| //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | //  This file implements semantic analysis for C++ declarations. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "clang/Sema/SemaInternal.h" | 
 | #include "clang/Sema/CXXFieldCollector.h" | 
 | #include "clang/Sema/Scope.h" | 
 | #include "clang/Sema/Initialization.h" | 
 | #include "clang/Sema/Lookup.h" | 
 | #include "clang/Sema/ScopeInfo.h" | 
 | #include "clang/AST/ASTConsumer.h" | 
 | #include "clang/AST/ASTContext.h" | 
 | #include "clang/AST/ASTMutationListener.h" | 
 | #include "clang/AST/CharUnits.h" | 
 | #include "clang/AST/CXXInheritance.h" | 
 | #include "clang/AST/DeclVisitor.h" | 
 | #include "clang/AST/ExprCXX.h" | 
 | #include "clang/AST/RecordLayout.h" | 
 | #include "clang/AST/StmtVisitor.h" | 
 | #include "clang/AST/TypeLoc.h" | 
 | #include "clang/AST/TypeOrdering.h" | 
 | #include "clang/Sema/DeclSpec.h" | 
 | #include "clang/Sema/ParsedTemplate.h" | 
 | #include "clang/Basic/PartialDiagnostic.h" | 
 | #include "clang/Lex/Preprocessor.h" | 
 | #include "llvm/ADT/DenseSet.h" | 
 | #include "llvm/ADT/SmallString.h" | 
 | #include "llvm/ADT/STLExtras.h" | 
 | #include <map> | 
 | #include <set> | 
 |  | 
 | using namespace clang; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // CheckDefaultArgumentVisitor | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | namespace { | 
 |   /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses | 
 |   /// the default argument of a parameter to determine whether it | 
 |   /// contains any ill-formed subexpressions. For example, this will | 
 |   /// diagnose the use of local variables or parameters within the | 
 |   /// default argument expression. | 
 |   class CheckDefaultArgumentVisitor | 
 |     : public StmtVisitor<CheckDefaultArgumentVisitor, bool> { | 
 |     Expr *DefaultArg; | 
 |     Sema *S; | 
 |  | 
 |   public: | 
 |     CheckDefaultArgumentVisitor(Expr *defarg, Sema *s) | 
 |       : DefaultArg(defarg), S(s) {} | 
 |  | 
 |     bool VisitExpr(Expr *Node); | 
 |     bool VisitDeclRefExpr(DeclRefExpr *DRE); | 
 |     bool VisitCXXThisExpr(CXXThisExpr *ThisE); | 
 |     bool VisitLambdaExpr(LambdaExpr *Lambda); | 
 |   }; | 
 |  | 
 |   /// VisitExpr - Visit all of the children of this expression. | 
 |   bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) { | 
 |     bool IsInvalid = false; | 
 |     for (Stmt::child_range I = Node->children(); I; ++I) | 
 |       IsInvalid |= Visit(*I); | 
 |     return IsInvalid; | 
 |   } | 
 |  | 
 |   /// VisitDeclRefExpr - Visit a reference to a declaration, to | 
 |   /// determine whether this declaration can be used in the default | 
 |   /// argument expression. | 
 |   bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) { | 
 |     NamedDecl *Decl = DRE->getDecl(); | 
 |     if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) { | 
 |       // C++ [dcl.fct.default]p9 | 
 |       //   Default arguments are evaluated each time the function is | 
 |       //   called. The order of evaluation of function arguments is | 
 |       //   unspecified. Consequently, parameters of a function shall not | 
 |       //   be used in default argument expressions, even if they are not | 
 |       //   evaluated. Parameters of a function declared before a default | 
 |       //   argument expression are in scope and can hide namespace and | 
 |       //   class member names. | 
 |       return S->Diag(DRE->getSourceRange().getBegin(), | 
 |                      diag::err_param_default_argument_references_param) | 
 |          << Param->getDeclName() << DefaultArg->getSourceRange(); | 
 |     } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) { | 
 |       // C++ [dcl.fct.default]p7 | 
 |       //   Local variables shall not be used in default argument | 
 |       //   expressions. | 
 |       if (VDecl->isLocalVarDecl()) | 
 |         return S->Diag(DRE->getSourceRange().getBegin(), | 
 |                        diag::err_param_default_argument_references_local) | 
 |           << VDecl->getDeclName() << DefaultArg->getSourceRange(); | 
 |     } | 
 |  | 
 |     return false; | 
 |   } | 
 |  | 
 |   /// VisitCXXThisExpr - Visit a C++ "this" expression. | 
 |   bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) { | 
 |     // C++ [dcl.fct.default]p8: | 
 |     //   The keyword this shall not be used in a default argument of a | 
 |     //   member function. | 
 |     return S->Diag(ThisE->getSourceRange().getBegin(), | 
 |                    diag::err_param_default_argument_references_this) | 
 |                << ThisE->getSourceRange(); | 
 |   } | 
 |  | 
 |   bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) { | 
 |     // C++11 [expr.lambda.prim]p13: | 
 |     //   A lambda-expression appearing in a default argument shall not | 
 |     //   implicitly or explicitly capture any entity. | 
 |     if (Lambda->capture_begin() == Lambda->capture_end()) | 
 |       return false; | 
 |  | 
 |     return S->Diag(Lambda->getLocStart(),  | 
 |                    diag::err_lambda_capture_default_arg); | 
 |   } | 
 | } | 
 |  | 
 | void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) { | 
 |   assert(Context && "ImplicitExceptionSpecification without an ASTContext"); | 
 |   // If we have an MSAny or unknown spec already, don't bother. | 
 |   if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed) | 
 |     return; | 
 |  | 
 |   const FunctionProtoType *Proto | 
 |     = Method->getType()->getAs<FunctionProtoType>(); | 
 |  | 
 |   ExceptionSpecificationType EST = Proto->getExceptionSpecType(); | 
 |  | 
 |   // If this function can throw any exceptions, make a note of that. | 
 |   if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) { | 
 |     ClearExceptions(); | 
 |     ComputedEST = EST; | 
 |     return; | 
 |   } | 
 |  | 
 |   // FIXME: If the call to this decl is using any of its default arguments, we | 
 |   // need to search them for potentially-throwing calls. | 
 |  | 
 |   // If this function has a basic noexcept, it doesn't affect the outcome. | 
 |   if (EST == EST_BasicNoexcept) | 
 |     return; | 
 |  | 
 |   // If we have a throw-all spec at this point, ignore the function. | 
 |   if (ComputedEST == EST_None) | 
 |     return; | 
 |  | 
 |   // If we're still at noexcept(true) and there's a nothrow() callee, | 
 |   // change to that specification. | 
 |   if (EST == EST_DynamicNone) { | 
 |     if (ComputedEST == EST_BasicNoexcept) | 
 |       ComputedEST = EST_DynamicNone; | 
 |     return; | 
 |   } | 
 |  | 
 |   // Check out noexcept specs. | 
 |   if (EST == EST_ComputedNoexcept) { | 
 |     FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context); | 
 |     assert(NR != FunctionProtoType::NR_NoNoexcept && | 
 |            "Must have noexcept result for EST_ComputedNoexcept."); | 
 |     assert(NR != FunctionProtoType::NR_Dependent && | 
 |            "Should not generate implicit declarations for dependent cases, " | 
 |            "and don't know how to handle them anyway."); | 
 |  | 
 |     // noexcept(false) -> no spec on the new function | 
 |     if (NR == FunctionProtoType::NR_Throw) { | 
 |       ClearExceptions(); | 
 |       ComputedEST = EST_None; | 
 |     } | 
 |     // noexcept(true) won't change anything either. | 
 |     return; | 
 |   } | 
 |  | 
 |   assert(EST == EST_Dynamic && "EST case not considered earlier."); | 
 |   assert(ComputedEST != EST_None && | 
 |          "Shouldn't collect exceptions when throw-all is guaranteed."); | 
 |   ComputedEST = EST_Dynamic; | 
 |   // Record the exceptions in this function's exception specification. | 
 |   for (FunctionProtoType::exception_iterator E = Proto->exception_begin(), | 
 |                                           EEnd = Proto->exception_end(); | 
 |        E != EEnd; ++E) | 
 |     if (ExceptionsSeen.insert(Context->getCanonicalType(*E))) | 
 |       Exceptions.push_back(*E); | 
 | } | 
 |  | 
 | void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) { | 
 |   if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed) | 
 |     return; | 
 |  | 
 |   // FIXME: | 
 |   // | 
 |   // C++0x [except.spec]p14: | 
 |   //   [An] implicit exception-specification specifies the type-id T if and | 
 |   // only if T is allowed by the exception-specification of a function directly | 
 |   // invoked by f's implicit definition; f shall allow all exceptions if any | 
 |   // function it directly invokes allows all exceptions, and f shall allow no | 
 |   // exceptions if every function it directly invokes allows no exceptions. | 
 |   // | 
 |   // Note in particular that if an implicit exception-specification is generated | 
 |   // for a function containing a throw-expression, that specification can still | 
 |   // be noexcept(true). | 
 |   // | 
 |   // Note also that 'directly invoked' is not defined in the standard, and there | 
 |   // is no indication that we should only consider potentially-evaluated calls. | 
 |   // | 
 |   // Ultimately we should implement the intent of the standard: the exception | 
 |   // specification should be the set of exceptions which can be thrown by the | 
 |   // implicit definition. For now, we assume that any non-nothrow expression can | 
 |   // throw any exception. | 
 |  | 
 |   if (E->CanThrow(*Context)) | 
 |     ComputedEST = EST_None; | 
 | } | 
 |  | 
 | bool | 
 | Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg, | 
 |                               SourceLocation EqualLoc) { | 
 |   if (RequireCompleteType(Param->getLocation(), Param->getType(), | 
 |                           diag::err_typecheck_decl_incomplete_type)) { | 
 |     Param->setInvalidDecl(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   // C++ [dcl.fct.default]p5 | 
 |   //   A default argument expression is implicitly converted (clause | 
 |   //   4) to the parameter type. The default argument expression has | 
 |   //   the same semantic constraints as the initializer expression in | 
 |   //   a declaration of a variable of the parameter type, using the | 
 |   //   copy-initialization semantics (8.5). | 
 |   InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, | 
 |                                                                     Param); | 
 |   InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(), | 
 |                                                            EqualLoc); | 
 |   InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1); | 
 |   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, | 
 |                                       MultiExprArg(*this, &Arg, 1)); | 
 |   if (Result.isInvalid()) | 
 |     return true; | 
 |   Arg = Result.takeAs<Expr>(); | 
 |  | 
 |   CheckImplicitConversions(Arg, EqualLoc); | 
 |   Arg = MaybeCreateExprWithCleanups(Arg); | 
 |  | 
 |   // Okay: add the default argument to the parameter | 
 |   Param->setDefaultArg(Arg); | 
 |  | 
 |   // We have already instantiated this parameter; provide each of the  | 
 |   // instantiations with the uninstantiated default argument. | 
 |   UnparsedDefaultArgInstantiationsMap::iterator InstPos | 
 |     = UnparsedDefaultArgInstantiations.find(Param); | 
 |   if (InstPos != UnparsedDefaultArgInstantiations.end()) { | 
 |     for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I) | 
 |       InstPos->second[I]->setUninstantiatedDefaultArg(Arg); | 
 |      | 
 |     // We're done tracking this parameter's instantiations. | 
 |     UnparsedDefaultArgInstantiations.erase(InstPos); | 
 |   } | 
 |    | 
 |   return false; | 
 | } | 
 |  | 
 | /// ActOnParamDefaultArgument - Check whether the default argument | 
 | /// provided for a function parameter is well-formed. If so, attach it | 
 | /// to the parameter declaration. | 
 | void | 
 | Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc, | 
 |                                 Expr *DefaultArg) { | 
 |   if (!param || !DefaultArg) | 
 |     return; | 
 |  | 
 |   ParmVarDecl *Param = cast<ParmVarDecl>(param); | 
 |   UnparsedDefaultArgLocs.erase(Param); | 
 |  | 
 |   // Default arguments are only permitted in C++ | 
 |   if (!getLangOptions().CPlusPlus) { | 
 |     Diag(EqualLoc, diag::err_param_default_argument) | 
 |       << DefaultArg->getSourceRange(); | 
 |     Param->setInvalidDecl(); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Check for unexpanded parameter packs. | 
 |   if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) { | 
 |     Param->setInvalidDecl(); | 
 |     return; | 
 |   }     | 
 |        | 
 |   // Check that the default argument is well-formed | 
 |   CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this); | 
 |   if (DefaultArgChecker.Visit(DefaultArg)) { | 
 |     Param->setInvalidDecl(); | 
 |     return; | 
 |   } | 
 |  | 
 |   SetParamDefaultArgument(Param, DefaultArg, EqualLoc); | 
 | } | 
 |  | 
 | /// ActOnParamUnparsedDefaultArgument - We've seen a default | 
 | /// argument for a function parameter, but we can't parse it yet | 
 | /// because we're inside a class definition. Note that this default | 
 | /// argument will be parsed later. | 
 | void Sema::ActOnParamUnparsedDefaultArgument(Decl *param, | 
 |                                              SourceLocation EqualLoc, | 
 |                                              SourceLocation ArgLoc) { | 
 |   if (!param) | 
 |     return; | 
 |  | 
 |   ParmVarDecl *Param = cast<ParmVarDecl>(param); | 
 |   if (Param) | 
 |     Param->setUnparsedDefaultArg(); | 
 |  | 
 |   UnparsedDefaultArgLocs[Param] = ArgLoc; | 
 | } | 
 |  | 
 | /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of | 
 | /// the default argument for the parameter param failed. | 
 | void Sema::ActOnParamDefaultArgumentError(Decl *param) { | 
 |   if (!param) | 
 |     return; | 
 |  | 
 |   ParmVarDecl *Param = cast<ParmVarDecl>(param); | 
 |  | 
 |   Param->setInvalidDecl(); | 
 |  | 
 |   UnparsedDefaultArgLocs.erase(Param); | 
 | } | 
 |  | 
 | /// CheckExtraCXXDefaultArguments - Check for any extra default | 
 | /// arguments in the declarator, which is not a function declaration | 
 | /// or definition and therefore is not permitted to have default | 
 | /// arguments. This routine should be invoked for every declarator | 
 | /// that is not a function declaration or definition. | 
 | void Sema::CheckExtraCXXDefaultArguments(Declarator &D) { | 
 |   // C++ [dcl.fct.default]p3 | 
 |   //   A default argument expression shall be specified only in the | 
 |   //   parameter-declaration-clause of a function declaration or in a | 
 |   //   template-parameter (14.1). It shall not be specified for a | 
 |   //   parameter pack. If it is specified in a | 
 |   //   parameter-declaration-clause, it shall not occur within a | 
 |   //   declarator or abstract-declarator of a parameter-declaration. | 
 |   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { | 
 |     DeclaratorChunk &chunk = D.getTypeObject(i); | 
 |     if (chunk.Kind == DeclaratorChunk::Function) { | 
 |       for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) { | 
 |         ParmVarDecl *Param = | 
 |           cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param); | 
 |         if (Param->hasUnparsedDefaultArg()) { | 
 |           CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens; | 
 |           Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) | 
 |             << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation()); | 
 |           delete Toks; | 
 |           chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0; | 
 |         } else if (Param->getDefaultArg()) { | 
 |           Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) | 
 |             << Param->getDefaultArg()->getSourceRange(); | 
 |           Param->setDefaultArg(0); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // MergeCXXFunctionDecl - Merge two declarations of the same C++ | 
 | // function, once we already know that they have the same | 
 | // type. Subroutine of MergeFunctionDecl. Returns true if there was an | 
 | // error, false otherwise. | 
 | bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) { | 
 |   bool Invalid = false; | 
 |  | 
 |   // C++ [dcl.fct.default]p4: | 
 |   //   For non-template functions, default arguments can be added in | 
 |   //   later declarations of a function in the same | 
 |   //   scope. Declarations in different scopes have completely | 
 |   //   distinct sets of default arguments. That is, declarations in | 
 |   //   inner scopes do not acquire default arguments from | 
 |   //   declarations in outer scopes, and vice versa. In a given | 
 |   //   function declaration, all parameters subsequent to a | 
 |   //   parameter with a default argument shall have default | 
 |   //   arguments supplied in this or previous declarations. A | 
 |   //   default argument shall not be redefined by a later | 
 |   //   declaration (not even to the same value). | 
 |   // | 
 |   // C++ [dcl.fct.default]p6: | 
 |   //   Except for member functions of class templates, the default arguments  | 
 |   //   in a member function definition that appears outside of the class  | 
 |   //   definition are added to the set of default arguments provided by the  | 
 |   //   member function declaration in the class definition. | 
 |   for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) { | 
 |     ParmVarDecl *OldParam = Old->getParamDecl(p); | 
 |     ParmVarDecl *NewParam = New->getParamDecl(p); | 
 |  | 
 |     if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) { | 
 |  | 
 |       unsigned DiagDefaultParamID = | 
 |         diag::err_param_default_argument_redefinition; | 
 |  | 
 |       // MSVC accepts that default parameters be redefined for member functions | 
 |       // of template class. The new default parameter's value is ignored. | 
 |       Invalid = true; | 
 |       if (getLangOptions().MicrosoftExt) { | 
 |         CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New); | 
 |         if (MD && MD->getParent()->getDescribedClassTemplate()) { | 
 |           // Merge the old default argument into the new parameter. | 
 |           NewParam->setHasInheritedDefaultArg(); | 
 |           if (OldParam->hasUninstantiatedDefaultArg()) | 
 |             NewParam->setUninstantiatedDefaultArg( | 
 |                                       OldParam->getUninstantiatedDefaultArg()); | 
 |           else | 
 |             NewParam->setDefaultArg(OldParam->getInit()); | 
 |           DiagDefaultParamID = diag::warn_param_default_argument_redefinition; | 
 |           Invalid = false; | 
 |         } | 
 |       } | 
 |        | 
 |       // FIXME: If we knew where the '=' was, we could easily provide a fix-it  | 
 |       // hint here. Alternatively, we could walk the type-source information | 
 |       // for NewParam to find the last source location in the type... but it | 
 |       // isn't worth the effort right now. This is the kind of test case that | 
 |       // is hard to get right: | 
 |       //   int f(int); | 
 |       //   void g(int (*fp)(int) = f); | 
 |       //   void g(int (*fp)(int) = &f); | 
 |       Diag(NewParam->getLocation(), DiagDefaultParamID) | 
 |         << NewParam->getDefaultArgRange(); | 
 |        | 
 |       // Look for the function declaration where the default argument was | 
 |       // actually written, which may be a declaration prior to Old. | 
 |       for (FunctionDecl *Older = Old->getPreviousDecl(); | 
 |            Older; Older = Older->getPreviousDecl()) { | 
 |         if (!Older->getParamDecl(p)->hasDefaultArg()) | 
 |           break; | 
 |          | 
 |         OldParam = Older->getParamDecl(p); | 
 |       }         | 
 |        | 
 |       Diag(OldParam->getLocation(), diag::note_previous_definition) | 
 |         << OldParam->getDefaultArgRange(); | 
 |     } else if (OldParam->hasDefaultArg()) { | 
 |       // Merge the old default argument into the new parameter. | 
 |       // It's important to use getInit() here;  getDefaultArg() | 
 |       // strips off any top-level ExprWithCleanups. | 
 |       NewParam->setHasInheritedDefaultArg(); | 
 |       if (OldParam->hasUninstantiatedDefaultArg()) | 
 |         NewParam->setUninstantiatedDefaultArg( | 
 |                                       OldParam->getUninstantiatedDefaultArg()); | 
 |       else | 
 |         NewParam->setDefaultArg(OldParam->getInit()); | 
 |     } else if (NewParam->hasDefaultArg()) { | 
 |       if (New->getDescribedFunctionTemplate()) { | 
 |         // Paragraph 4, quoted above, only applies to non-template functions. | 
 |         Diag(NewParam->getLocation(), | 
 |              diag::err_param_default_argument_template_redecl) | 
 |           << NewParam->getDefaultArgRange(); | 
 |         Diag(Old->getLocation(), diag::note_template_prev_declaration) | 
 |           << false; | 
 |       } else if (New->getTemplateSpecializationKind() | 
 |                    != TSK_ImplicitInstantiation && | 
 |                  New->getTemplateSpecializationKind() != TSK_Undeclared) { | 
 |         // C++ [temp.expr.spec]p21: | 
 |         //   Default function arguments shall not be specified in a declaration | 
 |         //   or a definition for one of the following explicit specializations: | 
 |         //     - the explicit specialization of a function template; | 
 |         //     - the explicit specialization of a member function template; | 
 |         //     - the explicit specialization of a member function of a class  | 
 |         //       template where the class template specialization to which the | 
 |         //       member function specialization belongs is implicitly  | 
 |         //       instantiated. | 
 |         Diag(NewParam->getLocation(), diag::err_template_spec_default_arg) | 
 |           << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization) | 
 |           << New->getDeclName() | 
 |           << NewParam->getDefaultArgRange(); | 
 |       } else if (New->getDeclContext()->isDependentContext()) { | 
 |         // C++ [dcl.fct.default]p6 (DR217): | 
 |         //   Default arguments for a member function of a class template shall  | 
 |         //   be specified on the initial declaration of the member function  | 
 |         //   within the class template. | 
 |         // | 
 |         // Reading the tea leaves a bit in DR217 and its reference to DR205  | 
 |         // leads me to the conclusion that one cannot add default function  | 
 |         // arguments for an out-of-line definition of a member function of a  | 
 |         // dependent type. | 
 |         int WhichKind = 2; | 
 |         if (CXXRecordDecl *Record  | 
 |               = dyn_cast<CXXRecordDecl>(New->getDeclContext())) { | 
 |           if (Record->getDescribedClassTemplate()) | 
 |             WhichKind = 0; | 
 |           else if (isa<ClassTemplatePartialSpecializationDecl>(Record)) | 
 |             WhichKind = 1; | 
 |           else | 
 |             WhichKind = 2; | 
 |         } | 
 |          | 
 |         Diag(NewParam->getLocation(),  | 
 |              diag::err_param_default_argument_member_template_redecl) | 
 |           << WhichKind | 
 |           << NewParam->getDefaultArgRange(); | 
 |       } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) { | 
 |         CXXSpecialMember NewSM = getSpecialMember(Ctor), | 
 |                          OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old)); | 
 |         if (NewSM != OldSM) { | 
 |           Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special) | 
 |             << NewParam->getDefaultArgRange() << NewSM; | 
 |           Diag(Old->getLocation(), diag::note_previous_declaration_special) | 
 |             << OldSM; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // C++0x [dcl.constexpr]p1: If any declaration of a function or function | 
 |   // template has a constexpr specifier then all its declarations shall | 
 |   // contain the constexpr specifier. [Note: An explicit specialization can | 
 |   // differ from the template declaration with respect to the constexpr | 
 |   // specifier. -- end note] | 
 |   // | 
 |   // FIXME: Don't reject changes in constexpr in explicit specializations. | 
 |   if (New->isConstexpr() != Old->isConstexpr()) { | 
 |     Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch) | 
 |       << New << New->isConstexpr(); | 
 |     Diag(Old->getLocation(), diag::note_previous_declaration); | 
 |     Invalid = true; | 
 |   } | 
 |  | 
 |   if (CheckEquivalentExceptionSpec(Old, New)) | 
 |     Invalid = true; | 
 |  | 
 |   return Invalid; | 
 | } | 
 |  | 
 | /// \brief Merge the exception specifications of two variable declarations. | 
 | /// | 
 | /// This is called when there's a redeclaration of a VarDecl. The function | 
 | /// checks if the redeclaration might have an exception specification and | 
 | /// validates compatibility and merges the specs if necessary. | 
 | void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) { | 
 |   // Shortcut if exceptions are disabled. | 
 |   if (!getLangOptions().CXXExceptions) | 
 |     return; | 
 |  | 
 |   assert(Context.hasSameType(New->getType(), Old->getType()) && | 
 |          "Should only be called if types are otherwise the same."); | 
 |  | 
 |   QualType NewType = New->getType(); | 
 |   QualType OldType = Old->getType(); | 
 |  | 
 |   // We're only interested in pointers and references to functions, as well | 
 |   // as pointers to member functions. | 
 |   if (const ReferenceType *R = NewType->getAs<ReferenceType>()) { | 
 |     NewType = R->getPointeeType(); | 
 |     OldType = OldType->getAs<ReferenceType>()->getPointeeType(); | 
 |   } else if (const PointerType *P = NewType->getAs<PointerType>()) { | 
 |     NewType = P->getPointeeType(); | 
 |     OldType = OldType->getAs<PointerType>()->getPointeeType(); | 
 |   } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) { | 
 |     NewType = M->getPointeeType(); | 
 |     OldType = OldType->getAs<MemberPointerType>()->getPointeeType(); | 
 |   } | 
 |  | 
 |   if (!NewType->isFunctionProtoType()) | 
 |     return; | 
 |  | 
 |   // There's lots of special cases for functions. For function pointers, system | 
 |   // libraries are hopefully not as broken so that we don't need these | 
 |   // workarounds. | 
 |   if (CheckEquivalentExceptionSpec( | 
 |         OldType->getAs<FunctionProtoType>(), Old->getLocation(), | 
 |         NewType->getAs<FunctionProtoType>(), New->getLocation())) { | 
 |     New->setInvalidDecl(); | 
 |   } | 
 | } | 
 |  | 
 | /// CheckCXXDefaultArguments - Verify that the default arguments for a | 
 | /// function declaration are well-formed according to C++ | 
 | /// [dcl.fct.default]. | 
 | void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) { | 
 |   unsigned NumParams = FD->getNumParams(); | 
 |   unsigned p; | 
 |  | 
 |   bool IsLambda = FD->getOverloadedOperator() == OO_Call && | 
 |                   isa<CXXMethodDecl>(FD) && | 
 |                   cast<CXXMethodDecl>(FD)->getParent()->isLambda(); | 
 |                | 
 |   // Find first parameter with a default argument | 
 |   for (p = 0; p < NumParams; ++p) { | 
 |     ParmVarDecl *Param = FD->getParamDecl(p); | 
 |     if (Param->hasDefaultArg()) { | 
 |       // C++11 [expr.prim.lambda]p5: | 
 |       //   [...] Default arguments (8.3.6) shall not be specified in the  | 
 |       //   parameter-declaration-clause of a lambda-declarator. | 
 |       // | 
 |       // FIXME: Core issue 974 strikes this sentence, we only provide an | 
 |       // extension warning. | 
 |       if (IsLambda) | 
 |         Diag(Param->getLocation(), diag::ext_lambda_default_arguments) | 
 |           << Param->getDefaultArgRange(); | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   // C++ [dcl.fct.default]p4: | 
 |   //   In a given function declaration, all parameters | 
 |   //   subsequent to a parameter with a default argument shall | 
 |   //   have default arguments supplied in this or previous | 
 |   //   declarations. A default argument shall not be redefined | 
 |   //   by a later declaration (not even to the same value). | 
 |   unsigned LastMissingDefaultArg = 0; | 
 |   for (; p < NumParams; ++p) { | 
 |     ParmVarDecl *Param = FD->getParamDecl(p); | 
 |     if (!Param->hasDefaultArg()) { | 
 |       if (Param->isInvalidDecl()) | 
 |         /* We already complained about this parameter. */; | 
 |       else if (Param->getIdentifier()) | 
 |         Diag(Param->getLocation(), | 
 |              diag::err_param_default_argument_missing_name) | 
 |           << Param->getIdentifier(); | 
 |       else | 
 |         Diag(Param->getLocation(), | 
 |              diag::err_param_default_argument_missing); | 
 |  | 
 |       LastMissingDefaultArg = p; | 
 |     } | 
 |   } | 
 |  | 
 |   if (LastMissingDefaultArg > 0) { | 
 |     // Some default arguments were missing. Clear out all of the | 
 |     // default arguments up to (and including) the last missing | 
 |     // default argument, so that we leave the function parameters | 
 |     // in a semantically valid state. | 
 |     for (p = 0; p <= LastMissingDefaultArg; ++p) { | 
 |       ParmVarDecl *Param = FD->getParamDecl(p); | 
 |       if (Param->hasDefaultArg()) { | 
 |         Param->setDefaultArg(0); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // CheckConstexprParameterTypes - Check whether a function's parameter types | 
 | // are all literal types. If so, return true. If not, produce a suitable | 
 | // diagnostic and return false. | 
 | static bool CheckConstexprParameterTypes(Sema &SemaRef, | 
 |                                          const FunctionDecl *FD) { | 
 |   unsigned ArgIndex = 0; | 
 |   const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>(); | 
 |   for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(), | 
 |        e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) { | 
 |     const ParmVarDecl *PD = FD->getParamDecl(ArgIndex); | 
 |     SourceLocation ParamLoc = PD->getLocation(); | 
 |     if (!(*i)->isDependentType() && | 
 |         SemaRef.RequireLiteralType(ParamLoc, *i, | 
 |                             SemaRef.PDiag(diag::err_constexpr_non_literal_param) | 
 |                                      << ArgIndex+1 << PD->getSourceRange() | 
 |                                      << isa<CXXConstructorDecl>(FD))) | 
 |       return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | // CheckConstexprFunctionDecl - Check whether a function declaration satisfies | 
 | // the requirements of a constexpr function definition or a constexpr | 
 | // constructor definition. If so, return true. If not, produce appropriate | 
 | // diagnostics and return false. | 
 | // | 
 | // This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360. | 
 | bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) { | 
 |   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); | 
 |   if (MD && MD->isInstance()) { | 
 |     // C++11 [dcl.constexpr]p4: | 
 |     //  The definition of a constexpr constructor shall satisfy the following | 
 |     //  constraints: | 
 |     //  - the class shall not have any virtual base classes; | 
 |     const CXXRecordDecl *RD = MD->getParent(); | 
 |     if (RD->getNumVBases()) { | 
 |       Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base) | 
 |         << isa<CXXConstructorDecl>(NewFD) << RD->isStruct() | 
 |         << RD->getNumVBases(); | 
 |       for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(), | 
 |              E = RD->vbases_end(); I != E; ++I) | 
 |         Diag(I->getSourceRange().getBegin(), | 
 |              diag::note_constexpr_virtual_base_here) << I->getSourceRange(); | 
 |       return false; | 
 |     } | 
 |   } | 
 |  | 
 |   if (!isa<CXXConstructorDecl>(NewFD)) { | 
 |     // C++11 [dcl.constexpr]p3: | 
 |     //  The definition of a constexpr function shall satisfy the following | 
 |     //  constraints: | 
 |     // - it shall not be virtual; | 
 |     const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD); | 
 |     if (Method && Method->isVirtual()) { | 
 |       Diag(NewFD->getLocation(), diag::err_constexpr_virtual); | 
 |  | 
 |       // If it's not obvious why this function is virtual, find an overridden | 
 |       // function which uses the 'virtual' keyword. | 
 |       const CXXMethodDecl *WrittenVirtual = Method; | 
 |       while (!WrittenVirtual->isVirtualAsWritten()) | 
 |         WrittenVirtual = *WrittenVirtual->begin_overridden_methods(); | 
