| //===--- Expr.cpp - Expression AST Node Implementation --------------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements the Expr class and subclasses. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "clang/AST/Expr.h" | 
 | #include "clang/AST/ExprCXX.h" | 
 | #include "clang/AST/APValue.h" | 
 | #include "clang/AST/ASTContext.h" | 
 | #include "clang/AST/DeclObjC.h" | 
 | #include "clang/AST/DeclCXX.h" | 
 | #include "clang/AST/DeclTemplate.h" | 
 | #include "clang/AST/RecordLayout.h" | 
 | #include "clang/AST/StmtVisitor.h" | 
 | #include "clang/Basic/Builtins.h" | 
 | #include "clang/Basic/TargetInfo.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include <algorithm> | 
 | using namespace clang; | 
 |  | 
 | /// isKnownToHaveBooleanValue - Return true if this is an integer expression | 
 | /// that is known to return 0 or 1.  This happens for _Bool/bool expressions | 
 | /// but also int expressions which are produced by things like comparisons in | 
 | /// C. | 
 | bool Expr::isKnownToHaveBooleanValue() const { | 
 |   // If this value has _Bool type, it is obvious 0/1. | 
 |   if (getType()->isBooleanType()) return true; | 
 |   // If this is a non-scalar-integer type, we don't care enough to try.  | 
 |   if (!getType()->isIntegralType()) return false; | 
 |    | 
 |   if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) | 
 |     return PE->getSubExpr()->isKnownToHaveBooleanValue(); | 
 |    | 
 |   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(this)) { | 
 |     switch (UO->getOpcode()) { | 
 |     case UnaryOperator::Plus: | 
 |     case UnaryOperator::Extension: | 
 |       return UO->getSubExpr()->isKnownToHaveBooleanValue(); | 
 |     default: | 
 |       return false; | 
 |     } | 
 |   } | 
 |    | 
 |   if (const CastExpr *CE = dyn_cast<CastExpr>(this)) | 
 |     return CE->getSubExpr()->isKnownToHaveBooleanValue(); | 
 |    | 
 |   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(this)) { | 
 |     switch (BO->getOpcode()) { | 
 |     default: return false; | 
 |     case BinaryOperator::LT:   // Relational operators. | 
 |     case BinaryOperator::GT: | 
 |     case BinaryOperator::LE: | 
 |     case BinaryOperator::GE: | 
 |     case BinaryOperator::EQ:   // Equality operators. | 
 |     case BinaryOperator::NE: | 
 |     case BinaryOperator::LAnd: // AND operator. | 
 |     case BinaryOperator::LOr:  // Logical OR operator. | 
 |       return true; | 
 |          | 
 |     case BinaryOperator::And:  // Bitwise AND operator. | 
 |     case BinaryOperator::Xor:  // Bitwise XOR operator. | 
 |     case BinaryOperator::Or:   // Bitwise OR operator. | 
 |       // Handle things like (x==2)|(y==12). | 
 |       return BO->getLHS()->isKnownToHaveBooleanValue() && | 
 |              BO->getRHS()->isKnownToHaveBooleanValue(); | 
 |          | 
 |     case BinaryOperator::Comma: | 
 |     case BinaryOperator::Assign: | 
 |       return BO->getRHS()->isKnownToHaveBooleanValue(); | 
 |     } | 
 |   } | 
 |    | 
 |   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(this)) | 
 |     return CO->getTrueExpr()->isKnownToHaveBooleanValue() && | 
 |            CO->getFalseExpr()->isKnownToHaveBooleanValue(); | 
 |    | 
 |   return false; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Primary Expressions. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | void ExplicitTemplateArgumentList::initializeFrom( | 
 |                                       const TemplateArgumentListInfo &Info) { | 
 |   LAngleLoc = Info.getLAngleLoc(); | 
 |   RAngleLoc = Info.getRAngleLoc(); | 
 |   NumTemplateArgs = Info.size(); | 
 |  | 
 |   TemplateArgumentLoc *ArgBuffer = getTemplateArgs(); | 
 |   for (unsigned i = 0; i != NumTemplateArgs; ++i) | 
 |     new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]); | 
 | } | 
 |  | 
 | void ExplicitTemplateArgumentList::copyInto( | 
 |                                       TemplateArgumentListInfo &Info) const { | 
 |   Info.setLAngleLoc(LAngleLoc); | 
 |   Info.setRAngleLoc(RAngleLoc); | 
 |   for (unsigned I = 0; I != NumTemplateArgs; ++I) | 
 |     Info.addArgument(getTemplateArgs()[I]); | 
 | } | 
 |  | 
 | std::size_t ExplicitTemplateArgumentList::sizeFor( | 
 |                                       const TemplateArgumentListInfo &Info) { | 
 |   return sizeof(ExplicitTemplateArgumentList) + | 
 |          sizeof(TemplateArgumentLoc) * Info.size(); | 
 | } | 
 |  | 
 | void DeclRefExpr::computeDependence() { | 
 |   TypeDependent = false; | 
 |   ValueDependent = false; | 
 |    | 
 |   NamedDecl *D = getDecl(); | 
 |  | 
 |   // (TD) C++ [temp.dep.expr]p3: | 
 |   //   An id-expression is type-dependent if it contains: | 
 |   // | 
 |   // and  | 
 |   // | 
 |   // (VD) C++ [temp.dep.constexpr]p2: | 
 |   //  An identifier is value-dependent if it is: | 
 |  | 
 |   //  (TD)  - an identifier that was declared with dependent type | 
 |   //  (VD)  - a name declared with a dependent type, | 
 |   if (getType()->isDependentType()) { | 
 |     TypeDependent = true; | 
 |     ValueDependent = true; | 
 |   } | 
 |   //  (TD)  - a conversion-function-id that specifies a dependent type | 
 |   else if (D->getDeclName().getNameKind()  | 
 |                                == DeclarationName::CXXConversionFunctionName && | 
 |            D->getDeclName().getCXXNameType()->isDependentType()) { | 
 |     TypeDependent = true; | 
 |     ValueDependent = true; | 
 |   } | 
 |   //  (TD)  - a template-id that is dependent, | 
 |   else if (hasExplicitTemplateArgumentList() &&  | 
 |            TemplateSpecializationType::anyDependentTemplateArguments( | 
 |                                                        getTemplateArgs(),  | 
 |                                                        getNumTemplateArgs())) { | 
 |     TypeDependent = true; | 
 |     ValueDependent = true; | 
 |   } | 
 |   //  (VD)  - the name of a non-type template parameter, | 
 |   else if (isa<NonTypeTemplateParmDecl>(D)) | 
 |     ValueDependent = true; | 
 |   //  (VD) - a constant with integral or enumeration type and is | 
 |   //         initialized with an expression that is value-dependent. | 
 |   else if (VarDecl *Var = dyn_cast<VarDecl>(D)) { | 
 |     if (Var->getType()->isIntegralType() && | 
 |         Var->getType().getCVRQualifiers() == Qualifiers::Const) { | 
 |       if (const Expr *Init = Var->getAnyInitializer()) | 
 |         if (Init->isValueDependent()) | 
 |           ValueDependent = true; | 
 |     } | 
 |   } | 
 |   //  (TD)  - a nested-name-specifier or a qualified-id that names a | 
 |   //          member of an unknown specialization. | 
 |   //        (handled by DependentScopeDeclRefExpr) | 
 | } | 
 |  | 
 | DeclRefExpr::DeclRefExpr(NestedNameSpecifier *Qualifier,  | 
 |                          SourceRange QualifierRange, | 
 |                          ValueDecl *D, SourceLocation NameLoc, | 
 |                          const TemplateArgumentListInfo *TemplateArgs, | 
 |                          QualType T) | 
 |   : Expr(DeclRefExprClass, T, false, false), | 
 |     DecoratedD(D, | 
 |                (Qualifier? HasQualifierFlag : 0) | | 
 |                (TemplateArgs ? HasExplicitTemplateArgumentListFlag : 0)), | 
 |     Loc(NameLoc) { | 
 |   if (Qualifier) { | 
 |     NameQualifier *NQ = getNameQualifier(); | 
 |     NQ->NNS = Qualifier; | 
 |     NQ->Range = QualifierRange; | 
 |   } | 
 |        | 
 |   if (TemplateArgs) | 
 |     getExplicitTemplateArgumentList()->initializeFrom(*TemplateArgs); | 
 |  | 
 |   computeDependence(); | 
 | } | 
 |  | 
 | DeclRefExpr *DeclRefExpr::Create(ASTContext &Context, | 
 |                                  NestedNameSpecifier *Qualifier, | 
 |                                  SourceRange QualifierRange, | 
 |                                  ValueDecl *D, | 
 |                                  SourceLocation NameLoc, | 
 |                                  QualType T, | 
 |                                  const TemplateArgumentListInfo *TemplateArgs) { | 
 |   std::size_t Size = sizeof(DeclRefExpr); | 
 |   if (Qualifier != 0) | 
 |     Size += sizeof(NameQualifier); | 
 |    | 
 |   if (TemplateArgs) | 
 |     Size += ExplicitTemplateArgumentList::sizeFor(*TemplateArgs); | 
 |    | 
 |   void *Mem = Context.Allocate(Size, llvm::alignof<DeclRefExpr>()); | 
 |   return new (Mem) DeclRefExpr(Qualifier, QualifierRange, D, NameLoc, | 
 |                                TemplateArgs, T); | 
 | } | 
 |  | 
 | SourceRange DeclRefExpr::getSourceRange() const { | 
 |   // FIXME: Does not handle multi-token names well, e.g., operator[]. | 
 |   SourceRange R(Loc); | 
 |    | 
 |   if (hasQualifier()) | 
 |     R.setBegin(getQualifierRange().getBegin()); | 
 |   if (hasExplicitTemplateArgumentList()) | 
 |     R.setEnd(getRAngleLoc()); | 
 |   return R; | 
 | } | 
 |  | 
 | // FIXME: Maybe this should use DeclPrinter with a special "print predefined | 
 | // expr" policy instead. | 
 | std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) { | 
 |   ASTContext &Context = CurrentDecl->getASTContext(); | 
 |  | 
 |   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) { | 
 |     if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual) | 
 |       return FD->getNameAsString(); | 
 |  | 
 |     llvm::SmallString<256> Name; | 
 |     llvm::raw_svector_ostream Out(Name); | 
 |  | 
 |     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { | 
 |       if (MD->isVirtual() && IT != PrettyFunctionNoVirtual) | 
 |         Out << "virtual "; | 
 |       if (MD->isStatic()) | 
 |         Out << "static "; | 
 |     } | 
 |  | 
 |     PrintingPolicy Policy(Context.getLangOptions()); | 
 |  | 
 |     std::string Proto = FD->getQualifiedNameAsString(Policy); | 
 |  | 
 |     const FunctionType *AFT = FD->getType()->getAs<FunctionType>(); | 
 |     const FunctionProtoType *FT = 0; | 
 |     if (FD->hasWrittenPrototype()) | 
 |       FT = dyn_cast<FunctionProtoType>(AFT); | 
 |  | 
 |     Proto += "("; | 
 |     if (FT) { | 
 |       llvm::raw_string_ostream POut(Proto); | 
 |       for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { | 
 |         if (i) POut << ", "; | 
 |         std::string Param; | 
 |         FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy); | 
 |         POut << Param; | 
 |       } | 
 |  | 
 |       if (FT->isVariadic()) { | 
 |         if (FD->getNumParams()) POut << ", "; | 
 |         POut << "..."; | 
 |       } | 
 |     } | 
 |     Proto += ")"; | 
 |  | 
 |     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { | 
 |       Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers()); | 
 |       if (ThisQuals.hasConst()) | 
 |         Proto += " const"; | 
 |       if (ThisQuals.hasVolatile()) | 
 |         Proto += " volatile"; | 
 |     } | 
 |  | 
 |     if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD)) | 
 |       AFT->getResultType().getAsStringInternal(Proto, Policy); | 
 |  | 
 |     Out << Proto; | 
 |  | 
 |     Out.flush(); | 
 |     return Name.str().str(); | 
 |   } | 
 |   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) { | 
 |     llvm::SmallString<256> Name; | 
 |     llvm::raw_svector_ostream Out(Name); | 
 |     Out << (MD->isInstanceMethod() ? '-' : '+'); | 
 |     Out << '['; | 
 |  | 
 |     // For incorrect code, there might not be an ObjCInterfaceDecl.  Do | 
 |     // a null check to avoid a crash. | 
 |     if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) | 
 |       Out << ID; | 
 |  | 
 |     if (const ObjCCategoryImplDecl *CID = | 
 |         dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) | 
 |       Out << '(' << CID << ')'; | 
 |  | 
 |     Out <<  ' '; | 
 |     Out << MD->getSelector().getAsString(); | 
 |     Out <<  ']'; | 
 |  | 
 |     Out.flush(); | 
 |     return Name.str().str(); | 
 |   } | 
 |   if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) { | 
 |     // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string. | 
 |     return "top level"; | 
 |   } | 
 |   return ""; | 
 | } | 
 |  | 
 | /// getValueAsApproximateDouble - This returns the value as an inaccurate | 
 | /// double.  Note that this may cause loss of precision, but is useful for | 
 | /// debugging dumps, etc. | 
 | double FloatingLiteral::getValueAsApproximateDouble() const { | 
 |   llvm::APFloat V = getValue(); | 
 |   bool ignored; | 
 |   V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven, | 
 |             &ignored); | 
 |   return V.convertToDouble(); | 
 | } | 
 |  | 
 | StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData, | 
 |                                      unsigned ByteLength, bool Wide, | 
 |                                      QualType Ty, | 
 |                                      const SourceLocation *Loc, | 
 |                                      unsigned NumStrs) { | 
 |   // Allocate enough space for the StringLiteral plus an array of locations for | 
 |   // any concatenated string tokens. | 
 |   void *Mem = C.Allocate(sizeof(StringLiteral)+ | 
 |                          sizeof(SourceLocation)*(NumStrs-1), | 
 |                          llvm::alignof<StringLiteral>()); | 
 |   StringLiteral *SL = new (Mem) StringLiteral(Ty); | 
 |  | 
 |   // OPTIMIZE: could allocate this appended to the StringLiteral. | 
 |   char *AStrData = new (C, 1) char[ByteLength]; | 
 |   memcpy(AStrData, StrData, ByteLength); | 
 |   SL->StrData = AStrData; | 
 |   SL->ByteLength = ByteLength; | 
 |   SL->IsWide = Wide; | 
 |   SL->TokLocs[0] = Loc[0]; | 
 |   SL->NumConcatenated = NumStrs; | 
 |  | 
 |   if (NumStrs != 1) | 
 |     memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1)); | 
 |   return SL; | 
 | } | 
 |  | 
 | StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) { | 
 |   void *Mem = C.Allocate(sizeof(StringLiteral)+ | 
 |                          sizeof(SourceLocation)*(NumStrs-1), | 
 |                          llvm::alignof<StringLiteral>()); | 
 |   StringLiteral *SL = new (Mem) StringLiteral(QualType()); | 
 |   SL->StrData = 0; | 
 |   SL->ByteLength = 0; | 
 |   SL->NumConcatenated = NumStrs; | 
 |   return SL; | 
 | } | 
 |  | 
 | void StringLiteral::DoDestroy(ASTContext &C) { | 
 |   C.Deallocate(const_cast<char*>(StrData)); | 
 |   Expr::DoDestroy(C); | 
 | } | 
 |  | 
 | void StringLiteral::setString(ASTContext &C, llvm::StringRef Str) { | 
 |   if (StrData) | 
 |     C.Deallocate(const_cast<char*>(StrData)); | 
 |  | 
 |   char *AStrData = new (C, 1) char[Str.size()]; | 
 |   memcpy(AStrData, Str.data(), Str.size()); | 
 |   StrData = AStrData; | 
 |   ByteLength = Str.size(); | 
 | } | 
 |  | 
 | /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it | 
