhs)
<< OpSpelling << RType << rex->getSourceRange();
return QualType();
}
QualType Class(MemPtr->getClass(), 0);
// Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
// member pointer points must be completely-defined. However, there is no
// reason for this semantic distinction, and the rule is not enforced by
// other compilers. Therefore, we do not check this property, as it is
// likely to be considered a defect.
// C++ 5.5p2
// [...] to its first operand, which shall be of class T or of a class of
// which T is an unambiguous and accessible base class. [p3: a pointer to
// such a class]
QualType LType = lex->getType();
if (isIndirect) {
if (const PointerType *Ptr = LType->getAs<PointerType>())
LType = Ptr->getPointeeType();
else {
Diag(Loc, diag::err_bad_memptr_lhs)
<< OpSpelling << 1 << LType
<< FixItHint::CreateReplacement(SourceRange(Loc), ".*");
return QualType();
}
}
if (!Context.hasSameUnqualifiedType(Class, LType)) {
// If we want to check the hierarchy, we need a complete type.
if (RequireCompleteType(Loc, LType, PDiag(diag::err_bad_memptr_lhs)
<< OpSpelling << (int)isIndirect)) {
return QualType();
}
CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
/*DetectVirtual=*/false);
// FIXME: Would it be useful to print full ambiguity paths, or is that
// overkill?
if (!IsDerivedFrom(LType, Class, Paths) ||
Paths.isAmbiguous(Context.getCanonicalType(Class))) {
Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
<< (int)isIndirect << lex->getType();
return QualType();
}
// Cast LHS to type of use.
QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
ExprValueKind VK =
isIndirect ? VK_RValue : CastCategory(lex);
CXXCastPath BasePath;
BuildBasePathArray(Paths, BasePath);
ImpCastExprToType(lex, UseType, CK_DerivedToBase, VK, &BasePath);
}
if (isa<CXXScalarValueInitExpr>(rex->IgnoreParens())) {
// Diagnose use of pointer-to-member type which when used as
// the functional cast in a pointer-to-member expression.
Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
return QualType();
}
// C++ 5.5p2
// The result is an object or a function of the type specified by the
// second operand.
// The cv qualifiers are the union of those in the pointer and the left side,
// in accordance with 5.5p5 and 5.2.5.
// FIXME: This returns a dereferenced member function pointer as a normal
// function type. However, the only operation valid on such functions is
// calling them. There's also a GCC extension to get a function pointer to the
// thing, which is another complication, because this type - unlike the type
// that is the result of this expression - takes the class as the first
// argument.
// We probably need a "MemberFunctionClosureType" or something like that.
QualType Result = MemPtr->getPointeeType();
Result = Context.getCVRQualifiedType(Result, LType.getCVRQualifiers());
// C++0x [expr.mptr.oper]p6:
// In a .* expression whose object expression is an rvalue, the program is
// ill-formed if the second operand is a pointer to member function with
// ref-qualifier &. In a ->* expression or in a .* expression whose object
// expression is an lvalue, the program is ill-formed if the second operand
// is a pointer to member function with ref-qualifier &&.
if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
switch (Proto->getRefQualifier()) {
case RQ_None:
// Do nothing
break;
case RQ_LValue:
if (!isIndirect && !lex->Classify(Context).isLValue())
Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
<< RType << 1 << lex->getSourceRange();
break;
case RQ_RValue:
if (isIndirect || !lex->Classify(Context).isRValue())
Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
<< RType << 0 << lex->getSourceRange();
break;
}
}
// C++ [expr.mptr.oper]p6:
// The result of a .* expression whose second operand is a pointer
// to a data member is of the same value category as its
// first operand. The result of a .* expression whose second
// operand is a pointer to a member function is a prvalue. The
// result of an ->* expression is an lvalue if its second operand
// is a pointer to data member and a prvalue otherwise.
if (Result->isFunctionType())
VK = VK_RValue;
else if (isIndirect)
VK = VK_LValue;
else
VK = lex->getValueKind();
return Result;
}
/// \brief Try to convert a type to another according to C++0x 5.16p3.
///
/// This is part of the parameter validation for the ? operator. If either
/// value operand is a class type, the two operands are attempted to be
/// converted to each other. This function does the conversion in one direction.
/// It returns true if the program is ill-formed and has already been diagnosed
/// as such.
static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
SourceLocation QuestionLoc,
bool &HaveConversion,
QualType &ToType) {
HaveConversion = false;
ToType = To->getType();
InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
SourceLocation());
// C++0x 5.16p3
// The process for determining whether an operand expression E1 of type T1
// can be converted to match an operand expression E2 of type T2 is defined
// as follows:
// -- If E2 is an lvalue:
bool ToIsLvalue = To->isLValue();
if (ToIsLvalue) {
// E1 can be converted to match E2 if E1 can be implicitly converted to
// type "lvalue reference to T2", subject to the constraint that in the
// conversion the reference must bind directly to E1.