 |       if (WrittenVirtual != Method) | 
 |         Diag(WrittenVirtual->getLocation(), | 
 |              diag::note_overridden_virtual_function); | 
 |       return false; | 
 |     } | 
 |  | 
 |     // - its return type shall be a literal type; | 
 |     QualType RT = NewFD->getResultType(); | 
 |     if (!RT->isDependentType() && | 
 |         RequireLiteralType(NewFD->getLocation(), RT, | 
 |                            PDiag(diag::err_constexpr_non_literal_return))) | 
 |       return false; | 
 |   } | 
 |  | 
 |   // - each of its parameter types shall be a literal type; | 
 |   if (!CheckConstexprParameterTypes(*this, NewFD)) | 
 |     return false; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// Check the given declaration statement is legal within a constexpr function | 
 | /// body. C++0x [dcl.constexpr]p3,p4. | 
 | /// | 
 | /// \return true if the body is OK, false if we have diagnosed a problem. | 
 | static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl, | 
 |                                    DeclStmt *DS) { | 
 |   // C++0x [dcl.constexpr]p3 and p4: | 
 |   //  The definition of a constexpr function(p3) or constructor(p4) [...] shall | 
 |   //  contain only | 
 |   for (DeclStmt::decl_iterator DclIt = DS->decl_begin(), | 
 |          DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) { | 
 |     switch ((*DclIt)->getKind()) { | 
 |     case Decl::StaticAssert: | 
 |     case Decl::Using: | 
 |     case Decl::UsingShadow: | 
 |     case Decl::UsingDirective: | 
 |     case Decl::UnresolvedUsingTypename: | 
 |       //   - static_assert-declarations | 
 |       //   - using-declarations, | 
 |       //   - using-directives, | 
 |       continue; | 
 |  | 
 |     case Decl::Typedef: | 
 |     case Decl::TypeAlias: { | 
 |       //   - typedef declarations and alias-declarations that do not define | 
 |       //     classes or enumerations, | 
 |       TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt); | 
 |       if (TN->getUnderlyingType()->isVariablyModifiedType()) { | 
 |         // Don't allow variably-modified types in constexpr functions. | 
 |         TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc(); | 
 |         SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla) | 
 |           << TL.getSourceRange() << TL.getType() | 
 |           << isa<CXXConstructorDecl>(Dcl); | 
 |         return false; | 
 |       } | 
 |       continue; | 
 |     } | 
 |  | 
 |     case Decl::Enum: | 
 |     case Decl::CXXRecord: | 
 |       // As an extension, we allow the declaration (but not the definition) of | 
 |       // classes and enumerations in all declarations, not just in typedef and | 
 |       // alias declarations. | 
 |       if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) { | 
 |         SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition) | 
 |           << isa<CXXConstructorDecl>(Dcl); | 
 |         return false; | 
 |       } | 
 |       continue; | 
 |  | 
 |     case Decl::Var: | 
 |       SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration) | 
 |         << isa<CXXConstructorDecl>(Dcl); | 
 |       return false; | 
 |  | 
 |     default: | 
 |       SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt) | 
 |         << isa<CXXConstructorDecl>(Dcl); | 
 |       return false; | 
 |     } | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// Check that the given field is initialized within a constexpr constructor. | 
 | /// | 
 | /// \param Dcl The constexpr constructor being checked. | 
 | /// \param Field The field being checked. This may be a member of an anonymous | 
 | ///        struct or union nested within the class being checked. | 
 | /// \param Inits All declarations, including anonymous struct/union members and | 
 | ///        indirect members, for which any initialization was provided. | 
 | /// \param Diagnosed Set to true if an error is produced. | 
 | static void CheckConstexprCtorInitializer(Sema &SemaRef, | 
 |                                           const FunctionDecl *Dcl, | 
 |                                           FieldDecl *Field, | 
 |                                           llvm::SmallSet<Decl*, 16> &Inits, | 
 |                                           bool &Diagnosed) { | 
 |   if (Field->isUnnamedBitfield()) | 
 |     return; | 
 |  | 
 |   if (Field->isAnonymousStructOrUnion() && | 
 |       Field->getType()->getAsCXXRecordDecl()->isEmpty()) | 
 |     return; | 
 |  | 
 |   if (!Inits.count(Field)) { | 
 |     if (!Diagnosed) { | 
 |       SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init); | 
 |       Diagnosed = true; | 
 |     } | 
 |     SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init); | 
 |   } else if (Field->isAnonymousStructOrUnion()) { | 
 |     const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl(); | 
 |     for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end(); | 
 |          I != E; ++I) | 
 |       // If an anonymous union contains an anonymous struct of which any member | 
 |       // is initialized, all members must be initialized. | 
 |       if (!RD->isUnion() || Inits.count(*I)) | 
 |         CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed); | 
 |   } | 
 | } | 
 |  | 
 | /// Check the body for the given constexpr function declaration only contains | 
 | /// the permitted types of statement. C++11 [dcl.constexpr]p3,p4. | 
 | /// | 
 | /// \return true if the body is OK, false if we have diagnosed a problem. | 
 | bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) { | 
 |   if (isa<CXXTryStmt>(Body)) { | 
 |     // C++11 [dcl.constexpr]p3: | 
 |     //  The definition of a constexpr function shall satisfy the following | 
 |     //  constraints: [...] | 
 |     // - its function-body shall be = delete, = default, or a | 
 |     //   compound-statement | 
 |     // | 
 |     // C++11 [dcl.constexpr]p4: | 
 |     //  In the definition of a constexpr constructor, [...] | 
 |     // - its function-body shall not be a function-try-block; | 
 |     Diag(Body->getLocStart(), diag::err_constexpr_function_try_block) | 
 |       << isa<CXXConstructorDecl>(Dcl); | 
 |     return false; | 
 |   } | 
 |  | 
 |   // - its function-body shall be [...] a compound-statement that contains only | 
 |   CompoundStmt *CompBody = cast<CompoundStmt>(Body); | 
 |  | 
 |   llvm::SmallVector<SourceLocation, 4> ReturnStmts; | 
 |   for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(), | 
 |          BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) { | 
 |     switch ((*BodyIt)->getStmtClass()) { | 
 |     case Stmt::NullStmtClass: | 
 |       //   - null statements, | 
 |       continue; | 
 |  | 
 |     case Stmt::DeclStmtClass: | 
 |       //   - static_assert-declarations | 
 |       //   - using-declarations, | 
 |       //   - using-directives, | 
 |       //   - typedef declarations and alias-declarations that do not define | 
 |       //     classes or enumerations, | 
 |       if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt))) | 
 |         return false; | 
 |       continue; | 
 |  | 
 |     case Stmt::ReturnStmtClass: | 
 |       //   - and exactly one return statement; | 
 |       if (isa<CXXConstructorDecl>(Dcl)) | 
 |         break; | 
 |  | 
 |       ReturnStmts.push_back((*BodyIt)->getLocStart()); | 
 |       continue; | 
 |  | 
 |     default: | 
 |       break; | 
 |     } | 
 |  | 
 |     Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt) | 
 |       << isa<CXXConstructorDecl>(Dcl); | 
 |     return false; | 
 |   } | 
 |  | 
 |   if (const CXXConstructorDecl *Constructor | 
 |         = dyn_cast<CXXConstructorDecl>(Dcl)) { | 
 |     const CXXRecordDecl *RD = Constructor->getParent(); | 
 |     // DR1359: | 
 |     // - every non-variant non-static data member and base class sub-object | 
 |     //   shall be initialized; | 
 |     // - if the class is a non-empty union, or for each non-empty anonymous | 
 |     //   union member of a non-union class, exactly one non-static data member | 
 |     //   shall be initialized; | 
 |     if (RD->isUnion()) { | 
 |       if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) { | 
 |         Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init); | 
 |         return false; | 
 |       } | 
 |     } else if (!Constructor->isDependentContext() && | 
 |                !Constructor->isDelegatingConstructor()) { | 
 |       assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases"); | 
 |  | 
 |       // Skip detailed checking if we have enough initializers, and we would | 
 |       // allow at most one initializer per member. | 
 |       bool AnyAnonStructUnionMembers = false; | 
 |       unsigned Fields = 0; | 
 |       for (CXXRecordDecl::field_iterator I = RD->field_begin(), | 
 |            E = RD->field_end(); I != E; ++I, ++Fields) { | 
 |         if ((*I)->isAnonymousStructOrUnion()) { | 
 |           AnyAnonStructUnionMembers = true; | 
 |           break; | 
 |         } | 
 |       } | 
 |       if (AnyAnonStructUnionMembers || | 
 |           Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) { | 
 |         // Check initialization of non-static data members. Base classes are | 
 |         // always initialized so do not need to be checked. Dependent bases | 
 |         // might not have initializers in the member initializer list. | 
 |         llvm::SmallSet<Decl*, 16> Inits; | 
 |         for (CXXConstructorDecl::init_const_iterator | 
 |                I = Constructor->init_begin(), E = Constructor->init_end(); | 
 |              I != E; ++I) { | 
 |           if (FieldDecl *FD = (*I)->getMember()) | 
 |             Inits.insert(FD); | 
 |           else if (IndirectFieldDecl *ID = (*I)->getIndirectMember()) | 
 |             Inits.insert(ID->chain_begin(), ID->chain_end()); | 
 |         } | 
 |  | 
 |         bool Diagnosed = false; | 
 |         for (CXXRecordDecl::field_iterator I = RD->field_begin(), | 
 |              E = RD->field_end(); I != E; ++I) | 
 |           CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed); | 
 |         if (Diagnosed) | 
 |           return false; | 
 |       } | 
 |     } | 
 |   } else { | 
 |     if (ReturnStmts.empty()) { | 
 |       Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return); | 
 |       return false; | 
 |     } | 
 |     if (ReturnStmts.size() > 1) { | 
 |       Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return); | 
 |       for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I) | 
 |         Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return); | 
 |       return false; | 
 |     } | 
 |   } | 
 |  | 
 |   // C++11 [dcl.constexpr]p5: | 
 |   //   if no function argument values exist such that the function invocation | 
 |   //   substitution would produce a constant expression, the program is | 
 |   //   ill-formed; no diagnostic required. | 
 |   // C++11 [dcl.constexpr]p3: | 
 |   //   - every constructor call and implicit conversion used in initializing the | 
 |   //     return value shall be one of those allowed in a constant expression. | 
 |   // C++11 [dcl.constexpr]p4: | 
 |   //   - every constructor involved in initializing non-static data members and | 
 |   //     base class sub-objects shall be a constexpr constructor. | 
 |   llvm::SmallVector<PartialDiagnosticAt, 8> Diags; | 
 |   if (!Expr::isPotentialConstantExpr(Dcl, Diags)) { | 
 |     Diag(Dcl->getLocation(), diag::err_constexpr_function_never_constant_expr) | 
 |       << isa<CXXConstructorDecl>(Dcl); | 
 |     for (size_t I = 0, N = Diags.size(); I != N; ++I) | 
 |       Diag(Diags[I].first, Diags[I].second); | 
 |     return false; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// isCurrentClassName - Determine whether the identifier II is the | 
 | /// name of the class type currently being defined. In the case of | 
 | /// nested classes, this will only return true if II is the name of | 
 | /// the innermost class. | 
 | bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *, | 
 |                               const CXXScopeSpec *SS) { | 
 |   assert(getLangOptions().CPlusPlus && "No class names in C!"); | 
 |  | 
 |   CXXRecordDecl *CurDecl; | 
 |   if (SS && SS->isSet() && !SS->isInvalid()) { | 
 |     DeclContext *DC = computeDeclContext(*SS, true); | 
 |     CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC); | 
 |   } else | 
 |     CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext); | 
 |  | 
 |   if (CurDecl && CurDecl->getIdentifier()) | 
 |     return &II == CurDecl->getIdentifier(); | 
 |   else | 
 |     return false; | 
 | } | 
 |  | 
 | /// \brief Check the validity of a C++ base class specifier. | 
 | /// | 
 | /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics | 
 | /// and returns NULL otherwise. | 
 | CXXBaseSpecifier * | 
 | Sema::CheckBaseSpecifier(CXXRecordDecl *Class, | 
 |                          SourceRange SpecifierRange, | 
 |                          bool Virtual, AccessSpecifier Access, | 
 |                          TypeSourceInfo *TInfo, | 
 |                          SourceLocation EllipsisLoc) { | 
 |   QualType BaseType = TInfo->getType(); | 
 |  | 
 |   // C++ [class.union]p1: | 
 |   //   A union shall not have base classes. | 
 |   if (Class->isUnion()) { | 
 |     Diag(Class->getLocation(), diag::err_base_clause_on_union) | 
 |       << SpecifierRange; | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (EllipsisLoc.isValid() &&  | 
 |       !TInfo->getType()->containsUnexpandedParameterPack()) { | 
 |     Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) | 
 |       << TInfo->getTypeLoc().getSourceRange(); | 
 |     EllipsisLoc = SourceLocation(); | 
 |   } | 
 |    | 
 |   if (BaseType->isDependentType()) | 
 |     return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, | 
 |                                           Class->getTagKind() == TTK_Class, | 
 |                                           Access, TInfo, EllipsisLoc); | 
 |  | 
 |   SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc(); | 
 |  | 
 |   // Base specifiers must be record types. | 
 |   if (!BaseType->isRecordType()) { | 
 |     Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange; | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // C++ [class.union]p1: | 
 |   //   A union shall not be used as a base class. | 
 |   if (BaseType->isUnionType()) { | 
 |     Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange; | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // C++ [class.derived]p2: | 
 |   //   The class-name in a base-specifier shall not be an incompletely | 
 |   //   defined class. | 
 |   if (RequireCompleteType(BaseLoc, BaseType, | 
 |                           PDiag(diag::err_incomplete_base_class) | 
 |                             << SpecifierRange)) { | 
 |     Class->setInvalidDecl(); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // If the base class is polymorphic or isn't empty, the new one is/isn't, too. | 
 |   RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl(); | 
 |   assert(BaseDecl && "Record type has no declaration"); | 
 |   BaseDecl = BaseDecl->getDefinition(); | 
 |   assert(BaseDecl && "Base type is not incomplete, but has no definition"); | 
 |   CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl); | 
 |   assert(CXXBaseDecl && "Base type is not a C++ type"); | 
 |  | 
 |   // C++ [class]p3: | 
 |   //   If a class is marked final and it appears as a base-type-specifier in  | 
 |   //   base-clause, the program is ill-formed. | 
 |   if (CXXBaseDecl->hasAttr<FinalAttr>()) { | 
 |     Diag(BaseLoc, diag::err_class_marked_final_used_as_base)  | 
 |       << CXXBaseDecl->getDeclName(); | 
 |     Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl) | 
 |       << CXXBaseDecl->getDeclName(); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (BaseDecl->isInvalidDecl()) | 
 |     Class->setInvalidDecl(); | 
 |    | 
 |   // Create the base specifier. | 
 |   return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, | 
 |                                         Class->getTagKind() == TTK_Class, | 
 |                                         Access, TInfo, EllipsisLoc); | 
 | } | 
 |  | 
 | /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is | 
 | /// one entry in the base class list of a class specifier, for | 
 | /// example: | 
 | ///    class foo : public bar, virtual private baz { | 
 | /// 'public bar' and 'virtual private baz' are each base-specifiers. | 
 | BaseResult | 
 | Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange, | 
 |                          bool Virtual, AccessSpecifier Access, | 
 |                          ParsedType basetype, SourceLocation BaseLoc, | 
 |                          SourceLocation EllipsisLoc) { | 
 |   if (!classdecl) | 
 |     return true; | 
 |  | 
 |   AdjustDeclIfTemplate(classdecl); | 
 |   CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl); | 
 |   if (!Class) | 
 |     return true; | 
 |  | 
 |   TypeSourceInfo *TInfo = 0; | 
 |   GetTypeFromParser(basetype, &TInfo); | 
 |  | 
 |   if (EllipsisLoc.isInvalid() && | 
 |       DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,  | 
 |                                       UPPC_BaseType)) | 
 |     return true; | 
 |    | 
 |   if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange, | 
 |                                                       Virtual, Access, TInfo, | 
 |                                                       EllipsisLoc)) | 
 |     return BaseSpec; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// \brief Performs the actual work of attaching the given base class | 
 | /// specifiers to a C++ class. | 
 | bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases, | 
 |                                 unsigned NumBases) { | 
 |  if (NumBases == 0) | 
 |     return false; | 
 |  | 
 |   // Used to keep track of which base types we have already seen, so | 
 |   // that we can properly diagnose redundant direct base types. Note | 
 |   // that the key is always the unqualified canonical type of the base | 
 |   // class. | 
 |   std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes; | 
 |  | 
 |   // Copy non-redundant base specifiers into permanent storage. | 
 |   unsigned NumGoodBases = 0; | 
 |   bool Invalid = false; | 
 |   for (unsigned idx = 0; idx < NumBases; ++idx) { | 
 |     QualType NewBaseType | 
 |       = Context.getCanonicalType(Bases[idx]->getType()); | 
 |     NewBaseType = NewBaseType.getLocalUnqualifiedType(); | 
 |     if (KnownBaseTypes[NewBaseType]) { | 
 |       // C++ [class.mi]p3: | 
 |       //   A class shall not be specified as a direct base class of a | 
 |       //   derived class more than once. | 
 |       Diag(Bases[idx]->getSourceRange().getBegin(), | 
 |            diag::err_duplicate_base_class) | 
 |         << KnownBaseTypes[NewBaseType]->getType() | 
 |         << Bases[idx]->getSourceRange(); | 
 |  | 
 |       // Delete the duplicate base class specifier; we're going to | 
 |       // overwrite its pointer later. | 
 |       Context.Deallocate(Bases[idx]); | 
 |  | 
 |       Invalid = true; | 
 |     } else { | 
 |       // Okay, add this new base class. | 
 |       KnownBaseTypes[NewBaseType] = Bases[idx]; | 
 |       Bases[NumGoodBases++] = Bases[idx]; | 
 |       if (const RecordType *Record = NewBaseType->getAs<RecordType>()) | 
 |         if (const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl())) | 
 |           if (RD->hasAttr<WeakAttr>()) | 
 |             Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context)); | 
 |     } | 
 |   } | 
 |  | 
 |   // Attach the remaining base class specifiers to the derived class. | 
 |   Class->setBases(Bases, NumGoodBases); | 
 |  | 
 |   // Delete the remaining (good) base class specifiers, since their | 
 |   // data has been copied into the CXXRecordDecl. | 
 |   for (unsigned idx = 0; idx < NumGoodBases; ++idx) | 
 |     Context.Deallocate(Bases[idx]); | 
 |  | 
 |   return Invalid; | 
 | } | 
 |  | 
 | /// ActOnBaseSpecifiers - Attach the given base specifiers to the | 
 | /// class, after checking whether there are any duplicate base | 
 | /// classes. | 
 | void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases, | 
 |                                unsigned NumBases) { | 
 |   if (!ClassDecl || !Bases || !NumBases) | 
 |     return; | 
 |  | 
 |   AdjustDeclIfTemplate(ClassDecl); | 
 |   AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), | 
 |                        (CXXBaseSpecifier**)(Bases), NumBases); | 
 | } | 
 |  | 
 | static CXXRecordDecl *GetClassForType(QualType T) { | 
 |   if (const RecordType *RT = T->getAs<RecordType>()) | 
 |     return cast<CXXRecordDecl>(RT->getDecl()); | 
 |   else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>()) | 
 |     return ICT->getDecl(); | 
 |   else | 
 |     return 0; | 
 | } | 
 |  | 
 | /// \brief Determine whether the type \p Derived is a C++ class that is | 
 | /// derived from the type \p Base. | 
 | bool Sema::IsDerivedFrom(QualType Derived, QualType Base) { | 
 |   if (!getLangOptions().CPlusPlus) | 
 |     return false; | 
 |    | 
 |   CXXRecordDecl *DerivedRD = GetClassForType(Derived); | 
 |   if (!DerivedRD) | 
 |     return false; | 
 |    | 
 |   CXXRecordDecl *BaseRD = GetClassForType(Base); | 
 |   if (!BaseRD) | 
 |     return false; | 
 |    | 
 |   // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this. | 
 |   return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD); | 
 | } | 
 |  | 
 | /// \brief Determine whether the type \p Derived is a C++ class that is | 
 | /// derived from the type \p Base. | 
 | bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) { | 
 |   if (!getLangOptions().CPlusPlus) | 
 |     return false; | 
 |    | 
 |   CXXRecordDecl *DerivedRD = GetClassForType(Derived); | 
 |   if (!DerivedRD) | 
 |     return false; | 
 |    | 
 |   CXXRecordDecl *BaseRD = GetClassForType(Base); | 
 |   if (!BaseRD) | 
 |     return false; | 
 |    | 
 |   return DerivedRD->isDerivedFrom(BaseRD, Paths); | 
 | } | 
 |  | 
 | void Sema::BuildBasePathArray(const CXXBasePaths &Paths,  | 
 |                               CXXCastPath &BasePathArray) { | 
 |   assert(BasePathArray.empty() && "Base path array must be empty!"); | 
 |   assert(Paths.isRecordingPaths() && "Must record paths!"); | 
 |    | 
 |   const CXXBasePath &Path = Paths.front(); | 
 |         | 
 |   // We first go backward and check if we have a virtual base. | 
 |   // FIXME: It would be better if CXXBasePath had the base specifier for | 
 |   // the nearest virtual base. | 
 |   unsigned Start = 0; | 
 |   for (unsigned I = Path.size(); I != 0; --I) { | 
 |     if (Path[I - 1].Base->isVirtual()) { | 
 |       Start = I - 1; | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   // Now add all bases. | 
 |   for (unsigned I = Start, E = Path.size(); I != E; ++I) | 
 |     BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base)); | 
 | } | 
 |  | 
 | /// \brief Determine whether the given base path includes a virtual | 
 | /// base class. | 
 | bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) { | 
 |   for (CXXCastPath::const_iterator B = BasePath.begin(),  | 
 |                                 BEnd = BasePath.end(); | 
 |        B != BEnd; ++B) | 
 |     if ((*B)->isVirtual()) | 
 |       return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// CheckDerivedToBaseConversion - Check whether the Derived-to-Base | 
 | /// conversion (where Derived and Base are class types) is | 
 | /// well-formed, meaning that the conversion is unambiguous (and | 
 | /// that all of the base classes are accessible). Returns true | 
 | /// and emits a diagnostic if the code is ill-formed, returns false | 
 | /// otherwise. Loc is the location where this routine should point to | 
 | /// if there is an error, and Range is the source range to highlight | 
 | /// if there is an error. | 
 | bool | 
 | Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, | 
 |                                    unsigned InaccessibleBaseID, | 
 |                                    unsigned AmbigiousBaseConvID, | 
 |                                    SourceLocation Loc, SourceRange Range, | 
 |                                    DeclarationName Name, | 
 |                                    CXXCastPath *BasePath) { | 
 |   // First, determine whether the path from Derived to Base is | 
 |   // ambiguous. This is slightly more expensive than checking whether | 
 |   // the Derived to Base conversion exists, because here we need to | 
 |   // explore multiple paths to determine if there is an ambiguity. | 
 |   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, | 
 |                      /*DetectVirtual=*/false); | 
 |   bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths); | 
 |   assert(DerivationOkay && | 
 |          "Can only be used with a derived-to-base conversion"); | 
 |   (void)DerivationOkay; | 
 |    | 
 |   if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) { | 
 |     if (InaccessibleBaseID) { | 
 |       // Check that the base class can be accessed. | 
 |       switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(), | 
 |                                    InaccessibleBaseID)) { | 
 |         case AR_inaccessible:  | 
 |           return true; | 
 |         case AR_accessible:  | 
 |         case AR_dependent: | 
 |         case AR_delayed: | 
 |           break; | 
 |       } | 
 |     } | 
 |      | 
 |     // Build a base path if necessary. | 
 |     if (BasePath) | 
 |       BuildBasePathArray(Paths, *BasePath); | 
 |     return false; | 
 |   } | 
 |    | 
 |   // We know that the derived-to-base conversion is ambiguous, and | 
 |   // we're going to produce a diagnostic. Perform the derived-to-base | 
 |   // search just one more time to compute all of the possible paths so | 
 |   // that we can print them out. This is more expensive than any of | 
 |   // the previous derived-to-base checks we've done, but at this point | 
 |   // performance isn't as much of an issue. | 
 |   Paths.clear(); | 
 |   Paths.setRecordingPaths(true); | 
 |   bool StillOkay = IsDerivedFrom(Derived, Base, Paths); | 
 |   assert(StillOkay && "Can only be used with a derived-to-base conversion"); | 
 |   (void)StillOkay; | 
 |    | 
 |   // Build up a textual representation of the ambiguous paths, e.g., | 
 |   // D -> B -> A, that will be used to illustrate the ambiguous | 
 |   // conversions in the diagnostic. We only print one of the paths | 
 |   // to each base class subobject. | 
 |   std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); | 
 |    | 
 |   Diag(Loc, AmbigiousBaseConvID) | 
 |   << Derived << Base << PathDisplayStr << Range << Name; | 
 |   return true; | 
 | } | 
 |  | 
 | bool | 
 | Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, | 
 |                                    SourceLocation Loc, SourceRange Range, | 
 |                                    CXXCastPath *BasePath, | 
 |                                    bool IgnoreAccess) { | 
 |   return CheckDerivedToBaseConversion(Derived, Base, | 
 |                                       IgnoreAccess ? 0 | 
 |                                        : diag::err_upcast_to_inaccessible_base, | 
 |                                       diag::err_ambiguous_derived_to_base_conv, | 
 |                                       Loc, Range, DeclarationName(),  | 
 |                                       BasePath); | 
 | } | 
 |  | 
 |  | 
 | /// @brief Builds a string representing ambiguous paths from a | 
 | /// specific derived class to different subobjects of the same base | 
 | /// class. | 
 | /// | 
 | /// This function builds a string that can be used in error messages | 
 | /// to show the different paths that one can take through the | 
 | /// inheritance hierarchy to go from the derived class to different | 
 | /// subobjects of a base class. The result looks something like this: | 
 | /// @code | 
 | /// struct D -> struct B -> struct A | 
 | /// struct D -> struct C -> struct A | 
 | /// @endcode | 
 | std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) { | 
 |   std::string PathDisplayStr; | 
 |   std::set<unsigned> DisplayedPaths; | 
 |   for (CXXBasePaths::paths_iterator Path = Paths.begin(); | 
 |        Path != Paths.end(); ++Path) { | 
 |     if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) { | 
 |       // We haven't displayed a path to this particular base | 
 |       // class subobject yet. | 
 |       PathDisplayStr += "\n    "; | 
 |       PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString(); | 
 |       for (CXXBasePath::const_iterator Element = Path->begin(); | 
 |            Element != Path->end(); ++Element) | 
 |         PathDisplayStr += " -> " + Element->Base->getType().getAsString(); | 
 |     } | 
 |   } | 
 |    | 
 |   return PathDisplayStr; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // C++ class member Handling | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// ActOnAccessSpecifier - Parsed an access specifier followed by a colon. | 
 | bool Sema::ActOnAccessSpecifier(AccessSpecifier Access, | 
 |                                 SourceLocation ASLoc, | 
 |                                 SourceLocation ColonLoc, | 
 |                                 AttributeList *Attrs) { | 
 |   assert(Access != AS_none && "Invalid kind for syntactic access specifier!"); | 
 |   AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext, | 
 |                                                   ASLoc, ColonLoc); | 
 |   CurContext->addHiddenDecl(ASDecl); | 
 |   return ProcessAccessDeclAttributeList(ASDecl, Attrs); | 
 | } | 
 |  | 
 | /// CheckOverrideControl - Check C++0x override control semantics. | 
 | void Sema::CheckOverrideControl(const Decl *D) { | 
 |   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D); | 
 |   if (!MD || !MD->isVirtual()) | 
 |     return; | 
 |  | 
 |   if (MD->isDependentContext()) | 
 |     return; | 
 |  | 
 |   // C++0x [class.virtual]p3: | 
 |   //   If a virtual function is marked with the virt-specifier override and does | 
 |   //   not override a member function of a base class,  | 
 |   //   the program is ill-formed. | 
 |   bool HasOverriddenMethods =  | 
 |     MD->begin_overridden_methods() != MD->end_overridden_methods(); | 
 |   if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) { | 
 |     Diag(MD->getLocation(),  | 
 |                  diag::err_function_marked_override_not_overriding) | 
 |       << MD->getDeclName(); | 
 |     return; | 
 |   } | 
 | } | 
 |  | 
 | /// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member  | 
 | /// function overrides a virtual member function marked 'final', according to | 
 | /// C++0x [class.virtual]p3. | 
 | bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New, | 
 |                                                   const CXXMethodDecl *Old) { | 
 |   if (!Old->hasAttr<FinalAttr>()) | 
 |     return false; | 
 |  | 
 |   Diag(New->getLocation(), diag::err_final_function_overridden) | 
 |     << New->getDeclName(); | 
 |   Diag(Old->getLocation(), diag::note_overridden_virtual_function); | 
 |   return true; | 
 | } | 
 |  | 
 | /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member | 
 | /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the | 
 | /// bitfield width if there is one, 'InitExpr' specifies the initializer if | 
 | /// one has been parsed, and 'HasDeferredInit' is true if an initializer is | 
 | /// present but parsing it has been deferred. | 
 | Decl * | 
 | Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D, | 
 |                                MultiTemplateParamsArg TemplateParameterLists, | 
 |                                Expr *BW, const VirtSpecifiers &VS, | 
 |                                bool HasDeferredInit) { | 
 |   const DeclSpec &DS = D.getDeclSpec(); | 
 |   DeclarationNameInfo NameInfo = GetNameForDeclarator(D); | 
 |   DeclarationName Name = NameInfo.getName(); | 
 |   SourceLocation Loc = NameInfo.getLoc(); | 
 |  | 
 |   // For anonymous bitfields, the location should point to the type. | 
 |   if (Loc.isInvalid()) | 
 |     Loc = D.getSourceRange().getBegin(); | 
 |  | 
 |   Expr *BitWidth = static_cast<Expr*>(BW); | 
 |  | 
 |   assert(isa<CXXRecordDecl>(CurContext)); | 
 |   assert(!DS.isFriendSpecified()); | 
 |  | 
 |   bool isFunc = D.isDeclarationOfFunction(); | 
 |  | 
