| //===--- TargetInfo.cpp - Information about Target machine ----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the TargetInfo and TargetInfoImpl interfaces. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/Basic/Diagnostic.h" |
| #include "clang/AST/Builtins.h" |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/StringMap.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include <set> |
| using namespace clang; |
| |
| void TargetInfoImpl::ANCHOR() {} // out-of-line virtual method for class. |
| |
| |
| //===----------------------------------------------------------------------===// |
| // FIXME: These are temporary hacks, they should revector into the |
| // TargetInfoImpl. |
| |
| void TargetInfo::getFloatInfo(uint64_t &Size, unsigned &Align, |
| const llvm::fltSemantics *&Format, |
| FullSourceLoc Loc) { |
| Align = 32; // FIXME: implement correctly. |
| Size = 32; |
| Format = &llvm::APFloat::IEEEsingle; |
| } |
| void TargetInfo::getDoubleInfo(uint64_t &Size, unsigned &Align, |
| const llvm::fltSemantics *&Format, |
| FullSourceLoc Loc) { |
| Size = Align = 64; // FIXME: implement correctly. |
| Format = &llvm::APFloat::IEEEdouble; |
| } |
| void TargetInfo::getLongDoubleInfo(uint64_t &Size, unsigned &Align, |
| const llvm::fltSemantics *&Format, |
| FullSourceLoc Loc) { |
| Size = Align = 64; // FIXME: implement correctly. |
| Format = &llvm::APFloat::IEEEdouble; |
| //Size = 80; Align = 32; // FIXME: implement correctly. |
| //Format = &llvm::APFloat::x87DoubleExtended; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| |
| const char* TargetInfo::getTargetTriple() const { |
| return PrimaryTarget->getTargetTriple(); |
| } |
| |
| const char *TargetInfo::getTargetPrefix() const { |
| return PrimaryTarget->getTargetPrefix(); |
| } |
| |
| /// DiagnoseNonPortability - When a use of a non-portable target feature is |
| /// used, this method emits the diagnostic and marks the translation unit as |
| /// non-portable. |
| void TargetInfo::DiagnoseNonPortability(FullSourceLoc Loc, |
| unsigned DiagKind) { |
| NonPortable = true; |
| if (Diag && Loc.isValid()) Diag->Report(Loc, DiagKind); |
| } |
| |
| /// GetTargetDefineMap - Get the set of target #defines in an associative |
| /// collection for easy lookup. |
| static void GetTargetDefineMap(const TargetInfoImpl *Target, |
| llvm::StringMap<std::string> &Map) { |
| std::vector<char> Defines; |
| Defines.reserve(4096); |
| Target->getTargetDefines(Defines); |
| |
| for (const char *DefStr = &Defines[0], *E = DefStr+Defines.size(); |
| DefStr != E;) { |
| // Skip the '#define ' portion. |
| assert(memcmp(DefStr, "#define ", strlen("#define ")) == 0 && |
| "#define didn't start with #define!"); |
| DefStr += strlen("#define "); |
| |
| // Find the divider between the key and value. |
| const char *SpacePos = strchr(DefStr, ' '); |
| |
| std::string &Entry = Map.GetOrCreateValue(DefStr, SpacePos).getValue(); |
| |
| const char *EndPos = strchr(SpacePos+1, '\n'); |
| Entry = std::string(SpacePos+1, EndPos); |
| DefStr = EndPos+1; |
| } |
| } |
| |
| /// getTargetDefines - Appends the target-specific #define values for this |
| /// target set to the specified buffer. |
| void TargetInfo::getTargetDefines(std::vector<char> &Buffer) { |
| // If we have no secondary targets, be a bit more efficient. |
| if (SecondaryTargets.empty()) { |
| PrimaryTarget->getTargetDefines(Buffer); |
| return; |
| } |
| |
| // This is tricky in the face of secondary targets. Specifically, |
| // target-specific #defines that are present and identical across all |
| // secondary targets are turned into #defines, #defines that are present in |
| // the primary target but are missing or different in the secondary targets |
| // are turned into #define_target, and #defines that are not defined in the |
| // primary, but are defined in a secondary are turned into |