 | /// corresponds to, e.g. "sizeof" or "[pre]++". | 
 | const char *UnaryOperator::getOpcodeStr(Opcode Op) { | 
 |   switch (Op) { | 
 |   default: assert(0 && "Unknown unary operator"); | 
 |   case PostInc: return "++"; | 
 |   case PostDec: return "--"; | 
 |   case PreInc:  return "++"; | 
 |   case PreDec:  return "--"; | 
 |   case AddrOf:  return "&"; | 
 |   case Deref:   return "*"; | 
 |   case Plus:    return "+"; | 
 |   case Minus:   return "-"; | 
 |   case Not:     return "~"; | 
 |   case LNot:    return "!"; | 
 |   case Real:    return "__real"; | 
 |   case Imag:    return "__imag"; | 
 |   case Extension: return "__extension__"; | 
 |   case OffsetOf: return "__builtin_offsetof"; | 
 |   } | 
 | } | 
 |  | 
 | UnaryOperator::Opcode | 
 | UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) { | 
 |   switch (OO) { | 
 |   default: assert(false && "No unary operator for overloaded function"); | 
 |   case OO_PlusPlus:   return Postfix ? PostInc : PreInc; | 
 |   case OO_MinusMinus: return Postfix ? PostDec : PreDec; | 
 |   case OO_Amp:        return AddrOf; | 
 |   case OO_Star:       return Deref; | 
 |   case OO_Plus:       return Plus; | 
 |   case OO_Minus:      return Minus; | 
 |   case OO_Tilde:      return Not; | 
 |   case OO_Exclaim:    return LNot; | 
 |   } | 
 | } | 
 |  | 
 | OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) { | 
 |   switch (Opc) { | 
 |   case PostInc: case PreInc: return OO_PlusPlus; | 
 |   case PostDec: case PreDec: return OO_MinusMinus; | 
 |   case AddrOf: return OO_Amp; | 
 |   case Deref: return OO_Star; | 
 |   case Plus: return OO_Plus; | 
 |   case Minus: return OO_Minus; | 
 |   case Not: return OO_Tilde; | 
 |   case LNot: return OO_Exclaim; | 
 |   default: return OO_None; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Postfix Operators. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, | 
 |                    unsigned numargs, QualType t, SourceLocation rparenloc) | 
 |   : Expr(SC, t, | 
 |          fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs), | 
 |          fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)), | 
 |     NumArgs(numargs) { | 
 |  | 
 |   SubExprs = new (C) Stmt*[numargs+1]; | 
 |   SubExprs[FN] = fn; | 
 |   for (unsigned i = 0; i != numargs; ++i) | 
 |     SubExprs[i+ARGS_START] = args[i]; | 
 |  | 
 |   RParenLoc = rparenloc; | 
 | } | 
 |  | 
 | CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, | 
 |                    QualType t, SourceLocation rparenloc) | 
 |   : Expr(CallExprClass, t, | 
 |          fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs), | 
 |          fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)), | 
 |     NumArgs(numargs) { | 
 |  | 
 |   SubExprs = new (C) Stmt*[numargs+1]; | 
 |   SubExprs[FN] = fn; | 
 |   for (unsigned i = 0; i != numargs; ++i) | 
 |     SubExprs[i+ARGS_START] = args[i]; | 
 |  | 
 |   RParenLoc = rparenloc; | 
 | } | 
 |  | 
 | CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty) | 
 |   : Expr(SC, Empty), SubExprs(0), NumArgs(0) { | 
 |   SubExprs = new (C) Stmt*[1]; | 
 | } | 
 |  | 
 | void CallExpr::DoDestroy(ASTContext& C) { | 
 |   DestroyChildren(C); | 
 |   if (SubExprs) C.Deallocate(SubExprs); | 
 |   this->~CallExpr(); | 
 |   C.Deallocate(this); | 
 | } | 
 |  | 
 | Decl *CallExpr::getCalleeDecl() { | 
 |   Expr *CEE = getCallee()->IgnoreParenCasts(); | 
 |   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) | 
 |     return DRE->getDecl(); | 
 |   if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE)) | 
 |     return ME->getMemberDecl(); | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | FunctionDecl *CallExpr::getDirectCallee() { | 
 |   return dyn_cast_or_null<FunctionDecl>(getCalleeDecl()); | 
 | } | 
 |  | 
 | /// setNumArgs - This changes the number of arguments present in this call. | 
 | /// Any orphaned expressions are deleted by this, and any new operands are set | 
 | /// to null. | 
 | void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) { | 
 |   // No change, just return. | 
 |   if (NumArgs == getNumArgs()) return; | 
 |  | 
 |   // If shrinking # arguments, just delete the extras and forgot them. | 
 |   if (NumArgs < getNumArgs()) { | 
 |     for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i) | 
 |       getArg(i)->Destroy(C); | 
 |     this->NumArgs = NumArgs; | 
 |     return; | 
 |   } | 
 |  | 
 |   // Otherwise, we are growing the # arguments.  New an bigger argument array. | 
 |   Stmt **NewSubExprs = new (C) Stmt*[NumArgs+1]; | 
 |   // Copy over args. | 
 |   for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i) | 
 |     NewSubExprs[i] = SubExprs[i]; | 
 |   // Null out new args. | 
 |   for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i) | 
 |     NewSubExprs[i] = 0; | 
 |  | 
 |   if (SubExprs) C.Deallocate(SubExprs); | 
 |   SubExprs = NewSubExprs; | 
 |   this->NumArgs = NumArgs; | 
 | } | 
 |  | 
 | /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If | 
 | /// not, return 0. | 
 | unsigned CallExpr::isBuiltinCall(ASTContext &Context) const { | 
 |   // All simple function calls (e.g. func()) are implicitly cast to pointer to | 
 |   // function. As a result, we try and obtain the DeclRefExpr from the | 
 |   // ImplicitCastExpr. | 
 |   const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee()); | 
 |   if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()). | 
 |     return 0; | 
 |  | 
 |   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()); | 
 |   if (!DRE) | 
 |     return 0; | 
 |  | 
 |   const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl()); | 
 |   if (!FDecl) | 
 |     return 0; | 
 |  | 
 |   if (!FDecl->getIdentifier()) | 
 |     return 0; | 
 |  | 
 |   return FDecl->getBuiltinID(); | 
 | } | 
 |  | 
 | QualType CallExpr::getCallReturnType() const { | 
 |   QualType CalleeType = getCallee()->getType(); | 
 |   if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>()) | 
 |     CalleeType = FnTypePtr->getPointeeType(); | 
 |   else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>()) | 
 |     CalleeType = BPT->getPointeeType(); | 
 |  | 
 |   const FunctionType *FnType = CalleeType->getAs<FunctionType>(); | 
 |   return FnType->getResultType(); | 
 | } | 
 |  | 
 | MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow, | 
 |                                NestedNameSpecifier *qual, | 
 |                                SourceRange qualrange, | 
 |                                ValueDecl *memberdecl, | 
 |                                DeclAccessPair founddecl, | 
 |                                SourceLocation l, | 
 |                                const TemplateArgumentListInfo *targs, | 
 |                                QualType ty) { | 
 |   std::size_t Size = sizeof(MemberExpr); | 
 |  | 
 |   bool hasQualOrFound = (qual != 0 || | 
 |                          founddecl.getDecl() != memberdecl || | 
 |                          founddecl.getAccess() != memberdecl->getAccess()); | 
 |   if (hasQualOrFound) | 
 |     Size += sizeof(MemberNameQualifier); | 
 |  | 
 |   if (targs) | 
 |     Size += ExplicitTemplateArgumentList::sizeFor(*targs); | 
 |  | 
 |   void *Mem = C.Allocate(Size, llvm::alignof<MemberExpr>()); | 
 |   MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, l, ty); | 
 |  | 
 |   if (hasQualOrFound) { | 
 |     if (qual && qual->isDependent()) { | 
 |       E->setValueDependent(true); | 
 |       E->setTypeDependent(true); | 
 |     } | 
 |     E->HasQualifierOrFoundDecl = true; | 
 |  | 
 |     MemberNameQualifier *NQ = E->getMemberQualifier(); | 
 |     NQ->NNS = qual; | 
 |     NQ->Range = qualrange; | 
 |     NQ->FoundDecl = founddecl; | 
 |   } | 
 |  | 
 |   if (targs) { | 
 |     E->HasExplicitTemplateArgumentList = true; | 
 |     E->getExplicitTemplateArgumentList()->initializeFrom(*targs); | 
 |   } | 
 |  | 
 |   return E; | 
 | } | 
 |  | 
 | const char *CastExpr::getCastKindName() const { | 
 |   switch (getCastKind()) { | 
 |   case CastExpr::CK_Unknown: | 
 |     return "Unknown"; | 
 |   case CastExpr::CK_BitCast: | 
 |     return "BitCast"; | 
 |   case CastExpr::CK_NoOp: | 
 |     return "NoOp"; | 
 |   case CastExpr::CK_BaseToDerived: | 
 |     return "BaseToDerived"; | 
 |   case CastExpr::CK_DerivedToBase: | 
 |     return "DerivedToBase"; | 
 |   case CastExpr::CK_UncheckedDerivedToBase: | 
 |     return "UncheckedDerivedToBase"; | 
 |   case CastExpr::CK_Dynamic: | 
 |     return "Dynamic"; | 
 |   case CastExpr::CK_ToUnion: | 
 |     return "ToUnion"; | 
 |   case CastExpr::CK_ArrayToPointerDecay: | 
 |     return "ArrayToPointerDecay"; | 
 |   case CastExpr::CK_FunctionToPointerDecay: | 
 |     return "FunctionToPointerDecay"; | 
 |   case CastExpr::CK_NullToMemberPointer: | 
 |     return "NullToMemberPointer"; | 
 |   case CastExpr::CK_BaseToDerivedMemberPointer: | 
 |     return "BaseToDerivedMemberPointer"; | 
 |   case CastExpr::CK_DerivedToBaseMemberPointer: | 
 |     return "DerivedToBaseMemberPointer"; | 
 |   case CastExpr::CK_UserDefinedConversion: | 
 |     return "UserDefinedConversion"; | 
 |   case CastExpr::CK_ConstructorConversion: | 
 |     return "ConstructorConversion"; | 
 |   case CastExpr::CK_IntegralToPointer: | 
 |     return "IntegralToPointer"; | 
 |   case CastExpr::CK_PointerToIntegral: | 
 |     return "PointerToIntegral"; | 
 |   case CastExpr::CK_ToVoid: | 
 |     return "ToVoid"; | 
 |   case CastExpr::CK_VectorSplat: | 
 |     return "VectorSplat"; | 
 |   case CastExpr::CK_IntegralCast: | 
 |     return "IntegralCast"; | 
 |   case CastExpr::CK_IntegralToFloating: | 
 |     return "IntegralToFloating"; | 
 |   case CastExpr::CK_FloatingToIntegral: | 
 |     return "FloatingToIntegral"; | 
 |   case CastExpr::CK_FloatingCast: | 
 |     return "FloatingCast"; | 
 |   case CastExpr::CK_MemberPointerToBoolean: | 
 |     return "MemberPointerToBoolean"; | 
 |   case CastExpr::CK_AnyPointerToObjCPointerCast: | 
 |     return "AnyPointerToObjCPointerCast"; | 
 |   case CastExpr::CK_AnyPointerToBlockPointerCast: | 
 |     return "AnyPointerToBlockPointerCast"; | 
 |   } | 
 |  | 
 |   assert(0 && "Unhandled cast kind!"); | 
 |   return 0; | 
 | } | 
 |  | 
 | void CastExpr::DoDestroy(ASTContext &C) | 
 | { | 
 |   BasePath.Destroy(); | 
 |   Expr::DoDestroy(C); | 
 | } | 
 |  | 
 | Expr *CastExpr::getSubExprAsWritten() { | 
 |   Expr *SubExpr = 0; | 
 |   CastExpr *E = this; | 
 |   do { | 
 |     SubExpr = E->getSubExpr(); | 
 |      | 
 |     // Skip any temporary bindings; they're implicit. | 
 |     if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr)) | 
 |       SubExpr = Binder->getSubExpr(); | 
 |      | 
 |     // Conversions by constructor and conversion functions have a | 
 |     // subexpression describing the call; strip it off. | 
 |     if (E->getCastKind() == CastExpr::CK_ConstructorConversion) | 
 |       SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0); | 
 |     else if (E->getCastKind() == CastExpr::CK_UserDefinedConversion) | 
 |       SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument(); | 
 |      | 
 |     // If the subexpression we're left with is an implicit cast, look | 
 |     // through that, too. | 
 |   } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));   | 
 |    | 
 |   return SubExpr; | 
 | } | 
 |  | 
 | /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it | 
 | /// corresponds to, e.g. "<<=". | 
 | const char *BinaryOperator::getOpcodeStr(Opcode Op) { | 
 |   switch (Op) { | 
 |   case PtrMemD:   return ".*"; | 
 |   case PtrMemI:   return "->*"; | 
 |   case Mul:       return "*"; | 
 |   case Div:       return "/"; | 
 |   case Rem:       return "%"; | 
 |   case Add:       return "+"; | 
 |   case Sub:       return "-"; | 
 |   case Shl:       return "<<"; | 
 |   case Shr:       return ">>"; | 
 |   case LT:        return "<"; | 
 |   case GT:        return ">"; | 
 |   case LE:        return "<="; | 
 |   case GE:        return ">="; | 
 |   case EQ:        return "=="; | 
 |   case NE:        return "!="; | 
 |   case And:       return "&"; | 
 |   case Xor:       return "^"; | 
 |   case Or:        return "|"; | 
 |   case LAnd:      return "&&"; | 
 |   case LOr:       return "||"; | 
 |   case Assign:    return "="; | 
 |   case MulAssign: return "*="; | 
 |   case DivAssign: return "/="; | 
 |   case RemAssign: return "%="; | 
 |   case AddAssign: return "+="; | 
 |   case SubAssign: return "-="; | 
 |   case ShlAssign: return "<<="; | 
 |   case ShrAssign: return ">>="; | 
 |   case AndAssign: return "&="; | 
 |   case XorAssign: return "^="; | 
 |   case OrAssign:  return "|="; | 
 |   case Comma:     return ","; | 
 |   } | 
 |  | 
 |   return ""; | 
 | } | 
 |  | 
 | BinaryOperator::Opcode | 
 | BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) { | 
 |   switch (OO) { | 
 |   default: assert(false && "Not an overloadable binary operator"); | 
 |   case OO_Plus: return Add; | 
 |   case OO_Minus: return Sub; | 
 |   case OO_Star: return Mul; | 
 |   case OO_Slash: return Div; | 
 |   case OO_Percent: return Rem; | 
 |   case OO_Caret: return Xor; | 
 |   case OO_Amp: return And; | 
 |   case OO_Pipe: return Or; | 
 |   case OO_Equal: return Assign; | 
 |   case OO_Less: return LT; | 
 |   case OO_Greater: return GT; | 
 |   case OO_PlusEqual: return AddAssign; | 
 |   case OO_MinusEqual: return SubAssign; | 
 |   case OO_StarEqual: return MulAssign; | 
 |   case OO_SlashEqual: return DivAssign; | 
 |   case OO_PercentEqual: return RemAssign; | 
 |   case OO_CaretEqual: return XorAssign; | 
 |   case OO_AmpEqual: return AndAssign; | 
 |   case OO_PipeEqual: return OrAssign; | 
 |   case OO_LessLess: return Shl; | 
 |   case OO_GreaterGreater: return Shr; | 
 |   case OO_LessLessEqual: return ShlAssign; | 
 |   case OO_GreaterGreaterEqual: return ShrAssign; | 
 |   case OO_EqualEqual: return EQ; | 
 |   case OO_ExclaimEqual: return NE; | 
 |   case OO_LessEqual: return LE; | 
 |   case OO_GreaterEqual: return GE; | 
 |   case OO_AmpAmp: return LAnd; | 
 |   case OO_PipePipe: return LOr; | 
 |   case OO_Comma: return Comma; | 
 |   case OO_ArrowStar: return PtrMemI; | 
 |   } | 
 | } | 
 |  | 
 | OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) { | 
 |   static const OverloadedOperatorKind OverOps[] = { | 
 |     /* .* Cannot be overloaded */OO_None, OO_ArrowStar, | 
 |     OO_Star, OO_Slash, OO_Percent, | 
 |     OO_Plus, OO_Minus, | 
 |     OO_LessLess, OO_GreaterGreater, | 
 |     OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual, | 
 |     OO_EqualEqual, OO_ExclaimEqual, | 
 |     OO_Amp, | 
 |     OO_Caret, | 
 |     OO_Pipe, | 