 |   // C++ 9.2p6: A member shall not be declared to have automatic storage | 
 |   // duration (auto, register) or with the extern storage-class-specifier. | 
 |   // C++ 7.1.1p8: The mutable specifier can be applied only to names of class | 
 |   // data members and cannot be applied to names declared const or static, | 
 |   // and cannot be applied to reference members. | 
 |   switch (DS.getStorageClassSpec()) { | 
 |     case DeclSpec::SCS_unspecified: | 
 |     case DeclSpec::SCS_typedef: | 
 |     case DeclSpec::SCS_static: | 
 |       // FALL THROUGH. | 
 |       break; | 
 |     case DeclSpec::SCS_mutable: | 
 |       if (isFunc) { | 
 |         if (DS.getStorageClassSpecLoc().isValid()) | 
 |           Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function); | 
 |         else | 
 |           Diag(DS.getThreadSpecLoc(), diag::err_mutable_function); | 
 |  | 
 |         // FIXME: It would be nicer if the keyword was ignored only for this | 
 |         // declarator. Otherwise we could get follow-up errors. | 
 |         D.getMutableDeclSpec().ClearStorageClassSpecs(); | 
 |       } | 
 |       break; | 
 |     default: | 
 |       if (DS.getStorageClassSpecLoc().isValid()) | 
 |         Diag(DS.getStorageClassSpecLoc(), | 
 |              diag::err_storageclass_invalid_for_member); | 
 |       else | 
 |         Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member); | 
 |       D.getMutableDeclSpec().ClearStorageClassSpecs(); | 
 |   } | 
 |  | 
 |   bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified || | 
 |                        DS.getStorageClassSpec() == DeclSpec::SCS_mutable) && | 
 |                       !isFunc); | 
 |  | 
 |   Decl *Member; | 
 |   if (isInstField) { | 
 |     CXXScopeSpec &SS = D.getCXXScopeSpec(); | 
 |  | 
 |     // Data members must have identifiers for names. | 
 |     if (Name.getNameKind() != DeclarationName::Identifier) { | 
 |       Diag(Loc, diag::err_bad_variable_name) | 
 |         << Name; | 
 |       return 0; | 
 |     } | 
 |      | 
 |     IdentifierInfo *II = Name.getAsIdentifierInfo(); | 
 |  | 
 |     // Member field could not be with "template" keyword. | 
 |     // So TemplateParameterLists should be empty in this case. | 
 |     if (TemplateParameterLists.size()) { | 
 |       TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0]; | 
 |       if (TemplateParams->size()) { | 
 |         // There is no such thing as a member field template. | 
 |         Diag(D.getIdentifierLoc(), diag::err_template_member) | 
 |             << II | 
 |             << SourceRange(TemplateParams->getTemplateLoc(), | 
 |                 TemplateParams->getRAngleLoc()); | 
 |       } else { | 
 |         // There is an extraneous 'template<>' for this member. | 
 |         Diag(TemplateParams->getTemplateLoc(), | 
 |             diag::err_template_member_noparams) | 
 |             << II | 
 |             << SourceRange(TemplateParams->getTemplateLoc(), | 
 |                 TemplateParams->getRAngleLoc()); | 
 |       } | 
 |       return 0; | 
 |     } | 
 |  | 
 |     if (SS.isSet() && !SS.isInvalid()) { | 
 |       // The user provided a superfluous scope specifier inside a class | 
 |       // definition: | 
 |       // | 
 |       // class X { | 
 |       //   int X::member; | 
 |       // }; | 
 |       DeclContext *DC = 0; | 
 |       if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext)) | 
 |         Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification) | 
 |           << Name << FixItHint::CreateRemoval(SS.getRange()); | 
 |       else | 
 |         Diag(D.getIdentifierLoc(), diag::err_member_qualification) | 
 |           << Name << SS.getRange(); | 
 |        | 
 |       SS.clear(); | 
 |     } | 
 |  | 
 |     Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth, | 
 |                          HasDeferredInit, AS); | 
 |     assert(Member && "HandleField never returns null"); | 
 |   } else { | 
 |     assert(!HasDeferredInit); | 
 |  | 
 |     Member = HandleDeclarator(S, D, move(TemplateParameterLists)); | 
 |     if (!Member) { | 
 |       return 0; | 
 |     } | 
 |  | 
 |     // Non-instance-fields can't have a bitfield. | 
 |     if (BitWidth) { | 
 |       if (Member->isInvalidDecl()) { | 
 |         // don't emit another diagnostic. | 
 |       } else if (isa<VarDecl>(Member)) { | 
 |         // C++ 9.6p3: A bit-field shall not be a static member. | 
 |         // "static member 'A' cannot be a bit-field" | 
 |         Diag(Loc, diag::err_static_not_bitfield) | 
 |           << Name << BitWidth->getSourceRange(); | 
 |       } else if (isa<TypedefDecl>(Member)) { | 
 |         // "typedef member 'x' cannot be a bit-field" | 
 |         Diag(Loc, diag::err_typedef_not_bitfield) | 
 |           << Name << BitWidth->getSourceRange(); | 
 |       } else { | 
 |         // A function typedef ("typedef int f(); f a;"). | 
 |         // C++ 9.6p3: A bit-field shall have integral or enumeration type. | 
 |         Diag(Loc, diag::err_not_integral_type_bitfield) | 
 |           << Name << cast<ValueDecl>(Member)->getType() | 
 |           << BitWidth->getSourceRange(); | 
 |       } | 
 |  | 
 |       BitWidth = 0; | 
 |       Member->setInvalidDecl(); | 
 |     } | 
 |  | 
 |     Member->setAccess(AS); | 
 |  | 
 |     // If we have declared a member function template, set the access of the | 
 |     // templated declaration as well. | 
 |     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member)) | 
 |       FunTmpl->getTemplatedDecl()->setAccess(AS); | 
 |   } | 
 |  | 
 |   if (VS.isOverrideSpecified()) { | 
 |     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member); | 
 |     if (!MD || !MD->isVirtual()) { | 
 |       Diag(Member->getLocStart(),  | 
 |            diag::override_keyword_only_allowed_on_virtual_member_functions) | 
 |         << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc()); | 
 |     } else | 
 |       MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context)); | 
 |   } | 
 |   if (VS.isFinalSpecified()) { | 
 |     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member); | 
 |     if (!MD || !MD->isVirtual()) { | 
 |       Diag(Member->getLocStart(),  | 
 |            diag::override_keyword_only_allowed_on_virtual_member_functions) | 
 |       << "final" << FixItHint::CreateRemoval(VS.getFinalLoc()); | 
 |     } else | 
 |       MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context)); | 
 |   } | 
 |  | 
 |   if (VS.getLastLocation().isValid()) { | 
 |     // Update the end location of a method that has a virt-specifiers. | 
 |     if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member)) | 
 |       MD->setRangeEnd(VS.getLastLocation()); | 
 |   } | 
 |        | 
 |   CheckOverrideControl(Member); | 
 |  | 
 |   assert((Name || isInstField) && "No identifier for non-field ?"); | 
 |  | 
 |   if (isInstField) | 
 |     FieldCollector->Add(cast<FieldDecl>(Member)); | 
 |   return Member; | 
 | } | 
 |  | 
 | /// ActOnCXXInClassMemberInitializer - This is invoked after parsing an | 
 | /// in-class initializer for a non-static C++ class member, and after | 
 | /// instantiating an in-class initializer in a class template. Such actions | 
 | /// are deferred until the class is complete. | 
 | void | 
 | Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc, | 
 |                                        Expr *InitExpr) { | 
 |   FieldDecl *FD = cast<FieldDecl>(D); | 
 |  | 
 |   if (!InitExpr) { | 
 |     FD->setInvalidDecl(); | 
 |     FD->removeInClassInitializer(); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) { | 
 |     FD->setInvalidDecl(); | 
 |     FD->removeInClassInitializer(); | 
 |     return; | 
 |   } | 
 |  | 
 |   ExprResult Init = InitExpr; | 
 |   if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) { | 
 |     // FIXME: if there is no EqualLoc, this is list-initialization. | 
 |     Init = PerformCopyInitialization( | 
 |       InitializedEntity::InitializeMember(FD), EqualLoc, InitExpr); | 
 |     if (Init.isInvalid()) { | 
 |       FD->setInvalidDecl(); | 
 |       return; | 
 |     } | 
 |  | 
 |     CheckImplicitConversions(Init.get(), EqualLoc); | 
 |   } | 
 |  | 
 |   // C++0x [class.base.init]p7: | 
 |   //   The initialization of each base and member constitutes a | 
 |   //   full-expression. | 
 |   Init = MaybeCreateExprWithCleanups(Init); | 
 |   if (Init.isInvalid()) { | 
 |     FD->setInvalidDecl(); | 
 |     return; | 
 |   } | 
 |  | 
 |   InitExpr = Init.release(); | 
 |  | 
 |   FD->setInClassInitializer(InitExpr); | 
 | } | 
 |  | 
 | /// \brief Find the direct and/or virtual base specifiers that | 
 | /// correspond to the given base type, for use in base initialization | 
 | /// within a constructor. | 
 | static bool FindBaseInitializer(Sema &SemaRef,  | 
 |                                 CXXRecordDecl *ClassDecl, | 
 |                                 QualType BaseType, | 
 |                                 const CXXBaseSpecifier *&DirectBaseSpec, | 
 |                                 const CXXBaseSpecifier *&VirtualBaseSpec) { | 
 |   // First, check for a direct base class. | 
 |   DirectBaseSpec = 0; | 
 |   for (CXXRecordDecl::base_class_const_iterator Base | 
 |          = ClassDecl->bases_begin();  | 
 |        Base != ClassDecl->bases_end(); ++Base) { | 
 |     if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) { | 
 |       // We found a direct base of this type. That's what we're | 
 |       // initializing. | 
 |       DirectBaseSpec = &*Base; | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   // Check for a virtual base class. | 
 |   // FIXME: We might be able to short-circuit this if we know in advance that | 
 |   // there are no virtual bases. | 
 |   VirtualBaseSpec = 0; | 
 |   if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) { | 
 |     // We haven't found a base yet; search the class hierarchy for a | 
 |     // virtual base class. | 
 |     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, | 
 |                        /*DetectVirtual=*/false); | 
 |     if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),  | 
 |                               BaseType, Paths)) { | 
 |       for (CXXBasePaths::paths_iterator Path = Paths.begin(); | 
 |            Path != Paths.end(); ++Path) { | 
 |         if (Path->back().Base->isVirtual()) { | 
 |           VirtualBaseSpec = Path->back().Base; | 
 |           break; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return DirectBaseSpec || VirtualBaseSpec; | 
 | } | 
 |  | 
 | /// \brief Handle a C++ member initializer using braced-init-list syntax. | 
 | MemInitResult | 
 | Sema::ActOnMemInitializer(Decl *ConstructorD, | 
 |                           Scope *S, | 
 |                           CXXScopeSpec &SS, | 
 |                           IdentifierInfo *MemberOrBase, | 
 |                           ParsedType TemplateTypeTy, | 
 |                           const DeclSpec &DS, | 
 |                           SourceLocation IdLoc, | 
 |                           Expr *InitList, | 
 |                           SourceLocation EllipsisLoc) { | 
 |   return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy, | 
 |                              DS, IdLoc, InitList, | 
 |                              EllipsisLoc); | 
 | } | 
 |  | 
 | /// \brief Handle a C++ member initializer using parentheses syntax. | 
 | MemInitResult | 
 | Sema::ActOnMemInitializer(Decl *ConstructorD, | 
 |                           Scope *S, | 
 |                           CXXScopeSpec &SS, | 
 |                           IdentifierInfo *MemberOrBase, | 
 |                           ParsedType TemplateTypeTy, | 
 |                           const DeclSpec &DS, | 
 |                           SourceLocation IdLoc, | 
 |                           SourceLocation LParenLoc, | 
 |                           Expr **Args, unsigned NumArgs, | 
 |                           SourceLocation RParenLoc, | 
 |                           SourceLocation EllipsisLoc) { | 
 |   Expr *List = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs, | 
 |                                            RParenLoc); | 
 |   return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy, | 
 |                              DS, IdLoc, List, EllipsisLoc); | 
 | } | 
 |  | 
 | namespace { | 
 |  | 
 | // Callback to only accept typo corrections that can be a valid C++ member | 
 | // intializer: either a non-static field member or a base class. | 
 | class MemInitializerValidatorCCC : public CorrectionCandidateCallback { | 
 |  public: | 
 |   explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl) | 
 |       : ClassDecl(ClassDecl) {} | 
 |  | 
 |   virtual bool ValidateCandidate(const TypoCorrection &candidate) { | 
 |     if (NamedDecl *ND = candidate.getCorrectionDecl()) { | 
 |       if (FieldDecl *Member = dyn_cast<FieldDecl>(ND)) | 
 |         return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl); | 
 |       else | 
 |         return isa<TypeDecl>(ND); | 
 |     } | 
 |     return false; | 
 |   } | 
 |  | 
 |  private: | 
 |   CXXRecordDecl *ClassDecl; | 
 | }; | 
 |  | 
 | } | 
 |  | 
 | /// \brief Handle a C++ member initializer. | 
 | MemInitResult | 
 | Sema::BuildMemInitializer(Decl *ConstructorD, | 
 |                           Scope *S, | 
 |                           CXXScopeSpec &SS, | 
 |                           IdentifierInfo *MemberOrBase, | 
 |                           ParsedType TemplateTypeTy, | 
 |                           const DeclSpec &DS, | 
 |                           SourceLocation IdLoc, | 
 |                           Expr *Init, | 
 |                           SourceLocation EllipsisLoc) { | 
 |   if (!ConstructorD) | 
 |     return true; | 
 |  | 
 |   AdjustDeclIfTemplate(ConstructorD); | 
 |  | 
 |   CXXConstructorDecl *Constructor | 
 |     = dyn_cast<CXXConstructorDecl>(ConstructorD); | 
 |   if (!Constructor) { | 
 |     // The user wrote a constructor initializer on a function that is | 
 |     // not a C++ constructor. Ignore the error for now, because we may | 
 |     // have more member initializers coming; we'll diagnose it just | 
 |     // once in ActOnMemInitializers. | 
 |     return true; | 
 |   } | 
 |  | 
 |   CXXRecordDecl *ClassDecl = Constructor->getParent(); | 
 |  | 
 |   // C++ [class.base.init]p2: | 
 |   //   Names in a mem-initializer-id are looked up in the scope of the | 
 |   //   constructor's class and, if not found in that scope, are looked | 
 |   //   up in the scope containing the constructor's definition. | 
 |   //   [Note: if the constructor's class contains a member with the | 
 |   //   same name as a direct or virtual base class of the class, a | 
 |   //   mem-initializer-id naming the member or base class and composed | 
 |   //   of a single identifier refers to the class member. A | 
 |   //   mem-initializer-id for the hidden base class may be specified | 
 |   //   using a qualified name. ] | 
 |   if (!SS.getScopeRep() && !TemplateTypeTy) { | 
 |     // Look for a member, first. | 
 |     DeclContext::lookup_result Result | 
 |       = ClassDecl->lookup(MemberOrBase); | 
 |     if (Result.first != Result.second) { | 
 |       ValueDecl *Member; | 
 |       if ((Member = dyn_cast<FieldDecl>(*Result.first)) || | 
 |           (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) { | 
 |         if (EllipsisLoc.isValid()) | 
 |           Diag(EllipsisLoc, diag::err_pack_expansion_member_init) | 
 |             << MemberOrBase | 
 |             << SourceRange(IdLoc, Init->getSourceRange().getEnd()); | 
 |  | 
 |         return BuildMemberInitializer(Member, Init, IdLoc); | 
 |       } | 
 |     } | 
 |   } | 
 |   // It didn't name a member, so see if it names a class. | 
 |   QualType BaseType; | 
 |   TypeSourceInfo *TInfo = 0; | 
 |  | 
 |   if (TemplateTypeTy) { | 
 |     BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo); | 
 |   } else if (DS.getTypeSpecType() == TST_decltype) { | 
 |     BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc()); | 
 |   } else { | 
 |     LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName); | 
 |     LookupParsedName(R, S, &SS); | 
 |  | 
 |     TypeDecl *TyD = R.getAsSingle<TypeDecl>(); | 
 |     if (!TyD) { | 
 |       if (R.isAmbiguous()) return true; | 
 |  | 
 |       // We don't want access-control diagnostics here. | 
 |       R.suppressDiagnostics(); | 
 |  | 
 |       if (SS.isSet() && isDependentScopeSpecifier(SS)) { | 
 |         bool NotUnknownSpecialization = false; | 
 |         DeclContext *DC = computeDeclContext(SS, false); | 
 |         if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))  | 
 |           NotUnknownSpecialization = !Record->hasAnyDependentBases(); | 
 |  | 
 |         if (!NotUnknownSpecialization) { | 
 |           // When the scope specifier can refer to a member of an unknown | 
 |           // specialization, we take it as a type name. | 
 |           BaseType = CheckTypenameType(ETK_None, SourceLocation(), | 
 |                                        SS.getWithLocInContext(Context), | 
 |                                        *MemberOrBase, IdLoc); | 
 |           if (BaseType.isNull()) | 
 |             return true; | 
 |  | 
 |           R.clear(); | 
 |           R.setLookupName(MemberOrBase); | 
 |         } | 
 |       } | 
 |  | 
 |       // If no results were found, try to correct typos. | 
 |       TypoCorrection Corr; | 
 |       MemInitializerValidatorCCC Validator(ClassDecl); | 
 |       if (R.empty() && BaseType.isNull() && | 
 |           (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, | 
 |                               Validator, ClassDecl))) { | 
 |         std::string CorrectedStr(Corr.getAsString(getLangOptions())); | 
 |         std::string CorrectedQuotedStr(Corr.getQuoted(getLangOptions())); | 
 |         if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) { | 
 |           // We have found a non-static data member with a similar | 
 |           // name to what was typed; complain and initialize that | 
 |           // member. | 
 |           Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest) | 
 |             << MemberOrBase << true << CorrectedQuotedStr | 
 |             << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr); | 
 |           Diag(Member->getLocation(), diag::note_previous_decl) | 
 |             << CorrectedQuotedStr; | 
 |  | 
 |           return BuildMemberInitializer(Member, Init, IdLoc); | 
 |         } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) { | 
 |           const CXXBaseSpecifier *DirectBaseSpec; | 
 |           const CXXBaseSpecifier *VirtualBaseSpec; | 
 |           if (FindBaseInitializer(*this, ClassDecl,  | 
 |                                   Context.getTypeDeclType(Type), | 
 |                                   DirectBaseSpec, VirtualBaseSpec)) { | 
 |             // We have found a direct or virtual base class with a | 
 |             // similar name to what was typed; complain and initialize | 
 |             // that base class. | 
 |             Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest) | 
 |               << MemberOrBase << false << CorrectedQuotedStr | 
 |               << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr); | 
 |  | 
 |             const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec  | 
 |                                                              : VirtualBaseSpec; | 
 |             Diag(BaseSpec->getSourceRange().getBegin(), | 
 |                  diag::note_base_class_specified_here) | 
 |               << BaseSpec->getType() | 
 |               << BaseSpec->getSourceRange(); | 
 |  | 
 |             TyD = Type; | 
 |           } | 
 |         } | 
 |       } | 
 |  | 
 |       if (!TyD && BaseType.isNull()) { | 
 |         Diag(IdLoc, diag::err_mem_init_not_member_or_class) | 
 |           << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd()); | 
 |         return true; | 
 |       } | 
 |     } | 
 |  | 
 |     if (BaseType.isNull()) { | 
 |       BaseType = Context.getTypeDeclType(TyD); | 
 |       if (SS.isSet()) { | 
 |         NestedNameSpecifier *Qualifier = | 
 |           static_cast<NestedNameSpecifier*>(SS.getScopeRep()); | 
 |  | 
 |         // FIXME: preserve source range information | 
 |         BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (!TInfo) | 
 |     TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc); | 
 |  | 
 |   return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc); | 
 | } | 
 |  | 
 | /// Checks a member initializer expression for cases where reference (or | 
 | /// pointer) members are bound to by-value parameters (or their addresses). | 
 | static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member, | 
 |                                                Expr *Init, | 
 |                                                SourceLocation IdLoc) { | 
 |   QualType MemberTy = Member->getType(); | 
 |  | 
 |   // We only handle pointers and references currently. | 
 |   // FIXME: Would this be relevant for ObjC object pointers? Or block pointers? | 
 |   if (!MemberTy->isReferenceType() && !MemberTy->isPointerType()) | 
 |     return; | 
 |  | 
 |   const bool IsPointer = MemberTy->isPointerType(); | 
 |   if (IsPointer) { | 
 |     if (const UnaryOperator *Op | 
 |           = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) { | 
 |       // The only case we're worried about with pointers requires taking the | 
 |       // address. | 
 |       if (Op->getOpcode() != UO_AddrOf) | 
 |         return; | 
 |  | 
 |       Init = Op->getSubExpr(); | 
 |     } else { | 
 |       // We only handle address-of expression initializers for pointers. | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) { | 
 |     // Taking the address of a temporary will be diagnosed as a hard error. | 
 |     if (IsPointer) | 
 |       return; | 
 |  | 
 |     S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary) | 
 |       << Member << Init->getSourceRange(); | 
 |   } else if (const DeclRefExpr *DRE | 
 |                = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) { | 
 |     // We only warn when referring to a non-reference parameter declaration. | 
 |     const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl()); | 
 |     if (!Parameter || Parameter->getType()->isReferenceType()) | 
 |       return; | 
 |  | 
 |     S.Diag(Init->getExprLoc(), | 
 |            IsPointer ? diag::warn_init_ptr_member_to_parameter_addr | 
 |                      : diag::warn_bind_ref_member_to_parameter) | 
 |       << Member << Parameter << Init->getSourceRange(); | 
 |   } else { | 
 |     // Other initializers are fine. | 
 |     return; | 
 |   } | 
 |  | 
 |   S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here) | 
 |     << (unsigned)IsPointer; | 
 | } | 
 |  | 
 | /// Checks an initializer expression for use of uninitialized fields, such as | 
 | /// containing the field that is being initialized. Returns true if there is an | 
 | /// uninitialized field was used an updates the SourceLocation parameter; false | 
 | /// otherwise. | 
 | static bool InitExprContainsUninitializedFields(const Stmt *S, | 
 |                                                 const ValueDecl *LhsField, | 
 |                                                 SourceLocation *L) { | 
 |   assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField)); | 
 |  | 
 |   if (isa<CallExpr>(S)) { | 
 |     // Do not descend into function calls or constructors, as the use | 
 |     // of an uninitialized field may be valid. One would have to inspect | 
 |     // the contents of the function/ctor to determine if it is safe or not. | 
 |     // i.e. Pass-by-value is never safe, but pass-by-reference and pointers | 
 |     // may be safe, depending on what the function/ctor does. | 
 |     return false; | 
 |   } | 
 |   if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) { | 
 |     const NamedDecl *RhsField = ME->getMemberDecl(); | 
 |  | 
 |     if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) { | 
 |       // The member expression points to a static data member. | 
 |       assert(VD->isStaticDataMember() &&  | 
 |              "Member points to non-static data member!"); | 
 |       (void)VD; | 
 |       return false; | 
 |     } | 
 |      | 
 |     if (isa<EnumConstantDecl>(RhsField)) { | 
 |       // The member expression points to an enum. | 
 |       return false; | 
 |     } | 
 |  | 
 |     if (RhsField == LhsField) { | 
 |       // Initializing a field with itself. Throw a warning. | 
 |       // But wait; there are exceptions! | 
 |       // Exception #1:  The field may not belong to this record. | 
 |       // e.g. Foo(const Foo& rhs) : A(rhs.A) {} | 
 |       const Expr *base = ME->getBase(); | 
 |       if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) { | 
 |         // Even though the field matches, it does not belong to this record. | 
 |         return false; | 
 |       } | 
 |       // None of the exceptions triggered; return true to indicate an | 
 |       // uninitialized field was used. | 
 |       *L = ME->getMemberLoc(); | 
 |       return true; | 
 |     } | 
 |   } else if (isa<UnaryExprOrTypeTraitExpr>(S)) { | 
 |     // sizeof/alignof doesn't reference contents, do not warn. | 
 |     return false; | 
 |   } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) { | 
 |     // address-of doesn't reference contents (the pointer may be dereferenced | 
 |     // in the same expression but it would be rare; and weird). | 
 |     if (UOE->getOpcode() == UO_AddrOf) | 
 |       return false; | 
 |   } | 
 |   for (Stmt::const_child_range it = S->children(); it; ++it) { | 
 |     if (!*it) { | 
 |       // An expression such as 'member(arg ?: "")' may trigger this. | 
 |       continue; | 
 |     } | 
 |     if (InitExprContainsUninitializedFields(*it, LhsField, L)) | 
 |       return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | MemInitResult | 
 | Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init, | 
 |                              SourceLocation IdLoc) { | 
 |   FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member); | 
 |   IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member); | 
 |   assert((DirectMember || IndirectMember) && | 
 |          "Member must be a FieldDecl or IndirectFieldDecl"); | 
 |  | 
 |   if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) | 
 |     return true; | 
 |  | 
 |   if (Member->isInvalidDecl()) | 
 |     return true; | 
 |  | 
 |   // Diagnose value-uses of fields to initialize themselves, e.g. | 
 |   //   foo(foo) | 
 |   // where foo is not also a parameter to the constructor. | 
 |   // TODO: implement -Wuninitialized and fold this into that framework. | 
 |   Expr **Args; | 
 |   unsigned NumArgs; | 
 |   if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { | 
 |     Args = ParenList->getExprs(); | 
 |     NumArgs = ParenList->getNumExprs(); | 
 |   } else { | 
 |     InitListExpr *InitList = cast<InitListExpr>(Init); | 
 |     Args = InitList->getInits(); | 
 |     NumArgs = InitList->getNumInits(); | 
 |   } | 
 |   for (unsigned i = 0; i < NumArgs; ++i) { | 
 |     SourceLocation L; | 
 |     if (InitExprContainsUninitializedFields(Args[i], Member, &L)) { | 
 |       // FIXME: Return true in the case when other fields are used before being | 
 |       // uninitialized. For example, let this field be the i'th field. When | 
 |       // initializing the i'th field, throw a warning if any of the >= i'th | 
 |       // fields are used, as they are not yet initialized. | 
 |       // Right now we are only handling the case where the i'th field uses | 
 |       // itself in its initializer. | 
 |       Diag(L, diag::warn_field_is_uninit); | 
 |     } | 
 |   } | 
 |  | 
 |   SourceRange InitRange = Init->getSourceRange(); | 
 |  | 
 |   if (Member->getType()->isDependentType() || Init->isTypeDependent()) { | 
 |     // Can't check initialization for a member of dependent type or when | 
 |     // any of the arguments are type-dependent expressions. | 
 |     DiscardCleanupsInEvaluationContext(); | 
 |   } else { | 
 |     bool InitList = false; | 
 |     if (isa<InitListExpr>(Init)) { | 
 |       InitList = true; | 
 |       Args = &Init; | 
 |       NumArgs = 1; | 
 |     } | 
 |  | 
 |     // Initialize the member. | 
 |     InitializedEntity MemberEntity = | 
 |       DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0) | 
 |                    : InitializedEntity::InitializeMember(IndirectMember, 0); | 
 |     InitializationKind Kind = | 
 |       InitList ? InitializationKind::CreateDirectList(IdLoc) | 
 |                : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(), | 
 |                                                   InitRange.getEnd()); | 
 |  | 
 |     InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs); | 
 |     ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, | 
 |                                             MultiExprArg(*this, Args, NumArgs), | 
 |                                             0); | 
 |     if (MemberInit.isInvalid()) | 
 |       return true; | 
 |  | 
 |     CheckImplicitConversions(MemberInit.get(), | 
 |                              InitRange.getBegin()); | 
 |  | 
 |     // C++0x [class.base.init]p7: | 
 |     //   The initialization of each base and member constitutes a | 
 |     //   full-expression. | 
 |     MemberInit = MaybeCreateExprWithCleanups(MemberInit); | 
 |     if (MemberInit.isInvalid()) | 
 |       return true; | 
 |  | 
 |     // If we are in a dependent context, template instantiation will | 
 |     // perform this type-checking again. Just save the arguments that we | 
 |     // received. | 
 |     // FIXME: This isn't quite ideal, since our ASTs don't capture all | 
 |     // of the information that we have about the member | 
 |     // initializer. However, deconstructing the ASTs is a dicey process, | 
 |     // and this approach is far more likely to get the corner cases right. | 
 |     if (CurContext->isDependentContext()) { | 
 |       // The existing Init will do fine. | 
 |     } else { | 
 |       Init = MemberInit.get(); | 
 |       CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc); | 
 |     } | 
 |   } | 
 |  | 
 |   if (DirectMember) { | 
 |     return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc, | 
 |                                             InitRange.getBegin(), Init, | 
 |                                             InitRange.getEnd()); | 
 |   } else { | 
 |     return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc, | 
 |                                             InitRange.getBegin(), Init, | 
 |                                             InitRange.getEnd()); | 
 |   } | 
 | } | 
 |  | 
 | MemInitResult | 
 | Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init, | 
 |                                  CXXRecordDecl *ClassDecl) { | 
 |   SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin(); | 
 |   if (!LangOpts.CPlusPlus0x) | 
 |     return Diag(NameLoc, diag::err_delegating_ctor) | 
 |       << TInfo->getTypeLoc().getLocalSourceRange(); | 
 |   Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor); | 
 |  | 
 |   bool InitList = true; | 
 |   Expr **Args = &Init; | 
 |   unsigned NumArgs = 1; | 
 |   if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { | 
 |     InitList = false; | 
 |     Args = ParenList->getExprs(); | 
 |     NumArgs = ParenList->getNumExprs(); | 
 |   } | 
 |  | 
 |   SourceRange InitRange = Init->getSourceRange(); | 
 |   // Initialize the object. | 
 |   InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation( | 
 |                                      QualType(ClassDecl->getTypeForDecl(), 0)); | 
 |   InitializationKind Kind = | 
 |     InitList ? InitializationKind::CreateDirectList(NameLoc) | 
 |              : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(), | 
 |                                                 InitRange.getEnd()); | 
 |   InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs); | 
 |   ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind, | 
 |                                               MultiExprArg(*this, Args,NumArgs), | 
 |                                               0); | 
 |   if (DelegationInit.isInvalid()) | 
 |     return true; | 
 |  | 
 |   assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() && | 