QualType T = Self.Context.getLValueReferenceType(ToType);
InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
if (InitSeq.isDirectReferenceBinding()) {
ToType = T;
HaveConversion = true;
return false;
}
if (InitSeq.isAmbiguous())
return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
}
// -- If E2 is an rvalue, or if the conversion above cannot be done:
// -- if E1 and E2 have class type, and the underlying class types are
// the same or one is a base class of the other:
QualType FTy = From->getType();
QualType TTy = To->getType();
const RecordType *FRec = FTy->getAs<RecordType>();
const RecordType *TRec = TTy->getAs<RecordType>();
bool FDerivedFromT = FRec && TRec && FRec != TRec &&
Self.IsDerivedFrom(FTy, TTy);
if (FRec && TRec &&
(FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
// E1 can be converted to match E2 if the class of T2 is the
// same type as, or a base class of, the class of T1, and
// [cv2 > cv1].
if (FRec == TRec || FDerivedFromT) {
if (TTy.isAtLeastAsQualifiedAs(FTy)) {
InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
if (InitSeq.getKind() != InitializationSequence::FailedSequence) {
HaveConversion = true;
return false;
}
if (InitSeq.isAmbiguous())
return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
}
}
return false;
}
// -- Otherwise: E1 can be converted to match E2 if E1 can be
// implicitly converted to the type that expression E2 would have
// if E2 were converted to an rvalue (or the type it has, if E2 is
// an rvalue).
//
// This actually refers very narrowly to the lvalue-to-rvalue conversion, not
// to the array-to-pointer or function-to-pointer conversions.
if (!TTy->getAs<TagType>())
TTy = TTy.getUnqualifiedType();
InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
HaveConversion = InitSeq.getKind() != InitializationSequence::FailedSequence;
ToType = TTy;
if (InitSeq.isAmbiguous())
return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
return false;
}
/// \brief Try to find a common type for two according to C++0x 5.16p5.
///
/// This is part of the parameter validation for the ? operator. If either
/// value operand is a class type, overload resolution is used to find a
/// conversion to a common type.
static bool FindConditionalOverload(Sema &Self, Expr *&LHS, Expr *&RHS,
SourceLocation QuestionLoc) {
Expr *Args[2] = { LHS, RHS };
OverloadCandidateSet CandidateSet(QuestionLoc);
Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 2,
CandidateSet);
OverloadCandidateSet::iterator Best;
switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
case OR_Success:
// We found a match. Perform the conversions on the arguments and move on.
if (Self.PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0],
Best->Conversions[0], Sema::AA_Converting) ||
Self.PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1],
Best->Conversions[1], Sema::AA_Converting))
break;
if (Best->Function)
Self.MarkDeclarationReferenced(QuestionLoc, Best->Function);
return false;
case OR_No_Viable_Function:
// Emit a better diagnostic if one of the expressions is a null pointer
// constant and the other is a pointer type. In this case, the user most
// likely forgot to take the address of the other expression.
if (Self.DiagnoseConditionalForNull(LHS, RHS, QuestionLoc))
return true;
Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
<< LHS->getType() << RHS->getType()
<< LHS->getSourceRange() << RHS->getSourceRange();
return true;
case OR_Ambiguous:
Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
<< LHS->getType() << RHS->getType()
<< LHS->getSourceRange() << RHS->getSourceRange();
// FIXME: Print the possible common types by printing the return types of
// the viable candidates.
break;
case OR_Deleted:
assert(false && "Conditional operator has only built-in overloads");
break;
}
return true;
}
/// \brief Perform an "extended" implicit conversion as returned by
/// TryClassUnification.
static bool ConvertForConditional(Sema &Self, Expr *&E, QualType T) {
InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
InitializationKind Kind = InitializationKind::CreateCopy(E->getLocStart(),
SourceLocation());
InitializationSequence InitSeq(Self, Entity, Kind, &E, 1);
ExprResult Result = InitSeq.Perform(Self, Entity, Kind, MultiExprArg(&E, 1));
if (Result.isInvalid())
return true;
E = Result.takeAs<Expr>();
return false;
}
/// \brief Check the operands of ?: under C++ semantics.
///
/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
/// extension. In this case, LHS == Cond. (But they're not aliases.)
QualType Sema::CXXCheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
ExprValueKind &VK, ExprObjectKind &OK,
SourceLocation QuestionLoc) {
// FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
// interface pointers.
// C++0x 5.16p1
// The first expression is contextually converted to bool.
if (!Cond->isTypeDependent()) {
if (CheckCXXBooleanCondition(Cond))
return QualType();
}
// Assume r-value.
VK = VK_RValue;
OK = OK_Ordinary;
// Either of the arguments dependent?
if (LHS->isTypeDependent() || RHS->isTypeDependent())
return Context.DependentTy;
// C++0x 5.16p2
// If either the second or the third operand has type (cv) void, ...