 |     OO_AmpAmp, | 
 |     OO_PipePipe, | 
 |     OO_Equal, OO_StarEqual, | 
 |     OO_SlashEqual, OO_PercentEqual, | 
 |     OO_PlusEqual, OO_MinusEqual, | 
 |     OO_LessLessEqual, OO_GreaterGreaterEqual, | 
 |     OO_AmpEqual, OO_CaretEqual, | 
 |     OO_PipeEqual, | 
 |     OO_Comma | 
 |   }; | 
 |   return OverOps[Opc]; | 
 | } | 
 |  | 
 | InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc, | 
 |                            Expr **initExprs, unsigned numInits, | 
 |                            SourceLocation rbraceloc) | 
 |   : Expr(InitListExprClass, QualType(), false, false), | 
 |     InitExprs(C, numInits), | 
 |     LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0), | 
 |     UnionFieldInit(0), HadArrayRangeDesignator(false)  | 
 | {       | 
 |   for (unsigned I = 0; I != numInits; ++I) { | 
 |     if (initExprs[I]->isTypeDependent()) | 
 |       TypeDependent = true; | 
 |     if (initExprs[I]->isValueDependent()) | 
 |       ValueDependent = true; | 
 |   } | 
 |        | 
 |   InitExprs.insert(C, InitExprs.end(), initExprs, initExprs+numInits); | 
 | } | 
 |  | 
 | void InitListExpr::reserveInits(ASTContext &C, unsigned NumInits) { | 
 |   if (NumInits > InitExprs.size()) | 
 |     InitExprs.reserve(C, NumInits); | 
 | } | 
 |  | 
 | void InitListExpr::resizeInits(ASTContext &C, unsigned NumInits) { | 
 |   for (unsigned Idx = NumInits, LastIdx = InitExprs.size(); | 
 |        Idx < LastIdx; ++Idx) | 
 |     InitExprs[Idx]->Destroy(C); | 
 |   InitExprs.resize(C, NumInits, 0); | 
 | } | 
 |  | 
 | Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) { | 
 |   if (Init >= InitExprs.size()) { | 
 |     InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0); | 
 |     InitExprs.back() = expr; | 
 |     return 0; | 
 |   } | 
 |  | 
 |   Expr *Result = cast_or_null<Expr>(InitExprs[Init]); | 
 |   InitExprs[Init] = expr; | 
 |   return Result; | 
 | } | 
 |  | 
 | /// getFunctionType - Return the underlying function type for this block. | 
 | /// | 
 | const FunctionType *BlockExpr::getFunctionType() const { | 
 |   return getType()->getAs<BlockPointerType>()-> | 
 |                     getPointeeType()->getAs<FunctionType>(); | 
 | } | 
 |  | 
 | SourceLocation BlockExpr::getCaretLocation() const { | 
 |   return TheBlock->getCaretLocation(); | 
 | } | 
 | const Stmt *BlockExpr::getBody() const { | 
 |   return TheBlock->getBody(); | 
 | } | 
 | Stmt *BlockExpr::getBody() { | 
 |   return TheBlock->getBody(); | 
 | } | 
 |  | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Generic Expression Routines | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// isUnusedResultAWarning - Return true if this immediate expression should | 
 | /// be warned about if the result is unused.  If so, fill in Loc and Ranges | 
 | /// with location to warn on and the source range[s] to report with the | 
 | /// warning. | 
 | bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1, | 
 |                                   SourceRange &R2, ASTContext &Ctx) const { | 
 |   // Don't warn if the expr is type dependent. The type could end up | 
 |   // instantiating to void. | 
 |   if (isTypeDependent()) | 
 |     return false; | 
 |  | 
 |   switch (getStmtClass()) { | 
 |   default: | 
 |     if (getType()->isVoidType()) | 
 |       return false; | 
 |     Loc = getExprLoc(); | 
 |     R1 = getSourceRange(); | 
 |     return true; | 
 |   case ParenExprClass: | 
 |     return cast<ParenExpr>(this)->getSubExpr()-> | 
 |       isUnusedResultAWarning(Loc, R1, R2, Ctx); | 
 |   case UnaryOperatorClass: { | 
 |     const UnaryOperator *UO = cast<UnaryOperator>(this); | 
 |  | 
 |     switch (UO->getOpcode()) { | 
 |     default: break; | 
 |     case UnaryOperator::PostInc: | 
 |     case UnaryOperator::PostDec: | 
 |     case UnaryOperator::PreInc: | 
 |     case UnaryOperator::PreDec:                 // ++/-- | 
 |       return false;  // Not a warning. | 
 |     case UnaryOperator::Deref: | 
 |       // Dereferencing a volatile pointer is a side-effect. | 
 |       if (Ctx.getCanonicalType(getType()).isVolatileQualified()) | 
 |         return false; | 
 |       break; | 
 |     case UnaryOperator::Real: | 
 |     case UnaryOperator::Imag: | 
 |       // accessing a piece of a volatile complex is a side-effect. | 
 |       if (Ctx.getCanonicalType(UO->getSubExpr()->getType()) | 
 |           .isVolatileQualified()) | 
 |         return false; | 
 |       break; | 
 |     case UnaryOperator::Extension: | 
 |       return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx); | 
 |     } | 
 |     Loc = UO->getOperatorLoc(); | 
 |     R1 = UO->getSubExpr()->getSourceRange(); | 
 |     return true; | 
 |   } | 
 |   case BinaryOperatorClass: { | 
 |     const BinaryOperator *BO = cast<BinaryOperator>(this); | 
 |     switch (BO->getOpcode()) { | 
 |       default: | 
 |         break; | 
 |       // Consider ',', '||', '&&' to have side effects if the LHS or RHS does. | 
 |       case BinaryOperator::Comma: | 
 |         // ((foo = <blah>), 0) is an idiom for hiding the result (and | 
 |         // lvalue-ness) of an assignment written in a macro. | 
 |         if (IntegerLiteral *IE = | 
 |               dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens())) | 
 |           if (IE->getValue() == 0) | 
 |             return false; | 
 |       case BinaryOperator::LAnd: | 
 |       case BinaryOperator::LOr: | 
 |         return (BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) || | 
 |                 BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); | 
 |     } | 
 |     if (BO->isAssignmentOp()) | 
 |       return false; | 
 |     Loc = BO->getOperatorLoc(); | 
 |     R1 = BO->getLHS()->getSourceRange(); | 
 |     R2 = BO->getRHS()->getSourceRange(); | 
 |     return true; | 
 |   } | 
 |   case CompoundAssignOperatorClass: | 
 |     return false; | 
 |  | 
 |   case ConditionalOperatorClass: { | 
 |     // The condition must be evaluated, but if either the LHS or RHS is a | 
 |     // warning, warn about them. | 
 |     const ConditionalOperator *Exp = cast<ConditionalOperator>(this); | 
 |     if (Exp->getLHS() && | 
 |         Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx)) | 
 |       return true; | 
 |     return Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx); | 
 |   } | 
 |  | 
 |   case MemberExprClass: | 
 |     // If the base pointer or element is to a volatile pointer/field, accessing | 
 |     // it is a side effect. | 
 |     if (Ctx.getCanonicalType(getType()).isVolatileQualified()) | 
 |       return false; | 
 |     Loc = cast<MemberExpr>(this)->getMemberLoc(); | 
 |     R1 = SourceRange(Loc, Loc); | 
 |     R2 = cast<MemberExpr>(this)->getBase()->getSourceRange(); | 
 |     return true; | 
 |  | 
 |   case ArraySubscriptExprClass: | 
 |     // If the base pointer or element is to a volatile pointer/field, accessing | 
 |     // it is a side effect. | 
 |     if (Ctx.getCanonicalType(getType()).isVolatileQualified()) | 
 |       return false; | 
 |     Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc(); | 
 |     R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange(); | 
 |     R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange(); | 
 |     return true; | 
 |  | 
 |   case CallExprClass: | 
 |   case CXXOperatorCallExprClass: | 
 |   case CXXMemberCallExprClass: { | 
 |     // If this is a direct call, get the callee. | 
 |     const CallExpr *CE = cast<CallExpr>(this); | 
 |     if (const Decl *FD = CE->getCalleeDecl()) { | 
 |       // If the callee has attribute pure, const, or warn_unused_result, warn | 
 |       // about it. void foo() { strlen("bar"); } should warn. | 
 |       // | 
 |       // Note: If new cases are added here, DiagnoseUnusedExprResult should be | 
 |       // updated to match for QoI. | 
 |       if (FD->getAttr<WarnUnusedResultAttr>() || | 
 |           FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) { | 
 |         Loc = CE->getCallee()->getLocStart(); | 
 |         R1 = CE->getCallee()->getSourceRange(); | 
 |  | 
 |         if (unsigned NumArgs = CE->getNumArgs()) | 
 |           R2 = SourceRange(CE->getArg(0)->getLocStart(), | 
 |                            CE->getArg(NumArgs-1)->getLocEnd()); | 
 |         return true; | 
 |       } | 
 |     } | 
 |     return false; | 
 |   } | 
 |  | 
 |   case CXXTemporaryObjectExprClass: | 
 |   case CXXConstructExprClass: | 
 |     return false; | 
 |  | 
 |   case ObjCMessageExprClass: { | 
 |     const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this); | 
 |     const ObjCMethodDecl *MD = ME->getMethodDecl(); | 
 |     if (MD && MD->getAttr<WarnUnusedResultAttr>()) { | 
 |       Loc = getExprLoc(); | 
 |       return true; | 
 |     } | 
 |     return false; | 
 |   } | 
 |  | 
 |   case ObjCImplicitSetterGetterRefExprClass: {   // Dot syntax for message send. | 
 | #if 0 | 
 |     const ObjCImplicitSetterGetterRefExpr *Ref = | 
 |       cast<ObjCImplicitSetterGetterRefExpr>(this); | 
 |     // FIXME: We really want the location of the '.' here. | 
 |     Loc = Ref->getLocation(); | 
 |     R1 = SourceRange(Ref->getLocation(), Ref->getLocation()); | 
 |     if (Ref->getBase()) | 
 |       R2 = Ref->getBase()->getSourceRange(); | 
 | #else | 
 |     Loc = getExprLoc(); | 
 |     R1 = getSourceRange(); | 
 | #endif | 
 |     return true; | 
 |   } | 
 |   case StmtExprClass: { | 
 |     // Statement exprs don't logically have side effects themselves, but are | 
 |     // sometimes used in macros in ways that give them a type that is unused. | 
 |     // For example ({ blah; foo(); }) will end up with a type if foo has a type. | 
 |     // however, if the result of the stmt expr is dead, we don't want to emit a | 
 |     // warning. | 
 |     const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt(); | 
 |     if (!CS->body_empty()) | 
 |       if (const Expr *E = dyn_cast<Expr>(CS->body_back())) | 
 |         return E->isUnusedResultAWarning(Loc, R1, R2, Ctx); | 
 |  | 
 |     if (getType()->isVoidType()) | 
 |       return false; | 
 |     Loc = cast<StmtExpr>(this)->getLParenLoc(); | 
 |     R1 = getSourceRange(); | 
 |     return true; | 
 |   } | 
 |   case CStyleCastExprClass: | 
 |     // If this is an explicit cast to void, allow it.  People do this when they | 
 |     // think they know what they're doing :). | 
 |     if (getType()->isVoidType()) | 
 |       return false; | 
 |     Loc = cast<CStyleCastExpr>(this)->getLParenLoc(); | 
 |     R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange(); | 
 |     return true; | 
 |   case CXXFunctionalCastExprClass: { | 
 |     if (getType()->isVoidType()) | 
 |       return false; | 
 |     const CastExpr *CE = cast<CastExpr>(this); | 
 |      | 
 |     // If this is a cast to void or a constructor conversion, check the operand. | 
 |     // Otherwise, the result of the cast is unused. | 
 |     if (CE->getCastKind() == CastExpr::CK_ToVoid || | 
 |         CE->getCastKind() == CastExpr::CK_ConstructorConversion) | 
 |       return (cast<CastExpr>(this)->getSubExpr() | 
 |               ->isUnusedResultAWarning(Loc, R1, R2, Ctx)); | 
 |     Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc(); | 
 |     R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   case ImplicitCastExprClass: | 
 |     // Check the operand, since implicit casts are inserted by Sema | 
 |     return (cast<ImplicitCastExpr>(this) | 
 |             ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); | 
 |  | 
 |   case CXXDefaultArgExprClass: | 
 |     return (cast<CXXDefaultArgExpr>(this) | 
 |             ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); | 
 |  | 
 |   case CXXNewExprClass: | 
 |     // FIXME: In theory, there might be new expressions that don't have side | 
 |     // effects (e.g. a placement new with an uninitialized POD). | 
 |   case CXXDeleteExprClass: | 
 |     return false; | 
 |   case CXXBindTemporaryExprClass: | 
 |     return (cast<CXXBindTemporaryExpr>(this) | 
 |             ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); | 
 |   case CXXExprWithTemporariesClass: | 
 |     return (cast<CXXExprWithTemporaries>(this) | 
 |             ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); | 
 |   } | 
 | } | 
 |  | 
 | /// DeclCanBeLvalue - Determine whether the given declaration can be | 
 | /// an lvalue. This is a helper routine for isLvalue. | 
 | static bool DeclCanBeLvalue(const NamedDecl *Decl, ASTContext &Ctx) { | 
 |   // C++ [temp.param]p6: | 
 |   //   A non-type non-reference template-parameter is not an lvalue. | 
 |   if (const NonTypeTemplateParmDecl *NTTParm | 
 |         = dyn_cast<NonTypeTemplateParmDecl>(Decl)) | 
 |     return NTTParm->getType()->isReferenceType(); | 
 |  | 
 |   return isa<VarDecl>(Decl) || isa<FieldDecl>(Decl) || | 
 |     // C++ 3.10p2: An lvalue refers to an object or function. | 
 |     (Ctx.getLangOptions().CPlusPlus && | 
 |      (isa<FunctionDecl>(Decl) || isa<FunctionTemplateDecl>(Decl))); | 
 | } | 
 |  | 
 | /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an | 
 | /// incomplete type other than void. Nonarray expressions that can be lvalues: | 
 | ///  - name, where name must be a variable | 
 | ///  - e[i] | 
 | ///  - (e), where e must be an lvalue | 
 | ///  - e.name, where e must be an lvalue | 
 | ///  - e->name | 
 | ///  - *e, the type of e cannot be a function type | 
 | ///  - string-constant | 
 | ///  - (__real__ e) and (__imag__ e) where e is an lvalue  [GNU extension] | 
 | ///  - reference type [C++ [expr]] | 
 | /// | 
 | Expr::isLvalueResult Expr::isLvalue(ASTContext &Ctx) const { | 
 |   assert(!TR->isReferenceType() && "Expressions can't have reference type."); | 
 |  | 
 |   isLvalueResult Res = isLvalueInternal(Ctx); | 
 |   if (Res != LV_Valid || Ctx.getLangOptions().CPlusPlus) | 
 |     return Res; | 
 |  | 
 |   // first, check the type (C99 6.3.2.1). Expressions with function | 
 |   // type in C are not lvalues, but they can be lvalues in C++. | 
 |   if (TR->isFunctionType() || TR == Ctx.OverloadTy) | 
 |     return LV_NotObjectType; | 
 |  | 
 |   // Allow qualified void which is an incomplete type other than void (yuck). | 
 |   if (TR->isVoidType() && !Ctx.getCanonicalType(TR).hasQualifiers()) | 
 |     return LV_IncompleteVoidType; | 
 |  | 
 |   return LV_Valid; | 
 | } | 
 |  | 
 | // Check whether the expression can be sanely treated like an l-value | 
 | Expr::isLvalueResult Expr::isLvalueInternal(ASTContext &Ctx) const { | 
 |   switch (getStmtClass()) { | 
 |   case ObjCIsaExprClass: | 
 |   case StringLiteralClass:  // C99 6.5.1p4 | 
 |   case ObjCEncodeExprClass: // @encode behaves like its string in every way. | 