 |          "Delegating constructor with no target?"); | 
 |  | 
 |   CheckImplicitConversions(DelegationInit.get(), InitRange.getBegin()); | 
 |  | 
 |   // C++0x [class.base.init]p7: | 
 |   //   The initialization of each base and member constitutes a | 
 |   //   full-expression. | 
 |   DelegationInit = MaybeCreateExprWithCleanups(DelegationInit); | 
 |   if (DelegationInit.isInvalid()) | 
 |     return true; | 
 |  | 
 |   return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),  | 
 |                                           DelegationInit.takeAs<Expr>(), | 
 |                                           InitRange.getEnd()); | 
 | } | 
 |  | 
 | MemInitResult | 
 | Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo, | 
 |                            Expr *Init, CXXRecordDecl *ClassDecl, | 
 |                            SourceLocation EllipsisLoc) { | 
 |   SourceLocation BaseLoc | 
 |     = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin(); | 
 |  | 
 |   if (!BaseType->isDependentType() && !BaseType->isRecordType()) | 
 |     return Diag(BaseLoc, diag::err_base_init_does_not_name_class) | 
 |              << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange(); | 
 |  | 
 |   // C++ [class.base.init]p2: | 
 |   //   [...] Unless the mem-initializer-id names a nonstatic data | 
 |   //   member of the constructor's class or a direct or virtual base | 
 |   //   of that class, the mem-initializer is ill-formed. A | 
 |   //   mem-initializer-list can initialize a base class using any | 
 |   //   name that denotes that base class type. | 
 |   bool Dependent = BaseType->isDependentType() || Init->isTypeDependent(); | 
 |  | 
 |   SourceRange InitRange = Init->getSourceRange(); | 
 |   if (EllipsisLoc.isValid()) { | 
 |     // This is a pack expansion. | 
 |     if (!BaseType->containsUnexpandedParameterPack())  { | 
 |       Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) | 
 |         << SourceRange(BaseLoc, InitRange.getEnd()); | 
 |  | 
 |       EllipsisLoc = SourceLocation(); | 
 |     } | 
 |   } else { | 
 |     // Check for any unexpanded parameter packs. | 
 |     if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer)) | 
 |       return true; | 
 |  | 
 |     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) | 
 |       return true; | 
 |   } | 
 |  | 
 |   // Check for direct and virtual base classes. | 
 |   const CXXBaseSpecifier *DirectBaseSpec = 0; | 
 |   const CXXBaseSpecifier *VirtualBaseSpec = 0; | 
 |   if (!Dependent) {  | 
 |     if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0), | 
 |                                        BaseType)) | 
 |       return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl); | 
 |  | 
 |     FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,  | 
 |                         VirtualBaseSpec); | 
 |  | 
 |     // C++ [base.class.init]p2: | 
 |     // Unless the mem-initializer-id names a nonstatic data member of the | 
 |     // constructor's class or a direct or virtual base of that class, the | 
 |     // mem-initializer is ill-formed. | 
 |     if (!DirectBaseSpec && !VirtualBaseSpec) { | 
 |       // If the class has any dependent bases, then it's possible that | 
 |       // one of those types will resolve to the same type as | 
 |       // BaseType. Therefore, just treat this as a dependent base | 
 |       // class initialization.  FIXME: Should we try to check the | 
 |       // initialization anyway? It seems odd. | 
 |       if (ClassDecl->hasAnyDependentBases()) | 
 |         Dependent = true; | 
 |       else | 
 |         return Diag(BaseLoc, diag::err_not_direct_base_or_virtual) | 
 |           << BaseType << Context.getTypeDeclType(ClassDecl) | 
 |           << BaseTInfo->getTypeLoc().getLocalSourceRange(); | 
 |     } | 
 |   } | 
 |  | 
 |   if (Dependent) { | 
 |     DiscardCleanupsInEvaluationContext(); | 
 |  | 
 |     return new (Context) CXXCtorInitializer(Context, BaseTInfo, | 
 |                                             /*IsVirtual=*/false, | 
 |                                             InitRange.getBegin(), Init, | 
 |                                             InitRange.getEnd(), EllipsisLoc); | 
 |   } | 
 |  | 
 |   // C++ [base.class.init]p2: | 
 |   //   If a mem-initializer-id is ambiguous because it designates both | 
 |   //   a direct non-virtual base class and an inherited virtual base | 
 |   //   class, the mem-initializer is ill-formed. | 
 |   if (DirectBaseSpec && VirtualBaseSpec) | 
 |     return Diag(BaseLoc, diag::err_base_init_direct_and_virtual) | 
 |       << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange(); | 
 |  | 
 |   CXXBaseSpecifier *BaseSpec = const_cast<CXXBaseSpecifier *>(DirectBaseSpec); | 
 |   if (!BaseSpec) | 
 |     BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec); | 
 |  | 
 |   // Initialize the base. | 
 |   bool InitList = true; | 
 |   Expr **Args = &Init; | 
 |   unsigned NumArgs = 1; | 
 |   if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { | 
 |     InitList = false; | 
 |     Args = ParenList->getExprs(); | 
 |     NumArgs = ParenList->getNumExprs(); | 
 |   } | 
 |  | 
 |   InitializedEntity BaseEntity = | 
 |     InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec); | 
 |   InitializationKind Kind = | 
 |     InitList ? InitializationKind::CreateDirectList(BaseLoc) | 
 |              : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(), | 
 |                                                 InitRange.getEnd()); | 
 |   InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs); | 
 |   ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, | 
 |                                           MultiExprArg(*this, Args, NumArgs), | 
 |                                           0); | 
 |   if (BaseInit.isInvalid()) | 
 |     return true; | 
 |  | 
 |   CheckImplicitConversions(BaseInit.get(), InitRange.getBegin()); | 
 |  | 
 |   // C++0x [class.base.init]p7: | 
 |   //   The initialization of each base and member constitutes a  | 
 |   //   full-expression. | 
 |   BaseInit = MaybeCreateExprWithCleanups(BaseInit); | 
 |   if (BaseInit.isInvalid()) | 
 |     return true; | 
 |  | 
 |   // If we are in a dependent context, template instantiation will | 
 |   // perform this type-checking again. Just save the arguments that we | 
 |   // received in a ParenListExpr. | 
 |   // FIXME: This isn't quite ideal, since our ASTs don't capture all | 
 |   // of the information that we have about the base | 
 |   // initializer. However, deconstructing the ASTs is a dicey process, | 
 |   // and this approach is far more likely to get the corner cases right. | 
 |   if (CurContext->isDependentContext()) | 
 |     BaseInit = Owned(Init); | 
 |  | 
 |   return new (Context) CXXCtorInitializer(Context, BaseTInfo, | 
 |                                           BaseSpec->isVirtual(), | 
 |                                           InitRange.getBegin(), | 
 |                                           BaseInit.takeAs<Expr>(), | 
 |                                           InitRange.getEnd(), EllipsisLoc); | 
 | } | 
 |  | 
 | // Create a static_cast\<T&&>(expr). | 
 | static Expr *CastForMoving(Sema &SemaRef, Expr *E) { | 
 |   QualType ExprType = E->getType(); | 
 |   QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType); | 
 |   SourceLocation ExprLoc = E->getLocStart(); | 
 |   TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo( | 
 |       TargetType, ExprLoc); | 
 |  | 
 |   return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E, | 
 |                                    SourceRange(ExprLoc, ExprLoc), | 
 |                                    E->getSourceRange()).take(); | 
 | } | 
 |  | 
 | /// ImplicitInitializerKind - How an implicit base or member initializer should | 
 | /// initialize its base or member. | 
 | enum ImplicitInitializerKind { | 
 |   IIK_Default, | 
 |   IIK_Copy, | 
 |   IIK_Move | 
 | }; | 
 |  | 
 | static bool | 
 | BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, | 
 |                              ImplicitInitializerKind ImplicitInitKind, | 
 |                              CXXBaseSpecifier *BaseSpec, | 
 |                              bool IsInheritedVirtualBase, | 
 |                              CXXCtorInitializer *&CXXBaseInit) { | 
 |   InitializedEntity InitEntity | 
 |     = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec, | 
 |                                         IsInheritedVirtualBase); | 
 |  | 
 |   ExprResult BaseInit; | 
 |    | 
 |   switch (ImplicitInitKind) { | 
 |   case IIK_Default: { | 
 |     InitializationKind InitKind | 
 |       = InitializationKind::CreateDefault(Constructor->getLocation()); | 
 |     InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0); | 
 |     BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, | 
 |                                MultiExprArg(SemaRef, 0, 0)); | 
 |     break; | 
 |   } | 
 |  | 
 |   case IIK_Move: | 
 |   case IIK_Copy: { | 
 |     bool Moving = ImplicitInitKind == IIK_Move; | 
 |     ParmVarDecl *Param = Constructor->getParamDecl(0); | 
 |     QualType ParamType = Param->getType().getNonReferenceType(); | 
 |  | 
 |     Expr *CopyCtorArg =  | 
 |       DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), | 
 |                           SourceLocation(), Param, | 
 |                           Constructor->getLocation(), ParamType, | 
 |                           VK_LValue, 0); | 
 |  | 
 |     SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg)); | 
 |  | 
 |     // Cast to the base class to avoid ambiguities. | 
 |     QualType ArgTy =  | 
 |       SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),  | 
 |                                        ParamType.getQualifiers()); | 
 |  | 
 |     if (Moving) { | 
 |       CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg); | 
 |     } | 
 |  | 
 |     CXXCastPath BasePath; | 
 |     BasePath.push_back(BaseSpec); | 
 |     CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy, | 
 |                                             CK_UncheckedDerivedToBase, | 
 |                                             Moving ? VK_XValue : VK_LValue, | 
 |                                             &BasePath).take(); | 
 |  | 
 |     InitializationKind InitKind | 
 |       = InitializationKind::CreateDirect(Constructor->getLocation(), | 
 |                                          SourceLocation(), SourceLocation()); | 
 |     InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,  | 
 |                                    &CopyCtorArg, 1); | 
 |     BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, | 
 |                                MultiExprArg(&CopyCtorArg, 1)); | 
 |     break; | 
 |   } | 
 |   } | 
 |  | 
 |   BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit); | 
 |   if (BaseInit.isInvalid()) | 
 |     return true; | 
 |          | 
 |   CXXBaseInit = | 
 |     new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, | 
 |                SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),  | 
 |                                                         SourceLocation()), | 
 |                                              BaseSpec->isVirtual(), | 
 |                                              SourceLocation(), | 
 |                                              BaseInit.takeAs<Expr>(), | 
 |                                              SourceLocation(), | 
 |                                              SourceLocation()); | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | static bool RefersToRValueRef(Expr *MemRef) { | 
 |   ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl(); | 
 |   return Referenced->getType()->isRValueReferenceType(); | 
 | } | 
 |  | 
 | static bool | 
 | BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, | 
 |                                ImplicitInitializerKind ImplicitInitKind, | 
 |                                FieldDecl *Field, IndirectFieldDecl *Indirect, | 
 |                                CXXCtorInitializer *&CXXMemberInit) { | 
 |   if (Field->isInvalidDecl()) | 
 |     return true; | 
 |  | 
 |   SourceLocation Loc = Constructor->getLocation(); | 
 |  | 
 |   if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) { | 
 |     bool Moving = ImplicitInitKind == IIK_Move; | 
 |     ParmVarDecl *Param = Constructor->getParamDecl(0); | 
 |     QualType ParamType = Param->getType().getNonReferenceType(); | 
 |  | 
 |     // Suppress copying zero-width bitfields. | 
 |     if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0) | 
 |       return false; | 
 |          | 
 |     Expr *MemberExprBase =  | 
 |       DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), | 
 |                           SourceLocation(), Param, | 
 |                           Loc, ParamType, VK_LValue, 0); | 
 |  | 
 |     SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase)); | 
 |  | 
 |     if (Moving) { | 
 |       MemberExprBase = CastForMoving(SemaRef, MemberExprBase); | 
 |     } | 
 |  | 
 |     // Build a reference to this field within the parameter. | 
 |     CXXScopeSpec SS; | 
 |     LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc, | 
 |                               Sema::LookupMemberName); | 
 |     MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect) | 
 |                                   : cast<ValueDecl>(Field), AS_public); | 
 |     MemberLookup.resolveKind(); | 
 |     ExprResult CtorArg  | 
 |       = SemaRef.BuildMemberReferenceExpr(MemberExprBase, | 
 |                                          ParamType, Loc, | 
 |                                          /*IsArrow=*/false, | 
 |                                          SS, | 
 |                                          /*TemplateKWLoc=*/SourceLocation(), | 
 |                                          /*FirstQualifierInScope=*/0, | 
 |                                          MemberLookup, | 
 |                                          /*TemplateArgs=*/0);     | 
 |     if (CtorArg.isInvalid()) | 
 |       return true; | 
 |  | 
 |     // C++11 [class.copy]p15: | 
 |     //   - if a member m has rvalue reference type T&&, it is direct-initialized | 
 |     //     with static_cast<T&&>(x.m); | 
 |     if (RefersToRValueRef(CtorArg.get())) { | 
 |       CtorArg = CastForMoving(SemaRef, CtorArg.take()); | 
 |     } | 
 |  | 
 |     // When the field we are copying is an array, create index variables for  | 
 |     // each dimension of the array. We use these index variables to subscript | 
 |     // the source array, and other clients (e.g., CodeGen) will perform the | 
 |     // necessary iteration with these index variables. | 
 |     SmallVector<VarDecl *, 4> IndexVariables; | 
 |     QualType BaseType = Field->getType(); | 
 |     QualType SizeType = SemaRef.Context.getSizeType(); | 
 |     bool InitializingArray = false; | 
 |     while (const ConstantArrayType *Array | 
 |                           = SemaRef.Context.getAsConstantArrayType(BaseType)) { | 
 |       InitializingArray = true; | 
 |       // Create the iteration variable for this array index. | 
 |       IdentifierInfo *IterationVarName = 0; | 
 |       { | 
 |         SmallString<8> Str; | 
 |         llvm::raw_svector_ostream OS(Str); | 
 |         OS << "__i" << IndexVariables.size(); | 
 |         IterationVarName = &SemaRef.Context.Idents.get(OS.str()); | 
 |       } | 
 |       VarDecl *IterationVar | 
 |         = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc, | 
 |                           IterationVarName, SizeType, | 
 |                         SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc), | 
 |                           SC_None, SC_None); | 
 |       IndexVariables.push_back(IterationVar); | 
 |        | 
 |       // Create a reference to the iteration variable. | 
 |       ExprResult IterationVarRef | 
 |         = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc); | 
 |       assert(!IterationVarRef.isInvalid() && | 
 |              "Reference to invented variable cannot fail!"); | 
 |       IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take()); | 
 |       assert(!IterationVarRef.isInvalid() && | 
 |              "Conversion of invented variable cannot fail!"); | 
 |  | 
 |       // Subscript the array with this iteration variable. | 
 |       CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc, | 
 |                                                         IterationVarRef.take(), | 
 |                                                         Loc); | 
 |       if (CtorArg.isInvalid()) | 
 |         return true; | 
 |  | 
 |       BaseType = Array->getElementType(); | 
 |     } | 
 |  | 
 |     // The array subscript expression is an lvalue, which is wrong for moving. | 
 |     if (Moving && InitializingArray) | 
 |       CtorArg = CastForMoving(SemaRef, CtorArg.take()); | 
 |  | 
 |     // Construct the entity that we will be initializing. For an array, this | 
 |     // will be first element in the array, which may require several levels | 
 |     // of array-subscript entities.  | 
 |     SmallVector<InitializedEntity, 4> Entities; | 
 |     Entities.reserve(1 + IndexVariables.size()); | 
 |     if (Indirect) | 
 |       Entities.push_back(InitializedEntity::InitializeMember(Indirect)); | 
 |     else | 
 |       Entities.push_back(InitializedEntity::InitializeMember(Field)); | 
 |     for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I) | 
 |       Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context, | 
 |                                                               0, | 
 |                                                               Entities.back())); | 
 |      | 
 |     // Direct-initialize to use the copy constructor. | 
 |     InitializationKind InitKind = | 
 |       InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation()); | 
 |      | 
 |     Expr *CtorArgE = CtorArg.takeAs<Expr>(); | 
 |     InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind, | 
 |                                    &CtorArgE, 1); | 
 |      | 
 |     ExprResult MemberInit | 
 |       = InitSeq.Perform(SemaRef, Entities.back(), InitKind,  | 
 |                         MultiExprArg(&CtorArgE, 1)); | 
 |     MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit); | 
 |     if (MemberInit.isInvalid()) | 
 |       return true; | 
 |  | 
 |     if (Indirect) { | 
 |       assert(IndexVariables.size() == 0 &&  | 
 |              "Indirect field improperly initialized"); | 
 |       CXXMemberInit | 
 |         = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,  | 
 |                                                    Loc, Loc,  | 
 |                                                    MemberInit.takeAs<Expr>(),  | 
 |                                                    Loc); | 
 |     } else | 
 |       CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,  | 
 |                                                  Loc, MemberInit.takeAs<Expr>(),  | 
 |                                                  Loc, | 
 |                                                  IndexVariables.data(), | 
 |                                                  IndexVariables.size()); | 
 |     return false; | 
 |   } | 
 |  | 
 |   assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!"); | 
 |  | 
 |   QualType FieldBaseElementType =  | 
 |     SemaRef.Context.getBaseElementType(Field->getType()); | 
 |    | 
 |   if (FieldBaseElementType->isRecordType()) { | 
 |     InitializedEntity InitEntity  | 
 |       = Indirect? InitializedEntity::InitializeMember(Indirect) | 
 |                 : InitializedEntity::InitializeMember(Field); | 
 |     InitializationKind InitKind =  | 
 |       InitializationKind::CreateDefault(Loc); | 
 |      | 
 |     InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0); | 
 |     ExprResult MemberInit =  | 
 |       InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg()); | 
 |  | 
 |     MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit); | 
 |     if (MemberInit.isInvalid()) | 
 |       return true; | 
 |      | 
 |     if (Indirect) | 
 |       CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, | 
 |                                                                Indirect, Loc,  | 
 |                                                                Loc, | 
 |                                                                MemberInit.get(), | 
 |                                                                Loc); | 
 |     else | 
 |       CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, | 
 |                                                                Field, Loc, Loc, | 
 |                                                                MemberInit.get(), | 
 |                                                                Loc); | 
 |     return false; | 
 |   } | 
 |  | 
 |   if (!Field->getParent()->isUnion()) { | 
 |     if (FieldBaseElementType->isReferenceType()) { | 
 |       SemaRef.Diag(Constructor->getLocation(),  | 
 |                    diag::err_uninitialized_member_in_ctor) | 
 |       << (int)Constructor->isImplicit()  | 
 |       << SemaRef.Context.getTagDeclType(Constructor->getParent()) | 
 |       << 0 << Field->getDeclName(); | 
 |       SemaRef.Diag(Field->getLocation(), diag::note_declared_at); | 
 |       return true; | 
 |     } | 
 |  | 
 |     if (FieldBaseElementType.isConstQualified()) { | 
 |       SemaRef.Diag(Constructor->getLocation(),  | 
 |                    diag::err_uninitialized_member_in_ctor) | 
 |       << (int)Constructor->isImplicit()  | 
 |       << SemaRef.Context.getTagDeclType(Constructor->getParent()) | 
 |       << 1 << Field->getDeclName(); | 
 |       SemaRef.Diag(Field->getLocation(), diag::note_declared_at); | 
 |       return true; | 
 |     } | 
 |   } | 
 |    | 
 |   if (SemaRef.getLangOptions().ObjCAutoRefCount && | 
 |       FieldBaseElementType->isObjCRetainableType() && | 
 |       FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None && | 
 |       FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) { | 
 |     // Instant objects: | 
 |     //   Default-initialize Objective-C pointers to NULL. | 
 |     CXXMemberInit | 
 |       = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,  | 
 |                                                  Loc, Loc,  | 
 |                  new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),  | 
 |                                                  Loc); | 
 |     return false; | 
 |   } | 
 |        | 
 |   // Nothing to initialize. | 
 |   CXXMemberInit = 0; | 
 |   return false; | 
 | } | 
 |  | 
 | namespace { | 
 | struct BaseAndFieldInfo { | 
 |   Sema &S; | 
 |   CXXConstructorDecl *Ctor; | 
 |   bool AnyErrorsInInits; | 
 |   ImplicitInitializerKind IIK; | 
 |   llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields; | 
 |   SmallVector<CXXCtorInitializer*, 8> AllToInit; | 
 |  | 
 |   BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits) | 
 |     : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) { | 
 |     bool Generated = Ctor->isImplicit() || Ctor->isDefaulted(); | 
 |     if (Generated && Ctor->isCopyConstructor()) | 
 |       IIK = IIK_Copy; | 
 |     else if (Generated && Ctor->isMoveConstructor()) | 
 |       IIK = IIK_Move; | 
 |     else | 
 |       IIK = IIK_Default; | 
 |   } | 
 |    | 
 |   bool isImplicitCopyOrMove() const { | 
 |     switch (IIK) { | 
 |     case IIK_Copy: | 
 |     case IIK_Move: | 
 |       return true; | 
 |        | 
 |     case IIK_Default: | 
 |       return false; | 
 |     } | 
 |  | 
 |     llvm_unreachable("Invalid ImplicitInitializerKind!"); | 
 |   } | 
 | }; | 
 | } | 
 |  | 
 | /// \brief Determine whether the given indirect field declaration is somewhere | 
 | /// within an anonymous union. | 
 | static bool isWithinAnonymousUnion(IndirectFieldDecl *F) { | 
 |   for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),  | 
 |                                       CEnd = F->chain_end(); | 
 |        C != CEnd; ++C) | 
 |     if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext())) | 
 |       if (Record->isUnion()) | 
 |         return true; | 
 |          | 
 |   return false; | 
 | } | 
 |  | 
 | /// \brief Determine whether the given type is an incomplete or zero-lenfgth | 
 | /// array type. | 
 | static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) { | 
 |   if (T->isIncompleteArrayType()) | 
 |     return true; | 
 |    | 
 |   while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) { | 
 |     if (!ArrayT->getSize()) | 
 |       return true; | 
 |      | 
 |     T = ArrayT->getElementType(); | 
 |   } | 
 |    | 
 |   return false; | 
 | } | 
 |  | 
 | static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info, | 
 |                                     FieldDecl *Field,  | 
 |                                     IndirectFieldDecl *Indirect = 0) { | 
 |  | 
 |   // Overwhelmingly common case: we have a direct initializer for this field. | 
 |   if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) { | 
 |     Info.AllToInit.push_back(Init); | 
 |     return false; | 
 |   } | 
 |  | 
 |   // C++0x [class.base.init]p8: if the entity is a non-static data member that | 
 |   // has a brace-or-equal-initializer, the entity is initialized as specified | 
 |   // in [dcl.init]. | 
 |   if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) { | 
 |     CXXCtorInitializer *Init; | 
 |     if (Indirect) | 
 |       Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect, | 
 |                                                       SourceLocation(), | 
 |                                                       SourceLocation(), 0, | 
 |                                                       SourceLocation()); | 
 |     else | 
 |       Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field, | 
 |                                                       SourceLocation(), | 
 |                                                       SourceLocation(), 0, | 
 |                                                       SourceLocation()); | 
 |     Info.AllToInit.push_back(Init); | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Don't build an implicit initializer for union members if none was | 
 |   // explicitly specified. | 
 |   if (Field->getParent()->isUnion() || | 
 |       (Indirect && isWithinAnonymousUnion(Indirect))) | 
 |     return false; | 
 |  | 
 |   // Don't initialize incomplete or zero-length arrays. | 
 |   if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType())) | 
 |     return false; | 
 |  | 
 |   // Don't try to build an implicit initializer if there were semantic | 
 |   // errors in any of the initializers (and therefore we might be | 
 |   // missing some that the user actually wrote). | 
 |   if (Info.AnyErrorsInInits || Field->isInvalidDecl()) | 
 |     return false; | 
 |  | 
 |   CXXCtorInitializer *Init = 0; | 
 |   if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, | 
 |                                      Indirect, Init)) | 
 |     return true; | 
 |  | 
 |   if (Init) | 
 |     Info.AllToInit.push_back(Init); | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | bool | 
 | Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor, | 
 |                                CXXCtorInitializer *Initializer) { | 
 |   assert(Initializer->isDelegatingInitializer()); | 
 |   Constructor->setNumCtorInitializers(1); | 
 |   CXXCtorInitializer **initializer = | 
 |     new (Context) CXXCtorInitializer*[1]; | 
 |   memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*)); | 
 |   Constructor->setCtorInitializers(initializer); | 
 |  | 
 |   if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) { | 
 |     MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor); | 
 |     DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation()); | 
 |   } | 
 |  | 
 |   DelegatingCtorDecls.push_back(Constructor); | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, | 
 |                                CXXCtorInitializer **Initializers, | 
 |                                unsigned NumInitializers, | 
 |                                bool AnyErrors) { | 
 |   if (Constructor->isDependentContext()) { | 
 |     // Just store the initializers as written, they will be checked during | 
 |     // instantiation. | 
 |     if (NumInitializers > 0) { | 
 |       Constructor->setNumCtorInitializers(NumInitializers); | 
 |       CXXCtorInitializer **baseOrMemberInitializers = | 
 |         new (Context) CXXCtorInitializer*[NumInitializers]; | 
 |       memcpy(baseOrMemberInitializers, Initializers, | 
 |              NumInitializers * sizeof(CXXCtorInitializer*)); | 
 |       Constructor->setCtorInitializers(baseOrMemberInitializers); | 
 |     } | 
 |      | 
 |     return false; | 
 |   } | 
 |  | 
 |   BaseAndFieldInfo Info(*this, Constructor, AnyErrors); | 
 |  | 
 |   // We need to build the initializer AST according to order of construction | 
 |   // and not what user specified in the Initializers list. | 
 |   CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition(); | 
 |   if (!ClassDecl) | 
 |     return true; | 
 |    | 
 |   bool HadError = false; | 
 |  | 
 |   for (unsigned i = 0; i < NumInitializers; i++) { | 
 |     CXXCtorInitializer *Member = Initializers[i]; | 
 |      | 
 |     if (Member->isBaseInitializer()) | 
 |       Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member; | 
 |     else | 
 |       Info.AllBaseFields[Member->getAnyMember()] = Member; | 
 |   } | 
 |  | 
 |   // Keep track of the direct virtual bases. | 
 |   llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases; | 
 |   for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(), | 
 |        E = ClassDecl->bases_end(); I != E; ++I) { | 
 |     if (I->isVirtual()) | 
 |       DirectVBases.insert(I); | 
 |   } | 
 |  | 
 |   // Push virtual bases before others. | 
 |   for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(), | 
 |        E = ClassDecl->vbases_end(); VBase != E; ++VBase) { | 
 |  | 
 |     if (CXXCtorInitializer *Value | 
 |         = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) { | 
 |       Info.AllToInit.push_back(Value); | 
 |     } else if (!AnyErrors) { | 
 |       bool IsInheritedVirtualBase = !DirectVBases.count(VBase); | 
 |       CXXCtorInitializer *CXXBaseInit; | 
 |       if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, | 
 |                                        VBase, IsInheritedVirtualBase,  | 
 |                                        CXXBaseInit)) { | 
 |         HadError = true; | 
 |         continue; | 
 |       } | 
 |  | 
 |       Info.AllToInit.push_back(CXXBaseInit); | 
 |     } | 
 |   } | 
 |  | 
 |   // Non-virtual bases. | 
 |   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), | 
 |        E = ClassDecl->bases_end(); Base != E; ++Base) { | 
 |     // Virtuals are in the virtual base list and already constructed. | 
 |     if (Base->isVirtual()) | 
 |       continue; | 
 |  | 
 |     if (CXXCtorInitializer *Value | 
 |           = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) { | 
 |       Info.AllToInit.push_back(Value); | 
 |     } else if (!AnyErrors) { | 
 |       CXXCtorInitializer *CXXBaseInit; | 
 |       if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, | 
 |                                        Base, /*IsInheritedVirtualBase=*/false, | 
 |                                        CXXBaseInit)) { | 
 |         HadError = true; | 
 |         continue; | 
 |       } | 
 |  | 
 |       Info.AllToInit.push_back(CXXBaseInit); | 
 |     } | 
 |   } | 
 |  | 
 |   // Fields. | 
 |   for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(), | 
 |                                MemEnd = ClassDecl->decls_end(); | 
 |        Mem != MemEnd; ++Mem) { | 
 |     if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) { | 
 |       // C++ [class.bit]p2: | 
 |       //   A declaration for a bit-field that omits the identifier declares an | 
 |       //   unnamed bit-field. Unnamed bit-fields are not members and cannot be | 
 |       //   initialized. | 
 |       if (F->isUnnamedBitfield()) | 
 |         continue; | 
 |              | 
 |       // If we're not generating the implicit copy/move constructor, then we'll | 
 |       // handle anonymous struct/union fields based on their individual | 
 |       // indirect fields. | 
 |       if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default) | 