QualType LTy = LHS->getType();
QualType RTy = RHS->getType();
bool LVoid = LTy->isVoidType();
bool RVoid = RTy->isVoidType();
if (LVoid || RVoid) {
// ... then the [l2r] conversions are performed on the second and third
// operands ...
DefaultFunctionArrayLvalueConversion(LHS);
DefaultFunctionArrayLvalueConversion(RHS);
LTy = LHS->getType();
RTy = RHS->getType();
// ... and one of the following shall hold:
// -- The second or the third operand (but not both) is a throw-
// expression; the result is of the type of the other and is an rvalue.
bool LThrow = isa<CXXThrowExpr>(LHS);
bool RThrow = isa<CXXThrowExpr>(RHS);
if (LThrow && !RThrow)
return RTy;
if (RThrow && !LThrow)
return LTy;
// -- Both the second and third operands have type void; the result is of
// type void and is an rvalue.
if (LVoid && RVoid)
return Context.VoidTy;
// Neither holds, error.
Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
<< (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
<< LHS->getSourceRange() << RHS->getSourceRange();
return QualType();
}
// Neither is void.
// C++0x 5.16p3
// Otherwise, if the second and third operand have different types, and
// either has (cv) class type, and attempt is made to convert each of those
// operands to the other.
if (!Context.hasSameType(LTy, RTy) &&
(LTy->isRecordType() || RTy->isRecordType())) {
ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
// These return true if a single direction is already ambiguous.
QualType L2RType, R2LType;
bool HaveL2R, HaveR2L;
if (TryClassUnification(*this, LHS, RHS, QuestionLoc, HaveL2R, L2RType))
return QualType();
if (TryClassUnification(*this, RHS, LHS, QuestionLoc, HaveR2L, R2LType))
return QualType();
// If both can be converted, [...] the program is ill-formed.
if (HaveL2R && HaveR2L) {
Diag(QuestionLoc, diag::err_conditional_ambiguous)
<< LTy << RTy << LHS->getSourceRange() << RHS->getSourceRange();
return QualType();
}
// If exactly one conversion is possible, that conversion is applied to
// the chosen operand and the converted operands are used in place of the
// original operands for the remainder of this section.
if (HaveL2R) {
if (ConvertForConditional(*this, LHS, L2RType))
return QualType();
LTy = LHS->getType();
} else if (HaveR2L) {
if (ConvertForConditional(*this, RHS, R2LType))
return QualType();
RTy = RHS->getType();
}
}
// C++0x 5.16p4
// If the second and third operands are glvalues of the same value
// category and have the same type, the result is of that type and
// value category and it is a bit-field if the second or the third
// operand is a bit-field, or if both are bit-fields.
// We only extend this to bitfields, not to the crazy other kinds of
// l-values.
bool Same = Context.hasSameType(LTy, RTy);
if (Same &&
LHS->isGLValue() &&
LHS->getValueKind() == RHS->getValueKind() &&
LHS->isOrdinaryOrBitFieldObject() &&
RHS->isOrdinaryOrBitFieldObject()) {
VK = LHS->getValueKind();
if (LHS->getObjectKind() == OK_BitField ||
RHS->getObjectKind() == OK_BitField)
OK = OK_BitField;
return LTy;
}
// C++0x 5.16p5
// Otherwise, the result is an rvalue. If the second and third operands
// do not have the same type, and either has (cv) class type, ...
if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
// ... overload resolution is used to determine the conversions (if any)
// to be applied to the operands. If the overload resolution fails, the
// program is ill-formed.
if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
return QualType();
}
// C++0x 5.16p6
// LValue-to-rvalue, array-to-pointer, and function-to-pointer standard
// conversions are performed on the second and third operands.
DefaultFunctionArrayLvalueConversion(LHS);
DefaultFunctionArrayLvalueConversion(RHS);
LTy = LHS->getType();
RTy = RHS->getType();
// After those conversions, one of the following shall hold:
// -- The second and third operands have the same type; the result
// is of that type. If the operands have class type, the result
// is a prvalue temporary of the result type, which is
// copy-initialized from either the second operand or the third
// operand depending on the value of the first operand.
if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
if (LTy->isRecordType()) {
// The operands have class type. Make a temporary copy.
InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
ExprResult LHSCopy = PerformCopyInitialization(Entity,
SourceLocation(),
Owned(LHS));
if (LHSCopy.isInvalid())
return QualType();
ExprResult RHSCopy = PerformCopyInitialization(Entity,
SourceLocation(),
Owned(RHS));
if (RHSCopy.isInvalid())
return QualType();
LHS = LHSCopy.takeAs<Expr>();
RHS = RHSCopy.takeAs<Expr>();
}
return LTy;
}
// Extension: conditional operator involving vector types.
if (LTy->isVectorType() || RTy->isVectorType())
return CheckVectorOperands(QuestionLoc, LHS, RHS);
// -- The second and third operands have arithmetic or enumeration type;
// the usual arithmetic conversions are performed to bring them to a
// common type, and the result is of that type.
if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
UsualArithmeticConversions(LHS, RHS);
return LHS->getType();
}
// -- The second and third operands have pointer type, or one has pointer
// type and the other is a null pointer constant; pointer conversions
// and qualification conversions are performed to bring them to their
// composite pointer type. The result is of the composite pointer type.