| // #define_other_target. This allows the preprocessor to correctly track uses |
| // of target-specific macros. |
| |
| // Get the set of primary #defines. |
| llvm::StringMap<std::string> PrimaryDefines; |
| GetTargetDefineMap(PrimaryTarget, PrimaryDefines); |
| |
| // Get the sets of secondary #defines. |
| llvm::StringMap<std::string> *SecondaryDefines |
| = new llvm::StringMap<std::string>[SecondaryTargets.size()]; |
| for (unsigned i = 0, e = SecondaryTargets.size(); i != e; ++i) |
| GetTargetDefineMap(SecondaryTargets[i], SecondaryDefines[i]); |
| |
| // Loop over all defines in the primary target, processing them until we run |
| // out. |
| for (llvm::StringMap<std::string>::iterator PDI = |
| PrimaryDefines.begin(), E = PrimaryDefines.end(); PDI != E; ++PDI) { |
| std::string DefineName(PDI->getKeyData(), |
| PDI->getKeyData() + PDI->getKeyLength()); |
| std::string DefineValue = PDI->getValue(); |
| |
| // Check to see whether all secondary targets have this #define and whether |
| // it is to the same value. Remember if not, but remove the #define from |
| // their collection in any case if they have it. |
| bool isPortable = true; |
| |
| for (unsigned i = 0, e = SecondaryTargets.size(); i != e; ++i) { |
| llvm::StringMap<std::string>::iterator I = |
| SecondaryDefines[i].find(&DefineName[0], |
| &DefineName[0]+DefineName.size()); |
| if (I == SecondaryDefines[i].end()) { |
| // Secondary target doesn't have this #define. |
| isPortable = false; |
| } else { |
| // Secondary target has this define, remember if it disagrees. |
| if (isPortable) |
| isPortable = I->getValue() == DefineValue; |
| // Remove it from the secondary target unconditionally. |
| SecondaryDefines[i].erase(I); |
| } |
| } |
| |
| // If this define is non-portable, turn it into #define_target, otherwise |
| // just use #define. |
| const char *Command = isPortable ? "#define " : "#define_target "; |
| Buffer.insert(Buffer.end(), Command, Command+strlen(Command)); |
| |
| // Insert "defname defvalue\n". |
| Buffer.insert(Buffer.end(), DefineName.begin(), DefineName.end()); |
| Buffer.push_back(' '); |
| Buffer.insert(Buffer.end(), DefineValue.begin(), DefineValue.end()); |
| Buffer.push_back('\n'); |
| } |
| |
| // Now that all of the primary target's defines have been handled and removed |
| // from the secondary target's define sets, go through the remaining secondary |
| // target's #defines and taint them. |
| for (unsigned i = 0, e = SecondaryTargets.size(); i != e; ++i) { |
| llvm::StringMap<std::string> &Defs = SecondaryDefines[i]; |
| while (!Defs.empty()) { |
| const char *DefStart = Defs.begin()->getKeyData(); |
| const char *DefEnd = DefStart + Defs.begin()->getKeyLength(); |
| |
| // Insert "#define_other_target defname". |
| const char *Command = "#define_other_target "; |
| Buffer.insert(Buffer.end(), Command, Command+strlen(Command)); |
| Buffer.insert(Buffer.end(), DefStart, DefEnd); |
| Buffer.push_back('\n'); |
| |
| // If any other secondary targets have this same define, remove it from |
| // them to avoid duplicate #define_other_target directives. |
| for (unsigned j = i+1; j != e; ++j) { |
| llvm::StringMap<std::string>::iterator I = |
| SecondaryDefines[j].find(DefStart, DefEnd); |
| if (I != SecondaryDefines[j].end()) |
| SecondaryDefines[j].erase(I); |
| } |
| Defs.erase(Defs.begin()); |
| } |
| } |
| |
| delete[] SecondaryDefines; |
| } |
| |
| /// ComputeWCharWidth - Determine the width of the wchar_t type for the primary |
| /// target, diagnosing whether this is non-portable across the secondary |
| /// targets. |
| void TargetInfo::ComputeWCharInfo(FullSourceLoc Loc) { |
| PrimaryTarget->getWCharInfo(WCharWidth, WCharAlign); |
| |
| // Check whether this is portable across the secondary targets if the T-U is |
| // portable so far. |
| for (unsigned i = 0, e = SecondaryTargets.size(); i != e; ++i) { |
| unsigned Width, Align; |