 |         continue; | 
 |            | 
 |       if (CollectFieldInitializer(*this, Info, F)) | 
 |         HadError = true; | 
 |       continue; | 
 |     } | 
 |      | 
 |     // Beyond this point, we only consider default initialization. | 
 |     if (Info.IIK != IIK_Default) | 
 |       continue; | 
 |      | 
 |     if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) { | 
 |       if (F->getType()->isIncompleteArrayType()) { | 
 |         assert(ClassDecl->hasFlexibleArrayMember() && | 
 |                "Incomplete array type is not valid"); | 
 |         continue; | 
 |       } | 
 |        | 
 |       // Initialize each field of an anonymous struct individually. | 
 |       if (CollectFieldInitializer(*this, Info, F->getAnonField(), F)) | 
 |         HadError = true; | 
 |        | 
 |       continue;         | 
 |     } | 
 |   } | 
 |  | 
 |   NumInitializers = Info.AllToInit.size(); | 
 |   if (NumInitializers > 0) { | 
 |     Constructor->setNumCtorInitializers(NumInitializers); | 
 |     CXXCtorInitializer **baseOrMemberInitializers = | 
 |       new (Context) CXXCtorInitializer*[NumInitializers]; | 
 |     memcpy(baseOrMemberInitializers, Info.AllToInit.data(), | 
 |            NumInitializers * sizeof(CXXCtorInitializer*)); | 
 |     Constructor->setCtorInitializers(baseOrMemberInitializers); | 
 |  | 
 |     // Constructors implicitly reference the base and member | 
 |     // destructors. | 
 |     MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(), | 
 |                                            Constructor->getParent()); | 
 |   } | 
 |  | 
 |   return HadError; | 
 | } | 
 |  | 
 | static void *GetKeyForTopLevelField(FieldDecl *Field) { | 
 |   // For anonymous unions, use the class declaration as the key. | 
 |   if (const RecordType *RT = Field->getType()->getAs<RecordType>()) { | 
 |     if (RT->getDecl()->isAnonymousStructOrUnion()) | 
 |       return static_cast<void *>(RT->getDecl()); | 
 |   } | 
 |   return static_cast<void *>(Field); | 
 | } | 
 |  | 
 | static void *GetKeyForBase(ASTContext &Context, QualType BaseType) { | 
 |   return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr()); | 
 | } | 
 |  | 
 | static void *GetKeyForMember(ASTContext &Context, | 
 |                              CXXCtorInitializer *Member) { | 
 |   if (!Member->isAnyMemberInitializer()) | 
 |     return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0)); | 
 |      | 
 |   // For fields injected into the class via declaration of an anonymous union, | 
 |   // use its anonymous union class declaration as the unique key. | 
 |   FieldDecl *Field = Member->getAnyMember(); | 
 |   | 
 |   // If the field is a member of an anonymous struct or union, our key | 
 |   // is the anonymous record decl that's a direct child of the class. | 
 |   RecordDecl *RD = Field->getParent(); | 
 |   if (RD->isAnonymousStructOrUnion()) { | 
 |     while (true) { | 
 |       RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext()); | 
 |       if (Parent->isAnonymousStructOrUnion()) | 
 |         RD = Parent; | 
 |       else | 
 |         break; | 
 |     } | 
 |        | 
 |     return static_cast<void *>(RD); | 
 |   } | 
 |  | 
 |   return static_cast<void *>(Field); | 
 | } | 
 |  | 
 | static void | 
 | DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef, | 
 |                                   const CXXConstructorDecl *Constructor, | 
 |                                   CXXCtorInitializer **Inits, | 
 |                                   unsigned NumInits) { | 
 |   if (Constructor->getDeclContext()->isDependentContext()) | 
 |     return; | 
 |  | 
 |   // Don't check initializers order unless the warning is enabled at the | 
 |   // location of at least one initializer.  | 
 |   bool ShouldCheckOrder = false; | 
 |   for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) { | 
 |     CXXCtorInitializer *Init = Inits[InitIndex]; | 
 |     if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order, | 
 |                                          Init->getSourceLocation()) | 
 |           != DiagnosticsEngine::Ignored) { | 
 |       ShouldCheckOrder = true; | 
 |       break; | 
 |     } | 
 |   } | 
 |   if (!ShouldCheckOrder) | 
 |     return; | 
 |    | 
 |   // Build the list of bases and members in the order that they'll | 
 |   // actually be initialized.  The explicit initializers should be in | 
 |   // this same order but may be missing things. | 
 |   SmallVector<const void*, 32> IdealInitKeys; | 
 |  | 
 |   const CXXRecordDecl *ClassDecl = Constructor->getParent(); | 
 |  | 
 |   // 1. Virtual bases. | 
 |   for (CXXRecordDecl::base_class_const_iterator VBase = | 
 |        ClassDecl->vbases_begin(), | 
 |        E = ClassDecl->vbases_end(); VBase != E; ++VBase) | 
 |     IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType())); | 
 |  | 
 |   // 2. Non-virtual bases. | 
 |   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(), | 
 |        E = ClassDecl->bases_end(); Base != E; ++Base) { | 
 |     if (Base->isVirtual()) | 
 |       continue; | 
 |     IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType())); | 
 |   } | 
 |  | 
 |   // 3. Direct fields. | 
 |   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), | 
 |        E = ClassDecl->field_end(); Field != E; ++Field) { | 
 |     if (Field->isUnnamedBitfield()) | 
 |       continue; | 
 |      | 
 |     IdealInitKeys.push_back(GetKeyForTopLevelField(*Field)); | 
 |   } | 
 |    | 
 |   unsigned NumIdealInits = IdealInitKeys.size(); | 
 |   unsigned IdealIndex = 0; | 
 |  | 
 |   CXXCtorInitializer *PrevInit = 0; | 
 |   for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) { | 
 |     CXXCtorInitializer *Init = Inits[InitIndex]; | 
 |     void *InitKey = GetKeyForMember(SemaRef.Context, Init); | 
 |  | 
 |     // Scan forward to try to find this initializer in the idealized | 
 |     // initializers list. | 
 |     for (; IdealIndex != NumIdealInits; ++IdealIndex) | 
 |       if (InitKey == IdealInitKeys[IdealIndex]) | 
 |         break; | 
 |  | 
 |     // If we didn't find this initializer, it must be because we | 
 |     // scanned past it on a previous iteration.  That can only | 
 |     // happen if we're out of order;  emit a warning. | 
 |     if (IdealIndex == NumIdealInits && PrevInit) { | 
 |       Sema::SemaDiagnosticBuilder D = | 
 |         SemaRef.Diag(PrevInit->getSourceLocation(), | 
 |                      diag::warn_initializer_out_of_order); | 
 |  | 
 |       if (PrevInit->isAnyMemberInitializer()) | 
 |         D << 0 << PrevInit->getAnyMember()->getDeclName(); | 
 |       else | 
 |         D << 1 << PrevInit->getTypeSourceInfo()->getType(); | 
 |        | 
 |       if (Init->isAnyMemberInitializer()) | 
 |         D << 0 << Init->getAnyMember()->getDeclName(); | 
 |       else | 
 |         D << 1 << Init->getTypeSourceInfo()->getType(); | 
 |  | 
 |       // Move back to the initializer's location in the ideal list. | 
 |       for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex) | 
 |         if (InitKey == IdealInitKeys[IdealIndex]) | 
 |           break; | 
 |  | 
 |       assert(IdealIndex != NumIdealInits && | 
 |              "initializer not found in initializer list"); | 
 |     } | 
 |  | 
 |     PrevInit = Init; | 
 |   } | 
 | } | 
 |  | 
 | namespace { | 
 | bool CheckRedundantInit(Sema &S, | 
 |                         CXXCtorInitializer *Init, | 
 |                         CXXCtorInitializer *&PrevInit) { | 
 |   if (!PrevInit) { | 
 |     PrevInit = Init; | 
 |     return false; | 
 |   } | 
 |  | 
 |   if (FieldDecl *Field = Init->getMember()) | 
 |     S.Diag(Init->getSourceLocation(), | 
 |            diag::err_multiple_mem_initialization) | 
 |       << Field->getDeclName() | 
 |       << Init->getSourceRange(); | 
 |   else { | 
 |     const Type *BaseClass = Init->getBaseClass(); | 
 |     assert(BaseClass && "neither field nor base"); | 
 |     S.Diag(Init->getSourceLocation(), | 
 |            diag::err_multiple_base_initialization) | 
 |       << QualType(BaseClass, 0) | 
 |       << Init->getSourceRange(); | 
 |   } | 
 |   S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer) | 
 |     << 0 << PrevInit->getSourceRange(); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry; | 
 | typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap; | 
 |  | 
 | bool CheckRedundantUnionInit(Sema &S, | 
 |                              CXXCtorInitializer *Init, | 
 |                              RedundantUnionMap &Unions) { | 
 |   FieldDecl *Field = Init->getAnyMember(); | 
 |   RecordDecl *Parent = Field->getParent(); | 
 |   NamedDecl *Child = Field; | 
 |  | 
 |   while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) { | 
 |     if (Parent->isUnion()) { | 
 |       UnionEntry &En = Unions[Parent]; | 
 |       if (En.first && En.first != Child) { | 
 |         S.Diag(Init->getSourceLocation(), | 
 |                diag::err_multiple_mem_union_initialization) | 
 |           << Field->getDeclName() | 
 |           << Init->getSourceRange(); | 
 |         S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer) | 
 |           << 0 << En.second->getSourceRange(); | 
 |         return true; | 
 |       }  | 
 |       if (!En.first) { | 
 |         En.first = Child; | 
 |         En.second = Init; | 
 |       } | 
 |       if (!Parent->isAnonymousStructOrUnion()) | 
 |         return false; | 
 |     } | 
 |  | 
 |     Child = Parent; | 
 |     Parent = cast<RecordDecl>(Parent->getDeclContext()); | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 | } | 
 |  | 
 | /// ActOnMemInitializers - Handle the member initializers for a constructor. | 
 | void Sema::ActOnMemInitializers(Decl *ConstructorDecl, | 
 |                                 SourceLocation ColonLoc, | 
 |                                 CXXCtorInitializer **meminits, | 
 |                                 unsigned NumMemInits, | 
 |                                 bool AnyErrors) { | 
 |   if (!ConstructorDecl) | 
 |     return; | 
 |  | 
 |   AdjustDeclIfTemplate(ConstructorDecl); | 
 |  | 
 |   CXXConstructorDecl *Constructor | 
 |     = dyn_cast<CXXConstructorDecl>(ConstructorDecl); | 
 |  | 
 |   if (!Constructor) { | 
 |     Diag(ColonLoc, diag::err_only_constructors_take_base_inits); | 
 |     return; | 
 |   } | 
 |    | 
 |   CXXCtorInitializer **MemInits = | 
 |     reinterpret_cast<CXXCtorInitializer **>(meminits); | 
 |  | 
 |   // Mapping for the duplicate initializers check. | 
 |   // For member initializers, this is keyed with a FieldDecl*. | 
 |   // For base initializers, this is keyed with a Type*. | 
 |   llvm::DenseMap<void*, CXXCtorInitializer *> Members; | 
 |  | 
 |   // Mapping for the inconsistent anonymous-union initializers check. | 
 |   RedundantUnionMap MemberUnions; | 
 |  | 
 |   bool HadError = false; | 
 |   for (unsigned i = 0; i < NumMemInits; i++) { | 
 |     CXXCtorInitializer *Init = MemInits[i]; | 
 |  | 
 |     // Set the source order index. | 
 |     Init->setSourceOrder(i); | 
 |  | 
 |     if (Init->isAnyMemberInitializer()) { | 
 |       FieldDecl *Field = Init->getAnyMember(); | 
 |       if (CheckRedundantInit(*this, Init, Members[Field]) || | 
 |           CheckRedundantUnionInit(*this, Init, MemberUnions)) | 
 |         HadError = true; | 
 |     } else if (Init->isBaseInitializer()) { | 
 |       void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0)); | 
 |       if (CheckRedundantInit(*this, Init, Members[Key])) | 
 |         HadError = true; | 
 |     } else { | 
 |       assert(Init->isDelegatingInitializer()); | 
 |       // This must be the only initializer | 
 |       if (i != 0 || NumMemInits > 1) { | 
 |         Diag(MemInits[0]->getSourceLocation(), | 
 |              diag::err_delegating_initializer_alone) | 
 |           << MemInits[0]->getSourceRange(); | 
 |         HadError = true; | 
 |         // We will treat this as being the only initializer. | 
 |       } | 
 |       SetDelegatingInitializer(Constructor, MemInits[i]); | 
 |       // Return immediately as the initializer is set. | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   if (HadError) | 
 |     return; | 
 |  | 
 |   DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits); | 
 |  | 
 |   SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors); | 
 | } | 
 |  | 
 | void | 
 | Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location, | 
 |                                              CXXRecordDecl *ClassDecl) { | 
 |   // Ignore dependent contexts. Also ignore unions, since their members never | 
 |   // have destructors implicitly called. | 
 |   if (ClassDecl->isDependentContext() || ClassDecl->isUnion()) | 
 |     return; | 
 |  | 
 |   // FIXME: all the access-control diagnostics are positioned on the | 
 |   // field/base declaration.  That's probably good; that said, the | 
 |   // user might reasonably want to know why the destructor is being | 
 |   // emitted, and we currently don't say. | 
 |    | 
 |   // Non-static data members. | 
 |   for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(), | 
 |        E = ClassDecl->field_end(); I != E; ++I) { | 
 |     FieldDecl *Field = *I; | 
 |     if (Field->isInvalidDecl()) | 
 |       continue; | 
 |      | 
 |     // Don't destroy incomplete or zero-length arrays. | 
 |     if (isIncompleteOrZeroLengthArrayType(Context, Field->getType())) | 
 |       continue; | 
 |  | 
 |     QualType FieldType = Context.getBaseElementType(Field->getType()); | 
 |      | 
 |     const RecordType* RT = FieldType->getAs<RecordType>(); | 
 |     if (!RT) | 
 |       continue; | 
 |      | 
 |     CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); | 
 |     if (FieldClassDecl->isInvalidDecl()) | 
 |       continue; | 
 |     if (FieldClassDecl->hasIrrelevantDestructor()) | 
 |       continue; | 
 |  | 
 |     CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl); | 
 |     assert(Dtor && "No dtor found for FieldClassDecl!"); | 
 |     CheckDestructorAccess(Field->getLocation(), Dtor, | 
 |                           PDiag(diag::err_access_dtor_field) | 
 |                             << Field->getDeclName() | 
 |                             << FieldType); | 
 |  | 
 |     MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor)); | 
 |     DiagnoseUseOfDecl(Dtor, Location); | 
 |   } | 
 |  | 
 |   llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases; | 
 |  | 
 |   // Bases. | 
 |   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), | 
 |        E = ClassDecl->bases_end(); Base != E; ++Base) { | 
 |     // Bases are always records in a well-formed non-dependent class. | 
 |     const RecordType *RT = Base->getType()->getAs<RecordType>(); | 
 |  | 
 |     // Remember direct virtual bases. | 
 |     if (Base->isVirtual()) | 
 |       DirectVirtualBases.insert(RT); | 
 |  | 
 |     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl()); | 
 |     // If our base class is invalid, we probably can't get its dtor anyway. | 
 |     if (BaseClassDecl->isInvalidDecl()) | 
 |       continue; | 
 |     if (BaseClassDecl->hasIrrelevantDestructor()) | 
 |       continue; | 
 |  | 
 |     CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); | 
 |     assert(Dtor && "No dtor found for BaseClassDecl!"); | 
 |  | 
 |     // FIXME: caret should be on the start of the class name | 
 |     CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor, | 
 |                           PDiag(diag::err_access_dtor_base) | 
 |                             << Base->getType() | 
 |                             << Base->getSourceRange()); | 
 |      | 
 |     MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor)); | 
 |     DiagnoseUseOfDecl(Dtor, Location); | 
 |   } | 
 |    | 
 |   // Virtual bases. | 
 |   for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(), | 
 |        E = ClassDecl->vbases_end(); VBase != E; ++VBase) { | 
 |  | 
 |     // Bases are always records in a well-formed non-dependent class. | 
 |     const RecordType *RT = VBase->getType()->getAs<RecordType>(); | 
 |  | 
 |     // Ignore direct virtual bases. | 
 |     if (DirectVirtualBases.count(RT)) | 
 |       continue; | 
 |  | 
 |     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl()); | 
 |     // If our base class is invalid, we probably can't get its dtor anyway. | 
 |     if (BaseClassDecl->isInvalidDecl()) | 
 |       continue; | 
 |     if (BaseClassDecl->hasIrrelevantDestructor()) | 
 |       continue; | 
 |  | 
 |     CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); | 
 |     assert(Dtor && "No dtor found for BaseClassDecl!"); | 
 |     CheckDestructorAccess(ClassDecl->getLocation(), Dtor, | 
 |                           PDiag(diag::err_access_dtor_vbase) | 
 |                             << VBase->getType()); | 
 |  | 
 |     MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor)); | 
 |     DiagnoseUseOfDecl(Dtor, Location); | 
 |   } | 
 | } | 
 |  | 
 | void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) { | 
 |   if (!CDtorDecl) | 
 |     return; | 
 |  | 
 |   if (CXXConstructorDecl *Constructor | 
 |       = dyn_cast<CXXConstructorDecl>(CDtorDecl)) | 
 |     SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false); | 
 | } | 
 |  | 
 | bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T, | 
 |                                   unsigned DiagID, AbstractDiagSelID SelID) { | 
 |   if (SelID == -1) | 
 |     return RequireNonAbstractType(Loc, T, PDiag(DiagID)); | 
 |   else | 
 |     return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID); | 
 | } | 
 |  | 
 | bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T, | 
 |                                   const PartialDiagnostic &PD) { | 
 |   if (!getLangOptions().CPlusPlus) | 
 |     return false; | 
 |  | 
 |   if (const ArrayType *AT = Context.getAsArrayType(T)) | 
 |     return RequireNonAbstractType(Loc, AT->getElementType(), PD); | 
 |  | 
 |   if (const PointerType *PT = T->getAs<PointerType>()) { | 
 |     // Find the innermost pointer type. | 
 |     while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>()) | 
 |       PT = T; | 
 |  | 
 |     if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType())) | 
 |       return RequireNonAbstractType(Loc, AT->getElementType(), PD); | 
 |   } | 
 |  | 
 |   const RecordType *RT = T->getAs<RecordType>(); | 
 |   if (!RT) | 
 |     return false; | 
 |  | 
 |   const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); | 
 |  | 
 |   // We can't answer whether something is abstract until it has a | 
 |   // definition.  If it's currently being defined, we'll walk back | 
 |   // over all the declarations when we have a full definition. | 
 |   const CXXRecordDecl *Def = RD->getDefinition(); | 
 |   if (!Def || Def->isBeingDefined()) | 
 |     return false; | 
 |  | 
 |   if (!RD->isAbstract()) | 
 |     return false; | 
 |  | 
 |   Diag(Loc, PD) << RD->getDeclName(); | 
 |   DiagnoseAbstractType(RD); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) { | 
 |   // Check if we've already emitted the list of pure virtual functions | 
 |   // for this class. | 
 |   if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD)) | 
 |     return; | 
 |  | 
 |   CXXFinalOverriderMap FinalOverriders; | 
 |   RD->getFinalOverriders(FinalOverriders); | 
 |  | 
 |   // Keep a set of seen pure methods so we won't diagnose the same method | 
 |   // more than once. | 
 |   llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods; | 
 |    | 
 |   for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),  | 
 |                                    MEnd = FinalOverriders.end(); | 
 |        M != MEnd;  | 
 |        ++M) { | 
 |     for (OverridingMethods::iterator SO = M->second.begin(),  | 
 |                                   SOEnd = M->second.end(); | 
 |          SO != SOEnd; ++SO) { | 
 |       // C++ [class.abstract]p4: | 
 |       //   A class is abstract if it contains or inherits at least one | 
 |       //   pure virtual function for which the final overrider is pure | 
 |       //   virtual. | 
 |  | 
 |       //  | 
 |       if (SO->second.size() != 1) | 
 |         continue; | 
 |  | 
 |       if (!SO->second.front().Method->isPure()) | 
 |         continue; | 
 |  | 
 |       if (!SeenPureMethods.insert(SO->second.front().Method)) | 
 |         continue; | 
 |  | 
 |       Diag(SO->second.front().Method->getLocation(),  | 
 |            diag::note_pure_virtual_function)  | 
 |         << SO->second.front().Method->getDeclName() << RD->getDeclName(); | 
 |     } | 
 |   } | 
 |  | 
 |   if (!PureVirtualClassDiagSet) | 
 |     PureVirtualClassDiagSet.reset(new RecordDeclSetTy); | 
 |   PureVirtualClassDiagSet->insert(RD); | 
 | } | 
 |  | 
 | namespace { | 
 | struct AbstractUsageInfo { | 
 |   Sema &S; | 
 |   CXXRecordDecl *Record; | 
 |   CanQualType AbstractType; | 
 |   bool Invalid; | 
 |  | 
 |   AbstractUsageInfo(Sema &S, CXXRecordDecl *Record) | 
 |     : S(S), Record(Record), | 
 |       AbstractType(S.Context.getCanonicalType( | 
 |                    S.Context.getTypeDeclType(Record))), | 
 |       Invalid(false) {} | 
 |  | 
 |   void DiagnoseAbstractType() { | 
 |     if (Invalid) return; | 
 |     S.DiagnoseAbstractType(Record); | 
 |     Invalid = true; | 
 |   } | 
 |  | 
 |   void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel); | 
 | }; | 
 |  | 
 | struct CheckAbstractUsage { | 
 |   AbstractUsageInfo &Info; | 
 |   const NamedDecl *Ctx; | 
 |  | 
 |   CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx) | 
 |     : Info(Info), Ctx(Ctx) {} | 
 |  | 
 |   void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) { | 
 |     switch (TL.getTypeLocClass()) { | 
 | #define ABSTRACT_TYPELOC(CLASS, PARENT) | 
 | #define TYPELOC(CLASS, PARENT) \ | 
 |     case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break; | 
 | #include "clang/AST/TypeLocNodes.def" | 
 |     } | 
 |   } | 
 |  | 
 |   void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) { | 
 |     Visit(TL.getResultLoc(), Sema::AbstractReturnType); | 
 |     for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { | 
 |       if (!TL.getArg(I)) | 
 |         continue; | 
 |        | 
 |       TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo(); | 
 |       if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType); | 
 |     } | 
 |   } | 
 |  | 
 |   void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) { | 
 |     Visit(TL.getElementLoc(), Sema::AbstractArrayType); | 
 |   } | 
 |  | 
 |   void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) { | 
 |     // Visit the type parameters from a permissive context. | 
 |     for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { | 
 |       TemplateArgumentLoc TAL = TL.getArgLoc(I); | 
 |       if (TAL.getArgument().getKind() == TemplateArgument::Type) | 
 |         if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo()) | 
 |           Visit(TSI->getTypeLoc(), Sema::AbstractNone); | 
 |       // TODO: other template argument types? | 
 |     } | 
 |   } | 
 |  | 
 |   // Visit pointee types from a permissive context. | 
 | #define CheckPolymorphic(Type) \ | 
 |   void Check(Type TL, Sema::AbstractDiagSelID Sel) { \ | 
 |     Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \ | 
 |   } | 
 |   CheckPolymorphic(PointerTypeLoc) | 
 |   CheckPolymorphic(ReferenceTypeLoc) | 
 |   CheckPolymorphic(MemberPointerTypeLoc) | 
 |   CheckPolymorphic(BlockPointerTypeLoc) | 
 |   CheckPolymorphic(AtomicTypeLoc) | 
 |  | 
 |   /// Handle all the types we haven't given a more specific | 
 |   /// implementation for above. | 
 |   void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) { | 
 |     // Every other kind of type that we haven't called out already | 
 |     // that has an inner type is either (1) sugar or (2) contains that | 
 |     // inner type in some way as a subobject. | 
 |     if (TypeLoc Next = TL.getNextTypeLoc()) | 
 |       return Visit(Next, Sel); | 
 |  | 
 |     // If there's no inner type and we're in a permissive context, | 
 |     // don't diagnose. | 
 |     if (Sel == Sema::AbstractNone) return; | 
 |  | 
 |     // Check whether the type matches the abstract type. | 
 |     QualType T = TL.getType(); | 
 |     if (T->isArrayType()) { | 
 |       Sel = Sema::AbstractArrayType; | 
 |       T = Info.S.Context.getBaseElementType(T); | 
 |     } | 
 |     CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType(); | 
 |     if (CT != Info.AbstractType) return; | 
 |  | 
 |     // It matched; do some magic. | 
 |     if (Sel == Sema::AbstractArrayType) { | 
 |       Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type) | 
 |         << T << TL.getSourceRange(); | 
 |     } else { | 
 |       Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl) | 
 |         << Sel << T << TL.getSourceRange(); | 
 |     } | 
 |     Info.DiagnoseAbstractType(); | 
 |   } | 
 | }; | 
 |  | 
 | void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL, | 
 |                                   Sema::AbstractDiagSelID Sel) { | 
 |   CheckAbstractUsage(*this, D).Visit(TL, Sel); | 
 | } | 
 |  | 
 | } | 
 |  | 
 | /// Check for invalid uses of an abstract type in a method declaration. | 
 | static void CheckAbstractClassUsage(AbstractUsageInfo &Info, | 
 |                                     CXXMethodDecl *MD) { | 
 |   // No need to do the check on definitions, which require that | 
 |   // the return/param types be complete. | 
 |   if (MD->doesThisDeclarationHaveABody()) | 
 |     return; | 
 |  | 
 |   // For safety's sake, just ignore it if we don't have type source | 
 |   // information.  This should never happen for non-implicit methods, | 
 |   // but... | 
 |   if (TypeSourceInfo *TSI = MD->getTypeSourceInfo()) | 
 |     Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone); | 
 | } | 
 |  | 
 | /// Check for invalid uses of an abstract type within a class definition. | 
 | static void CheckAbstractClassUsage(AbstractUsageInfo &Info, | 
 |                                     CXXRecordDecl *RD) { | 
 |   for (CXXRecordDecl::decl_iterator | 
 |          I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) { | 
 |     Decl *D = *I; | 
 |     if (D->isImplicit()) continue; | 
 |  | 
 |     // Methods and method templates. | 
 |     if (isa<CXXMethodDecl>(D)) { | 
 |       CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D)); | 
 |     } else if (isa<FunctionTemplateDecl>(D)) { | 
 |       FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl(); | 
 |       CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD)); | 
 |  | 
 |     // Fields and static variables. | 
 |     } else if (isa<FieldDecl>(D)) { | 
 |       FieldDecl *FD = cast<FieldDecl>(D); | 
 |       if (TypeSourceInfo *TSI = FD->getTypeSourceInfo()) | 
 |         Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType); | 
 |     } else if (isa<VarDecl>(D)) { | 
 |       VarDecl *VD = cast<VarDecl>(D); | 
 |       if (TypeSourceInfo *TSI = VD->getTypeSourceInfo()) | 
 |         Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType); | 
 |  | 
 |     // Nested classes and class templates. | 
 |     } else if (isa<CXXRecordDecl>(D)) { | 
 |       CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D)); | 
 |     } else if (isa<ClassTemplateDecl>(D)) { | 
 |       CheckAbstractClassUsage(Info, | 
 |                              cast<ClassTemplateDecl>(D)->getTemplatedDecl()); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// \brief Perform semantic checks on a class definition that has been | 
 | /// completing, introducing implicitly-declared members, checking for | 
 | /// abstract types, etc. | 
 | void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) { | 
 |   if (!Record) | 
 |     return; | 
 |  | 
 |   if (Record->isAbstract() && !Record->isInvalidDecl()) { | 
 |     AbstractUsageInfo Info(*this, Record); | 
 |     CheckAbstractClassUsage(Info, Record); | 
 |   } | 
 |    | 
 |   // If this is not an aggregate type and has no user-declared constructor, | 
 |   // complain about any non-static data members of reference or const scalar | 
 |   // type, since they will never get initializers. | 
 |   if (!Record->isInvalidDecl() && !Record->isDependentType() && | 
 |       !Record->isAggregate() && !Record->hasUserDeclaredConstructor() && | 
 |       !Record->isLambda()) { | 
 |     bool Complained = false; | 
 |     for (RecordDecl::field_iterator F = Record->field_begin(),  | 
 |                                  FEnd = Record->field_end(); | 
 |          F != FEnd; ++F) { | 
 |       if (F->hasInClassInitializer() || F->isUnnamedBitfield()) | 
 |         continue; | 
 |  | 
 |       if (F->getType()->isReferenceType() || | 
 |           (F->getType().isConstQualified() && F->getType()->isScalarType())) { | 
 |         if (!Complained) { | 
 |           Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst) | 
 |             << Record->getTagKind() << Record; | 
 |           Complained = true; | 
 |         } | 
 |          | 
 |         Diag(F->getLocation(), diag::note_refconst_member_not_initialized) | 
 |           << F->getType()->isReferenceType() | 
 |           << F->getDeclName(); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (Record->isDynamicClass() && !Record->isDependentType()) | 
 |     DynamicClasses.push_back(Record); | 
 |  | 
 |   if (Record->getIdentifier()) { | 
 |     // C++ [class.mem]p13: | 
 |     //   If T is the name of a class, then each of the following shall have a  | 
 |     //   name different from T: | 
 |     //     - every member of every anonymous union that is a member of class T. | 
 |     // | 
 |     // C++ [class.mem]p14: | 
 |     //   In addition, if class T has a user-declared constructor (12.1), every  | 
 |     //   non-static data member of class T shall have a name different from T. | 
 |     for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName()); | 
 |          R.first != R.second; ++R.first) { | 
 |       NamedDecl *D = *R.first; | 
 |       if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) || | 
 |           isa<IndirectFieldDecl>(D)) { | 
 |         Diag(D->getLocation(), diag::err_member_name_of_class) | 
 |           << D->getDeclName(); | 
 |         break; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Warn if the class has virtual methods but non-virtual public destructor. | 
 |   if (Record->isPolymorphic() && !Record->isDependentType()) { | 
 |     CXXDestructorDecl *dtor = Record->getDestructor(); | 
 |     if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) | 
 |       Diag(dtor ? dtor->getLocation() : Record->getLocation(), | 
 |            diag::warn_non_virtual_dtor) << Context.getRecordType(Record); | 
 |   } | 
 |  | 
 |   // See if a method overloads virtual methods in a base | 
 |   /// class without overriding any. | 
 |   if (!Record->isDependentType()) { | 
 |     for (CXXRecordDecl::method_iterator M = Record->method_begin(), | 
 |                                      MEnd = Record->method_end(); | 
 |          M != MEnd; ++M) { | 
 |       if (!(*M)->isStatic()) | 
 |         DiagnoseHiddenVirtualMethods(Record, *M); | 
 |     } | 
 |   } | 
 |  | 
 |   // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member | 
 |   // function that is not a constructor declares that member function to be | 
 |   // const. [...] The class of which that function is a member shall be | 
 |   // a literal type. | 
 |   // | 
 |   // If the class has virtual bases, any constexpr members will already have | 
 |   // been diagnosed by the checks performed on the member declaration, so | 
 |   // suppress this (less useful) diagnostic. | 
 |   if (LangOpts.CPlusPlus0x && !Record->isDependentType() && | 
 |       !Record->isLiteral() && !Record->getNumVBases()) { | 
 |     for (CXXRecordDecl::method_iterator M = Record->method_begin(), | 
 |                                      MEnd = Record->method_end(); | 
 |          M != MEnd; ++M) { | 
 |       if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) { | 
 |         switch (Record->getTemplateSpecializationKind()) { | 
 |         case TSK_ImplicitInstantiation: | 
 |         case TSK_ExplicitInstantiationDeclaration: | 
 |         case TSK_ExplicitInstantiationDefinition: | 
 |           // If a template instantiates to a non-literal type, but its members | 
 |           // instantiate to constexpr functions, the template is technically | 