 |     return LV_Valid; | 
 |   case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2)))) | 
 |     // For vectors, make sure base is an lvalue (i.e. not a function call). | 
 |     if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType()) | 
 |       return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue(Ctx); | 
 |     return LV_Valid; | 
 |   case DeclRefExprClass: { // C99 6.5.1p2 | 
 |     const NamedDecl *RefdDecl = cast<DeclRefExpr>(this)->getDecl(); | 
 |     if (DeclCanBeLvalue(RefdDecl, Ctx)) | 
 |       return LV_Valid; | 
 |     break; | 
 |   } | 
 |   case BlockDeclRefExprClass: { | 
 |     const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this); | 
 |     if (isa<VarDecl>(BDR->getDecl())) | 
 |       return LV_Valid; | 
 |     break; | 
 |   } | 
 |   case MemberExprClass: { | 
 |     const MemberExpr *m = cast<MemberExpr>(this); | 
 |     if (Ctx.getLangOptions().CPlusPlus) { // C++ [expr.ref]p4: | 
 |       NamedDecl *Member = m->getMemberDecl(); | 
 |       // C++ [expr.ref]p4: | 
 |       //   If E2 is declared to have type "reference to T", then E1.E2 | 
 |       //   is an lvalue. | 
 |       if (ValueDecl *Value = dyn_cast<ValueDecl>(Member)) | 
 |         if (Value->getType()->isReferenceType()) | 
 |           return LV_Valid; | 
 |  | 
 |       //   -- If E2 is a static data member [...] then E1.E2 is an lvalue. | 
 |       if (isa<VarDecl>(Member) && Member->getDeclContext()->isRecord()) | 
 |         return LV_Valid; | 
 |  | 
 |       //   -- If E2 is a non-static data member [...]. If E1 is an | 
 |       //      lvalue, then E1.E2 is an lvalue. | 
 |       if (isa<FieldDecl>(Member)) { | 
 |         if (m->isArrow()) | 
 |           return LV_Valid; | 
 |         return m->getBase()->isLvalue(Ctx); | 
 |       } | 
 |  | 
 |       //   -- If it refers to a static member function [...], then | 
 |       //      E1.E2 is an lvalue. | 
 |       //   -- Otherwise, if E1.E2 refers to a non-static member | 
 |       //      function [...], then E1.E2 is not an lvalue. | 
 |       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) | 
 |         return Method->isStatic()? LV_Valid : LV_MemberFunction; | 
 |  | 
 |       //   -- If E2 is a member enumerator [...], the expression E1.E2 | 
 |       //      is not an lvalue. | 
 |       if (isa<EnumConstantDecl>(Member)) | 
 |         return LV_InvalidExpression; | 
 |  | 
 |         // Not an lvalue. | 
 |       return LV_InvalidExpression; | 
 |     } | 
 |      | 
 |     // C99 6.5.2.3p4 | 
 |     if (m->isArrow()) | 
 |       return LV_Valid; | 
 |     Expr *BaseExp = m->getBase(); | 
 |     if (BaseExp->getStmtClass() == ObjCPropertyRefExprClass || | 
 |         BaseExp->getStmtClass() == ObjCImplicitSetterGetterRefExprClass) | 
 |           return LV_SubObjCPropertySetting; | 
 |     return  | 
 |        BaseExp->isLvalue(Ctx);         | 
 |   } | 
 |   case UnaryOperatorClass: | 
 |     if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref) | 
 |       return LV_Valid; // C99 6.5.3p4 | 
 |  | 
 |     if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real || | 
 |         cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag || | 
 |         cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Extension) | 
 |       return cast<UnaryOperator>(this)->getSubExpr()->isLvalue(Ctx);  // GNU. | 
 |  | 
 |     if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.pre.incr]p1 | 
 |         (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreInc || | 
 |          cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreDec)) | 
 |       return LV_Valid; | 
 |     break; | 
 |   case ImplicitCastExprClass: | 
 |     if (cast<ImplicitCastExpr>(this)->isLvalueCast()) | 
 |       return LV_Valid; | 
 |  | 
 |     // If this is a conversion to a class temporary, make a note of | 
 |     // that. | 
 |     if (Ctx.getLangOptions().CPlusPlus && getType()->isRecordType()) | 
 |       return LV_ClassTemporary; | 
 |  | 
 |     break; | 
 |   case ParenExprClass: // C99 6.5.1p5 | 
 |     return cast<ParenExpr>(this)->getSubExpr()->isLvalue(Ctx); | 
 |   case BinaryOperatorClass: | 
 |   case CompoundAssignOperatorClass: { | 
 |     const BinaryOperator *BinOp = cast<BinaryOperator>(this); | 
 |  | 
 |     if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.comma]p1 | 
 |         BinOp->getOpcode() == BinaryOperator::Comma) | 
 |       return BinOp->getRHS()->isLvalue(Ctx); | 
 |  | 
 |     // C++ [expr.mptr.oper]p6 | 
 |     // The result of a .* expression is an lvalue only if its first operand is  | 
 |     // an lvalue and its second operand is a pointer to data member.  | 
 |     if (BinOp->getOpcode() == BinaryOperator::PtrMemD && | 
 |         !BinOp->getType()->isFunctionType()) | 
 |       return BinOp->getLHS()->isLvalue(Ctx); | 
 |  | 
 |     // The result of an ->* expression is an lvalue only if its second operand  | 
 |     // is a pointer to data member. | 
 |     if (BinOp->getOpcode() == BinaryOperator::PtrMemI && | 
 |         !BinOp->getType()->isFunctionType()) { | 
 |       QualType Ty = BinOp->getRHS()->getType(); | 
 |       if (Ty->isMemberPointerType() && !Ty->isMemberFunctionPointerType()) | 
 |         return LV_Valid; | 
 |     } | 
 |      | 
 |     if (!BinOp->isAssignmentOp()) | 
 |       return LV_InvalidExpression; | 
 |  | 
 |     if (Ctx.getLangOptions().CPlusPlus) | 
 |       // C++ [expr.ass]p1: | 
 |       //   The result of an assignment operation [...] is an lvalue. | 
 |       return LV_Valid; | 
 |  | 
 |  | 
 |     // C99 6.5.16: | 
 |     //   An assignment expression [...] is not an lvalue. | 
 |     return LV_InvalidExpression; | 
 |   } | 
 |   case CallExprClass: | 
 |   case CXXOperatorCallExprClass: | 
 |   case CXXMemberCallExprClass: { | 
 |     // C++0x [expr.call]p10 | 
 |     //   A function call is an lvalue if and only if the result type | 
 |     //   is an lvalue reference. | 
 |     QualType ReturnType = cast<CallExpr>(this)->getCallReturnType(); | 
 |     if (ReturnType->isLValueReferenceType()) | 
 |       return LV_Valid; | 
 |  | 
 |     // If the function is returning a class temporary, make a note of | 
 |     // that. | 
 |     if (Ctx.getLangOptions().CPlusPlus && ReturnType->isRecordType()) | 
 |       return LV_ClassTemporary; | 
 |  | 
 |     break; | 
 |   } | 
 |   case CompoundLiteralExprClass: // C99 6.5.2.5p5 | 
 |     // FIXME: Is this what we want in C++? | 
 |     return LV_Valid; | 
 |   case ChooseExprClass: | 
 |     // __builtin_choose_expr is an lvalue if the selected operand is. | 
 |     return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)->isLvalue(Ctx); | 
 |   case ExtVectorElementExprClass: | 
 |     if (cast<ExtVectorElementExpr>(this)->containsDuplicateElements()) | 
 |       return LV_DuplicateVectorComponents; | 
 |     return LV_Valid; | 
 |   case ObjCIvarRefExprClass: // ObjC instance variables are lvalues. | 
 |     return LV_Valid; | 
 |   case ObjCPropertyRefExprClass: // FIXME: check if read-only property. | 
 |     return LV_Valid; | 
 |   case ObjCImplicitSetterGetterRefExprClass: | 
 |     // FIXME: check if read-only property. | 
 |     return LV_Valid; | 
 |   case PredefinedExprClass: | 
 |     return LV_Valid; | 
 |   case UnresolvedLookupExprClass: | 
 |     return LV_Valid; | 
 |   case CXXDefaultArgExprClass: | 
 |     return cast<CXXDefaultArgExpr>(this)->getExpr()->isLvalue(Ctx); | 
 |   case CStyleCastExprClass: | 
 |   case CXXFunctionalCastExprClass: | 
 |   case CXXStaticCastExprClass: | 
 |   case CXXDynamicCastExprClass: | 
 |   case CXXReinterpretCastExprClass: | 
 |   case CXXConstCastExprClass: | 
 |     // The result of an explicit cast is an lvalue if the type we are | 
 |     // casting to is an lvalue reference type. See C++ [expr.cast]p1, | 
 |     // C++ [expr.static.cast]p2, C++ [expr.dynamic.cast]p2, | 
 |     // C++ [expr.reinterpret.cast]p1, C++ [expr.const.cast]p1. | 
 |     if (cast<ExplicitCastExpr>(this)->getTypeAsWritten()-> | 
 |           isLValueReferenceType()) | 
 |       return LV_Valid; | 
 |  | 
 |     // If this is a conversion to a class temporary, make a note of | 
 |     // that. | 
 |     if (Ctx.getLangOptions().CPlusPlus &&  | 
 |         cast<ExplicitCastExpr>(this)->getTypeAsWritten()->isRecordType()) | 
 |       return LV_ClassTemporary; | 
 |  | 
 |     break; | 
 |   case CXXTypeidExprClass: | 
 |     // C++ 5.2.8p1: The result of a typeid expression is an lvalue of ... | 
 |     return LV_Valid; | 
 |   case CXXBindTemporaryExprClass: | 
 |     return cast<CXXBindTemporaryExpr>(this)->getSubExpr()-> | 
 |       isLvalueInternal(Ctx); | 
 |   case CXXBindReferenceExprClass: | 
 |     // Something that's bound to a reference is always an lvalue. | 
 |     return LV_Valid; | 
 |   case ConditionalOperatorClass: { | 
 |     // Complicated handling is only for C++. | 
 |     if (!Ctx.getLangOptions().CPlusPlus) | 
 |       return LV_InvalidExpression; | 
 |  | 
 |     // Sema should have taken care to ensure that a CXXTemporaryObjectExpr is | 
 |     // everywhere there's an object converted to an rvalue. Also, any other | 
 |     // casts should be wrapped by ImplicitCastExprs. There's just the special | 
 |     // case involving throws to work out. | 
 |     const ConditionalOperator *Cond = cast<ConditionalOperator>(this); | 
 |     Expr *True = Cond->getTrueExpr(); | 
 |     Expr *False = Cond->getFalseExpr(); | 
 |     // C++0x 5.16p2 | 
 |     //   If either the second or the third operand has type (cv) void, [...] | 
 |     //   the result [...] is an rvalue. | 
 |     if (True->getType()->isVoidType() || False->getType()->isVoidType()) | 
 |       return LV_InvalidExpression; | 
 |  | 
 |     // Both sides must be lvalues for the result to be an lvalue. | 
 |     if (True->isLvalue(Ctx) != LV_Valid || False->isLvalue(Ctx) != LV_Valid) | 
 |       return LV_InvalidExpression; | 
 |  | 
 |     // That's it. | 
 |     return LV_Valid; | 
 |   } | 
 |  | 
 |   case Expr::CXXExprWithTemporariesClass: | 
 |     return cast<CXXExprWithTemporaries>(this)->getSubExpr()->isLvalue(Ctx); | 
 |  | 
 |   case Expr::ObjCMessageExprClass: | 
 |     if (const ObjCMethodDecl *Method | 
 |           = cast<ObjCMessageExpr>(this)->getMethodDecl()) | 
 |       if (Method->getResultType()->isLValueReferenceType()) | 
 |         return LV_Valid; | 
 |     break; | 
 |  | 
 |   case Expr::CXXConstructExprClass: | 
 |   case Expr::CXXTemporaryObjectExprClass: | 
 |   case Expr::CXXZeroInitValueExprClass: | 
 |     return LV_ClassTemporary; | 
 |  | 
 |   default: | 
 |     break; | 
 |   } | 
 |   return LV_InvalidExpression; | 
 | } | 
 |  | 
 | /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type, | 
 | /// does not have an incomplete type, does not have a const-qualified type, and | 
 | /// if it is a structure or union, does not have any member (including, | 
 | /// recursively, any member or element of all contained aggregates or unions) | 
 | /// with a const-qualified type. | 
 | Expr::isModifiableLvalueResult | 
 | Expr::isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc) const { | 
 |   isLvalueResult lvalResult = isLvalue(Ctx); | 
 |  | 
 |   switch (lvalResult) { | 
 |   case LV_Valid: | 
 |     // C++ 3.10p11: Functions cannot be modified, but pointers to | 
 |     // functions can be modifiable. | 
 |     if (Ctx.getLangOptions().CPlusPlus && TR->isFunctionType()) | 
 |       return MLV_NotObjectType; | 
 |     break; | 
 |  | 
 |   case LV_NotObjectType: return MLV_NotObjectType; | 
 |   case LV_IncompleteVoidType: return MLV_IncompleteVoidType; | 
 |   case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents; | 
 |   case LV_InvalidExpression: | 
 |     // If the top level is a C-style cast, and the subexpression is a valid | 
 |     // lvalue, then this is probably a use of the old-school "cast as lvalue" | 
 |     // GCC extension.  We don't support it, but we want to produce good | 
 |     // diagnostics when it happens so that the user knows why. | 
 |     if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(IgnoreParens())) { | 
 |       if (CE->getSubExpr()->isLvalue(Ctx) == LV_Valid) { | 
 |         if (Loc) | 
 |           *Loc = CE->getLParenLoc(); | 
 |         return MLV_LValueCast; | 
 |       } | 
 |     } | 
 |     return MLV_InvalidExpression; | 
 |   case LV_MemberFunction: return MLV_MemberFunction; | 
 |   case LV_SubObjCPropertySetting: return MLV_SubObjCPropertySetting; | 
 |   case LV_ClassTemporary: | 
 |     return MLV_ClassTemporary; | 
 |   } | 
 |  | 
 |   // The following is illegal: | 
 |   //   void takeclosure(void (^C)(void)); | 
 |   //   void func() { int x = 1; takeclosure(^{ x = 7; }); } | 
 |   // | 
 |   if (const BlockDeclRefExpr *BDR = dyn_cast<BlockDeclRefExpr>(this)) { | 
 |     if (!BDR->isByRef() && isa<VarDecl>(BDR->getDecl())) | 
 |       return MLV_NotBlockQualified; | 
 |   } | 
 |  | 
 |   // Assigning to an 'implicit' property? | 
 |   if (const ObjCImplicitSetterGetterRefExpr* Expr = | 
 |         dyn_cast<ObjCImplicitSetterGetterRefExpr>(this)) { | 
 |     if (Expr->getSetterMethod() == 0) | 
 |       return MLV_NoSetterProperty; | 
 |   } | 
 |  | 
 |   QualType CT = Ctx.getCanonicalType(getType()); | 
 |  | 
 |   if (CT.isConstQualified()) | 
 |     return MLV_ConstQualified; | 
 |   if (CT->isArrayType()) | 
 |     return MLV_ArrayType; | 
 |   if (CT->isIncompleteType()) | 
 |     return MLV_IncompleteType; | 
 |  | 
 |   if (const RecordType *r = CT->getAs<RecordType>()) { | 
 |     if (r->hasConstFields()) | 
 |       return MLV_ConstQualified; | 
 |   } | 
 |  | 
 |   return MLV_Valid; | 
 | } | 
 |  | 
 | /// isOBJCGCCandidate - Check if an expression is objc gc'able. | 
 | /// returns true, if it is; false otherwise. | 
 | bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const { | 
 |   switch (getStmtClass()) { | 
 |   default: | 
 |     return false; | 
 |   case ObjCIvarRefExprClass: | 
 |     return true; | 
 |   case Expr::UnaryOperatorClass: | 
 |     return cast<UnaryOperator>(this)->getSubExpr()->isOBJCGCCandidate(Ctx); | 
 |   case ParenExprClass: | 
 |     return cast<ParenExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx); | 
 |   case ImplicitCastExprClass: | 
 |     return cast<ImplicitCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx); | 
 |   case CStyleCastExprClass: | 
 |     return cast<CStyleCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx); | 
 |   case DeclRefExprClass: { | 
 |     const Decl *D = cast<DeclRefExpr>(this)->getDecl(); | 
 |     if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { | 