| SecondaryTargets[i]->getWCharInfo(Width, Align); |
| if (Width != WCharWidth || Align != WCharAlign) |
| return DiagnoseNonPortability(Loc, diag::port_wchar_t); |
| } |
| } |
| |
| |
| /// getTargetBuiltins - Return information about target-specific builtins for |
| /// the current primary target, and info about which builtins are non-portable |
| /// across the current set of primary and secondary targets. |
| void TargetInfo::getTargetBuiltins(const Builtin::Info *&Records, |
| unsigned &NumRecords, |
| std::vector<const char *> &NPortable) const { |
| // Get info about what actual builtins we will expose. |
| PrimaryTarget->getTargetBuiltins(Records, NumRecords); |
| if (SecondaryTargets.empty()) return; |
| |
| // Compute the set of non-portable builtins. |
| |
| // Start by computing a mapping from the primary target's builtins to their |
| // info records for efficient lookup. |
| llvm::StringMap<const Builtin::Info*> PrimaryRecs; |
| for (unsigned i = 0, e = NumRecords; i != e; ++i) { |
| const char *BIName = Records[i].Name; |
| PrimaryRecs.GetOrCreateValue(BIName, BIName+strlen(BIName)).getValue() |
| = Records+i; |
| } |
| |
| for (unsigned i = 0, e = SecondaryTargets.size(); i != e; ++i) { |
| // Get the builtins for this secondary target. |
| const Builtin::Info *Records2nd; |
| unsigned NumRecords2nd; |
| SecondaryTargets[i]->getTargetBuiltins(Records2nd, NumRecords2nd); |
| |
| // Remember all of the secondary builtin names. |
| std::set<std::string> BuiltinNames2nd; |
| |
| for (unsigned j = 0, e = NumRecords2nd; j != e; ++j) { |
| BuiltinNames2nd.insert(Records2nd[j].Name); |
| |
| // Check to see if the primary target has this builtin. |
| llvm::StringMap<const Builtin::Info*>::iterator I = |
| PrimaryRecs.find(Records2nd[j].Name, |
| Records2nd[j].Name+strlen(Records2nd[j].Name)); |
| if (I != PrimaryRecs.end()) { |
| const Builtin::Info *PrimBI = I->getValue(); |
| // If does. If they are not identical, mark the builtin as being |
| // non-portable. |
| if (Records2nd[j] != *PrimBI) |
| NPortable.push_back(PrimBI->Name); |
| } else { |
| // The primary target doesn't have this, it is non-portable. |
| NPortable.push_back(Records2nd[j].Name); |
| } |
| } |
| |
| // Now that we checked all the secondary builtins, check to see if the |
| // primary target has any builtins that the secondary one doesn't. If so, |
| // then those are non-portable. |
| for (unsigned j = 0, e = NumRecords; j != e; ++j) { |
| if (!BuiltinNames2nd.count(Records[j].Name)) |
| NPortable.push_back(Records[j].Name); |
| } |
| } |
| } |
| |
| /// getVAListDeclaration - Return the declaration to use for |
| /// __builtin_va_list, which is target-specific. |
| const char *TargetInfo::getVAListDeclaration() const { |
| return PrimaryTarget->getVAListDeclaration(); |
| } |
| |
| static void removeGCCRegisterPrefix(const char *&Name) |
| { |
| if (Name[0] == '%' || Name[0] == '#') |
| Name++; |
| } |
| |
| /// isValidGCCRegisterName - Returns whether the passed in string |
| /// is a valid register name according to GCC. This is used by Sema for |
| /// inline asm statements. |
| bool TargetInfo::isValidGCCRegisterName(const char *Name) const { |
| const char * const *Names; |
| unsigned NumNames; |
| |
| // Get rid of any register prefix. |
| removeGCCRegisterPrefix(Name); |
| |
| |
| if (strcmp(Name, "memory") == 0 || |
| strcmp(Name, "cc") == 0) |
| return true; |
| |
| PrimaryTarget->getGCCRegNames(Names, NumNames); |
| |
| // If we have a number it maps to an entry in the register name array. |
| if (isdigit(Name[0])) { |
| char *End; |
| int n = (int)strtol(Name, &End, 0); |
| if (*End == 0) |
| return n >= 0 && (unsigned)n < NumNames; |
| } |
| |
| // Check register names. |
| for (unsigned i = 0; i < NumNames; i++) { |
| if (strcmp(Name, Names[i]) == 0) |
| return true; |
| } |
| |
| // Now check aliases. |