 |           // ill-formed, but we allow it for sanity. | 
 |           continue; | 
 |  | 
 |         case TSK_Undeclared: | 
 |         case TSK_ExplicitSpecialization: | 
 |           RequireLiteralType((*M)->getLocation(), Context.getRecordType(Record), | 
 |                              PDiag(diag::err_constexpr_method_non_literal)); | 
 |           break; | 
 |         } | 
 |  | 
 |         // Only produce one error per class. | 
 |         break; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Declare inherited constructors. We do this eagerly here because: | 
 |   // - The standard requires an eager diagnostic for conflicting inherited | 
 |   //   constructors from different classes. | 
 |   // - The lazy declaration of the other implicit constructors is so as to not | 
 |   //   waste space and performance on classes that are not meant to be | 
 |   //   instantiated (e.g. meta-functions). This doesn't apply to classes that | 
 |   //   have inherited constructors. | 
 |   DeclareInheritedConstructors(Record); | 
 |  | 
 |   if (!Record->isDependentType()) | 
 |     CheckExplicitlyDefaultedMethods(Record); | 
 | } | 
 |  | 
 | void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) { | 
 |   for (CXXRecordDecl::method_iterator MI = Record->method_begin(), | 
 |                                       ME = Record->method_end(); | 
 |        MI != ME; ++MI) { | 
 |     if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) { | 
 |       switch (getSpecialMember(*MI)) { | 
 |       case CXXDefaultConstructor: | 
 |         CheckExplicitlyDefaultedDefaultConstructor( | 
 |                                                   cast<CXXConstructorDecl>(*MI)); | 
 |         break; | 
 |  | 
 |       case CXXDestructor: | 
 |         CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI)); | 
 |         break; | 
 |  | 
 |       case CXXCopyConstructor: | 
 |         CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI)); | 
 |         break; | 
 |  | 
 |       case CXXCopyAssignment: | 
 |         CheckExplicitlyDefaultedCopyAssignment(*MI); | 
 |         break; | 
 |  | 
 |       case CXXMoveConstructor: | 
 |         CheckExplicitlyDefaultedMoveConstructor(cast<CXXConstructorDecl>(*MI)); | 
 |         break; | 
 |  | 
 |       case CXXMoveAssignment: | 
 |         CheckExplicitlyDefaultedMoveAssignment(*MI); | 
 |         break; | 
 |  | 
 |       case CXXInvalid: | 
 |         llvm_unreachable("non-special member explicitly defaulted!"); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 | } | 
 |  | 
 | void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) { | 
 |   assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor()); | 
 |    | 
 |   // Whether this was the first-declared instance of the constructor. | 
 |   // This affects whether we implicitly add an exception spec (and, eventually, | 
 |   // constexpr). It is also ill-formed to explicitly default a constructor such | 
 |   // that it would be deleted. (C++0x [decl.fct.def.default]) | 
 |   bool First = CD == CD->getCanonicalDecl(); | 
 |  | 
 |   bool HadError = false; | 
 |   if (CD->getNumParams() != 0) { | 
 |     Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params) | 
 |       << CD->getSourceRange(); | 
 |     HadError = true; | 
 |   } | 
 |  | 
 |   ImplicitExceptionSpecification Spec | 
 |     = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent()); | 
 |   FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI(); | 
 |   if (EPI.ExceptionSpecType == EST_Delayed) { | 
 |     // Exception specification depends on some deferred part of the class. We'll | 
 |     // try again when the class's definition has been fully processed. | 
 |     return; | 
 |   } | 
 |   const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(), | 
 |                           *ExceptionType = Context.getFunctionType( | 
 |                          Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>(); | 
 |  | 
 |   // C++11 [dcl.fct.def.default]p2: | 
 |   //   An explicitly-defaulted function may be declared constexpr only if it | 
 |   //   would have been implicitly declared as constexpr, | 
 |   // Do not apply this rule to templates, since core issue 1358 makes such | 
 |   // functions always instantiate to constexpr functions. | 
 |   if (CD->isConstexpr() && | 
 |       CD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) { | 
 |     if (!CD->getParent()->defaultedDefaultConstructorIsConstexpr()) { | 
 |       Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr) | 
 |         << CXXDefaultConstructor; | 
 |       HadError = true; | 
 |     } | 
 |   } | 
 |   //   and may have an explicit exception-specification only if it is compatible | 
 |   //   with the exception-specification on the implicit declaration. | 
 |   if (CtorType->hasExceptionSpec()) { | 
 |     if (CheckEquivalentExceptionSpec( | 
 |           PDiag(diag::err_incorrect_defaulted_exception_spec) | 
 |             << CXXDefaultConstructor, | 
 |           PDiag(), | 
 |           ExceptionType, SourceLocation(), | 
 |           CtorType, CD->getLocation())) { | 
 |       HadError = true; | 
 |     } | 
 |   } | 
 |  | 
 |   //   If a function is explicitly defaulted on its first declaration, | 
 |   if (First) { | 
 |     //  -- it is implicitly considered to be constexpr if the implicit | 
 |     //     definition would be, | 
 |     CD->setConstexpr(CD->getParent()->defaultedDefaultConstructorIsConstexpr()); | 
 |  | 
 |     //  -- it is implicitly considered to have the same | 
 |     //     exception-specification as if it had been implicitly declared | 
 |     // | 
 |     // FIXME: a compatible, but different, explicit exception specification | 
 |     // will be silently overridden. We should issue a warning if this happens. | 
 |     EPI.ExtInfo = CtorType->getExtInfo(); | 
 |   } | 
 |  | 
 |   if (HadError) { | 
 |     CD->setInvalidDecl(); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (ShouldDeleteSpecialMember(CD, CXXDefaultConstructor)) { | 
 |     if (First) { | 
 |       CD->setDeletedAsWritten(); | 
 |     } else { | 
 |       Diag(CD->getLocation(), diag::err_out_of_line_default_deletes) | 
 |         << CXXDefaultConstructor; | 
 |       CD->setInvalidDecl(); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) { | 
 |   assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor()); | 
 |  | 
 |   // Whether this was the first-declared instance of the constructor. | 
 |   bool First = CD == CD->getCanonicalDecl(); | 
 |  | 
 |   bool HadError = false; | 
 |   if (CD->getNumParams() != 1) { | 
 |     Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params) | 
 |       << CD->getSourceRange(); | 
 |     HadError = true; | 
 |   } | 
 |  | 
 |   ImplicitExceptionSpecification Spec(Context); | 
 |   bool Const; | 
 |   llvm::tie(Spec, Const) = | 
 |     ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent()); | 
 |    | 
 |   FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI(); | 
 |   const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(), | 
 |                           *ExceptionType = Context.getFunctionType( | 
 |                          Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>(); | 
 |  | 
 |   // Check for parameter type matching. | 
 |   // This is a copy ctor so we know it's a cv-qualified reference to T. | 
 |   QualType ArgType = CtorType->getArgType(0); | 
 |   if (ArgType->getPointeeType().isVolatileQualified()) { | 
 |     Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param); | 
 |     HadError = true; | 
 |   } | 
 |   if (ArgType->getPointeeType().isConstQualified() && !Const) { | 
 |     Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param); | 
 |     HadError = true; | 
 |   } | 
 |  | 
 |   // C++11 [dcl.fct.def.default]p2: | 
 |   //   An explicitly-defaulted function may be declared constexpr only if it | 
 |   //   would have been implicitly declared as constexpr, | 
 |   // Do not apply this rule to templates, since core issue 1358 makes such | 
 |   // functions always instantiate to constexpr functions. | 
 |   if (CD->isConstexpr() && | 
 |       CD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) { | 
 |     if (!CD->getParent()->defaultedCopyConstructorIsConstexpr()) { | 
 |       Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr) | 
 |         << CXXCopyConstructor; | 
 |       HadError = true; | 
 |     } | 
 |   } | 
 |   //   and may have an explicit exception-specification only if it is compatible | 
 |   //   with the exception-specification on the implicit declaration. | 
 |   if (CtorType->hasExceptionSpec()) { | 
 |     if (CheckEquivalentExceptionSpec( | 
 |           PDiag(diag::err_incorrect_defaulted_exception_spec) | 
 |             << CXXCopyConstructor, | 
 |           PDiag(), | 
 |           ExceptionType, SourceLocation(), | 
 |           CtorType, CD->getLocation())) { | 
 |       HadError = true; | 
 |     } | 
 |   } | 
 |  | 
 |   //   If a function is explicitly defaulted on its first declaration, | 
 |   if (First) { | 
 |     //  -- it is implicitly considered to be constexpr if the implicit | 
 |     //     definition would be, | 
 |     CD->setConstexpr(CD->getParent()->defaultedCopyConstructorIsConstexpr()); | 
 |  | 
 |     //  -- it is implicitly considered to have the same | 
 |     //     exception-specification as if it had been implicitly declared, and | 
 |     // | 
 |     // FIXME: a compatible, but different, explicit exception specification | 
 |     // will be silently overridden. We should issue a warning if this happens. | 
 |     EPI.ExtInfo = CtorType->getExtInfo(); | 
 |  | 
 |     //  -- [...] it shall have the same parameter type as if it had been | 
 |     //     implicitly declared. | 
 |     CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI)); | 
 |   } | 
 |  | 
 |   if (HadError) { | 
 |     CD->setInvalidDecl(); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (ShouldDeleteSpecialMember(CD, CXXCopyConstructor)) { | 
 |     if (First) { | 
 |       CD->setDeletedAsWritten(); | 
 |     } else { | 
 |       Diag(CD->getLocation(), diag::err_out_of_line_default_deletes) | 
 |         << CXXCopyConstructor; | 
 |       CD->setInvalidDecl(); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) { | 
 |   assert(MD->isExplicitlyDefaulted()); | 
 |  | 
 |   // Whether this was the first-declared instance of the operator | 
 |   bool First = MD == MD->getCanonicalDecl(); | 
 |  | 
 |   bool HadError = false; | 
 |   if (MD->getNumParams() != 1) { | 
 |     Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params) | 
 |       << MD->getSourceRange(); | 
 |     HadError = true; | 
 |   } | 
 |  | 
 |   QualType ReturnType = | 
 |     MD->getType()->getAs<FunctionType>()->getResultType(); | 
 |   if (!ReturnType->isLValueReferenceType() || | 
 |       !Context.hasSameType( | 
 |         Context.getCanonicalType(ReturnType->getPointeeType()), | 
 |         Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) { | 
 |     Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type); | 
 |     HadError = true; | 
 |   } | 
 |  | 
 |   ImplicitExceptionSpecification Spec(Context); | 
 |   bool Const; | 
 |   llvm::tie(Spec, Const) = | 
 |     ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent()); | 
 |    | 
 |   FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI(); | 
 |   const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(), | 
 |                           *ExceptionType = Context.getFunctionType( | 
 |                          Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>(); | 
 |  | 
 |   QualType ArgType = OperType->getArgType(0); | 
 |   if (!ArgType->isLValueReferenceType()) { | 
 |     Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref); | 
 |     HadError = true; | 
 |   } else { | 
 |     if (ArgType->getPointeeType().isVolatileQualified()) { | 
 |       Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param); | 
 |       HadError = true; | 
 |     } | 
 |     if (ArgType->getPointeeType().isConstQualified() && !Const) { | 
 |       Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param); | 
 |       HadError = true; | 
 |     } | 
 |   } | 
 |  | 
 |   if (OperType->getTypeQuals()) { | 
 |     Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals); | 
 |     HadError = true; | 
 |   } | 
 |  | 
 |   if (OperType->hasExceptionSpec()) { | 
 |     if (CheckEquivalentExceptionSpec( | 
 |           PDiag(diag::err_incorrect_defaulted_exception_spec) | 
 |             << CXXCopyAssignment, | 
 |           PDiag(), | 
 |           ExceptionType, SourceLocation(), | 
 |           OperType, MD->getLocation())) { | 
 |       HadError = true; | 
 |     } | 
 |   } | 
 |   if (First) { | 
 |     // We set the declaration to have the computed exception spec here. | 
 |     // We duplicate the one parameter type. | 
 |     EPI.RefQualifier = OperType->getRefQualifier(); | 
 |     EPI.ExtInfo = OperType->getExtInfo(); | 
 |     MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI)); | 
 |   } | 
 |  | 
 |   if (HadError) { | 
 |     MD->setInvalidDecl(); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (ShouldDeleteSpecialMember(MD, CXXCopyAssignment)) { | 
 |     if (First) { | 
 |       MD->setDeletedAsWritten(); | 
 |     } else { | 
 |       Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) | 
 |         << CXXCopyAssignment; | 
 |       MD->setInvalidDecl(); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void Sema::CheckExplicitlyDefaultedMoveConstructor(CXXConstructorDecl *CD) { | 
 |   assert(CD->isExplicitlyDefaulted() && CD->isMoveConstructor()); | 
 |  | 
 |   // Whether this was the first-declared instance of the constructor. | 
 |   bool First = CD == CD->getCanonicalDecl(); | 
 |  | 
 |   bool HadError = false; | 
 |   if (CD->getNumParams() != 1) { | 
 |     Diag(CD->getLocation(), diag::err_defaulted_move_ctor_params) | 
 |       << CD->getSourceRange(); | 
 |     HadError = true; | 
 |   } | 
 |  | 
 |   ImplicitExceptionSpecification Spec( | 
 |       ComputeDefaultedMoveCtorExceptionSpec(CD->getParent())); | 
 |  | 
 |   FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI(); | 
 |   const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(), | 
 |                           *ExceptionType = Context.getFunctionType( | 
 |                          Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>(); | 
 |  | 
 |   // Check for parameter type matching. | 
 |   // This is a move ctor so we know it's a cv-qualified rvalue reference to T. | 
 |   QualType ArgType = CtorType->getArgType(0); | 
 |   if (ArgType->getPointeeType().isVolatileQualified()) { | 
 |     Diag(CD->getLocation(), diag::err_defaulted_move_ctor_volatile_param); | 
 |     HadError = true; | 
 |   } | 
 |   if (ArgType->getPointeeType().isConstQualified()) { | 
 |     Diag(CD->getLocation(), diag::err_defaulted_move_ctor_const_param); | 
 |     HadError = true; | 
 |   } | 
 |  | 
 |   // C++11 [dcl.fct.def.default]p2: | 
 |   //   An explicitly-defaulted function may be declared constexpr only if it | 
 |   //   would have been implicitly declared as constexpr, | 
 |   // Do not apply this rule to templates, since core issue 1358 makes such | 
 |   // functions always instantiate to constexpr functions. | 
 |   if (CD->isConstexpr() && | 
 |       CD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) { | 
 |     if (!CD->getParent()->defaultedMoveConstructorIsConstexpr()) { | 
 |       Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr) | 
 |         << CXXMoveConstructor; | 
 |       HadError = true; | 
 |     } | 
 |   } | 
 |   //   and may have an explicit exception-specification only if it is compatible | 
 |   //   with the exception-specification on the implicit declaration. | 
 |   if (CtorType->hasExceptionSpec()) { | 
 |     if (CheckEquivalentExceptionSpec( | 
 |           PDiag(diag::err_incorrect_defaulted_exception_spec) | 
 |             << CXXMoveConstructor, | 
 |           PDiag(), | 
 |           ExceptionType, SourceLocation(), | 
 |           CtorType, CD->getLocation())) { | 
 |       HadError = true; | 
 |     } | 
 |   } | 
 |  | 
 |   //   If a function is explicitly defaulted on its first declaration, | 
 |   if (First) { | 
 |     //  -- it is implicitly considered to be constexpr if the implicit | 
 |     //     definition would be, | 
 |     CD->setConstexpr(CD->getParent()->defaultedMoveConstructorIsConstexpr()); | 
 |  | 
 |     //  -- it is implicitly considered to have the same | 
 |     //     exception-specification as if it had been implicitly declared, and | 
 |     // | 
 |     // FIXME: a compatible, but different, explicit exception specification | 
 |     // will be silently overridden. We should issue a warning if this happens. | 
 |     EPI.ExtInfo = CtorType->getExtInfo(); | 
 |  | 
 |     //  -- [...] it shall have the same parameter type as if it had been | 
 |     //     implicitly declared. | 
 |     CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI)); | 
 |   } | 
 |  | 
 |   if (HadError) { | 
 |     CD->setInvalidDecl(); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (ShouldDeleteSpecialMember(CD, CXXMoveConstructor)) { | 
 |     if (First) { | 
 |       CD->setDeletedAsWritten(); | 
 |     } else { | 
 |       Diag(CD->getLocation(), diag::err_out_of_line_default_deletes) | 
 |         << CXXMoveConstructor; | 
 |       CD->setInvalidDecl(); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void Sema::CheckExplicitlyDefaultedMoveAssignment(CXXMethodDecl *MD) { | 
 |   assert(MD->isExplicitlyDefaulted()); | 
 |  | 
 |   // Whether this was the first-declared instance of the operator | 
 |   bool First = MD == MD->getCanonicalDecl(); | 
 |  | 
 |   bool HadError = false; | 
 |   if (MD->getNumParams() != 1) { | 
 |     Diag(MD->getLocation(), diag::err_defaulted_move_assign_params) | 
 |       << MD->getSourceRange(); | 
 |     HadError = true; | 
 |   } | 
 |  | 
 |   QualType ReturnType = | 
 |     MD->getType()->getAs<FunctionType>()->getResultType(); | 
 |   if (!ReturnType->isLValueReferenceType() || | 
 |       !Context.hasSameType( | 
 |         Context.getCanonicalType(ReturnType->getPointeeType()), | 
 |         Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) { | 
 |     Diag(MD->getLocation(), diag::err_defaulted_move_assign_return_type); | 
 |     HadError = true; | 
 |   } | 
 |  | 
 |   ImplicitExceptionSpecification Spec( | 
 |       ComputeDefaultedMoveCtorExceptionSpec(MD->getParent())); | 
 |    | 
 |   FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI(); | 
 |   const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(), | 
 |                           *ExceptionType = Context.getFunctionType( | 
 |                          Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>(); | 
 |  | 
 |   QualType ArgType = OperType->getArgType(0); | 
 |   if (!ArgType->isRValueReferenceType()) { | 
 |     Diag(MD->getLocation(), diag::err_defaulted_move_assign_not_ref); | 
 |     HadError = true; | 
 |   } else { | 
 |     if (ArgType->getPointeeType().isVolatileQualified()) { | 
 |       Diag(MD->getLocation(), diag::err_defaulted_move_assign_volatile_param); | 
 |       HadError = true; | 
 |     } | 
 |     if (ArgType->getPointeeType().isConstQualified()) { | 
 |       Diag(MD->getLocation(), diag::err_defaulted_move_assign_const_param); | 
 |       HadError = true; | 
 |     } | 
 |   } | 
 |  | 
 |   if (OperType->getTypeQuals()) { | 
 |     Diag(MD->getLocation(), diag::err_defaulted_move_assign_quals); | 
 |     HadError = true; | 
 |   } | 
 |  | 
 |   if (OperType->hasExceptionSpec()) { | 
 |     if (CheckEquivalentExceptionSpec( | 
 |           PDiag(diag::err_incorrect_defaulted_exception_spec) | 
 |             << CXXMoveAssignment, | 
 |           PDiag(), | 
 |           ExceptionType, SourceLocation(), | 
 |           OperType, MD->getLocation())) { | 
 |       HadError = true; | 
 |     } | 
 |   } | 
 |   if (First) { | 
 |     // We set the declaration to have the computed exception spec here. | 
 |     // We duplicate the one parameter type. | 
 |     EPI.RefQualifier = OperType->getRefQualifier(); | 
 |     EPI.ExtInfo = OperType->getExtInfo(); | 
 |     MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI)); | 
 |   } | 
 |  | 
 |   if (HadError) { | 
 |     MD->setInvalidDecl(); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (ShouldDeleteSpecialMember(MD, CXXMoveAssignment)) { | 
 |     if (First) { | 
 |       MD->setDeletedAsWritten(); | 
 |     } else { | 
 |       Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) | 
 |         << CXXMoveAssignment; | 
 |       MD->setInvalidDecl(); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) { | 
 |   assert(DD->isExplicitlyDefaulted()); | 
 |  | 
 |   // Whether this was the first-declared instance of the destructor. | 
 |   bool First = DD == DD->getCanonicalDecl(); | 
 |  | 
 |   ImplicitExceptionSpecification Spec | 
 |     = ComputeDefaultedDtorExceptionSpec(DD->getParent()); | 
 |   FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI(); | 
 |   const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(), | 
 |                           *ExceptionType = Context.getFunctionType( | 
 |                          Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>(); | 
 |  | 
 |   if (DtorType->hasExceptionSpec()) { | 
 |     if (CheckEquivalentExceptionSpec( | 
 |           PDiag(diag::err_incorrect_defaulted_exception_spec) | 
 |             << CXXDestructor, | 
 |           PDiag(), | 
 |           ExceptionType, SourceLocation(), | 
 |           DtorType, DD->getLocation())) { | 
 |       DD->setInvalidDecl(); | 
 |       return; | 
 |     } | 
 |   } | 
 |   if (First) { | 
 |     // We set the declaration to have the computed exception spec here. | 
 |     // There are no parameters. | 
 |     EPI.ExtInfo = DtorType->getExtInfo(); | 
 |     DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI)); | 
 |   } | 
 |  | 
 |   if (ShouldDeleteSpecialMember(DD, CXXDestructor)) { | 
 |     if (First) { | 
 |       DD->setDeletedAsWritten(); | 
 |     } else { | 
 |       Diag(DD->getLocation(), diag::err_out_of_line_default_deletes) | 
 |         << CXXDestructor; | 
 |       DD->setInvalidDecl(); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | namespace { | 
 | struct SpecialMemberDeletionInfo { | 
 |   Sema &S; | 
 |   CXXMethodDecl *MD; | 
 |   Sema::CXXSpecialMember CSM; | 
 |  | 
 |   // Properties of the special member, computed for convenience. | 
 |   bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg; | 
 |   SourceLocation Loc; | 
 |  | 
 |   bool AllFieldsAreConst; | 
 |  | 
 |   SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD, | 
 |                             Sema::CXXSpecialMember CSM) | 
 |     : S(S), MD(MD), CSM(CSM), | 
 |       IsConstructor(false), IsAssignment(false), IsMove(false), | 
 |       ConstArg(false), VolatileArg(false), Loc(MD->getLocation()), | 
 |       AllFieldsAreConst(true) { | 
 |     switch (CSM) { | 
 |       case Sema::CXXDefaultConstructor: | 
 |       case Sema::CXXCopyConstructor: | 
 |         IsConstructor = true; | 
 |         break; | 
 |       case Sema::CXXMoveConstructor: | 
 |         IsConstructor = true; | 
 |         IsMove = true; | 
 |         break; | 
 |       case Sema::CXXCopyAssignment: | 
 |         IsAssignment = true; | 
 |         break; | 
 |       case Sema::CXXMoveAssignment: | 
 |         IsAssignment = true; | 
 |         IsMove = true; | 
 |         break; | 
 |       case Sema::CXXDestructor: | 
 |         break; | 
 |       case Sema::CXXInvalid: | 
 |         llvm_unreachable("invalid special member kind"); | 
 |     } | 
 |  | 
 |     if (MD->getNumParams()) { | 
 |       ConstArg = MD->getParamDecl(0)->getType().isConstQualified(); | 
 |       VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified(); | 
 |     } | 
 |   } | 
 |  | 
 |   bool inUnion() const { return MD->getParent()->isUnion(); } | 
 |  | 
 |   /// Look up the corresponding special member in the given class. | 
 |   Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class) { | 
 |     unsigned TQ = MD->getTypeQualifiers(); | 
 |     return S.LookupSpecialMember(Class, CSM, ConstArg, VolatileArg, | 
 |                                  MD->getRefQualifier() == RQ_RValue, | 
 |                                  TQ & Qualifiers::Const, | 
 |                                  TQ & Qualifiers::Volatile); | 
 |   } | 
 |  | 
 |   bool shouldDeleteForBase(CXXRecordDecl *BaseDecl, bool IsVirtualBase); | 
 |   bool shouldDeleteForField(FieldDecl *FD); | 
 |   bool shouldDeleteForAllConstMembers(); | 
 | }; | 
 | } | 
 |  | 
 | /// Check whether we should delete a special member function due to the class | 
 | /// having a particular direct or virtual base class. | 
 | bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXRecordDecl *BaseDecl, | 
 |                                                     bool IsVirtualBase) { | 
 |   // C++11 [class.copy]p23: | 
 |   // -- for the move assignment operator, any direct or indirect virtual | 
 |   //    base class. | 
 |   if (CSM == Sema::CXXMoveAssignment && IsVirtualBase) | 
 |     return true; | 
 |  | 
 |   // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5: | 
 |   // -- any direct or virtual base class [...] has a type with a destructor | 
 |   //    that is deleted or inaccessible | 
 |   if (!IsAssignment) { | 
 |     CXXDestructorDecl *BaseDtor = S.LookupDestructor(BaseDecl); | 
 |     if (BaseDtor->isDeleted()) | 
 |       return true; | 
 |     if (S.CheckDestructorAccess(Loc, BaseDtor, S.PDiag()) | 
 |           != Sema::AR_accessible) | 
 |       return true; | 
 |   } | 
 |  | 
 |   // C++11 [class.ctor]p5: | 
 |   // -- any direct or virtual base class [...] has class type M [...] and | 
 |   //    either M has no default constructor or overload resolution as applied | 
 |   //    to M's default constructor results in an ambiguity or in a function | 
 |   //    that is deleted or inaccessible | 
 |   // C++11 [class.copy]p11, C++11 [class.copy]p23: | 
 |   // -- a direct or virtual base class B that cannot be copied/moved because | 
 |   //    overload resolution, as applied to B's corresponding special member, | 
 |   //    results in an ambiguity or a function that is deleted or inaccessible | 
 |   //    from the defaulted special member | 
 |   if (CSM != Sema::CXXDestructor) { | 
 |     Sema::SpecialMemberOverloadResult *SMOR = lookupIn(BaseDecl); | 
 |     if (!SMOR->hasSuccess()) | 
 |       return true; | 
 |  | 
 |     CXXMethodDecl *BaseMember = SMOR->getMethod(); | 
 |     if (IsConstructor) { | 
 |       CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember); | 
 |       if (S.CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(), | 
 |                                    S.PDiag()) != Sema::AR_accessible) | 
 |         return true; | 
 |  | 
 |       // -- for the move constructor, a [...] direct or virtual base class with | 
 |       //    a type that does not have a move constructor and is not trivially | 
 |       //    copyable. | 
 |       if (IsMove && !BaseCtor->isMoveConstructor() && | 
 |           !BaseDecl->isTriviallyCopyable()) | 
 |         return true; | 
 |     } else { | 
 |       assert(IsAssignment && "unexpected kind of special member"); | 
 |       if (S.CheckDirectMemberAccess(Loc, BaseMember, S.PDiag()) | 
 |             != Sema::AR_accessible) | 
 |         return true; | 
 |  | 
 |       // -- for the move assignment operator, a direct base class with a type | 
 |       //    that does not have a move assignment operator and is not trivially | 
 |       //    copyable. | 
 |       if (IsMove && !BaseMember->isMoveAssignmentOperator() && | 
 |           !BaseDecl->isTriviallyCopyable()) | 
 |         return true; | 
 |     } | 
 |   } | 
 |  | 
 |   // C++11 [class.dtor]p5: | 
 |   // -- for a virtual destructor, lookup of the non-array deallocation function | 
 |   //    results in an ambiguity or in a function that is deleted or inaccessible | 
 |   if (CSM == Sema::CXXDestructor && MD->isVirtual()) { | 
 |     FunctionDecl *OperatorDelete = 0; | 
 |     DeclarationName Name = | 
 |       S.Context.DeclarationNames.getCXXOperatorName(OO_Delete); | 
 |     if (S.FindDeallocationFunction(Loc, MD->getParent(), Name, | 
 |                                    OperatorDelete, false)) | 
 |       return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// Check whether we should delete a special member function due to the class | 
 | /// having a particular non-static data member. | 
 | bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) { | 
 |   QualType FieldType = S.Context.getBaseElementType(FD->getType()); | 
 |   CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl(); | 
 |  | 
 |   if (CSM == Sema::CXXDefaultConstructor) { | 
 |     // For a default constructor, all references must be initialized in-class | 
 |     // and, if a union, it must have a non-const member. | 
 |     if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) | 
 |       return true; | 
 |  | 
 |     if (inUnion() && !FieldType.isConstQualified()) | 
 |       AllFieldsAreConst = false; | 
 |   } else if (CSM == Sema::CXXCopyConstructor) { | 
 |     // For a copy constructor, data members must not be of rvalue reference | 
 |     // type. | 
 |     if (FieldType->isRValueReferenceType()) | 
 |       return true; | 
 |   } else if (IsAssignment) { | 
 |     // For an assignment operator, data members must not be of reference type. | 
 |     if (FieldType->isReferenceType()) | 
 |       return true; | 
 |   } | 
 |  | 
 |   if (FieldRecord) { | 
 |     // For a default constructor, a const member must have a user-provided | 
 |     // default constructor or else be explicitly initialized. | 
 |     if (CSM == Sema::CXXDefaultConstructor && FieldType.isConstQualified() && | 
 |         !FD->hasInClassInitializer() && | 
 |         !FieldRecord->hasUserProvidedDefaultConstructor()) | 
 |       return true; | 
 |  | 
 |     // Some additional restrictions exist on the variant members. | 
 |     if (!inUnion() && FieldRecord->isUnion() && | 
 |         FieldRecord->isAnonymousStructOrUnion()) { | 
 |       bool AllVariantFieldsAreConst = true; | 
 |  | 
 |       for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(), | 
 |                                          UE = FieldRecord->field_end(); | 
 |            UI != UE; ++UI) { | 
 |         QualType UnionFieldType = S.Context.getBaseElementType(UI->getType()); | 
 |         CXXRecordDecl *UnionFieldRecord = | 
 |           UnionFieldType->getAsCXXRecordDecl(); | 
 |  | 
 |         if (!UnionFieldType.isConstQualified()) | 
 |           AllVariantFieldsAreConst = false; | 
 |  | 
 |         if (UnionFieldRecord) { | 
 |           // FIXME: Checking for accessibility and validity of this | 
 |           //        destructor is technically going beyond the | 
 |           //        standard, but this is believed to be a defect. | 
 |           if (!IsAssignment) { | 
 |             CXXDestructorDecl *FieldDtor = S.LookupDestructor(UnionFieldRecord); | 
 |             if (FieldDtor->isDeleted()) | 
 |               return true; | 
 |             if (S.CheckDestructorAccess(Loc, FieldDtor, S.PDiag()) != | 
 |                 Sema::AR_accessible) | 
 |               return true; | 
 |             if (!FieldDtor->isTrivial()) | 
 |               return true; | 
 |           } | 
 |  | 
 |           // FIXME: in-class initializers should be handled here | 
 |           if (CSM != Sema::CXXDestructor) { | 
 |             Sema::SpecialMemberOverloadResult *SMOR = | 
 |                 lookupIn(UnionFieldRecord); | 
 |             // FIXME: Checking for accessibility and validity of this | 
 |             //        corresponding member is technically going beyond the | 
 |             //        standard, but this is believed to be a defect. | 
 |             if (!SMOR->hasSuccess()) | 
 |               return true; | 
 |  | 
 |             CXXMethodDecl *FieldMember = SMOR->getMethod(); | 
 |             // A member of a union must have a trivial corresponding | 
 |             // special member. | 
 |             if (!FieldMember->isTrivial()) | 
 |               return true; | 
 |  | 
 |             if (IsConstructor) { | 
 |               CXXConstructorDecl *FieldCtor = | 
 |                   cast<CXXConstructorDecl>(FieldMember); | 