 |       if (VD->hasGlobalStorage()) | 
 |         return true; | 
 |       QualType T = VD->getType(); | 
 |       // dereferencing to a  pointer is always a gc'able candidate, | 
 |       // unless it is __weak. | 
 |       return T->isPointerType() && | 
 |              (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak); | 
 |     } | 
 |     return false; | 
 |   } | 
 |   case MemberExprClass: { | 
 |     const MemberExpr *M = cast<MemberExpr>(this); | 
 |     return M->getBase()->isOBJCGCCandidate(Ctx); | 
 |   } | 
 |   case ArraySubscriptExprClass: | 
 |     return cast<ArraySubscriptExpr>(this)->getBase()->isOBJCGCCandidate(Ctx); | 
 |   } | 
 | } | 
 | Expr* Expr::IgnoreParens() { | 
 |   Expr* E = this; | 
 |   while (ParenExpr* P = dyn_cast<ParenExpr>(E)) | 
 |     E = P->getSubExpr(); | 
 |  | 
 |   return E; | 
 | } | 
 |  | 
 | /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr | 
 | /// or CastExprs or ImplicitCastExprs, returning their operand. | 
 | Expr *Expr::IgnoreParenCasts() { | 
 |   Expr *E = this; | 
 |   while (true) { | 
 |     if (ParenExpr *P = dyn_cast<ParenExpr>(E)) | 
 |       E = P->getSubExpr(); | 
 |     else if (CastExpr *P = dyn_cast<CastExpr>(E)) | 
 |       E = P->getSubExpr(); | 
 |     else | 
 |       return E; | 
 |   } | 
 | } | 
 |  | 
 | /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the | 
 | /// value (including ptr->int casts of the same size).  Strip off any | 
 | /// ParenExpr or CastExprs, returning their operand. | 
 | Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) { | 
 |   Expr *E = this; | 
 |   while (true) { | 
 |     if (ParenExpr *P = dyn_cast<ParenExpr>(E)) { | 
 |       E = P->getSubExpr(); | 
 |       continue; | 
 |     } | 
 |  | 
 |     if (CastExpr *P = dyn_cast<CastExpr>(E)) { | 
 |       // We ignore integer <-> casts that are of the same width, ptr<->ptr and | 
 |       // ptr<->int casts of the same width.  We also ignore all identify casts. | 
 |       Expr *SE = P->getSubExpr(); | 
 |  | 
 |       if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) { | 
 |         E = SE; | 
 |         continue; | 
 |       } | 
 |  | 
 |       if ((E->getType()->isPointerType() || E->getType()->isIntegralType()) && | 
 |           (SE->getType()->isPointerType() || SE->getType()->isIntegralType()) && | 
 |           Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) { | 
 |         E = SE; | 
 |         continue; | 
 |       } | 
 |     } | 
 |  | 
 |     return E; | 
 |   } | 
 | } | 
 |  | 
 | bool Expr::isDefaultArgument() const { | 
 |   const Expr *E = this; | 
 |   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) | 
 |     E = ICE->getSubExprAsWritten(); | 
 |    | 
 |   return isa<CXXDefaultArgExpr>(E); | 
 | } | 
 |  | 
 | /// \brief Skip over any no-op casts and any temporary-binding | 
 | /// expressions. | 
 | static const Expr *skipTemporaryBindingsAndNoOpCasts(const Expr *E) { | 
 |   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { | 
 |     if (ICE->getCastKind() == CastExpr::CK_NoOp) | 
 |       E = ICE->getSubExpr(); | 
 |     else | 
 |       break; | 
 |   } | 
 |  | 
 |   while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E)) | 
 |     E = BE->getSubExpr(); | 
 |  | 
 |   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { | 
 |     if (ICE->getCastKind() == CastExpr::CK_NoOp) | 
 |       E = ICE->getSubExpr(); | 
 |     else | 
 |       break; | 
 |   } | 
 |    | 
 |   return E; | 
 | } | 
 |  | 
 | const Expr *Expr::getTemporaryObject() const { | 
 |   const Expr *E = skipTemporaryBindingsAndNoOpCasts(this); | 
 |  | 
 |   // A cast can produce a temporary object. The object's construction | 
 |   // is represented as a CXXConstructExpr. | 
 |   if (const CastExpr *Cast = dyn_cast<CastExpr>(E)) { | 
 |     // Only user-defined and constructor conversions can produce | 
 |     // temporary objects. | 
 |     if (Cast->getCastKind() != CastExpr::CK_ConstructorConversion && | 
 |         Cast->getCastKind() != CastExpr::CK_UserDefinedConversion) | 
 |       return 0; | 
 |  | 
 |     // Strip off temporary bindings and no-op casts. | 
 |     const Expr *Sub = skipTemporaryBindingsAndNoOpCasts(Cast->getSubExpr()); | 
 |  | 
 |     // If this is a constructor conversion, see if we have an object | 
 |     // construction. | 
 |     if (Cast->getCastKind() == CastExpr::CK_ConstructorConversion) | 
 |       return dyn_cast<CXXConstructExpr>(Sub); | 
 |  | 
 |     // If this is a user-defined conversion, see if we have a call to | 
 |     // a function that itself returns a temporary object. | 
 |     if (Cast->getCastKind() == CastExpr::CK_UserDefinedConversion) | 
 |       if (const CallExpr *CE = dyn_cast<CallExpr>(Sub)) | 
 |         if (CE->getCallReturnType()->isRecordType()) | 
 |           return CE; | 
 |  | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // A call returning a class type returns a temporary. | 
 |   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { | 
 |     if (CE->getCallReturnType()->isRecordType()) | 
 |       return CE; | 
 |  | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // Explicit temporary object constructors create temporaries. | 
 |   return dyn_cast<CXXTemporaryObjectExpr>(E); | 
 | } | 
 |  | 
 | /// hasAnyTypeDependentArguments - Determines if any of the expressions | 
 | /// in Exprs is type-dependent. | 
 | bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) { | 
 |   for (unsigned I = 0; I < NumExprs; ++I) | 
 |     if (Exprs[I]->isTypeDependent()) | 
 |       return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// hasAnyValueDependentArguments - Determines if any of the expressions | 
 | /// in Exprs is value-dependent. | 
 | bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) { | 
 |   for (unsigned I = 0; I < NumExprs; ++I) | 
 |     if (Exprs[I]->isValueDependent()) | 
 |       return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | bool Expr::isConstantInitializer(ASTContext &Ctx) const { | 
 |   // This function is attempting whether an expression is an initializer | 
 |   // which can be evaluated at compile-time.  isEvaluatable handles most | 
 |   // of the cases, but it can't deal with some initializer-specific | 
 |   // expressions, and it can't deal with aggregates; we deal with those here, | 
 |   // and fall back to isEvaluatable for the other cases. | 
 |  | 
 |   // FIXME: This function assumes the variable being assigned to | 
 |   // isn't a reference type! | 
 |  | 
 |   switch (getStmtClass()) { | 
 |   default: break; | 
 |   case StringLiteralClass: | 
 |   case ObjCStringLiteralClass: | 
 |   case ObjCEncodeExprClass: | 
 |     return true; | 
 |   case CompoundLiteralExprClass: { | 
 |     // This handles gcc's extension that allows global initializers like | 
 |     // "struct x {int x;} x = (struct x) {};". | 
 |     // FIXME: This accepts other cases it shouldn't! | 
 |     const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer(); | 
 |     return Exp->isConstantInitializer(Ctx); | 
 |   } | 
 |   case InitListExprClass: { | 
 |     // FIXME: This doesn't deal with fields with reference types correctly. | 
 |     // FIXME: This incorrectly allows pointers cast to integers to be assigned | 
 |     // to bitfields. | 
 |     const InitListExpr *Exp = cast<InitListExpr>(this); | 
 |     unsigned numInits = Exp->getNumInits(); | 
 |     for (unsigned i = 0; i < numInits; i++) { | 
 |       if (!Exp->getInit(i)->isConstantInitializer(Ctx)) | 
 |         return false; | 
 |     } | 
 |     return true; | 
 |   } | 
 |   case ImplicitValueInitExprClass: | 
 |     return true; | 
 |   case ParenExprClass: | 
 |     return cast<ParenExpr>(this)->getSubExpr()->isConstantInitializer(Ctx); | 
 |   case UnaryOperatorClass: { | 
 |     const UnaryOperator* Exp = cast<UnaryOperator>(this); | 
 |     if (Exp->getOpcode() == UnaryOperator::Extension) | 
 |       return Exp->getSubExpr()->isConstantInitializer(Ctx); | 
 |     break; | 
 |   } | 
 |   case BinaryOperatorClass: { | 
 |     // Special case &&foo - &&bar.  It would be nice to generalize this somehow | 
 |     // but this handles the common case. | 
 |     const BinaryOperator *Exp = cast<BinaryOperator>(this); | 
 |     if (Exp->getOpcode() == BinaryOperator::Sub && | 
 |         isa<AddrLabelExpr>(Exp->getLHS()->IgnoreParenNoopCasts(Ctx)) && | 
 |         isa<AddrLabelExpr>(Exp->getRHS()->IgnoreParenNoopCasts(Ctx))) | 
 |       return true; | 
 |     break; | 
 |   } | 
 |   case ImplicitCastExprClass: | 
 |   case CStyleCastExprClass: | 
 |     // Handle casts with a destination that's a struct or union; this | 
 |     // deals with both the gcc no-op struct cast extension and the | 
 |     // cast-to-union extension. | 
 |     if (getType()->isRecordType()) | 
 |       return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx); | 
 |        | 
 |     // Integer->integer casts can be handled here, which is important for | 
 |     // things like (int)(&&x-&&y).  Scary but true. | 
 |     if (getType()->isIntegerType() && | 
 |         cast<CastExpr>(this)->getSubExpr()->getType()->isIntegerType()) | 
 |       return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx); | 
 |        | 
 |     break; | 
 |   } | 
 |   return isEvaluatable(Ctx); | 
 | } | 
 |  | 
 | /// isIntegerConstantExpr - this recursive routine will test if an expression is | 
 | /// an integer constant expression. | 
 |  | 
 | /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero, | 
 | /// comma, etc | 
 | /// | 
 | /// FIXME: Handle offsetof.  Two things to do:  Handle GCC's __builtin_offsetof | 
 | /// to support gcc 4.0+  and handle the idiom GCC recognizes with a null pointer | 
 | /// cast+dereference. | 
 |  | 
 | // CheckICE - This function does the fundamental ICE checking: the returned | 
 | // ICEDiag contains a Val of 0, 1, or 2, and a possibly null SourceLocation. | 
 | // Note that to reduce code duplication, this helper does no evaluation | 
 | // itself; the caller checks whether the expression is evaluatable, and | 
 | // in the rare cases where CheckICE actually cares about the evaluated | 
 | // value, it calls into Evalute. | 
 | // | 
 | // Meanings of Val: | 
 | // 0: This expression is an ICE if it can be evaluated by Evaluate. | 
 | // 1: This expression is not an ICE, but if it isn't evaluated, it's | 
 | //    a legal subexpression for an ICE. This return value is used to handle | 
 | //    the comma operator in C99 mode. | 
 | // 2: This expression is not an ICE, and is not a legal subexpression for one. | 
 |  | 
 | struct ICEDiag { | 
 |   unsigned Val; | 
 |   SourceLocation Loc; | 
 |  | 
 |   public: | 
 |   ICEDiag(unsigned v, SourceLocation l) : Val(v), Loc(l) {} | 
 |   ICEDiag() : Val(0) {} | 
 | }; | 
 |  | 
 | ICEDiag NoDiag() { return ICEDiag(); } | 
 |  | 
 | static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) { | 
 |   Expr::EvalResult EVResult; | 
 |   if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects || | 
 |       !EVResult.Val.isInt()) { | 
 |     return ICEDiag(2, E->getLocStart()); | 
 |   } | 
 |   return NoDiag(); | 
 | } | 
 |  | 
 | static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) { | 
 |   assert(!E->isValueDependent() && "Should not see value dependent exprs!"); | 
 |   if (!E->getType()->isIntegralType()) { | 
 |     return ICEDiag(2, E->getLocStart()); | 
 |   } | 
 |  | 
 |   switch (E->getStmtClass()) { | 
 | #define STMT(Node, Base) case Expr::Node##Class: | 
 | #define EXPR(Node, Base) | 
 | #include "clang/AST/StmtNodes.def" | 
 |   case Expr::PredefinedExprClass: | 
 |   case Expr::FloatingLiteralClass: | 
 |   case Expr::ImaginaryLiteralClass: | 
 |   case Expr::StringLiteralClass: | 
 |   case Expr::ArraySubscriptExprClass: | 
 |   case Expr::MemberExprClass: | 
 |   case Expr::CompoundAssignOperatorClass: | 
 |   case Expr::CompoundLiteralExprClass: | 
 |   case Expr::ExtVectorElementExprClass: | 
 |   case Expr::InitListExprClass: | 
 |   case Expr::DesignatedInitExprClass: | 
 |   case Expr::ImplicitValueInitExprClass: | 
 |   case Expr::ParenListExprClass: | 
 |   case Expr::VAArgExprClass: | 
 |   case Expr::AddrLabelExprClass: | 
 |   case Expr::StmtExprClass: | 
 |   case Expr::CXXMemberCallExprClass: | 
 |   case Expr::CXXDynamicCastExprClass: | 
 |   case Expr::CXXTypeidExprClass: | 
 |   case Expr::CXXNullPtrLiteralExprClass: | 
 |   case Expr::CXXThisExprClass: | 
 |   case Expr::CXXThrowExprClass: | 
 |   case Expr::CXXNewExprClass: | 
 |   case Expr::CXXDeleteExprClass: | 
 |   case Expr::CXXPseudoDestructorExprClass: | 
 |   case Expr::UnresolvedLookupExprClass: | 
 |   case Expr::DependentScopeDeclRefExprClass: | 
 |   case Expr::CXXConstructExprClass: | 
 |   case Expr::CXXBindTemporaryExprClass: | 
 |   case Expr::CXXBindReferenceExprClass: | 
 |   case Expr::CXXExprWithTemporariesClass: | 
 |   case Expr::CXXTemporaryObjectExprClass: | 
 |   case Expr::CXXUnresolvedConstructExprClass: | 
 |   case Expr::CXXDependentScopeMemberExprClass: | 
 |   case Expr::UnresolvedMemberExprClass: | 
 |   case Expr::ObjCStringLiteralClass: | 
 |   case Expr::ObjCEncodeExprClass: | 
 |   case Expr::ObjCMessageExprClass: | 
 |   case Expr::ObjCSelectorExprClass: | 
 |   case Expr::ObjCProtocolExprClass: | 
 |   case Expr::ObjCIvarRefExprClass: | 
 |   case Expr::ObjCPropertyRefExprClass: | 
 |   case Expr::ObjCImplicitSetterGetterRefExprClass: | 
 |   case Expr::ObjCSuperExprClass: | 
 |   case Expr::ObjCIsaExprClass: | 
 |   case Expr::ShuffleVectorExprClass: | 
 |   case Expr::BlockExprClass: | 
 |   case Expr::BlockDeclRefExprClass: | 
 |   case Expr::NoStmtClass: | 
 |     return ICEDiag(2, E->getLocStart()); | 
 |  | 
 |   case Expr::GNUNullExprClass: | 
 |     // GCC considers the GNU __null value to be an integral constant expression. | 
 |     return NoDiag(); | 
 |  | 
 |   case Expr::ParenExprClass: | 
 |     return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx); | 
 |   case Expr::IntegerLiteralClass: | 
 |   case Expr::CharacterLiteralClass: | 
 |   case Expr::CXXBoolLiteralExprClass: | 
 |   case Expr::CXXZeroInitValueExprClass: | 
 |   case Expr::TypesCompatibleExprClass: | 
 |   case Expr::UnaryTypeTraitExprClass: | 
 |     return NoDiag(); | 
 |   case Expr::CallExprClass: | 
 |   case Expr::CXXOperatorCallExprClass: { | 
 |     const CallExpr *CE = cast<CallExpr>(E); | 
 |     if (CE->isBuiltinCall(Ctx)) | 
 |       return CheckEvalInICE(E, Ctx); | 
 |     return ICEDiag(2, E->getLocStart()); | 
 |   } | 
 |   case Expr::DeclRefExprClass: | 
 |     if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl())) | 
 |       return NoDiag(); | 