// -- The second and third operands have pointer to member type, or one has
// pointer to member type and the other is a null pointer constant;
// pointer to member conversions and qualification conversions are
// performed to bring them to a common type, whose cv-qualification
// shall match the cv-qualification of either the second or the third
// operand. The result is of the common type.
bool NonStandardCompositeType = false;
QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
isSFINAEContext()? 0 : &NonStandardCompositeType);
if (!Composite.isNull()) {
if (NonStandardCompositeType)
Diag(QuestionLoc,
diag::ext_typecheck_cond_incompatible_operands_nonstandard)
<< LTy << RTy << Composite
<< LHS->getSourceRange() << RHS->getSourceRange();
return Composite;
}
// Similarly, attempt to find composite type of two objective-c pointers.
Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
if (!Composite.isNull())
return Composite;
// Check if we are using a null with a non-pointer type.
if (DiagnoseConditionalForNull(LHS, RHS, QuestionLoc))
return QualType();
Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
<< LHS->getType() << RHS->getType()
<< LHS->getSourceRange() << RHS->getSourceRange();
return QualType();
}
/// \brief Find a merged pointer type and convert the two expressions to it.
///
/// This finds the composite pointer type (or member pointer type) for @p E1
/// and @p E2 according to C++0x 5.9p2. It converts both expressions to this
/// type and returns it.
/// It does not emit diagnostics.
///
/// \param Loc The location of the operator requiring these two expressions to
/// be converted to the composite pointer type.
///
/// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
/// a non-standard (but still sane) composite type to which both expressions
/// can be converted. When such a type is chosen, \c *NonStandardCompositeType
/// will be set true.
QualType Sema::FindCompositePointerType(SourceLocation Loc,
Expr *&E1, Expr *&E2,
bool *NonStandardCompositeType) {
if (NonStandardCompositeType)
*NonStandardCompositeType = false;
assert(getLangOptions().CPlusPlus && "This function assumes C++");
QualType T1 = E1->getType(), T2 = E2->getType();
if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
!T2->isAnyPointerType() && !T2->isMemberPointerType())
return QualType();
// C++0x 5.9p2
// Pointer conversions and qualification conversions are performed on
// pointer operands to bring them to their composite pointer type. If
// one operand is a null pointer constant, the composite pointer type is
// the type of the other operand.
if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
if (T2->isMemberPointerType())
ImpCastExprToType(E1, T2, CK_NullToMemberPointer);
else
ImpCastExprToType(E1, T2, CK_NullToPointer);
return T2;
}
if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
if (T1->isMemberPointerType())
ImpCastExprToType(E2, T1, CK_NullToMemberPointer);
else
ImpCastExprToType(E2, T1, CK_NullToPointer);
return T1;
}
// Now both have to be pointers or member pointers.
if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
(!T2->isPointerType() && !T2->isMemberPointerType()))
return QualType();
// Otherwise, of one of the operands has type "pointer to cv1 void," then
// the other has type "pointer to cv2 T" and the composite pointer type is
// "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
// Otherwise, the composite pointer type is a pointer type similar to the
// type of one of the operands, with a cv-qualification signature that is
// the union of the cv-qualification signatures of the operand types.
// In practice, the first part here is redundant; it's subsumed by the second.
// What we do here is, we build the two possible composite types, and try the
// conversions in both directions. If only one works, or if the two composite
// types are the same, we have succeeded.
// FIXME: extended qualifiers?
typedef llvm::SmallVector<unsigned, 4> QualifierVector;
QualifierVector QualifierUnion;
typedef llvm::SmallVector<std::pair<const Type *, const Type *>, 4>
ContainingClassVector;
ContainingClassVector MemberOfClass;
QualType Composite1 = Context.getCanonicalType(T1),
Composite2 = Context.getCanonicalType(T2);
unsigned NeedConstBefore = 0;
do {
const PointerType *Ptr1, *Ptr2;
if ((Ptr1 = Composite1->getAs<PointerType>()) &&
(Ptr2 = Composite2->getAs<PointerType>())) {
Composite1 = Ptr1->getPointeeType();
Composite2 = Ptr2->getPointeeType();
// If we're allowed to create a non-standard composite type, keep track
// of where we need to fill in additional 'const' qualifiers.
if (NonStandardCompositeType &&
Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
NeedConstBefore = QualifierUnion.size();
QualifierUnion.push_back(
Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
continue;
}
const MemberPointerType *MemPtr1, *MemPtr2;
if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
(MemPtr2 = Composite2->getAs<MemberPointerType>())) {
Composite1 = MemPtr1->getPointeeType();
Composite2 = MemPtr2->getPointeeType();
// If we're allowed to create a non-standard composite type, keep track
// of where we need to fill in additional 'const' qualifiers.
if (NonStandardCompositeType &&
Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
NeedConstBefore = QualifierUnion.size();
QualifierUnion.push_back(
Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
MemPtr2->getClass()));
continue;
}
// FIXME: block pointer types?