 |               if (S.CheckConstructorAccess(Loc, FieldCtor, | 
 |                                            FieldCtor->getAccess(), | 
 |                                            S.PDiag()) != Sema::AR_accessible) | 
 |               return true; | 
 |             } else { | 
 |               assert(IsAssignment && "unexpected kind of special member"); | 
 |               if (S.CheckDirectMemberAccess(Loc, FieldMember, S.PDiag()) | 
 |                   != Sema::AR_accessible) | 
 |                 return true; | 
 |             } | 
 |           } | 
 |         } | 
 |       } | 
 |  | 
 |       // At least one member in each anonymous union must be non-const | 
 |       if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst) | 
 |         return true; | 
 |  | 
 |       // Don't try to initialize the anonymous union | 
 |       // This is technically non-conformant, but sanity demands it. | 
 |       return false; | 
 |     } | 
 |  | 
 |     // Unless we're doing assignment, the field's destructor must be | 
 |     // accessible and not deleted. | 
 |     if (!IsAssignment) { | 
 |       CXXDestructorDecl *FieldDtor = S.LookupDestructor(FieldRecord); | 
 |       if (FieldDtor->isDeleted()) | 
 |         return true; | 
 |       if (S.CheckDestructorAccess(Loc, FieldDtor, S.PDiag()) != | 
 |           Sema::AR_accessible) | 
 |         return true; | 
 |     } | 
 |  | 
 |     // Check that the corresponding member of the field is accessible, | 
 |     // unique, and non-deleted. We don't do this if it has an explicit | 
 |     // initialization when default-constructing. | 
 |     if (CSM != Sema::CXXDestructor && | 
 |         !(CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer())) { | 
 |       Sema::SpecialMemberOverloadResult *SMOR = lookupIn(FieldRecord); | 
 |       if (!SMOR->hasSuccess()) | 
 |         return true; | 
 |  | 
 |       CXXMethodDecl *FieldMember = SMOR->getMethod(); | 
 |       if (IsConstructor) { | 
 |         CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember); | 
 |         if (S.CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(), | 
 |                                      S.PDiag()) != Sema::AR_accessible) | 
 |         return true; | 
 |  | 
 |         // For a move operation, the corresponding operation must actually | 
 |         // be a move operation (and not a copy selected by overload | 
 |         // resolution) unless we are working on a trivially copyable class. | 
 |         if (IsMove && !FieldCtor->isMoveConstructor() && | 
 |             !FieldRecord->isTriviallyCopyable()) | 
 |           return true; | 
 |       } else { | 
 |         assert(IsAssignment && "unexpected kind of special member"); | 
 |         if (S.CheckDirectMemberAccess(Loc, FieldMember, S.PDiag()) | 
 |               != Sema::AR_accessible) | 
 |           return true; | 
 |  | 
 |         // -- for the move assignment operator, a non-static data member with a | 
 |         //    type that does not have a move assignment operator and is not | 
 |         //    trivially copyable. | 
 |         if (IsMove && !FieldMember->isMoveAssignmentOperator() && | 
 |             !FieldRecord->isTriviallyCopyable()) | 
 |           return true; | 
 |       } | 
 |  | 
 |       // We need the corresponding member of a union to be trivial so that | 
 |       // we can safely copy them all simultaneously. | 
 |       // FIXME: Note that performing the check here (where we rely on the lack | 
 |       // of an in-class initializer) is technically ill-formed. However, this | 
 |       // seems most obviously to be a bug in the standard. | 
 |       if (inUnion() && !FieldMember->isTrivial()) | 
 |         return true; | 
 |     } | 
 |   } else if (CSM == Sema::CXXDefaultConstructor && !inUnion() && | 
 |              FieldType.isConstQualified() && !FD->hasInClassInitializer()) { | 
 |     // We can't initialize a const member of non-class type to any value. | 
 |     return true; | 
 |   } else if (IsAssignment && FieldType.isConstQualified()) { | 
 |     // C++11 [class.copy]p23: | 
 |     // -- a non-static data member of const non-class type (or array thereof) | 
 |     return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// C++11 [class.ctor] p5: | 
 | ///   A defaulted default constructor for a class X is defined as deleted if | 
 | /// X is a union and all of its variant members are of const-qualified type. | 
 | bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() { | 
 |   return CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst; | 
 | } | 
 |  | 
 | /// Determine whether a defaulted special member function should be defined as | 
 | /// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11, | 
 | /// C++11 [class.copy]p23, and C++11 [class.dtor]p5. | 
 | bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM) { | 
 |   assert(!MD->isInvalidDecl()); | 
 |   CXXRecordDecl *RD = MD->getParent(); | 
 |   assert(!RD->isDependentType() && "do deletion after instantiation"); | 
 |   if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl()) | 
 |     return false; | 
 |  | 
 |   // C++11 [expr.lambda.prim]p19: | 
 |   //   The closure type associated with a lambda-expression has a | 
 |   //   deleted (8.4.3) default constructor and a deleted copy | 
 |   //   assignment operator. | 
 |   if (RD->isLambda() && | 
 |       (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) | 
 |     return true; | 
 |  | 
 |   // For an anonymous struct or union, the copy and assignment special members | 
 |   // will never be used, so skip the check. For an anonymous union declared at | 
 |   // namespace scope, the constructor and destructor are used. | 
 |   if (CSM != CXXDefaultConstructor && CSM != CXXDestructor && | 
 |       RD->isAnonymousStructOrUnion()) | 
 |     return false; | 
 |  | 
 |   // Do access control from the special member function | 
 |   ContextRAII MethodContext(*this, MD); | 
 |  | 
 |   SpecialMemberDeletionInfo SMI(*this, MD, CSM); | 
 |  | 
 |   // FIXME: We should put some diagnostic logic right into this function. | 
 |  | 
 |   for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(), | 
 |                                           BE = RD->bases_end(); BI != BE; ++BI) | 
 |     if (!BI->isVirtual() && | 
 |         SMI.shouldDeleteForBase(BI->getType()->getAsCXXRecordDecl(), false)) | 
 |       return true; | 
 |  | 
 |   for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(), | 
 |                                           BE = RD->vbases_end(); BI != BE; ++BI) | 
 |     if (SMI.shouldDeleteForBase(BI->getType()->getAsCXXRecordDecl(), true)) | 
 |       return true; | 
 |  | 
 |   for (CXXRecordDecl::field_iterator FI = RD->field_begin(), | 
 |                                      FE = RD->field_end(); FI != FE; ++FI) | 
 |     if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() && | 
 |         SMI.shouldDeleteForField(*FI)) | 
 |       return true; | 
 |  | 
 |   if (SMI.shouldDeleteForAllConstMembers()) | 
 |     return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// \brief Data used with FindHiddenVirtualMethod | 
 | namespace { | 
 |   struct FindHiddenVirtualMethodData { | 
 |     Sema *S; | 
 |     CXXMethodDecl *Method; | 
 |     llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods; | 
 |     SmallVector<CXXMethodDecl *, 8> OverloadedMethods; | 
 |   }; | 
 | } | 
 |  | 
 | /// \brief Member lookup function that determines whether a given C++ | 
 | /// method overloads virtual methods in a base class without overriding any, | 
 | /// to be used with CXXRecordDecl::lookupInBases(). | 
 | static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier, | 
 |                                     CXXBasePath &Path, | 
 |                                     void *UserData) { | 
 |   RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl(); | 
 |  | 
 |   FindHiddenVirtualMethodData &Data | 
 |     = *static_cast<FindHiddenVirtualMethodData*>(UserData); | 
 |  | 
 |   DeclarationName Name = Data.Method->getDeclName(); | 
 |   assert(Name.getNameKind() == DeclarationName::Identifier); | 
 |  | 
 |   bool foundSameNameMethod = false; | 
 |   SmallVector<CXXMethodDecl *, 8> overloadedMethods; | 
 |   for (Path.Decls = BaseRecord->lookup(Name); | 
 |        Path.Decls.first != Path.Decls.second; | 
 |        ++Path.Decls.first) { | 
 |     NamedDecl *D = *Path.Decls.first; | 
 |     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { | 
 |       MD = MD->getCanonicalDecl(); | 
 |       foundSameNameMethod = true; | 
 |       // Interested only in hidden virtual methods. | 
 |       if (!MD->isVirtual()) | 
 |         continue; | 
 |       // If the method we are checking overrides a method from its base | 
 |       // don't warn about the other overloaded methods. | 
 |       if (!Data.S->IsOverload(Data.Method, MD, false)) | 
 |         return true; | 
 |       // Collect the overload only if its hidden. | 
 |       if (!Data.OverridenAndUsingBaseMethods.count(MD)) | 
 |         overloadedMethods.push_back(MD); | 
 |     } | 
 |   } | 
 |  | 
 |   if (foundSameNameMethod) | 
 |     Data.OverloadedMethods.append(overloadedMethods.begin(), | 
 |                                    overloadedMethods.end()); | 
 |   return foundSameNameMethod; | 
 | } | 
 |  | 
 | /// \brief See if a method overloads virtual methods in a base class without | 
 | /// overriding any. | 
 | void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) { | 
 |   if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual, | 
 |                                MD->getLocation()) == DiagnosticsEngine::Ignored) | 
 |     return; | 
 |   if (MD->getDeclName().getNameKind() != DeclarationName::Identifier) | 
 |     return; | 
 |  | 
 |   CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases. | 
 |                      /*bool RecordPaths=*/false, | 
 |                      /*bool DetectVirtual=*/false); | 
 |   FindHiddenVirtualMethodData Data; | 
 |   Data.Method = MD; | 
 |   Data.S = this; | 
 |  | 
 |   // Keep the base methods that were overriden or introduced in the subclass | 
 |   // by 'using' in a set. A base method not in this set is hidden. | 
 |   for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName()); | 
 |        res.first != res.second; ++res.first) { | 
 |     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first)) | 
 |       for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(), | 
 |                                           E = MD->end_overridden_methods(); | 
 |            I != E; ++I) | 
 |         Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl()); | 
 |     if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first)) | 
 |       if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl())) | 
 |         Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl()); | 
 |   } | 
 |  | 
 |   if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) && | 
 |       !Data.OverloadedMethods.empty()) { | 
 |     Diag(MD->getLocation(), diag::warn_overloaded_virtual) | 
 |       << MD << (Data.OverloadedMethods.size() > 1); | 
 |  | 
 |     for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) { | 
 |       CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i]; | 
 |       Diag(overloadedMD->getLocation(), | 
 |            diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc, | 
 |                                              Decl *TagDecl, | 
 |                                              SourceLocation LBrac, | 
 |                                              SourceLocation RBrac, | 
 |                                              AttributeList *AttrList) { | 
 |   if (!TagDecl) | 
 |     return; | 
 |  | 
 |   AdjustDeclIfTemplate(TagDecl); | 
 |  | 
 |   ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef( | 
 |               // strict aliasing violation! | 
 |               reinterpret_cast<Decl**>(FieldCollector->getCurFields()), | 
 |               FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList); | 
 |  | 
 |   CheckCompletedCXXClass( | 
 |                         dyn_cast_or_null<CXXRecordDecl>(TagDecl)); | 
 | } | 
 |  | 
 | /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared | 
 | /// special functions, such as the default constructor, copy | 
 | /// constructor, or destructor, to the given C++ class (C++ | 
 | /// [special]p1).  This routine can only be executed just before the | 
 | /// definition of the class is complete. | 
 | void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) { | 
 |   if (!ClassDecl->hasUserDeclaredConstructor()) | 
 |     ++ASTContext::NumImplicitDefaultConstructors; | 
 |  | 
 |   if (!ClassDecl->hasUserDeclaredCopyConstructor()) | 
 |     ++ASTContext::NumImplicitCopyConstructors; | 
 |  | 
 |   if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveConstructor()) | 
 |     ++ASTContext::NumImplicitMoveConstructors; | 
 |  | 
 |   if (!ClassDecl->hasUserDeclaredCopyAssignment()) { | 
 |     ++ASTContext::NumImplicitCopyAssignmentOperators; | 
 |      | 
 |     // If we have a dynamic class, then the copy assignment operator may be  | 
 |     // virtual, so we have to declare it immediately. This ensures that, e.g., | 
 |     // it shows up in the right place in the vtable and that we diagnose  | 
 |     // problems with the implicit exception specification.     | 
 |     if (ClassDecl->isDynamicClass()) | 
 |       DeclareImplicitCopyAssignment(ClassDecl); | 
 |   } | 
 |  | 
 |   if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveAssignment()){ | 
 |     ++ASTContext::NumImplicitMoveAssignmentOperators; | 
 |  | 
 |     // Likewise for the move assignment operator. | 
 |     if (ClassDecl->isDynamicClass()) | 
 |       DeclareImplicitMoveAssignment(ClassDecl); | 
 |   } | 
 |  | 
 |   if (!ClassDecl->hasUserDeclaredDestructor()) { | 
 |     ++ASTContext::NumImplicitDestructors; | 
 |      | 
 |     // If we have a dynamic class, then the destructor may be virtual, so we  | 
 |     // have to declare the destructor immediately. This ensures that, e.g., it | 
 |     // shows up in the right place in the vtable and that we diagnose problems | 
 |     // with the implicit exception specification. | 
 |     if (ClassDecl->isDynamicClass()) | 
 |       DeclareImplicitDestructor(ClassDecl); | 
 |   } | 
 | } | 
 |  | 
 | void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) { | 
 |   if (!D) | 
 |     return; | 
 |  | 
 |   int NumParamList = D->getNumTemplateParameterLists(); | 
 |   for (int i = 0; i < NumParamList; i++) { | 
 |     TemplateParameterList* Params = D->getTemplateParameterList(i); | 
 |     for (TemplateParameterList::iterator Param = Params->begin(), | 
 |                                       ParamEnd = Params->end(); | 
 |           Param != ParamEnd; ++Param) { | 
 |       NamedDecl *Named = cast<NamedDecl>(*Param); | 
 |       if (Named->getDeclName()) { | 
 |         S->AddDecl(Named); | 
 |         IdResolver.AddDecl(Named); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) { | 
 |   if (!D) | 
 |     return; | 
 |    | 
 |   TemplateParameterList *Params = 0; | 
 |   if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) | 
 |     Params = Template->getTemplateParameters(); | 
 |   else if (ClassTemplatePartialSpecializationDecl *PartialSpec | 
 |            = dyn_cast<ClassTemplatePartialSpecializationDecl>(D)) | 
 |     Params = PartialSpec->getTemplateParameters(); | 
 |   else | 
 |     return; | 
 |  | 
 |   for (TemplateParameterList::iterator Param = Params->begin(), | 
 |                                     ParamEnd = Params->end(); | 
 |        Param != ParamEnd; ++Param) { | 
 |     NamedDecl *Named = cast<NamedDecl>(*Param); | 
 |     if (Named->getDeclName()) { | 
 |       S->AddDecl(Named); | 
 |       IdResolver.AddDecl(Named); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) { | 
 |   if (!RecordD) return; | 
 |   AdjustDeclIfTemplate(RecordD); | 
 |   CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD); | 
 |   PushDeclContext(S, Record); | 
 | } | 
 |  | 
 | void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) { | 
 |   if (!RecordD) return; | 
 |   PopDeclContext(); | 
 | } | 
 |  | 
 | /// ActOnStartDelayedCXXMethodDeclaration - We have completed | 
 | /// parsing a top-level (non-nested) C++ class, and we are now | 
 | /// parsing those parts of the given Method declaration that could | 
 | /// not be parsed earlier (C++ [class.mem]p2), such as default | 
 | /// arguments. This action should enter the scope of the given | 
 | /// Method declaration as if we had just parsed the qualified method | 
 | /// name. However, it should not bring the parameters into scope; | 
 | /// that will be performed by ActOnDelayedCXXMethodParameter. | 
 | void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { | 
 | } | 
 |  | 
 | /// ActOnDelayedCXXMethodParameter - We've already started a delayed | 
 | /// C++ method declaration. We're (re-)introducing the given | 
 | /// function parameter into scope for use in parsing later parts of | 
 | /// the method declaration. For example, we could see an | 
 | /// ActOnParamDefaultArgument event for this parameter. | 
 | void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) { | 
 |   if (!ParamD) | 
 |     return; | 
 |  | 
 |   ParmVarDecl *Param = cast<ParmVarDecl>(ParamD); | 
 |  | 
 |   // If this parameter has an unparsed default argument, clear it out | 
 |   // to make way for the parsed default argument. | 
 |   if (Param->hasUnparsedDefaultArg()) | 
 |     Param->setDefaultArg(0); | 
 |  | 
 |   S->AddDecl(Param); | 
 |   if (Param->getDeclName()) | 
 |     IdResolver.AddDecl(Param); | 
 | } | 
 |  | 
 | /// ActOnFinishDelayedCXXMethodDeclaration - We have finished | 
 | /// processing the delayed method declaration for Method. The method | 
 | /// declaration is now considered finished. There may be a separate | 
 | /// ActOnStartOfFunctionDef action later (not necessarily | 
 | /// immediately!) for this method, if it was also defined inside the | 
 | /// class body. | 
 | void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { | 
 |   if (!MethodD) | 
 |     return; | 
 |  | 
 |   AdjustDeclIfTemplate(MethodD); | 
 |  | 
 |   FunctionDecl *Method = cast<FunctionDecl>(MethodD); | 
 |  | 
 |   // Now that we have our default arguments, check the constructor | 
 |   // again. It could produce additional diagnostics or affect whether | 
 |   // the class has implicitly-declared destructors, among other | 
 |   // things. | 
 |   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method)) | 
 |     CheckConstructor(Constructor); | 
 |  | 
 |   // Check the default arguments, which we may have added. | 
 |   if (!Method->isInvalidDecl()) | 
 |     CheckCXXDefaultArguments(Method); | 
 | } | 
 |  | 
 | /// CheckConstructorDeclarator - Called by ActOnDeclarator to check | 
 | /// the well-formedness of the constructor declarator @p D with type @p | 
 | /// R. If there are any errors in the declarator, this routine will | 
 | /// emit diagnostics and set the invalid bit to true.  In any case, the type | 
 | /// will be updated to reflect a well-formed type for the constructor and | 
 | /// returned. | 
 | QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R, | 
 |                                           StorageClass &SC) { | 
 |   bool isVirtual = D.getDeclSpec().isVirtualSpecified(); | 
 |  | 
 |   // C++ [class.ctor]p3: | 
 |   //   A constructor shall not be virtual (10.3) or static (9.4). A | 
 |   //   constructor can be invoked for a const, volatile or const | 
 |   //   volatile object. A constructor shall not be declared const, | 
 |   //   volatile, or const volatile (9.3.2). | 
 |   if (isVirtual) { | 
 |     if (!D.isInvalidType()) | 
 |       Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) | 
 |         << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc()) | 
 |         << SourceRange(D.getIdentifierLoc()); | 
 |     D.setInvalidType(); | 
 |   } | 
 |   if (SC == SC_Static) { | 
 |     if (!D.isInvalidType()) | 
 |       Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) | 
 |         << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) | 
 |         << SourceRange(D.getIdentifierLoc()); | 
 |     D.setInvalidType(); | 
 |     SC = SC_None; | 
 |   } | 
 |  | 
 |   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); | 
 |   if (FTI.TypeQuals != 0) { | 
 |     if (FTI.TypeQuals & Qualifiers::Const) | 
 |       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor) | 
 |         << "const" << SourceRange(D.getIdentifierLoc()); | 
 |     if (FTI.TypeQuals & Qualifiers::Volatile) | 
 |       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor) | 
 |         << "volatile" << SourceRange(D.getIdentifierLoc()); | 
 |     if (FTI.TypeQuals & Qualifiers::Restrict) | 
 |       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor) | 
 |         << "restrict" << SourceRange(D.getIdentifierLoc()); | 
 |     D.setInvalidType(); | 
 |   } | 
 |  | 
 |   // C++0x [class.ctor]p4: | 
 |   //   A constructor shall not be declared with a ref-qualifier. | 
 |   if (FTI.hasRefQualifier()) { | 
 |     Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor) | 
 |       << FTI.RefQualifierIsLValueRef  | 
 |       << FixItHint::CreateRemoval(FTI.getRefQualifierLoc()); | 
 |     D.setInvalidType(); | 
 |   } | 
 |    | 
 |   // Rebuild the function type "R" without any type qualifiers (in | 
 |   // case any of the errors above fired) and with "void" as the | 
 |   // return type, since constructors don't have return types. | 
 |   const FunctionProtoType *Proto = R->getAs<FunctionProtoType>(); | 
 |   if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType()) | 
 |     return R; | 
 |  | 
 |   FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); | 
 |   EPI.TypeQuals = 0; | 
 |   EPI.RefQualifier = RQ_None; | 
 |    | 
 |   return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(), | 
 |                                  Proto->getNumArgs(), EPI); | 
 | } | 
 |  | 
 | /// CheckConstructor - Checks a fully-formed constructor for | 
 | /// well-formedness, issuing any diagnostics required. Returns true if | 
 | /// the constructor declarator is invalid. | 
 | void Sema::CheckConstructor(CXXConstructorDecl *Constructor) { | 
 |   CXXRecordDecl *ClassDecl | 
 |     = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext()); | 
 |   if (!ClassDecl) | 
 |     return Constructor->setInvalidDecl(); | 
 |  | 
 |   // C++ [class.copy]p3: | 
 |   //   A declaration of a constructor for a class X is ill-formed if | 
 |   //   its first parameter is of type (optionally cv-qualified) X and | 
 |   //   either there are no other parameters or else all other | 
 |   //   parameters have default arguments. | 
 |   if (!Constructor->isInvalidDecl() && | 
 |       ((Constructor->getNumParams() == 1) || | 
 |        (Constructor->getNumParams() > 1 && | 
 |         Constructor->getParamDecl(1)->hasDefaultArg())) && | 
 |       Constructor->getTemplateSpecializationKind() | 
 |                                               != TSK_ImplicitInstantiation) { | 
 |     QualType ParamType = Constructor->getParamDecl(0)->getType(); | 
 |     QualType ClassTy = Context.getTagDeclType(ClassDecl); | 
 |     if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) { | 
 |       SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation(); | 
 |       const char *ConstRef  | 
 |         = Constructor->getParamDecl(0)->getIdentifier() ? "const &"  | 
 |                                                         : " const &"; | 
 |       Diag(ParamLoc, diag::err_constructor_byvalue_arg) | 
 |         << FixItHint::CreateInsertion(ParamLoc, ConstRef); | 
 |  | 
 |       // FIXME: Rather that making the constructor invalid, we should endeavor | 
 |       // to fix the type. | 
 |       Constructor->setInvalidDecl(); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// CheckDestructor - Checks a fully-formed destructor definition for | 
 | /// well-formedness, issuing any diagnostics required.  Returns true | 
 | /// on error. | 
 | bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) { | 
 |   CXXRecordDecl *RD = Destructor->getParent(); | 
 |    | 
 |   if (Destructor->isVirtual()) { | 
 |     SourceLocation Loc; | 
 |      | 
 |     if (!Destructor->isImplicit()) | 
 |       Loc = Destructor->getLocation(); | 
 |     else | 
 |       Loc = RD->getLocation(); | 
 |      | 
 |     // If we have a virtual destructor, look up the deallocation function | 
 |     FunctionDecl *OperatorDelete = 0; | 
 |     DeclarationName Name =  | 
 |     Context.DeclarationNames.getCXXOperatorName(OO_Delete); | 
 |     if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete)) | 
 |       return true; | 
 |  | 
 |     MarkFunctionReferenced(Loc, OperatorDelete); | 
 |      | 
 |     Destructor->setOperatorDelete(OperatorDelete); | 
 |   } | 
 |    | 
 |   return false; | 
 | } | 
 |  | 
 | static inline bool | 
 | FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) { | 
 |   return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 && | 
 |           FTI.ArgInfo[0].Param && | 
 |           cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()); | 
 | } | 
 |  | 
 | /// CheckDestructorDeclarator - Called by ActOnDeclarator to check | 
 | /// the well-formednes of the destructor declarator @p D with type @p | 
 | /// R. If there are any errors in the declarator, this routine will | 
 | /// emit diagnostics and set the declarator to invalid.  Even if this happens, | 
 | /// will be updated to reflect a well-formed type for the destructor and | 
 | /// returned. | 
 | QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R, | 
 |                                          StorageClass& SC) { | 
 |   // C++ [class.dtor]p1: | 
 |   //   [...] A typedef-name that names a class is a class-name | 
 |   //   (7.1.3); however, a typedef-name that names a class shall not | 
 |   //   be used as the identifier in the declarator for a destructor | 
 |   //   declaration. | 
 |   QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName); | 
 |   if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>()) | 
 |     Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name) | 
 |       << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl()); | 
 |   else if (const TemplateSpecializationType *TST = | 
 |              DeclaratorType->getAs<TemplateSpecializationType>()) | 
 |     if (TST->isTypeAlias()) | 
 |       Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name) | 
 |         << DeclaratorType << 1; | 
 |  | 
 |   // C++ [class.dtor]p2: | 
 |   //   A destructor is used to destroy objects of its class type. A | 
 |   //   destructor takes no parameters, and no return type can be | 
 |   //   specified for it (not even void). The address of a destructor | 
 |   //   shall not be taken. A destructor shall not be static. A | 
 |   //   destructor can be invoked for a const, volatile or const | 
 |   //   volatile object. A destructor shall not be declared const, | 
 |   //   volatile or const volatile (9.3.2). | 
 |   if (SC == SC_Static) { | 
 |     if (!D.isInvalidType()) | 
 |       Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be) | 
 |         << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) | 
 |         << SourceRange(D.getIdentifierLoc()) | 
 |         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); | 
 |      | 
 |     SC = SC_None; | 
 |   } | 
 |   if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) { | 
 |     // Destructors don't have return types, but the parser will | 
 |     // happily parse something like: | 
 |     // | 
 |     //   class X { | 
 |     //     float ~X(); | 
 |     //   }; | 
 |     // | 
 |     // The return type will be eliminated later. | 
 |     Diag(D.getIdentifierLoc(), diag::err_destructor_return_type) | 
 |       << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) | 
 |       << SourceRange(D.getIdentifierLoc()); | 
 |   } | 
 |  | 
 |   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); | 
 |   if (FTI.TypeQuals != 0 && !D.isInvalidType()) { | 
 |     if (FTI.TypeQuals & Qualifiers::Const) | 
 |       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor) | 
 |         << "const" << SourceRange(D.getIdentifierLoc()); | 
 |     if (FTI.TypeQuals & Qualifiers::Volatile) | 
 |       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor) | 
 |         << "volatile" << SourceRange(D.getIdentifierLoc()); | 
 |     if (FTI.TypeQuals & Qualifiers::Restrict) | 
 |       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor) | 
 |         << "restrict" << SourceRange(D.getIdentifierLoc()); | 
 |     D.setInvalidType(); | 
 |   } | 
 |  | 
 |   // C++0x [class.dtor]p2: | 
 |   //   A destructor shall not be declared with a ref-qualifier. | 
 |   if (FTI.hasRefQualifier()) { | 
 |     Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor) | 
 |       << FTI.RefQualifierIsLValueRef | 
 |       << FixItHint::CreateRemoval(FTI.getRefQualifierLoc()); | 
 |     D.setInvalidType(); | 
 |   } | 
 |    | 
 |   // Make sure we don't have any parameters. | 
 |   if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) { | 
 |     Diag(D.getIdentifierLoc(), diag::err_destructor_with_params); | 
 |  | 
 |     // Delete the parameters. | 
 |     FTI.freeArgs(); | 
 |     D.setInvalidType(); | 
 |   } | 
 |  | 
 |   // Make sure the destructor isn't variadic. | 
 |   if (FTI.isVariadic) { | 
 |     Diag(D.getIdentifierLoc(), diag::err_destructor_variadic); | 
 |     D.setInvalidType(); | 
 |   } | 
 |  | 
 |   // Rebuild the function type "R" without any type qualifiers or | 
 |   // parameters (in case any of the errors above fired) and with | 
 |   // "void" as the return type, since destructors don't have return | 
 |   // types.  | 
 |   if (!D.isInvalidType()) | 
 |     return R; | 
 |  | 
 |   const FunctionProtoType *Proto = R->getAs<FunctionProtoType>(); | 
 |   FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); | 
 |   EPI.Variadic = false; | 
 |   EPI.TypeQuals = 0; | 
 |   EPI.RefQualifier = RQ_None; | 
 |   return Context.getFunctionType(Context.VoidTy, 0, 0, EPI); | 
 | } | 
 |  | 
 | /// CheckConversionDeclarator - Called by ActOnDeclarator to check the | 
 | /// well-formednes of the conversion function declarator @p D with | 
 | /// type @p R. If there are any errors in the declarator, this routine | 
 | /// will emit diagnostics and return true. Otherwise, it will return | 
 | /// false. Either way, the type @p R will be updated to reflect a | 
 | /// well-formed type for the conversion operator. | 
 | void Sema::CheckConversionDeclarator(Declarator &D, QualType &R, | 
 |                                      StorageClass& SC) { | 
 |   // C++ [class.conv.fct]p1: | 
 |   //   Neither parameter types nor return type can be specified. The | 
 |   //   type of a conversion function (8.3.5) is "function taking no | 
 |   //   parameter returning conversion-type-id." | 
 |   if (SC == SC_Static) { | 
 |     if (!D.isInvalidType()) | 
 |       Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member) | 
 |         << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) | 
 |         << SourceRange(D.getIdentifierLoc()); | 
 |     D.setInvalidType(); | 
 |     SC = SC_None; | 
 |   } | 
 |  | 
 |   QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId); | 
 |  | 
 |   if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) { | 
 |     // Conversion functions don't have return types, but the parser will | 
 |     // happily parse something like: | 
 |     // | 
 |     //   class X { | 
 |     //     float operator bool(); | 
 |     //   }; | 
 |     // | 
 |     // The return type will be changed later anyway. | 
 |     Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type) | 
 |       << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) | 
 |       << SourceRange(D.getIdentifierLoc()); | 
 |     D.setInvalidType(); | 
 |   } | 
 |  | 
 |   const FunctionProtoType *Proto = R->getAs<FunctionProtoType>(); | 
 |  | 
 |   // Make sure we don't have any parameters. | 
 |   if (Proto->getNumArgs() > 0) { | 
 |     Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params); | 
 |  | 
 |     // Delete the parameters. | 
 |     D.getFunctionTypeInfo().freeArgs(); | 
 |     D.setInvalidType(); | 
 |   } else if (Proto->isVariadic()) { | 