 |     if (Ctx.getLangOptions().CPlusPlus && | 
 |         E->getType().getCVRQualifiers() == Qualifiers::Const) { | 
 |       const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl(); | 
 |  | 
 |       // Parameter variables are never constants.  Without this check, | 
 |       // getAnyInitializer() can find a default argument, which leads | 
 |       // to chaos. | 
 |       if (isa<ParmVarDecl>(D)) | 
 |         return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation()); | 
 |  | 
 |       // C++ 7.1.5.1p2 | 
 |       //   A variable of non-volatile const-qualified integral or enumeration | 
 |       //   type initialized by an ICE can be used in ICEs. | 
 |       if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) { | 
 |         Qualifiers Quals = Ctx.getCanonicalType(Dcl->getType()).getQualifiers(); | 
 |         if (Quals.hasVolatile() || !Quals.hasConst()) | 
 |           return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation()); | 
 |          | 
 |         // Look for a declaration of this variable that has an initializer. | 
 |         const VarDecl *ID = 0; | 
 |         const Expr *Init = Dcl->getAnyInitializer(ID); | 
 |         if (Init) { | 
 |           if (ID->isInitKnownICE()) { | 
 |             // We have already checked whether this subexpression is an | 
 |             // integral constant expression. | 
 |             if (ID->isInitICE()) | 
 |               return NoDiag(); | 
 |             else | 
 |               return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation()); | 
 |           } | 
 |  | 
 |           // It's an ICE whether or not the definition we found is | 
 |           // out-of-line.  See DR 721 and the discussion in Clang PR | 
 |           // 6206 for details. | 
 |  | 
 |           if (Dcl->isCheckingICE()) { | 
 |             return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation()); | 
 |           } | 
 |  | 
 |           Dcl->setCheckingICE(); | 
 |           ICEDiag Result = CheckICE(Init, Ctx); | 
 |           // Cache the result of the ICE test. | 
 |           Dcl->setInitKnownICE(Result.Val == 0); | 
 |           return Result; | 
 |         } | 
 |       } | 
 |     } | 
 |     return ICEDiag(2, E->getLocStart()); | 
 |   case Expr::UnaryOperatorClass: { | 
 |     const UnaryOperator *Exp = cast<UnaryOperator>(E); | 
 |     switch (Exp->getOpcode()) { | 
 |     case UnaryOperator::PostInc: | 
 |     case UnaryOperator::PostDec: | 
 |     case UnaryOperator::PreInc: | 
 |     case UnaryOperator::PreDec: | 
 |     case UnaryOperator::AddrOf: | 
 |     case UnaryOperator::Deref: | 
 |       return ICEDiag(2, E->getLocStart()); | 
 |  | 
 |     case UnaryOperator::Extension: | 
 |     case UnaryOperator::LNot: | 
 |     case UnaryOperator::Plus: | 
 |     case UnaryOperator::Minus: | 
 |     case UnaryOperator::Not: | 
 |     case UnaryOperator::Real: | 
 |     case UnaryOperator::Imag: | 
 |       return CheckICE(Exp->getSubExpr(), Ctx); | 
 |     case UnaryOperator::OffsetOf: | 
 |       // Note that per C99, offsetof must be an ICE. And AFAIK, using | 
 |       // Evaluate matches the proposed gcc behavior for cases like | 
 |       // "offsetof(struct s{int x[4];}, x[!.0])".  This doesn't affect | 
 |       // compliance: we should warn earlier for offsetof expressions with | 
 |       // array subscripts that aren't ICEs, and if the array subscripts | 
 |       // are ICEs, the value of the offsetof must be an integer constant. | 
 |       return CheckEvalInICE(E, Ctx); | 
 |     } | 
 |   } | 
 |   case Expr::SizeOfAlignOfExprClass: { | 
 |     const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(E); | 
 |     if (Exp->isSizeOf() && Exp->getTypeOfArgument()->isVariableArrayType()) | 
 |       return ICEDiag(2, E->getLocStart()); | 
 |     return NoDiag(); | 
 |   } | 
 |   case Expr::BinaryOperatorClass: { | 
 |     const BinaryOperator *Exp = cast<BinaryOperator>(E); | 
 |     switch (Exp->getOpcode()) { | 
 |     case BinaryOperator::PtrMemD: | 
 |     case BinaryOperator::PtrMemI: | 
 |     case BinaryOperator::Assign: | 
 |     case BinaryOperator::MulAssign: | 
 |     case BinaryOperator::DivAssign: | 
 |     case BinaryOperator::RemAssign: | 
 |     case BinaryOperator::AddAssign: | 
 |     case BinaryOperator::SubAssign: | 
 |     case BinaryOperator::ShlAssign: | 
 |     case BinaryOperator::ShrAssign: | 
 |     case BinaryOperator::AndAssign: | 
 |     case BinaryOperator::XorAssign: | 
 |     case BinaryOperator::OrAssign: | 
 |       return ICEDiag(2, E->getLocStart()); | 
 |  | 
 |     case BinaryOperator::Mul: | 
 |     case BinaryOperator::Div: | 
 |     case BinaryOperator::Rem: | 
 |     case BinaryOperator::Add: | 
 |     case BinaryOperator::Sub: | 
 |     case BinaryOperator::Shl: | 
 |     case BinaryOperator::Shr: | 
 |     case BinaryOperator::LT: | 
 |     case BinaryOperator::GT: | 
 |     case BinaryOperator::LE: | 
 |     case BinaryOperator::GE: | 
 |     case BinaryOperator::EQ: | 
 |     case BinaryOperator::NE: | 
 |     case BinaryOperator::And: | 
 |     case BinaryOperator::Xor: | 
 |     case BinaryOperator::Or: | 
 |     case BinaryOperator::Comma: { | 
 |       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx); | 
 |       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx); | 
 |       if (Exp->getOpcode() == BinaryOperator::Div || | 
 |           Exp->getOpcode() == BinaryOperator::Rem) { | 
 |         // Evaluate gives an error for undefined Div/Rem, so make sure | 
 |         // we don't evaluate one. | 
 |         if (LHSResult.Val != 2 && RHSResult.Val != 2) { | 
 |           llvm::APSInt REval = Exp->getRHS()->EvaluateAsInt(Ctx); | 
 |           if (REval == 0) | 
 |             return ICEDiag(1, E->getLocStart()); | 
 |           if (REval.isSigned() && REval.isAllOnesValue()) { | 
 |             llvm::APSInt LEval = Exp->getLHS()->EvaluateAsInt(Ctx); | 
 |             if (LEval.isMinSignedValue()) | 
 |               return ICEDiag(1, E->getLocStart()); | 
 |           } | 
 |         } | 
 |       } | 
 |       if (Exp->getOpcode() == BinaryOperator::Comma) { | 
 |         if (Ctx.getLangOptions().C99) { | 
 |           // C99 6.6p3 introduces a strange edge case: comma can be in an ICE | 
 |           // if it isn't evaluated. | 
 |           if (LHSResult.Val == 0 && RHSResult.Val == 0) | 
 |             return ICEDiag(1, E->getLocStart()); | 
 |         } else { | 
 |           // In both C89 and C++, commas in ICEs are illegal. | 
 |           return ICEDiag(2, E->getLocStart()); | 
 |         } | 
 |       } | 
 |       if (LHSResult.Val >= RHSResult.Val) | 
 |         return LHSResult; | 
 |       return RHSResult; | 
 |     } | 
 |     case BinaryOperator::LAnd: | 
 |     case BinaryOperator::LOr: { | 
 |       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx); | 
 |       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx); | 
 |       if (LHSResult.Val == 0 && RHSResult.Val == 1) { | 
 |         // Rare case where the RHS has a comma "side-effect"; we need | 
 |         // to actually check the condition to see whether the side | 
 |         // with the comma is evaluated. | 
 |         if ((Exp->getOpcode() == BinaryOperator::LAnd) != | 
 |             (Exp->getLHS()->EvaluateAsInt(Ctx) == 0)) | 
 |           return RHSResult; | 
 |         return NoDiag(); | 
 |       } | 
 |  | 
 |       if (LHSResult.Val >= RHSResult.Val) | 
 |         return LHSResult; | 
 |       return RHSResult; | 
 |     } | 
 |     } | 
 |   } | 
 |   case Expr::ImplicitCastExprClass: | 
 |   case Expr::CStyleCastExprClass: | 
 |   case Expr::CXXFunctionalCastExprClass: | 
 |   case Expr::CXXStaticCastExprClass: | 
 |   case Expr::CXXReinterpretCastExprClass: | 
 |   case Expr::CXXConstCastExprClass: { | 
 |     const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr(); | 
 |     if (SubExpr->getType()->isIntegralType()) | 
 |       return CheckICE(SubExpr, Ctx); | 
 |     if (isa<FloatingLiteral>(SubExpr->IgnoreParens())) | 
 |       return NoDiag(); | 
 |     return ICEDiag(2, E->getLocStart()); | 
 |   } | 
 |   case Expr::ConditionalOperatorClass: { | 
 |     const ConditionalOperator *Exp = cast<ConditionalOperator>(E); | 
 |     // If the condition (ignoring parens) is a __builtin_constant_p call, | 
 |     // then only the true side is actually considered in an integer constant | 
 |     // expression, and it is fully evaluated.  This is an important GNU | 
 |     // extension.  See GCC PR38377 for discussion. | 
 |     if (const CallExpr *CallCE | 
 |         = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts())) | 
 |       if (CallCE->isBuiltinCall(Ctx) == Builtin::BI__builtin_constant_p) { | 
 |         Expr::EvalResult EVResult; | 
 |         if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects || | 
 |             !EVResult.Val.isInt()) { | 
 |           return ICEDiag(2, E->getLocStart()); | 
 |         } | 
 |         return NoDiag(); | 
 |       } | 
 |     ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx); | 
 |     ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx); | 
 |     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx); | 
 |     if (CondResult.Val == 2) | 
 |       return CondResult; | 
 |     if (TrueResult.Val == 2) | 
 |       return TrueResult; | 
 |     if (FalseResult.Val == 2) | 
 |       return FalseResult; | 
 |     if (CondResult.Val == 1) | 
 |       return CondResult; | 
 |     if (TrueResult.Val == 0 && FalseResult.Val == 0) | 
 |       return NoDiag(); | 
 |     // Rare case where the diagnostics depend on which side is evaluated | 
 |     // Note that if we get here, CondResult is 0, and at least one of | 
 |     // TrueResult and FalseResult is non-zero. | 
 |     if (Exp->getCond()->EvaluateAsInt(Ctx) == 0) { | 
 |       return FalseResult; | 
 |     } | 
 |     return TrueResult; | 
 |   } | 
 |   case Expr::CXXDefaultArgExprClass: | 
 |     return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx); | 
 |   case Expr::ChooseExprClass: { | 
 |     return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx); | 
 |   } | 
 |   } | 
 |  | 
 |   // Silence a GCC warning | 
 |   return ICEDiag(2, E->getLocStart()); | 
 | } | 
 |  | 
 | bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx, | 
 |                                  SourceLocation *Loc, bool isEvaluated) const { | 
 |   ICEDiag d = CheckICE(this, Ctx); | 
 |   if (d.Val != 0) { | 
 |     if (Loc) *Loc = d.Loc; | 
 |     return false; | 
 |   } | 
 |   EvalResult EvalResult; | 
 |   if (!Evaluate(EvalResult, Ctx)) | 
 |     llvm_unreachable("ICE cannot be evaluated!"); | 
 |   assert(!EvalResult.HasSideEffects && "ICE with side effects!"); | 
 |   assert(EvalResult.Val.isInt() && "ICE that isn't integer!"); | 
 |   Result = EvalResult.Val.getInt(); | 
 |   return true; | 
 | } | 
 |  | 
 | /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an | 
 | /// integer constant expression with the value zero, or if this is one that is | 
 | /// cast to void*. | 
 | bool Expr::isNullPointerConstant(ASTContext &Ctx, | 
 |                                  NullPointerConstantValueDependence NPC) const { | 
 |   if (isValueDependent()) { | 
 |     switch (NPC) { | 
 |     case NPC_NeverValueDependent: | 
 |       assert(false && "Unexpected value dependent expression!"); | 
 |       // If the unthinkable happens, fall through to the safest alternative. | 
 |          | 
 |     case NPC_ValueDependentIsNull: | 
 |       return isTypeDependent() || getType()->isIntegralType(); | 
 |          | 
 |     case NPC_ValueDependentIsNotNull: | 
 |       return false; | 
 |     } | 
 |   } | 
 |  | 
 |   // Strip off a cast to void*, if it exists. Except in C++. | 
 |   if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) { | 
 |     if (!Ctx.getLangOptions().CPlusPlus) { | 
 |       // Check that it is a cast to void*. | 
 |       if (const PointerType *PT = CE->getType()->getAs<PointerType>()) { | 
 |         QualType Pointee = PT->getPointeeType(); | 
 |         if (!Pointee.hasQualifiers() && | 
 |             Pointee->isVoidType() &&                              // to void* | 
 |             CE->getSubExpr()->getType()->isIntegerType())         // from int. | 
 |           return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC); | 
 |       } | 
 |     } | 
 |   } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) { | 
 |     // Ignore the ImplicitCastExpr type entirely. | 
 |     return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC); | 
 |   } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) { | 
 |     // Accept ((void*)0) as a null pointer constant, as many other | 
 |     // implementations do. | 
 |     return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC); | 
 |   } else if (const CXXDefaultArgExpr *DefaultArg | 
 |                = dyn_cast<CXXDefaultArgExpr>(this)) { | 
 |     // See through default argument expressions | 
 |     return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC); | 
 |   } else if (isa<GNUNullExpr>(this)) { | 
 |     // The GNU __null extension is always a null pointer constant. | 
 |     return true; | 
 |   } | 
 |  | 
 |   // C++0x nullptr_t is always a null pointer constant. | 
 |   if (getType()->isNullPtrType()) | 
 |     return true; | 
 |  | 
 |   // This expression must be an integer type. | 
 |   if (!getType()->isIntegerType() ||  | 
 |       (Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType())) | 
 |     return false; | 
 |  | 
 |   // If we have an integer constant expression, we need to *evaluate* it and | 
 |   // test for the value 0. | 
 |   llvm::APSInt Result; | 
 |   return isIntegerConstantExpr(Result, Ctx) && Result == 0; | 
 | } | 
 |  | 
 | FieldDecl *Expr::getBitField() { | 
 |   Expr *E = this->IgnoreParens(); | 
 |  | 
 |   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { | 
 |     if (ICE->isLvalueCast() && ICE->getCastKind() == CastExpr::CK_NoOp) | 
 |       E = ICE->getSubExpr()->IgnoreParens(); | 
 |     else | 
 |       break; | 
 |   } | 
 |  | 
 |   if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E)) | 
 |     if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) | 
 |       if (Field->isBitField()) | 
 |         return Field; | 
 |  | 
 |   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) | 
 |     if (BinOp->isAssignmentOp() && BinOp->getLHS()) | 
 |       return BinOp->getLHS()->getBitField(); | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | bool Expr::refersToVectorElement() const { | 
 |   const Expr *E = this->IgnoreParens(); | 
 |    | 
 |   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { | 