// Cannot unwrap any more types.
break;
} while (true);
if (NeedConstBefore && NonStandardCompositeType) {
// Extension: Add 'const' to qualifiers that come before the first qualifier
// mismatch, so that our (non-standard!) composite type meets the
// requirements of C++ [conv.qual]p4 bullet 3.
for (unsigned I = 0; I != NeedConstBefore; ++I) {
if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
*NonStandardCompositeType = true;
}
}
}
// Rewrap the composites as pointers or member pointers with the union CVRs.
ContainingClassVector::reverse_iterator MOC
= MemberOfClass.rbegin();
for (QualifierVector::reverse_iterator
I = QualifierUnion.rbegin(),
E = QualifierUnion.rend();
I != E; (void)++I, ++MOC) {
Qualifiers Quals = Qualifiers::fromCVRMask(*I);
if (MOC->first && MOC->second) {
// Rebuild member pointer type
Composite1 = Context.getMemberPointerType(
Context.getQualifiedType(Composite1, Quals),
MOC->first);
Composite2 = Context.getMemberPointerType(
Context.getQualifiedType(Composite2, Quals),
MOC->second);
} else {
// Rebuild pointer type
Composite1
= Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
Composite2
= Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
}
}
// Try to convert to the first composite pointer type.
InitializedEntity Entity1
= InitializedEntity::InitializeTemporary(Composite1);
InitializationKind Kind
= InitializationKind::CreateCopy(Loc, SourceLocation());
InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1);
InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1);
if (E1ToC1 && E2ToC1) {
// Conversion to Composite1 is viable.
if (!Context.hasSameType(Composite1, Composite2)) {
// Composite2 is a different type from Composite1. Check whether
// Composite2 is also viable.
InitializedEntity Entity2
= InitializedEntity::InitializeTemporary(Composite2);
InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
if (E1ToC2 && E2ToC2) {
// Both Composite1 and Composite2 are viable and are different;
// this is an ambiguity.
return QualType();
}
}
// Convert E1 to Composite1
ExprResult E1Result
= E1ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E1,1));
if (E1Result.isInvalid())
return QualType();
E1 = E1Result.takeAs<Expr>();
// Convert E2 to Composite1
ExprResult E2Result
= E2ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E2,1));
if (E2Result.isInvalid())
return QualType();
E2 = E2Result.takeAs<Expr>();
return Composite1;
}
// Check whether Composite2 is viable.
InitializedEntity Entity2
= InitializedEntity::InitializeTemporary(Composite2);
InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
if (!E1ToC2 || !E2ToC2)
return QualType();
// Convert E1 to Composite2
ExprResult E1Result
= E1ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E1, 1));
if (E1Result.isInvalid())
return QualType();
E1 = E1Result.takeAs<Expr>();
// Convert E2 to Composite2
ExprResult E2Result
= E2ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E2, 1));
if (E2Result.isInvalid())
return QualType();
E2 = E2Result.takeAs<Expr>();
return Composite2;
}
ExprResult Sema::MaybeBindToTemporary(Expr *E) {
if (!E)
return ExprError();
if (!Context.getLangOptions().CPlusPlus)
return Owned(E);
assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
const RecordType *RT = E->getType()->getAs<RecordType>();
if (!RT)
return Owned(E);
// If the result is a glvalue, we shouldn't bind it.
if (E->Classify(Context).isGLValue())
return Owned(E);
// That should be enough to guarantee that this type is complete.
// If it has a trivial destructor, we can avoid the extra copy.
CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
if (RD->isInvalidDecl() || RD->hasTrivialDestructor())
return Owned(E);
CXXTemporary *Temp = CXXTemporary::Create(Context, LookupDestructor(RD));
ExprTemporaries.push_back(Temp);
if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
MarkDeclarationReferenced(E->getExprLoc(), Destructor);
CheckDestructorAccess(E->getExprLoc(), Destructor,
PDiag(diag::err_access_dtor_temp)
<< E->getType());
}
// FIXME: Add the temporary to the temporaries vector.
return Owned(CXXBindTemporaryExpr::Create(Context, Temp, E));
}
Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
assert(SubExpr && "sub expression can't be null!");
unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
assert(ExprTemporaries.size() >= FirstTemporary);
if (ExprTemporaries.size() == FirstTemporary)
return SubExpr;
Expr *E = ExprWithCleanups::Create(Context, SubExpr,
&ExprTemporaries[FirstTemporary],
ExprTemporaries.size() - FirstTemporary);
ExprTemporaries.erase(ExprTemporaries.begin() + FirstTemporary,
ExprTemporaries.end());
return E;
}
ExprResult
Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
if (SubExpr.isInvalid())
return ExprError();
return Owned(MaybeCreateExprWithCleanups(SubExpr.take()));
}
Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
assert(SubStmt && "sub statement can't be null!");
unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
assert(ExprTemporaries.size() >= FirstTemporary);
if (ExprTemporaries.size() == FirstTemporary)
return SubStmt;
// FIXME: In order to attach the temporaries, wrap the statement into
// a StmtExpr; currently this is only used for asm statements.