| const TargetInfoImpl::GCCRegAlias *Aliases; |
| unsigned NumAliases; |
| |
| PrimaryTarget->getGCCRegAliases(Aliases, NumAliases); |
| for (unsigned i = 0; i < NumAliases; i++) { |
| for (unsigned j = 0 ; j < llvm::array_lengthof(Aliases[i].Aliases); j++) { |
| if (!Aliases[i].Aliases[j]) |
| break; |
| if (strcmp(Aliases[i].Aliases[j], Name) == 0) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| const char *TargetInfo::getNormalizedGCCRegisterName(const char *Name) const |
| { |
| assert(isValidGCCRegisterName(Name) && "Invalid register passed in"); |
| |
| removeGCCRegisterPrefix(Name); |
| |
| const char * const *Names; |
| unsigned NumNames; |
| |
| PrimaryTarget->getGCCRegNames(Names, NumNames); |
| |
| // First, check if we have a number. |
| if (isdigit(Name[0])) { |
| char *End; |
| int n = (int)strtol(Name, &End, 0); |
| if (*End == 0) { |
| assert(n >= 0 && (unsigned)n < NumNames && |
| "Out of bounds register number!"); |
| return Names[n]; |
| } |
| } |
| |
| // Now check aliases. |
| const TargetInfoImpl::GCCRegAlias *Aliases; |
| unsigned NumAliases; |
| |
| PrimaryTarget->getGCCRegAliases(Aliases, NumAliases); |
| for (unsigned i = 0; i < NumAliases; i++) { |
| for (unsigned j = 0 ; j < llvm::array_lengthof(Aliases[i].Aliases); j++) { |
| if (!Aliases[i].Aliases[j]) |
| break; |
| if (strcmp(Aliases[i].Aliases[j], Name) == 0) |
| return Aliases[i].Register; |
| } |
| } |
| |
| return Name; |
| } |
| |
| bool TargetInfo::validateOutputConstraint(const char *Name, |
| ConstraintInfo &info) const |
| { |
| // An output constraint must start with '=' or '+' |
| if (*Name != '=' && *Name != '+') |
| return false; |
| |
| if (*Name == '+') |
| info = CI_ReadWrite; |
| else |
| info = CI_None; |
| |
| Name++; |
| while (*Name) { |
| switch (*Name) { |
| default: |
| if (!PrimaryTarget->validateAsmConstraint(*Name, info)) { |
| // FIXME: This assert is in place temporarily |
| // so we can add more constraints as we hit it. |
| // Eventually, an unknown constraint should just be treated as 'g'. |
| assert(0 && "Unknown output constraint type!"); |
| } |
| case '&': // early clobber. |
| break; |
| case 'r': // general register. |
| info = (ConstraintInfo)(info|CI_AllowsRegister); |
| break; |
| case 'm': // memory operand. |
| info = (ConstraintInfo)(info|CI_AllowsMemory); |
| break; |
| case 'g': // general register, memory operand or immediate integer. |
| info = (ConstraintInfo)(info|CI_AllowsMemory|CI_AllowsRegister); |
| break; |
| } |
| |
| Name++; |
| } |
| |
| return true; |
| } |
| |
| bool TargetInfo::validateInputConstraint(const char *Name, |
| unsigned NumOutputs, |
| ConstraintInfo &info) const |
| { |
| while (*Name) { |
| switch (*Name) { |
| default: |
| // Check if we have a matching constraint |
| if (*Name >= '0' && *Name <= '9') { |
| unsigned i = *Name - '0'; |
| |
| // Check if matching constraint is out of bounds. |
| if (i >= NumOutputs) |
| return false; |
| } else if (!PrimaryTarget->validateAsmConstraint(*Name, info)) { |
| // FIXME: This assert is in place temporarily |
| // so we can add more constraints as we hit it. |
| // Eventually, an unknown constraint should just be treated as 'g'. |
| assert(0 && "Unknown input constraint type!"); |
| } |
| case '%': // commutative |
| // FIXME: Fail if % is used with the last operand. |
| break; |
| case 'i': // immediate integer. |
| break; |
| case 'r': // general register. |
| info = (ConstraintInfo)(info|CI_AllowsRegister); |
| break; |
| case 'm': // memory operand. |
| info = (ConstraintInfo)(info|CI_AllowsMemory); |
| break; |
| case 'g': // general register, memory operand or immediate integer. |
| info = (ConstraintInfo)(info|CI_AllowsMemory|CI_AllowsRegister); |
| break; |
| } |
| |
| Name++; |
| } |
| |
| return true; |
| } |
| |
| const char *TargetInfo::getClobbers() const |
| { |
| return PrimaryTarget->getClobbers(); |
| } |
| |
| |