 |     if (ICE->isLvalueCast() && ICE->getCastKind() == CastExpr::CK_NoOp) | 
 |       E = ICE->getSubExpr()->IgnoreParens(); | 
 |     else | 
 |       break; | 
 |   } | 
 |    | 
 |   if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) | 
 |     return ASE->getBase()->getType()->isVectorType(); | 
 |  | 
 |   if (isa<ExtVectorElementExpr>(E)) | 
 |     return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// isArrow - Return true if the base expression is a pointer to vector, | 
 | /// return false if the base expression is a vector. | 
 | bool ExtVectorElementExpr::isArrow() const { | 
 |   return getBase()->getType()->isPointerType(); | 
 | } | 
 |  | 
 | unsigned ExtVectorElementExpr::getNumElements() const { | 
 |   if (const VectorType *VT = getType()->getAs<VectorType>()) | 
 |     return VT->getNumElements(); | 
 |   return 1; | 
 | } | 
 |  | 
 | /// containsDuplicateElements - Return true if any element access is repeated. | 
 | bool ExtVectorElementExpr::containsDuplicateElements() const { | 
 |   // FIXME: Refactor this code to an accessor on the AST node which returns the | 
 |   // "type" of component access, and share with code below and in Sema. | 
 |   llvm::StringRef Comp = Accessor->getName(); | 
 |  | 
 |   // Halving swizzles do not contain duplicate elements. | 
 |   if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd") | 
 |     return false; | 
 |  | 
 |   // Advance past s-char prefix on hex swizzles. | 
 |   if (Comp[0] == 's' || Comp[0] == 'S') | 
 |     Comp = Comp.substr(1); | 
 |  | 
 |   for (unsigned i = 0, e = Comp.size(); i != e; ++i) | 
 |     if (Comp.substr(i + 1).find(Comp[i]) != llvm::StringRef::npos) | 
 |         return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray. | 
 | void ExtVectorElementExpr::getEncodedElementAccess( | 
 |                                   llvm::SmallVectorImpl<unsigned> &Elts) const { | 
 |   llvm::StringRef Comp = Accessor->getName(); | 
 |   if (Comp[0] == 's' || Comp[0] == 'S') | 
 |     Comp = Comp.substr(1); | 
 |  | 
 |   bool isHi =   Comp == "hi"; | 
 |   bool isLo =   Comp == "lo"; | 
 |   bool isEven = Comp == "even"; | 
 |   bool isOdd  = Comp == "odd"; | 
 |  | 
 |   for (unsigned i = 0, e = getNumElements(); i != e; ++i) { | 
 |     uint64_t Index; | 
 |  | 
 |     if (isHi) | 
 |       Index = e + i; | 
 |     else if (isLo) | 
 |       Index = i; | 
 |     else if (isEven) | 
 |       Index = 2 * i; | 
 |     else if (isOdd) | 
 |       Index = 2 * i + 1; | 
 |     else | 
 |       Index = ExtVectorType::getAccessorIdx(Comp[i]); | 
 |  | 
 |     Elts.push_back(Index); | 
 |   } | 
 | } | 
 |  | 
 | ObjCMessageExpr::ObjCMessageExpr(QualType T, | 
 |                                  SourceLocation LBracLoc, | 
 |                                  SourceLocation SuperLoc, | 
 |                                  bool IsInstanceSuper, | 
 |                                  QualType SuperType, | 
 |                                  Selector Sel,  | 
 |                                  ObjCMethodDecl *Method, | 
 |                                  Expr **Args, unsigned NumArgs, | 
 |                                  SourceLocation RBracLoc) | 
 |   : Expr(ObjCMessageExprClass, T, /*TypeDependent=*/false, | 
 |          /*ValueDependent=*/false), | 
 |     NumArgs(NumArgs), Kind(IsInstanceSuper? SuperInstance : SuperClass), | 
 |     HasMethod(Method != 0), SuperLoc(SuperLoc), | 
 |     SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method | 
 |                                                        : Sel.getAsOpaquePtr())), | 
 |     LBracLoc(LBracLoc), RBracLoc(RBracLoc)  | 
 | { | 
 |   setReceiverPointer(SuperType.getAsOpaquePtr()); | 
 |   if (NumArgs) | 
 |     memcpy(getArgs(), Args, NumArgs * sizeof(Expr *)); | 
 | } | 
 |  | 
 | ObjCMessageExpr::ObjCMessageExpr(QualType T, | 
 |                                  SourceLocation LBracLoc, | 
 |                                  TypeSourceInfo *Receiver, | 
 |                                  Selector Sel,  | 
 |                                  ObjCMethodDecl *Method, | 
 |                                  Expr **Args, unsigned NumArgs, | 
 |                                  SourceLocation RBracLoc) | 
 |   : Expr(ObjCMessageExprClass, T, T->isDependentType(), | 
 |          (T->isDependentType() ||  | 
 |           hasAnyValueDependentArguments(Args, NumArgs))), | 
 |     NumArgs(NumArgs), Kind(Class), HasMethod(Method != 0), | 
 |     SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method | 
 |                                                        : Sel.getAsOpaquePtr())), | 
 |     LBracLoc(LBracLoc), RBracLoc(RBracLoc)  | 
 | { | 
 |   setReceiverPointer(Receiver); | 
 |   if (NumArgs) | 
 |     memcpy(getArgs(), Args, NumArgs * sizeof(Expr *)); | 
 | } | 
 |  | 
 | ObjCMessageExpr::ObjCMessageExpr(QualType T, | 
 |                                  SourceLocation LBracLoc, | 
 |                                  Expr *Receiver, | 
 |                                  Selector Sel,  | 
 |                                  ObjCMethodDecl *Method, | 
 |                                  Expr **Args, unsigned NumArgs, | 
 |                                  SourceLocation RBracLoc) | 
 |   : Expr(ObjCMessageExprClass, T, Receiver->isTypeDependent(), | 
 |          (Receiver->isTypeDependent() ||  | 
 |           hasAnyValueDependentArguments(Args, NumArgs))), | 
 |     NumArgs(NumArgs), Kind(Instance), HasMethod(Method != 0), | 
 |     SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method | 
 |                                                        : Sel.getAsOpaquePtr())), | 
 |     LBracLoc(LBracLoc), RBracLoc(RBracLoc)  | 
 | { | 
 |   setReceiverPointer(Receiver); | 
 |   if (NumArgs) | 
 |     memcpy(getArgs(), Args, NumArgs * sizeof(Expr *)); | 
 | } | 
 |  | 
 | ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T, | 
 |                                          SourceLocation LBracLoc, | 
 |                                          SourceLocation SuperLoc, | 
 |                                          bool IsInstanceSuper, | 
 |                                          QualType SuperType, | 
 |                                          Selector Sel,  | 
 |                                          ObjCMethodDecl *Method, | 
 |                                          Expr **Args, unsigned NumArgs, | 
 |                                          SourceLocation RBracLoc) { | 
 |   unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +  | 
 |     NumArgs * sizeof(Expr *); | 
 |   void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment); | 
 |   return new (Mem) ObjCMessageExpr(T, LBracLoc, SuperLoc, IsInstanceSuper, | 
 |                                    SuperType, Sel, Method, Args, NumArgs,  | 
 |                                    RBracLoc); | 
 | } | 
 |  | 
 | ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T, | 
 |                                          SourceLocation LBracLoc, | 
 |                                          TypeSourceInfo *Receiver, | 
 |                                          Selector Sel,  | 
 |                                          ObjCMethodDecl *Method, | 
 |                                          Expr **Args, unsigned NumArgs, | 
 |                                          SourceLocation RBracLoc) { | 
 |   unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +  | 
 |     NumArgs * sizeof(Expr *); | 
 |   void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment); | 
 |   return new (Mem) ObjCMessageExpr(T, LBracLoc, Receiver, Sel, Method, Args,  | 
 |                                    NumArgs, RBracLoc); | 
 | } | 
 |  | 
 | ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T, | 
 |                                          SourceLocation LBracLoc, | 
 |                                          Expr *Receiver, | 
 |                                          Selector Sel,  | 
 |                                          ObjCMethodDecl *Method, | 
 |                                          Expr **Args, unsigned NumArgs, | 
 |                                          SourceLocation RBracLoc) { | 
 |   unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +  | 
 |     NumArgs * sizeof(Expr *); | 
 |   void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment); | 
 |   return new (Mem) ObjCMessageExpr(T, LBracLoc, Receiver, Sel, Method, Args,  | 
 |                                    NumArgs, RBracLoc); | 
 | } | 
 |  | 
 | ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(ASTContext &Context,  | 
 |                                               unsigned NumArgs) { | 
 |   unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +  | 
 |     NumArgs * sizeof(Expr *); | 
 |   void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment); | 
 |   return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs); | 
 | } | 
 |           | 
 | Selector ObjCMessageExpr::getSelector() const { | 
 |   if (HasMethod) | 
 |     return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod) | 
 |                                                                ->getSelector(); | 
 |   return Selector(SelectorOrMethod);  | 
 | } | 
 |  | 
 | ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const { | 
 |   switch (getReceiverKind()) { | 
 |   case Instance: | 
 |     if (const ObjCObjectPointerType *Ptr | 
 |           = getInstanceReceiver()->getType()->getAs<ObjCObjectPointerType>()) | 
 |       return Ptr->getInterfaceDecl(); | 
 |     break; | 
 |  | 
 |   case Class: | 
 |     if (const ObjCInterfaceType *Iface | 
 |                        = getClassReceiver()->getAs<ObjCInterfaceType>()) | 
 |       return Iface->getDecl(); | 
 |     break; | 
 |  | 
 |   case SuperInstance: | 
 |     if (const ObjCObjectPointerType *Ptr | 
 |           = getSuperType()->getAs<ObjCObjectPointerType>()) | 
 |       return Ptr->getInterfaceDecl(); | 
 |     break; | 
 |  | 
 |   case SuperClass: | 
 |     if (const ObjCObjectPointerType *Iface | 
 |                        = getSuperType()->getAs<ObjCObjectPointerType>()) | 
 |       return Iface->getInterfaceDecl(); | 
 |     break; | 
 |   } | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | bool ChooseExpr::isConditionTrue(ASTContext &C) const { | 
 |   return getCond()->EvaluateAsInt(C) != 0; | 
 | } | 
 |  | 
 | void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs, | 
 |                                  unsigned NumExprs) { | 
 |   if (SubExprs) C.Deallocate(SubExprs); | 
 |  | 
 |   SubExprs = new (C) Stmt* [NumExprs]; | 
 |   this->NumExprs = NumExprs; | 
 |   memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs); | 
 | } | 
 |  | 
 | void ShuffleVectorExpr::DoDestroy(ASTContext& C) { | 
 |   DestroyChildren(C); | 
 |   if (SubExprs) C.Deallocate(SubExprs); | 
 |   this->~ShuffleVectorExpr(); | 
 |   C.Deallocate(this); | 
 | } | 
 |  | 
 | void SizeOfAlignOfExpr::DoDestroy(ASTContext& C) { | 
 |   // Override default behavior of traversing children. If this has a type | 
 |   // operand and the type is a variable-length array, the child iteration | 
 |   // will iterate over the size expression. However, this expression belongs | 
 |   // to the type, not to this, so we don't want to delete it. | 
 |   // We still want to delete this expression. | 
 |   if (isArgumentType()) { | 
 |     this->~SizeOfAlignOfExpr(); | 
 |     C.Deallocate(this); | 
 |   } | 
 |   else | 
 |     Expr::DoDestroy(C); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //  DesignatedInitExpr | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() { | 
 |   assert(Kind == FieldDesignator && "Only valid on a field designator"); | 
 |   if (Field.NameOrField & 0x01) | 
 |     return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01); | 
 |   else | 
 |     return getField()->getIdentifier(); | 
 | } | 
 |  | 
 | DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,  | 
 |                                        unsigned NumDesignators, | 
 |                                        const Designator *Designators, | 
 |                                        SourceLocation EqualOrColonLoc, | 
 |                                        bool GNUSyntax, | 
 |                                        Expr **IndexExprs, | 
 |                                        unsigned NumIndexExprs, | 
 |                                        Expr *Init) | 
 |   : Expr(DesignatedInitExprClass, Ty, | 
 |          Init->isTypeDependent(), Init->isValueDependent()), | 
 |     EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax), | 
 |     NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) { | 
 |   this->Designators = new (C) Designator[NumDesignators]; | 
 |  | 
 |   // Record the initializer itself. | 
 |   child_iterator Child = child_begin(); | 
 |   *Child++ = Init; | 
 |  | 
 |   // Copy the designators and their subexpressions, computing | 
 |   // value-dependence along the way. | 
 |   unsigned IndexIdx = 0; | 
 |   for (unsigned I = 0; I != NumDesignators; ++I) { | 
 |     this->Designators[I] = Designators[I]; | 
 |  | 
 |     if (this->Designators[I].isArrayDesignator()) { | 
 |       // Compute type- and value-dependence. | 
 |       Expr *Index = IndexExprs[IndexIdx]; | 
 |       ValueDependent = ValueDependent || | 
 |         Index->isTypeDependent() || Index->isValueDependent(); | 
 |  | 
 |       // Copy the index expressions into permanent storage. | 
 |       *Child++ = IndexExprs[IndexIdx++]; | 
 |     } else if (this->Designators[I].isArrayRangeDesignator()) { | 
 |       // Compute type- and value-dependence. | 
 |       Expr *Start = IndexExprs[IndexIdx]; | 
 |       Expr *End = IndexExprs[IndexIdx + 1]; | 
 |       ValueDependent = ValueDependent || | 
 |         Start->isTypeDependent() || Start->isValueDependent() || | 
 |         End->isTypeDependent() || End->isValueDependent(); | 
 |  | 
 |       // Copy the start/end expressions into permanent storage. | 
 |       *Child++ = IndexExprs[IndexIdx++]; | 
 |       *Child++ = IndexExprs[IndexIdx++]; | 
 |     } | 
 |   } | 
 |  | 
 |   assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions"); | 
 | } | 
 |  | 
 | DesignatedInitExpr * | 
 | DesignatedInitExpr::Create(ASTContext &C, Designator *Designators, | 
 |                            unsigned NumDesignators, | 
 |                            Expr **IndexExprs, unsigned NumIndexExprs, | 
 |                            SourceLocation ColonOrEqualLoc, | 
 |                            bool UsesColonSyntax, Expr *Init) { | 
 |   void *Mem = C.Allocate(sizeof(DesignatedInitExpr) + | 
 |                          sizeof(Stmt *) * (NumIndexExprs + 1), 8); | 