// This is hacky, either create a new CXXStmtWithTemporaries statement or
// a new AsmStmtWithTemporaries.
CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, &SubStmt, 1,
SourceLocation(),
SourceLocation());
Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
SourceLocation());
return MaybeCreateExprWithCleanups(E);
}
ExprResult
Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
tok::TokenKind OpKind, ParsedType &ObjectType,
bool &MayBePseudoDestructor) {
// Since this might be a postfix expression, get rid of ParenListExprs.
ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
if (Result.isInvalid()) return ExprError();
Base = Result.get();
QualType BaseType = Base->getType();
MayBePseudoDestructor = false;
if (BaseType->isDependentType()) {
// If we have a pointer to a dependent type and are using the -> operator,
// the object type is the type that the pointer points to. We might still
// have enough information about that type to do something useful.
if (OpKind == tok::arrow)
if (const PointerType *Ptr = BaseType->getAs<PointerType>())
BaseType = Ptr->getPointeeType();
ObjectType = ParsedType::make(BaseType);
MayBePseudoDestructor = true;
return Owned(Base);
}
// C++ [over.match.oper]p8:
// [...] When operator->returns, the operator-> is applied to the value
// returned, with the original second operand.
if (OpKind == tok::arrow) {
// The set of types we've considered so far.
llvm::SmallPtrSet<CanQualType,8> CTypes;
llvm::SmallVector<SourceLocation, 8> Locations;
CTypes.insert(Context.getCanonicalType(BaseType));
while (BaseType->isRecordType()) {
Result = BuildOverloadedArrowExpr(S, Base, OpLoc);
if (Result.isInvalid())
return ExprError();
Base = Result.get();
if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
Locations.push_back(OpCall->getDirectCallee()->getLocation());
BaseType = Base->getType();
CanQualType CBaseType = Context.getCanonicalType(BaseType);
if (!CTypes.insert(CBaseType)) {
Diag(OpLoc, diag::err_operator_arrow_circular);
for (unsigned i = 0; i < Locations.size(); i++)
Diag(Locations[i], diag::note_declared_at);
return ExprError();
}
}
if (BaseType->isPointerType())
BaseType = BaseType->getPointeeType();
}
// We could end up with various non-record types here, such as extended
// vector types or Objective-C interfaces. Just return early and let
// ActOnMemberReferenceExpr do the work.
if (!BaseType->isRecordType()) {
// C++ [basic.lookup.classref]p2:
// [...] If the type of the object expression is of pointer to scalar
// type, the unqualified-id is looked up in the context of the complete
// postfix-expression.
//
// This also indicates that we should be parsing a
// pseudo-destructor-name.
ObjectType = ParsedType();
MayBePseudoDestructor = true;
return Owned(Base);
}
// The object type must be complete (or dependent).
if (!BaseType->isDependentType() &&
RequireCompleteType(OpLoc, BaseType,
PDiag(diag::err_incomplete_member_access)))
return ExprError();
// C++ [basic.lookup.classref]p2:
// If the id-expression in a class member access (5.2.5) is an
// unqualified-id, and the type of the object expression is of a class
// type C (or of pointer to a class type C), the unqualified-id is looked
// up in the scope of class C. [...]
ObjectType = ParsedType::make(BaseType);
return move(Base);
}
ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
Expr *MemExpr) {
SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
<< isa<CXXPseudoDestructorExpr>(MemExpr)
<< FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
return ActOnCallExpr(/*Scope*/ 0,
MemExpr,
/*LPLoc*/ ExpectedLParenLoc,
MultiExprArg(),
/*RPLoc*/ ExpectedLParenLoc);
}
ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
SourceLocation OpLoc,
tok::TokenKind OpKind,
const CXXScopeSpec &SS,
TypeSourceInfo *ScopeTypeInfo,
SourceLocation CCLoc,
SourceLocation TildeLoc,
PseudoDestructorTypeStorage Destructed,
bool HasTrailingLParen) {
TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
// C++ [expr.pseudo]p2:
// The left-hand side of the dot operator shall be of scalar type. The
// left-hand side of the arrow operator shall be of pointer to scalar type.
// This scalar type is the object type.
QualType ObjectType = Base->getType();
if (OpKind == tok::arrow) {
if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
ObjectType = Ptr->getPointeeType();
} else if (!Base->isTypeDependent()) {
// The user wrote "p->" when she probably meant "p."; fix it.
Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
<< ObjectType << true
<< FixItHint::CreateReplacement(OpLoc, ".");
if (isSFINAEContext())
return ExprError();
OpKind = tok::period;
}
}
if (!ObjectType->isDependentType() && !ObjectType->isScalarType()) {
Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
<< ObjectType << Base->getSourceRange();
return ExprError();
}
// C++ [expr.pseudo]p2:
// [...] The cv-unqualified versions of the object type and of the type
// designated by the pseudo-destructor-name shall be the same type.
if (DestructedTypeInfo) {
QualType DestructedType = DestructedTypeInfo->getType();
SourceLocation DestructedTypeStart
= DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
if (!DestructedType->isDependentType() && !ObjectType->isDependentType() &&
!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
<< ObjectType << DestructedType << Base->getSourceRange()
<< DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
// Recover by setting the destructed type to the object type.
DestructedType = ObjectType;
DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
DestructedTypeStart);
Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
}
}
// C++ [expr.pseudo]p2:
// [...] Furthermore, the two type-names in a pseudo-destructor-name of the
// form
//
// ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
//
// shall designate the same scalar type.
if (ScopeTypeInfo) {
QualType ScopeType = ScopeTypeInfo->getType();
if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
!Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
diag::err_pseudo_dtor_type_mismatch)
<< ObjectType << ScopeType << Base->getSourceRange()
<< ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
ScopeType = QualType();
ScopeTypeInfo = 0;
}
}
Expr *Result
= new (Context) CXXPseudoDestructorExpr(Context, Base,
OpKind == tok::arrow, OpLoc,
SS.getWithLocInContext(Context),
ScopeTypeInfo,
CCLoc,
TildeLoc,
Destructed);
if (HasTrailingLParen)
return Owned(Result);
return DiagnoseDtorReference(Destructed.getLocation(), Result);
}
ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
SourceLocation OpLoc,
tok::TokenKind OpKind,
CXXScopeSpec &SS,
UnqualifiedId &FirstTypeName,
SourceLocation CCLoc,
SourceLocation TildeLoc,
UnqualifiedId &SecondTypeName,
bool HasTrailingLParen) {
assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
"Invalid first type name in pseudo-destructor");
assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
"Invalid second type name in pseudo-destructor");
// C++ [expr.pseudo]p2:
// The left-hand side of the dot operator shall be of scalar type. The
// left-hand side of the arrow operator shall be of pointer to scalar type.
// This scalar type is the object type.
QualType ObjectType = Base->getType();
if (OpKind == tok::arrow) {
if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
ObjectType = Ptr->getPointeeType();
} else if (!ObjectType->isDependentType()) {
// The user wrote "p->" when she probably meant "p."; fix it.
Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
<< ObjectType << true
<< FixItHint::CreateReplacement(OpLoc, ".");
if (isSFINAEContext())
return ExprError();
OpKind = tok::period;
}
}
// Compute the object type that we should use for name lookup purposes. Only
// record types and dependent types matter.
ParsedType ObjectTypePtrForLookup;
if (!SS.isSet()) {
if (ObjectType->isRecordType())
ObjectTypePtrForLookup = ParsedType::make(ObjectType);
else if (ObjectType->isDependentType())
ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
}
// Convert the name of the type being destructed (following the ~) into a
// type (with source-location information).
QualType DestructedType;
TypeSourceInfo *DestructedTypeInfo = 0;
PseudoDestructorTypeStorage Destructed;
if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
ParsedType T = getTypeName(*SecondTypeName.Identifier,
SecondTypeName.StartLocation,
S, &SS, true, false, ObjectTypePtrForLookup);
if (!T &&
((SS.isSet() && !computeDeclContext(SS, false)) ||
(!SS.isSet() && ObjectType->isDependentType()))) {
// The name of the type being destroyed is a dependent name, and we
// couldn't find anything useful in scope. Just store the identifier and
// it's location, and we'll perform (qualified) name lookup again at
// template instantiation time.
Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
SecondTypeName.StartLocation);
} else if (!T) {
Diag(SecondTypeName.StartLocation,
diag::err_pseudo_dtor_destructor_non_type)
<< SecondTypeName.Identifier << ObjectType;
if (isSFINAEContext())
return ExprError();
// Recover by assuming we had the right type all along.
DestructedType = ObjectType;
} else
DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
} else {
// Resolve the template-id to a type.
TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
ASTTemplateArgsPtr TemplateArgsPtr(*this,
TemplateId->getTemplateArgs(),
TemplateId->NumArgs);
TypeResult T = ActOnTemplateIdType(TemplateId->SS,
TemplateId->Template,
TemplateId->TemplateNameLoc,
TemplateId->LAngleLoc,
TemplateArgsPtr,
TemplateId->RAngleLoc);
if (T.isInvalid() || !T.get()) {
// Recover by assuming we had the right type all along.
DestructedType = ObjectType;
} else
DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
}
// If we've performed some kind of recovery, (re-)build the type source
// information.
if (!DestructedType.isNull()) {
if (!DestructedTypeInfo)
DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
SecondTypeName.StartLocation);
Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
}
// Convert the name of the scope type (the type prior to '::') into a type.