 |   return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators, | 
 |                                       ColonOrEqualLoc, UsesColonSyntax, | 
 |                                       IndexExprs, NumIndexExprs, Init); | 
 | } | 
 |  | 
 | DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C, | 
 |                                                     unsigned NumIndexExprs) { | 
 |   void *Mem = C.Allocate(sizeof(DesignatedInitExpr) + | 
 |                          sizeof(Stmt *) * (NumIndexExprs + 1), 8); | 
 |   return new (Mem) DesignatedInitExpr(NumIndexExprs + 1); | 
 | } | 
 |  | 
 | void DesignatedInitExpr::setDesignators(ASTContext &C, | 
 |                                         const Designator *Desigs, | 
 |                                         unsigned NumDesigs) { | 
 |   DestroyDesignators(C); | 
 |  | 
 |   Designators = new (C) Designator[NumDesigs]; | 
 |   NumDesignators = NumDesigs; | 
 |   for (unsigned I = 0; I != NumDesigs; ++I) | 
 |     Designators[I] = Desigs[I]; | 
 | } | 
 |  | 
 | SourceRange DesignatedInitExpr::getSourceRange() const { | 
 |   SourceLocation StartLoc; | 
 |   Designator &First = | 
 |     *const_cast<DesignatedInitExpr*>(this)->designators_begin(); | 
 |   if (First.isFieldDesignator()) { | 
 |     if (GNUSyntax) | 
 |       StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc); | 
 |     else | 
 |       StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc); | 
 |   } else | 
 |     StartLoc = | 
 |       SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc); | 
 |   return SourceRange(StartLoc, getInit()->getSourceRange().getEnd()); | 
 | } | 
 |  | 
 | Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) { | 
 |   assert(D.Kind == Designator::ArrayDesignator && "Requires array designator"); | 
 |   char* Ptr = static_cast<char*>(static_cast<void *>(this)); | 
 |   Ptr += sizeof(DesignatedInitExpr); | 
 |   Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr)); | 
 |   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1)); | 
 | } | 
 |  | 
 | Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) { | 
 |   assert(D.Kind == Designator::ArrayRangeDesignator && | 
 |          "Requires array range designator"); | 
 |   char* Ptr = static_cast<char*>(static_cast<void *>(this)); | 
 |   Ptr += sizeof(DesignatedInitExpr); | 
 |   Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr)); | 
 |   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1)); | 
 | } | 
 |  | 
 | Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) { | 
 |   assert(D.Kind == Designator::ArrayRangeDesignator && | 
 |          "Requires array range designator"); | 
 |   char* Ptr = static_cast<char*>(static_cast<void *>(this)); | 
 |   Ptr += sizeof(DesignatedInitExpr); | 
 |   Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr)); | 
 |   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2)); | 
 | } | 
 |  | 
 | /// \brief Replaces the designator at index @p Idx with the series | 
 | /// of designators in [First, Last). | 
 | void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx, | 
 |                                           const Designator *First, | 
 |                                           const Designator *Last) { | 
 |   unsigned NumNewDesignators = Last - First; | 
 |   if (NumNewDesignators == 0) { | 
 |     std::copy_backward(Designators + Idx + 1, | 
 |                        Designators + NumDesignators, | 
 |                        Designators + Idx); | 
 |     --NumNewDesignators; | 
 |     return; | 
 |   } else if (NumNewDesignators == 1) { | 
 |     Designators[Idx] = *First; | 
 |     return; | 
 |   } | 
 |  | 
 |   Designator *NewDesignators | 
 |     = new (C) Designator[NumDesignators - 1 + NumNewDesignators]; | 
 |   std::copy(Designators, Designators + Idx, NewDesignators); | 
 |   std::copy(First, Last, NewDesignators + Idx); | 
 |   std::copy(Designators + Idx + 1, Designators + NumDesignators, | 
 |             NewDesignators + Idx + NumNewDesignators); | 
 |   DestroyDesignators(C); | 
 |   Designators = NewDesignators; | 
 |   NumDesignators = NumDesignators - 1 + NumNewDesignators; | 
 | } | 
 |  | 
 | void DesignatedInitExpr::DoDestroy(ASTContext &C) { | 
 |   DestroyDesignators(C); | 
 |   Expr::DoDestroy(C); | 
 | } | 
 |  | 
 | void DesignatedInitExpr::DestroyDesignators(ASTContext &C) { | 
 |   for (unsigned I = 0; I != NumDesignators; ++I) | 
 |     Designators[I].~Designator(); | 
 |   C.Deallocate(Designators); | 
 |   Designators = 0; | 
 | } | 
 |  | 
 | ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc, | 
 |                              Expr **exprs, unsigned nexprs, | 
 |                              SourceLocation rparenloc) | 
 | : Expr(ParenListExprClass, QualType(), | 
 |        hasAnyTypeDependentArguments(exprs, nexprs), | 
 |        hasAnyValueDependentArguments(exprs, nexprs)), | 
 |   NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) { | 
 |  | 
 |   Exprs = new (C) Stmt*[nexprs]; | 
 |   for (unsigned i = 0; i != nexprs; ++i) | 
 |     Exprs[i] = exprs[i]; | 
 | } | 
 |  | 
 | void ParenListExpr::DoDestroy(ASTContext& C) { | 
 |   DestroyChildren(C); | 
 |   if (Exprs) C.Deallocate(Exprs); | 
 |   this->~ParenListExpr(); | 
 |   C.Deallocate(this); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //  ExprIterator. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); } | 
 | Expr* ExprIterator::operator*() const { return cast<Expr>(*I); } | 
 | Expr* ExprIterator::operator->() const { return cast<Expr>(*I); } | 
 | const Expr* ConstExprIterator::operator[](size_t idx) const { | 
 |   return cast<Expr>(I[idx]); | 
 | } | 
 | const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); } | 
 | const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //  Child Iterators for iterating over subexpressions/substatements | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | // DeclRefExpr | 
 | Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); } | 
 | Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); } | 
 |  | 
 | // ObjCIvarRefExpr | 
 | Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; } | 
 | Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; } | 
 |  | 
 | // ObjCPropertyRefExpr | 
 | Stmt::child_iterator ObjCPropertyRefExpr::child_begin() { return &Base; } | 
 | Stmt::child_iterator ObjCPropertyRefExpr::child_end() { return &Base+1; } | 
 |  | 
 | // ObjCImplicitSetterGetterRefExpr | 
 | Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_begin() { | 
 |   return &Base; | 
 | } | 
 | Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_end() { | 
 |   return &Base+1; | 
 | } | 
 |  | 
 | // ObjCSuperExpr | 
 | Stmt::child_iterator ObjCSuperExpr::child_begin() { return child_iterator(); } | 
 | Stmt::child_iterator ObjCSuperExpr::child_end() { return child_iterator(); } | 
 |  | 
 | // ObjCIsaExpr | 
 | Stmt::child_iterator ObjCIsaExpr::child_begin() { return &Base; } | 
 | Stmt::child_iterator ObjCIsaExpr::child_end() { return &Base+1; } | 
 |  | 
 | // PredefinedExpr | 
 | Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); } | 
 | Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); } | 
 |  | 
 | // IntegerLiteral | 
 | Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); } | 
 | Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); } | 
 |  | 
 | // CharacterLiteral | 
 | Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator();} | 
 | Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); } | 
 |  | 
 | // FloatingLiteral | 
 | Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); } | 
 | Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); } | 
 |  | 
 | // ImaginaryLiteral | 
 | Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; } | 
 | Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; } | 
 |  | 
 | // StringLiteral | 
 | Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); } | 
 | Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); } | 
 |  | 
 | // ParenExpr | 
 | Stmt::child_iterator ParenExpr::child_begin() { return &Val; } | 
 | Stmt::child_iterator ParenExpr::child_end() { return &Val+1; } | 
 |  | 
 | // UnaryOperator | 
 | Stmt::child_iterator UnaryOperator::child_begin() { return &Val; } | 
 | Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; } | 
 |  | 
 | // SizeOfAlignOfExpr | 
 | Stmt::child_iterator SizeOfAlignOfExpr::child_begin() { | 
 |   // If this is of a type and the type is a VLA type (and not a typedef), the | 
 |   // size expression of the VLA needs to be treated as an executable expression. | 
 |   // Why isn't this weirdness documented better in StmtIterator? | 
 |   if (isArgumentType()) { | 
 |     if (VariableArrayType* T = dyn_cast<VariableArrayType>( | 
 |                                    getArgumentType().getTypePtr())) | 
 |       return child_iterator(T); | 
 |     return child_iterator(); | 
 |   } | 
 |   return child_iterator(&Argument.Ex); | 
 | } | 
 | Stmt::child_iterator SizeOfAlignOfExpr::child_end() { | 
 |   if (isArgumentType()) | 
 |     return child_iterator(); | 
 |   return child_iterator(&Argument.Ex + 1); | 
 | } | 
 |  | 
 | // ArraySubscriptExpr | 
 | Stmt::child_iterator ArraySubscriptExpr::child_begin() { | 
 |   return &SubExprs[0]; | 
 | } | 
 | Stmt::child_iterator ArraySubscriptExpr::child_end() { | 
 |   return &SubExprs[0]+END_EXPR; | 
 | } | 
 |  | 
 | // CallExpr | 
 | Stmt::child_iterator CallExpr::child_begin() { | 
 |   return &SubExprs[0]; | 
 | } | 
 | Stmt::child_iterator CallExpr::child_end() { | 
 |   return &SubExprs[0]+NumArgs+ARGS_START; | 
 | } | 
 |  | 
 | // MemberExpr | 
 | Stmt::child_iterator MemberExpr::child_begin() { return &Base; } | 
 | Stmt::child_iterator MemberExpr::child_end() { return &Base+1; } | 
 |  | 
 | // ExtVectorElementExpr | 
 | Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; } | 
 | Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; } | 
 |  | 
 | // CompoundLiteralExpr | 
 | Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; } | 
 | Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; } | 
 |  | 
 | // CastExpr | 
 | Stmt::child_iterator CastExpr::child_begin() { return &Op; } | 
 | Stmt::child_iterator CastExpr::child_end() { return &Op+1; } | 
 |  | 
 | // BinaryOperator | 
 | Stmt::child_iterator BinaryOperator::child_begin() { | 
 |   return &SubExprs[0]; | 
 | } | 
 | Stmt::child_iterator BinaryOperator::child_end() { | 
 |   return &SubExprs[0]+END_EXPR; | 
 | } | 
 |  | 
 | // ConditionalOperator | 
 | Stmt::child_iterator ConditionalOperator::child_begin() { | 
 |   return &SubExprs[0]; | 
 | } | 
 | Stmt::child_iterator ConditionalOperator::child_end() { | 
 |   return &SubExprs[0]+END_EXPR; | 
 | } | 
 |  | 
 | // AddrLabelExpr | 
 | Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); } | 
 | Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); } | 
 |  | 
 | // StmtExpr | 
 | Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; } | 
 | Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; } | 
 |  | 
 | // TypesCompatibleExpr | 
 | Stmt::child_iterator TypesCompatibleExpr::child_begin() { | 
 |   return child_iterator(); | 
 | } | 
 |  | 
 | Stmt::child_iterator TypesCompatibleExpr::child_end() { | 
 |   return child_iterator(); | 
 | } | 
 |  | 
 | // ChooseExpr | 
 | Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; } | 
 | Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; } | 
 |  | 
 | // GNUNullExpr | 
 | Stmt::child_iterator GNUNullExpr::child_begin() { return child_iterator(); } | 
 | Stmt::child_iterator GNUNullExpr::child_end() { return child_iterator(); } | 
 |  | 
 | // ShuffleVectorExpr | 
 | Stmt::child_iterator ShuffleVectorExpr::child_begin() { | 
 |   return &SubExprs[0]; | 
 | } | 
 | Stmt::child_iterator ShuffleVectorExpr::child_end() { | 
 |   return &SubExprs[0]+NumExprs; | 
 | } | 
 |  | 
 | // VAArgExpr | 
 | Stmt::child_iterator VAArgExpr::child_begin() { return &Val; } | 
 | Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; } | 
 |  | 
 | // InitListExpr | 
 | Stmt::child_iterator InitListExpr::child_begin() { | 
 |   return InitExprs.size() ? &InitExprs[0] : 0; | 
 | } | 
 | Stmt::child_iterator InitListExpr::child_end() { | 
 |   return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0; | 
 | } | 
 |  | 
 | // DesignatedInitExpr | 
 | Stmt::child_iterator DesignatedInitExpr::child_begin() { | 
 |   char* Ptr = static_cast<char*>(static_cast<void *>(this)); | 
 |   Ptr += sizeof(DesignatedInitExpr); | 
 |   return reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr)); | 
 | } | 
 | Stmt::child_iterator DesignatedInitExpr::child_end() { | 
 |   return child_iterator(&*child_begin() + NumSubExprs); | 
 | } | 
 |  | 
 | // ImplicitValueInitExpr | 
 | Stmt::child_iterator ImplicitValueInitExpr::child_begin() { | 
 |   return child_iterator(); | 
 | } | 
 |  | 
 | Stmt::child_iterator ImplicitValueInitExpr::child_end() { | 
 |   return child_iterator(); | 
 | } | 
 |  | 
 | // ParenListExpr | 
 | Stmt::child_iterator ParenListExpr::child_begin() { | 
 |   return &Exprs[0]; | 
 | } | 
 | Stmt::child_iterator ParenListExpr::child_end() { | 
 |   return &Exprs[0]+NumExprs; | 
 | } | 
 |  | 
 | // ObjCStringLiteral | 
 | Stmt::child_iterator ObjCStringLiteral::child_begin() { | 
 |   return &String; | 
 | } | 
 | Stmt::child_iterator ObjCStringLiteral::child_end() { | 
 |   return &String+1; | 
 | } | 
 |  | 
 | // ObjCEncodeExpr | 
 | Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); } | 
 | Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); } | 
 |  | 
 | // ObjCSelectorExpr | 
 | Stmt::child_iterator ObjCSelectorExpr::child_begin() { | 
 |   return child_iterator(); | 
 | } | 
 | Stmt::child_iterator ObjCSelectorExpr::child_end() { | 
 |   return child_iterator(); | 
 | } | 
 |  | 
 | // ObjCProtocolExpr | 
 | Stmt::child_iterator ObjCProtocolExpr::child_begin() { | 
 |   return child_iterator(); | 
 | } | 
 | Stmt::child_iterator ObjCProtocolExpr::child_end() { | 
 |   return child_iterator(); | 
 | } | 
 |  | 
 | // ObjCMessageExpr | 
 | Stmt::child_iterator ObjCMessageExpr::child_begin() { | 
 |   if (getReceiverKind() == Instance) | 
 |     return reinterpret_cast<Stmt **>(this + 1); | 
 |   return getArgs(); | 
 | } | 
 | Stmt::child_iterator ObjCMessageExpr::child_end() { | 
 |   return getArgs() + getNumArgs(); | 
 | } | 
 |  | 
 | // Blocks | 
 | Stmt::child_iterator BlockExpr::child_begin() { return child_iterator(); } | 
 | Stmt::child_iterator BlockExpr::child_end() { return child_iterator(); } | 
 |  | 
 | Stmt::child_iterator BlockDeclRefExpr::child_begin() { return child_iterator();} | 
 | Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator(); } |