TypeSourceInfo *ScopeTypeInfo = 0;
QualType ScopeType;
if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
FirstTypeName.Identifier) {
if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
ParsedType T = getTypeName(*FirstTypeName.Identifier,
FirstTypeName.StartLocation,
S, &SS, true, false, ObjectTypePtrForLookup);
if (!T) {
Diag(FirstTypeName.StartLocation,
diag::err_pseudo_dtor_destructor_non_type)
<< FirstTypeName.Identifier << ObjectType;
if (isSFINAEContext())
return ExprError();
// Just drop this type. It's unnecessary anyway.
ScopeType = QualType();
} else
ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
} else {
// Resolve the template-id to a type.
TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
ASTTemplateArgsPtr TemplateArgsPtr(*this,
TemplateId->getTemplateArgs(),
TemplateId->NumArgs);
TypeResult T = ActOnTemplateIdType(TemplateId->SS,
TemplateId->Template,
TemplateId->TemplateNameLoc,
TemplateId->LAngleLoc,
TemplateArgsPtr,
TemplateId->RAngleLoc);
if (T.isInvalid() || !T.get()) {
// Recover by dropping this type.
ScopeType = QualType();
} else
ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
}
}
if (!ScopeType.isNull() && !ScopeTypeInfo)
ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
FirstTypeName.StartLocation);
return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
ScopeTypeInfo, CCLoc, TildeLoc,
Destructed, HasTrailingLParen);
}
ExprResult Sema::BuildCXXMemberCallExpr(Expr *Exp, NamedDecl *FoundDecl,
CXXMethodDecl *Method) {
if (PerformObjectArgumentInitialization(Exp, /*Qualifier=*/0,
FoundDecl, Method))
return true;
MemberExpr *ME =
new (Context) MemberExpr(Exp, /*IsArrow=*/false, Method,
SourceLocation(), Method->getType(),
VK_RValue, OK_Ordinary);
QualType ResultType = Method->getResultType();
ExprValueKind VK = Expr::getValueKindForType(ResultType);
ResultType = ResultType.getNonLValueExprType(Context);
MarkDeclarationReferenced(Exp->getLocStart(), Method);
CXXMemberCallExpr *CE =
new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType, VK,
Exp->getLocEnd());
return CE;
}
ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
SourceLocation RParen) {
return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
Operand->CanThrow(Context),
KeyLoc, RParen));
}
ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
Expr *Operand, SourceLocation RParen) {
return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
}
/// Perform the conversions required for an expression used in a
/// context that ignores the result.
void Sema::IgnoredValueConversions(Expr *&E) {
// C99 6.3.2.1:
// [Except in specific positions,] an lvalue that does not have
// array type is converted to the value stored in the
// designated object (and is no longer an lvalue).
if (E->isRValue()) return;
// We always want to do this on ObjC property references.
if (E->getObjectKind() == OK_ObjCProperty) {
ConvertPropertyForRValue(E);
if (E->isRValue()) return;
}
// Otherwise, this rule does not apply in C++, at least not for the moment.
if (getLangOptions().CPlusPlus) return;
// GCC seems to also exclude expressions of incomplete enum type.
if (const EnumType *T = E->getType()->getAs<EnumType>()) {
if (!T->getDecl()->isComplete()) {
// FIXME: stupid workaround for a codegen bug!
ImpCastExprToType(E, Context.VoidTy, CK_ToVoid);
return;
}
}
DefaultFunctionArrayLvalueConversion(E);
if (!E->getType()->isVoidType())
RequireCompleteType(E->getExprLoc(), E->getType(),
diag::err_incomplete_type);
}
ExprResult Sema::ActOnFinishFullExpr(Expr *FullExpr) {
if (!FullExpr)
return ExprError();
if (DiagnoseUnexpandedParameterPack(FullExpr))
return ExprError();
// 13.4.1 ... An overloaded function name shall not be used without arguments
// in contexts other than those listed [i.e list of targets].
//
// void foo(); void foo(int);
// template<class T> void fooT(); template<class T> void fooT(int);
// Therefore these should error:
// foo;
// fooT<int>;
if (FullExpr->getType() == Context.OverloadTy) {
if (!ResolveSingleFunctionTemplateSpecialization(FullExpr,
/* Complain */ false)) {
OverloadExpr* OvlExpr = OverloadExpr::find(FullExpr).Expression;
Diag(FullExpr->getLocStart(), diag::err_addr_ovl_ambiguous)
<< OvlExpr->getName();
NoteAllOverloadCandidates(OvlExpr);
return ExprError();
}
}
IgnoredValueConversions(FullExpr);
CheckImplicitConversions(FullExpr);
return MaybeCreateExprWithCleanups(FullExpr);
}
StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
if (!FullStmt) return StmtError();
return MaybeCreateStmtWithCleanups(FullStmt);
}