 |     Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic); | 
 |     D.setInvalidType(); | 
 |   } | 
 |  | 
 |   // Diagnose "&operator bool()" and other such nonsense.  This | 
 |   // is actually a gcc extension which we don't support. | 
 |   if (Proto->getResultType() != ConvType) { | 
 |     Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl) | 
 |       << Proto->getResultType(); | 
 |     D.setInvalidType(); | 
 |     ConvType = Proto->getResultType(); | 
 |   } | 
 |  | 
 |   // C++ [class.conv.fct]p4: | 
 |   //   The conversion-type-id shall not represent a function type nor | 
 |   //   an array type. | 
 |   if (ConvType->isArrayType()) { | 
 |     Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array); | 
 |     ConvType = Context.getPointerType(ConvType); | 
 |     D.setInvalidType(); | 
 |   } else if (ConvType->isFunctionType()) { | 
 |     Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function); | 
 |     ConvType = Context.getPointerType(ConvType); | 
 |     D.setInvalidType(); | 
 |   } | 
 |  | 
 |   // Rebuild the function type "R" without any parameters (in case any | 
 |   // of the errors above fired) and with the conversion type as the | 
 |   // return type. | 
 |   if (D.isInvalidType()) | 
 |     R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo()); | 
 |  | 
 |   // C++0x explicit conversion operators. | 
 |   if (D.getDeclSpec().isExplicitSpecified()) | 
 |     Diag(D.getDeclSpec().getExplicitSpecLoc(), | 
 |          getLangOptions().CPlusPlus0x ? | 
 |            diag::warn_cxx98_compat_explicit_conversion_functions : | 
 |            diag::ext_explicit_conversion_functions) | 
 |       << SourceRange(D.getDeclSpec().getExplicitSpecLoc()); | 
 | } | 
 |  | 
 | /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete | 
 | /// the declaration of the given C++ conversion function. This routine | 
 | /// is responsible for recording the conversion function in the C++ | 
 | /// class, if possible. | 
 | Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) { | 
 |   assert(Conversion && "Expected to receive a conversion function declaration"); | 
 |  | 
 |   CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext()); | 
 |  | 
 |   // Make sure we aren't redeclaring the conversion function. | 
 |   QualType ConvType = Context.getCanonicalType(Conversion->getConversionType()); | 
 |  | 
 |   // C++ [class.conv.fct]p1: | 
 |   //   [...] A conversion function is never used to convert a | 
 |   //   (possibly cv-qualified) object to the (possibly cv-qualified) | 
 |   //   same object type (or a reference to it), to a (possibly | 
 |   //   cv-qualified) base class of that type (or a reference to it), | 
 |   //   or to (possibly cv-qualified) void. | 
 |   // FIXME: Suppress this warning if the conversion function ends up being a | 
 |   // virtual function that overrides a virtual function in a base class. | 
 |   QualType ClassType | 
 |     = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); | 
 |   if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>()) | 
 |     ConvType = ConvTypeRef->getPointeeType(); | 
 |   if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared && | 
 |       Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) | 
 |     /* Suppress diagnostics for instantiations. */; | 
 |   else if (ConvType->isRecordType()) { | 
 |     ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType(); | 
 |     if (ConvType == ClassType) | 
 |       Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used) | 
 |         << ClassType; | 
 |     else if (IsDerivedFrom(ClassType, ConvType)) | 
 |       Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used) | 
 |         <<  ClassType << ConvType; | 
 |   } else if (ConvType->isVoidType()) { | 
 |     Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used) | 
 |       << ClassType << ConvType; | 
 |   } | 
 |  | 
 |   if (FunctionTemplateDecl *ConversionTemplate | 
 |                                 = Conversion->getDescribedFunctionTemplate()) | 
 |     return ConversionTemplate; | 
 |    | 
 |   return Conversion; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Namespace Handling | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 |  | 
 |  | 
 | /// ActOnStartNamespaceDef - This is called at the start of a namespace | 
 | /// definition. | 
 | Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope, | 
 |                                    SourceLocation InlineLoc, | 
 |                                    SourceLocation NamespaceLoc, | 
 |                                    SourceLocation IdentLoc, | 
 |                                    IdentifierInfo *II, | 
 |                                    SourceLocation LBrace, | 
 |                                    AttributeList *AttrList) { | 
 |   SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc; | 
 |   // For anonymous namespace, take the location of the left brace. | 
 |   SourceLocation Loc = II ? IdentLoc : LBrace; | 
 |   bool IsInline = InlineLoc.isValid(); | 
 |   bool IsInvalid = false; | 
 |   bool IsStd = false; | 
 |   bool AddToKnown = false; | 
 |   Scope *DeclRegionScope = NamespcScope->getParent(); | 
 |  | 
 |   NamespaceDecl *PrevNS = 0; | 
 |   if (II) { | 
 |     // C++ [namespace.def]p2: | 
 |     //   The identifier in an original-namespace-definition shall not | 
 |     //   have been previously defined in the declarative region in | 
 |     //   which the original-namespace-definition appears. The | 
 |     //   identifier in an original-namespace-definition is the name of | 
 |     //   the namespace. Subsequently in that declarative region, it is | 
 |     //   treated as an original-namespace-name. | 
 |     // | 
 |     // Since namespace names are unique in their scope, and we don't | 
 |     // look through using directives, just look for any ordinary names. | 
 |      | 
 |     const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |  | 
 |     Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |  | 
 |     Decl::IDNS_Namespace; | 
 |     NamedDecl *PrevDecl = 0; | 
 |     for (DeclContext::lookup_result R  | 
 |          = CurContext->getRedeclContext()->lookup(II); | 
 |          R.first != R.second; ++R.first) { | 
 |       if ((*R.first)->getIdentifierNamespace() & IDNS) { | 
 |         PrevDecl = *R.first; | 
 |         break; | 
 |       } | 
 |     } | 
 |      | 
 |     PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl); | 
 |      | 
 |     if (PrevNS) { | 
 |       // This is an extended namespace definition. | 
 |       if (IsInline != PrevNS->isInline()) { | 
 |         // inline-ness must match | 
 |         if (PrevNS->isInline()) { | 
 |           // The user probably just forgot the 'inline', so suggest that it | 
 |           // be added back. | 
 |           Diag(Loc, diag::warn_inline_namespace_reopened_noninline) | 
 |             << FixItHint::CreateInsertion(NamespaceLoc, "inline "); | 
 |         } else { | 
 |           Diag(Loc, diag::err_inline_namespace_mismatch) | 
 |             << IsInline; | 
 |         } | 
 |         Diag(PrevNS->getLocation(), diag::note_previous_definition); | 
 |          | 
 |         IsInline = PrevNS->isInline(); | 
 |       }       | 
 |     } else if (PrevDecl) { | 
 |       // This is an invalid name redefinition. | 
 |       Diag(Loc, diag::err_redefinition_different_kind) | 
 |         << II; | 
 |       Diag(PrevDecl->getLocation(), diag::note_previous_definition); | 
 |       IsInvalid = true; | 
 |       // Continue on to push Namespc as current DeclContext and return it. | 
 |     } else if (II->isStr("std") && | 
 |                CurContext->getRedeclContext()->isTranslationUnit()) { | 
 |       // This is the first "real" definition of the namespace "std", so update | 
 |       // our cache of the "std" namespace to point at this definition. | 
 |       PrevNS = getStdNamespace(); | 
 |       IsStd = true; | 
 |       AddToKnown = !IsInline; | 
 |     } else { | 
 |       // We've seen this namespace for the first time. | 
 |       AddToKnown = !IsInline; | 
 |     } | 
 |   } else { | 
 |     // Anonymous namespaces. | 
 |      | 
 |     // Determine whether the parent already has an anonymous namespace. | 
 |     DeclContext *Parent = CurContext->getRedeclContext(); | 
 |     if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) { | 
 |       PrevNS = TU->getAnonymousNamespace(); | 
 |     } else { | 
 |       NamespaceDecl *ND = cast<NamespaceDecl>(Parent); | 
 |       PrevNS = ND->getAnonymousNamespace(); | 
 |     } | 
 |  | 
 |     if (PrevNS && IsInline != PrevNS->isInline()) { | 
 |       // inline-ness must match | 
 |       Diag(Loc, diag::err_inline_namespace_mismatch) | 
 |         << IsInline; | 
 |       Diag(PrevNS->getLocation(), diag::note_previous_definition); | 
 |        | 
 |       // Recover by ignoring the new namespace's inline status. | 
 |       IsInline = PrevNS->isInline(); | 
 |     } | 
 |   } | 
 |    | 
 |   NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline, | 
 |                                                  StartLoc, Loc, II, PrevNS); | 
 |   if (IsInvalid) | 
 |     Namespc->setInvalidDecl(); | 
 |    | 
 |   ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList); | 
 |  | 
 |   // FIXME: Should we be merging attributes? | 
 |   if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>()) | 
 |     PushNamespaceVisibilityAttr(Attr, Loc); | 
 |  | 
 |   if (IsStd) | 
 |     StdNamespace = Namespc; | 
 |   if (AddToKnown) | 
 |     KnownNamespaces[Namespc] = false; | 
 |    | 
 |   if (II) { | 
 |     PushOnScopeChains(Namespc, DeclRegionScope); | 
 |   } else { | 
 |     // Link the anonymous namespace into its parent. | 
 |     DeclContext *Parent = CurContext->getRedeclContext(); | 
 |     if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) { | 
 |       TU->setAnonymousNamespace(Namespc); | 
 |     } else { | 
 |       cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc); | 
 |     } | 
 |  | 
 |     CurContext->addDecl(Namespc); | 
 |  | 
 |     // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition | 
 |     //   behaves as if it were replaced by | 
 |     //     namespace unique { /* empty body */ } | 
 |     //     using namespace unique; | 
 |     //     namespace unique { namespace-body } | 
 |     //   where all occurrences of 'unique' in a translation unit are | 
 |     //   replaced by the same identifier and this identifier differs | 
 |     //   from all other identifiers in the entire program. | 
 |  | 
 |     // We just create the namespace with an empty name and then add an | 
 |     // implicit using declaration, just like the standard suggests. | 
 |     // | 
 |     // CodeGen enforces the "universally unique" aspect by giving all | 
 |     // declarations semantically contained within an anonymous | 
 |     // namespace internal linkage. | 
 |  | 
 |     if (!PrevNS) { | 
 |       UsingDirectiveDecl* UD | 
 |         = UsingDirectiveDecl::Create(Context, CurContext, | 
 |                                      /* 'using' */ LBrace, | 
 |                                      /* 'namespace' */ SourceLocation(), | 
 |                                      /* qualifier */ NestedNameSpecifierLoc(), | 
 |                                      /* identifier */ SourceLocation(), | 
 |                                      Namespc, | 
 |                                      /* Ancestor */ CurContext); | 
 |       UD->setImplicit(); | 
 |       CurContext->addDecl(UD); | 
 |     } | 
 |   } | 
 |  | 
 |   // Although we could have an invalid decl (i.e. the namespace name is a | 
 |   // redefinition), push it as current DeclContext and try to continue parsing. | 
 |   // FIXME: We should be able to push Namespc here, so that the each DeclContext | 
 |   // for the namespace has the declarations that showed up in that particular | 
 |   // namespace definition. | 
 |   PushDeclContext(NamespcScope, Namespc); | 
 |   return Namespc; | 
 | } | 
 |  | 
 | /// getNamespaceDecl - Returns the namespace a decl represents. If the decl | 
 | /// is a namespace alias, returns the namespace it points to. | 
 | static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) { | 
 |   if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D)) | 
 |     return AD->getNamespace(); | 
 |   return dyn_cast_or_null<NamespaceDecl>(D); | 
 | } | 
 |  | 
 | /// ActOnFinishNamespaceDef - This callback is called after a namespace is | 
 | /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef. | 
 | void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) { | 
 |   NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl); | 
 |   assert(Namespc && "Invalid parameter, expected NamespaceDecl"); | 
 |   Namespc->setRBraceLoc(RBrace); | 
 |   PopDeclContext(); | 
 |   if (Namespc->hasAttr<VisibilityAttr>()) | 
 |     PopPragmaVisibility(true, RBrace); | 
 | } | 
 |  | 
 | CXXRecordDecl *Sema::getStdBadAlloc() const { | 
 |   return cast_or_null<CXXRecordDecl>( | 
 |                                   StdBadAlloc.get(Context.getExternalSource())); | 
 | } | 
 |  | 
 | NamespaceDecl *Sema::getStdNamespace() const { | 
 |   return cast_or_null<NamespaceDecl>( | 
 |                                  StdNamespace.get(Context.getExternalSource())); | 
 | } | 
 |  | 
 | /// \brief Retrieve the special "std" namespace, which may require us to  | 
 | /// implicitly define the namespace. | 
 | NamespaceDecl *Sema::getOrCreateStdNamespace() { | 
 |   if (!StdNamespace) { | 
 |     // The "std" namespace has not yet been defined, so build one implicitly. | 
 |     StdNamespace = NamespaceDecl::Create(Context,  | 
 |                                          Context.getTranslationUnitDecl(), | 
 |                                          /*Inline=*/false, | 
 |                                          SourceLocation(), SourceLocation(), | 
 |                                          &PP.getIdentifierTable().get("std"), | 
 |                                          /*PrevDecl=*/0); | 
 |     getStdNamespace()->setImplicit(true); | 
 |   } | 
 |    | 
 |   return getStdNamespace(); | 
 | } | 
 |  | 
 | bool Sema::isStdInitializerList(QualType Ty, QualType *Element) { | 
 |   assert(getLangOptions().CPlusPlus && | 
 |          "Looking for std::initializer_list outside of C++."); | 
 |  | 
 |   // We're looking for implicit instantiations of | 
 |   // template <typename E> class std::initializer_list. | 
 |  | 
 |   if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it. | 
 |     return false; | 
 |  | 
 |   ClassTemplateDecl *Template = 0; | 
 |   const TemplateArgument *Arguments = 0; | 
 |  | 
 |   if (const RecordType *RT = Ty->getAs<RecordType>()) { | 
 |  | 
 |     ClassTemplateSpecializationDecl *Specialization = | 
 |         dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl()); | 
 |     if (!Specialization) | 
 |       return false; | 
 |  | 
 |     Template = Specialization->getSpecializedTemplate(); | 
 |     Arguments = Specialization->getTemplateArgs().data(); | 
 |   } else if (const TemplateSpecializationType *TST = | 
 |                  Ty->getAs<TemplateSpecializationType>()) { | 
 |     Template = dyn_cast_or_null<ClassTemplateDecl>( | 
 |         TST->getTemplateName().getAsTemplateDecl()); | 
 |     Arguments = TST->getArgs(); | 
 |   } | 
 |   if (!Template) | 
 |     return false; | 
 |  | 
 |   if (!StdInitializerList) { | 
 |     // Haven't recognized std::initializer_list yet, maybe this is it. | 
 |     CXXRecordDecl *TemplateClass = Template->getTemplatedDecl(); | 
 |     if (TemplateClass->getIdentifier() != | 
 |             &PP.getIdentifierTable().get("initializer_list") || | 
 |         !getStdNamespace()->InEnclosingNamespaceSetOf( | 
 |             TemplateClass->getDeclContext())) | 
 |       return false; | 
 |     // This is a template called std::initializer_list, but is it the right | 
 |     // template? | 
 |     TemplateParameterList *Params = Template->getTemplateParameters(); | 
 |     if (Params->getMinRequiredArguments() != 1) | 
 |       return false; | 
 |     if (!isa<TemplateTypeParmDecl>(Params->getParam(0))) | 
 |       return false; | 
 |  | 
 |     // It's the right template. | 
 |     StdInitializerList = Template; | 
 |   } | 
 |  | 
 |   if (Template != StdInitializerList) | 
 |     return false; | 
 |  | 
 |   // This is an instance of std::initializer_list. Find the argument type. | 
 |   if (Element) | 
 |     *Element = Arguments[0].getAsType(); | 
 |   return true; | 
 | } | 
 |  | 
 | static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){ | 
 |   NamespaceDecl *Std = S.getStdNamespace(); | 
 |   if (!Std) { | 
 |     S.Diag(Loc, diag::err_implied_std_initializer_list_not_found); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"), | 
 |                       Loc, Sema::LookupOrdinaryName); | 
 |   if (!S.LookupQualifiedName(Result, Std)) { | 
 |     S.Diag(Loc, diag::err_implied_std_initializer_list_not_found); | 
 |     return 0; | 
 |   } | 
 |   ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>(); | 
 |   if (!Template) { | 
 |     Result.suppressDiagnostics(); | 
 |     // We found something weird. Complain about the first thing we found. | 
 |     NamedDecl *Found = *Result.begin(); | 
 |     S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // We found some template called std::initializer_list. Now verify that it's | 
 |   // correct. | 
 |   TemplateParameterList *Params = Template->getTemplateParameters(); | 
 |   if (Params->getMinRequiredArguments() != 1 || | 
 |       !isa<TemplateTypeParmDecl>(Params->getParam(0))) { | 
 |     S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return Template; | 
 | } | 
 |  | 
 | QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) { | 
 |   if (!StdInitializerList) { | 
 |     StdInitializerList = LookupStdInitializerList(*this, Loc); | 
 |     if (!StdInitializerList) | 
 |       return QualType(); | 
 |   } | 
 |  | 
 |   TemplateArgumentListInfo Args(Loc, Loc); | 
 |   Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element), | 
 |                                        Context.getTrivialTypeSourceInfo(Element, | 
 |                                                                         Loc))); | 
 |   return Context.getCanonicalType( | 
 |       CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args)); | 
 | } | 
 |  | 
 | bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) { | 
 |   // C++ [dcl.init.list]p2: | 
 |   //   A constructor is an initializer-list constructor if its first parameter | 
 |   //   is of type std::initializer_list<E> or reference to possibly cv-qualified | 
 |   //   std::initializer_list<E> for some type E, and either there are no other | 
 |   //   parameters or else all other parameters have default arguments. | 
 |   if (Ctor->getNumParams() < 1 || | 
 |       (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg())) | 
 |     return false; | 
 |  | 
 |   QualType ArgType = Ctor->getParamDecl(0)->getType(); | 
 |   if (const ReferenceType *RT = ArgType->getAs<ReferenceType>()) | 
 |     ArgType = RT->getPointeeType().getUnqualifiedType(); | 
 |  | 
 |   return isStdInitializerList(ArgType, 0); | 
 | } | 
 |  | 
 | /// \brief Determine whether a using statement is in a context where it will be | 
 | /// apply in all contexts. | 
 | static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) { | 
 |   switch (CurContext->getDeclKind()) { | 
 |     case Decl::TranslationUnit: | 
 |       return true; | 
 |     case Decl::LinkageSpec: | 
 |       return IsUsingDirectiveInToplevelContext(CurContext->getParent()); | 
 |     default: | 
 |       return false; | 
 |   } | 
 | } | 
 |  | 
 | namespace { | 
 |  | 
 | // Callback to only accept typo corrections that are namespaces. | 
 | class NamespaceValidatorCCC : public CorrectionCandidateCallback { | 
 |  public: | 
 |   virtual bool ValidateCandidate(const TypoCorrection &candidate) { | 
 |     if (NamedDecl *ND = candidate.getCorrectionDecl()) { | 
 |       return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND); | 
 |     } | 
 |     return false; | 
 |   } | 
 | }; | 
 |  | 
 | } | 
 |  | 
 | static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc, | 
 |                                        CXXScopeSpec &SS, | 
 |                                        SourceLocation IdentLoc, | 
 |                                        IdentifierInfo *Ident) { | 
 |   NamespaceValidatorCCC Validator; | 
 |   R.clear(); | 
 |   if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(), | 
 |                                                R.getLookupKind(), Sc, &SS, | 
 |                                                Validator)) { | 
 |     std::string CorrectedStr(Corrected.getAsString(S.getLangOptions())); | 
 |     std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOptions())); | 
 |     if (DeclContext *DC = S.computeDeclContext(SS, false)) | 
 |       S.Diag(IdentLoc, diag::err_using_directive_member_suggest) | 
 |         << Ident << DC << CorrectedQuotedStr << SS.getRange() | 
 |         << FixItHint::CreateReplacement(IdentLoc, CorrectedStr); | 
 |     else | 
 |       S.Diag(IdentLoc, diag::err_using_directive_suggest) | 
 |         << Ident << CorrectedQuotedStr | 
 |         << FixItHint::CreateReplacement(IdentLoc, CorrectedStr); | 
 |  | 
 |     S.Diag(Corrected.getCorrectionDecl()->getLocation(), | 
 |          diag::note_namespace_defined_here) << CorrectedQuotedStr; | 
 |  | 
 |     Ident = Corrected.getCorrectionAsIdentifierInfo(); | 
 |     R.addDecl(Corrected.getCorrectionDecl()); | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | Decl *Sema::ActOnUsingDirective(Scope *S, | 
 |                                           SourceLocation UsingLoc, | 
 |                                           SourceLocation NamespcLoc, | 
 |                                           CXXScopeSpec &SS, | 
 |                                           SourceLocation IdentLoc, | 
 |                                           IdentifierInfo *NamespcName, | 
 |                                           AttributeList *AttrList) { | 
 |   assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); | 
 |   assert(NamespcName && "Invalid NamespcName."); | 
 |   assert(IdentLoc.isValid() && "Invalid NamespceName location."); | 
 |  | 
 |   // This can only happen along a recovery path. | 
 |   while (S->getFlags() & Scope::TemplateParamScope) | 
 |     S = S->getParent(); | 
 |   assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); | 
 |  | 
 |   UsingDirectiveDecl *UDir = 0; | 
 |   NestedNameSpecifier *Qualifier = 0; | 
 |   if (SS.isSet()) | 
 |     Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); | 
 |    | 
 |   // Lookup namespace name. | 
 |   LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName); | 
 |   LookupParsedName(R, S, &SS); | 
 |   if (R.isAmbiguous()) | 
 |     return 0; | 
 |  | 
 |   if (R.empty()) { | 
 |     R.clear(); | 
 |     // Allow "using namespace std;" or "using namespace ::std;" even if  | 
 |     // "std" hasn't been defined yet, for GCC compatibility. | 
 |     if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) && | 
 |         NamespcName->isStr("std")) { | 
 |       Diag(IdentLoc, diag::ext_using_undefined_std); | 
 |       R.addDecl(getOrCreateStdNamespace()); | 
 |       R.resolveKind(); | 
 |     }  | 
 |     // Otherwise, attempt typo correction. | 
 |     else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName); | 
 |   } | 
 |    | 
 |   if (!R.empty()) { | 
 |     NamedDecl *Named = R.getFoundDecl(); | 
 |     assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named)) | 
 |         && "expected namespace decl"); | 
 |     // C++ [namespace.udir]p1: | 
 |     //   A using-directive specifies that the names in the nominated | 
 |     //   namespace can be used in the scope in which the | 
 |     //   using-directive appears after the using-directive. During | 
 |     //   unqualified name lookup (3.4.1), the names appear as if they | 
 |     //   were declared in the nearest enclosing namespace which | 
 |     //   contains both the using-directive and the nominated | 
 |     //   namespace. [Note: in this context, "contains" means "contains | 
 |     //   directly or indirectly". ] | 
 |  | 
 |     // Find enclosing context containing both using-directive and | 
 |     // nominated namespace. | 
 |     NamespaceDecl *NS = getNamespaceDecl(Named); | 
 |     DeclContext *CommonAncestor = cast<DeclContext>(NS); | 
 |     while (CommonAncestor && !CommonAncestor->Encloses(CurContext)) | 
 |       CommonAncestor = CommonAncestor->getParent(); | 
 |  | 
 |     UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc, | 
 |                                       SS.getWithLocInContext(Context), | 
 |                                       IdentLoc, Named, CommonAncestor); | 
 |  | 
 |     if (IsUsingDirectiveInToplevelContext(CurContext) && | 
 |         !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) { | 
 |       Diag(IdentLoc, diag::warn_using_directive_in_header); | 
 |     } | 
 |  | 
 |     PushUsingDirective(S, UDir); | 
 |   } else { | 
 |     Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); | 
 |   } | 
 |  | 
 |   // FIXME: We ignore attributes for now. | 
 |   return UDir; | 
 | } | 
 |  | 
 | void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) { | 
 |   // If scope has associated entity, then using directive is at namespace | 
 |   // or translation unit scope. We add UsingDirectiveDecls, into | 
 |   // it's lookup structure. | 
 |   if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) | 
 |     Ctx->addDecl(UDir); | 
 |   else | 
 |     // Otherwise it is block-sope. using-directives will affect lookup | 
 |     // only to the end of scope. | 
 |     S->PushUsingDirective(UDir); | 
 | } | 
 |  | 
 |  | 
 | Decl *Sema::ActOnUsingDeclaration(Scope *S, | 
 |                                   AccessSpecifier AS, | 
 |                                   bool HasUsingKeyword, | 
 |                                   SourceLocation UsingLoc, | 
 |                                   CXXScopeSpec &SS, | 
 |                                   UnqualifiedId &Name, | 
 |                                   AttributeList *AttrList, | 
 |                                   bool IsTypeName, | 
 |                                   SourceLocation TypenameLoc) { | 
 |   assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); | 
 |  | 
 |   switch (Name.getKind()) { | 
 |   case UnqualifiedId::IK_ImplicitSelfParam: | 
 |   case UnqualifiedId::IK_Identifier: | 
 |   case UnqualifiedId::IK_OperatorFunctionId: | 
 |   case UnqualifiedId::IK_LiteralOperatorId: | 
 |   case UnqualifiedId::IK_ConversionFunctionId: | 
 |     break; | 
 |        | 
 |   case UnqualifiedId::IK_ConstructorName: | 
 |   case UnqualifiedId::IK_ConstructorTemplateId: | 
 |     // C++0x inherited constructors. | 
 |     Diag(Name.getSourceRange().getBegin(), | 
 |          getLangOptions().CPlusPlus0x ? | 
 |            diag::warn_cxx98_compat_using_decl_constructor : | 
 |            diag::err_using_decl_constructor) | 
 |       << SS.getRange(); | 
 |  | 
 |     if (getLangOptions().CPlusPlus0x) break; | 
 |  | 
 |     return 0; | 
 |        | 
 |   case UnqualifiedId::IK_DestructorName: | 
 |     Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor) | 
 |       << SS.getRange(); | 
 |     return 0; | 
 |        | 
 |   case UnqualifiedId::IK_TemplateId: | 
 |     Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id) | 
 |       << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); | 
 |   DeclarationName TargetName = TargetNameInfo.getName(); | 
 |   if (!TargetName) | 
 |     return 0; | 
 |  | 
 |   // Warn about using declarations. | 
 |   // TODO: store that the declaration was written without 'using' and | 
 |   // talk about access decls instead of using decls in the | 
 |   // diagnostics. | 
 |   if (!HasUsingKeyword) { | 
 |     UsingLoc = Name.getSourceRange().getBegin(); | 
 |      | 
 |     Diag(UsingLoc, diag::warn_access_decl_deprecated) | 
 |       << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using "); | 
 |   } | 
 |  | 
 |   if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) || | 
 |       DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration)) | 
 |     return 0; | 
 |  | 
 |   NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS, | 
 |                                         TargetNameInfo, AttrList, | 
 |                                         /* IsInstantiation */ false, | 
 |                                         IsTypeName, TypenameLoc); | 
 |   if (UD) | 
 |     PushOnScopeChains(UD, S, /*AddToContext*/ false); | 
 |  | 
 |   return UD; | 
 | } | 
 |  | 
 | /// \brief Determine whether a using declaration considers the given | 
 | /// declarations as "equivalent", e.g., if they are redeclarations of | 
 | /// the same entity or are both typedefs of the same type. | 
 | static bool  | 
 | IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2, | 
 |                          bool &SuppressRedeclaration) { | 
 |   if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) { | 
 |     SuppressRedeclaration = false; | 
 |     return true; | 
 |   } | 
 |  | 
 |   if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1)) | 
 |     if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) { | 
 |       SuppressRedeclaration = true; | 
 |       return Context.hasSameType(TD1->getUnderlyingType(), | 
 |                                  TD2->getUnderlyingType()); | 
 |     } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 |  | 
 | /// Determines whether to create a using shadow decl for a particular | 
 | /// decl, given the set of decls existing prior to this using lookup. | 
 | bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig, | 
 |                                 const LookupResult &Previous) { | 
 |   // Diagnose finding a decl which is not from a base class of the | 
 |   // current class.  We do this now because there are cases where this | 
 |   // function will silently decide not to build a shadow decl, which | 
 |   // will pre-empt further diagnostics. | 
 |   // | 
 |   // We don't need to do this in C++0x because we do the check once on | 
 |   // the qualifier. | 
 |   // | 
 |   // FIXME: diagnose the following if we care enough: | 
 |   //   struct A { int foo; }; | 
 |   //   struct B : A { using A::foo; }; | 
 |   //   template <class T> struct C : A {}; | 
 |   //   template <class T> struct D : C<T> { using B::foo; } // <--- | 
 |   // This is invalid (during instantiation) in C++03 because B::foo | 
 |   // resolves to the using decl in B, which is not a base class of D<T>. | 
 |   // We can't diagnose it immediately because C<T> is an unknown | 
 |   // specialization.  The UsingShadowDecl in D<T> then points directly | 
 |   // to A::foo, which will look well-formed when we instantiate. | 
 |   // The right solution is to not collapse the shadow-decl chain. | 
 |   if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) { | 
 |     DeclContext *OrigDC = Orig->getDeclContext(); | 
 |  | 
 |     // Handle enums and anonymous structs. | 
 |     if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent(); | 
 |     CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC); | 
 |     while (OrigRec->isAnonymousStructOrUnion()) | 
 |       OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext()); | 
 |  | 
 |     if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) { | 
 |       if (OrigDC == CurContext) { | 
 |         Diag(Using->getLocation(), | 
 |              diag::err_using_decl_nested_name_specifier_is_current_class) | 
 |           << Using->getQualifierLoc().getSourceRange(); | 
 |         Diag(Orig->getLocation(), diag::note_using_decl_target); | 
 |         return true; | 
 |       } | 
 |  | 
 |       Diag(Using->getQualifierLoc().getBeginLoc(), | 
 |            diag::err_using_decl_nested_name_specifier_is_not_base_class) | 
 |         << Using->getQualifier() | 
 |         << cast<CXXRecordDecl>(CurContext) | 
 |         << Using->getQualifierLoc().getSourceRange(); | 
 |       Diag(Orig->getLocation(), diag::note_using_decl_target); | 
 |       return true; | 
 |     } | 
 |   } | 
 |  | 
 |   if (Previous.empty()) return false; | 
 |  | 
 |   NamedDecl *Target = Orig; | 
 |   if (isa<UsingShadowDecl>(Target)) | 
 |     Target = cast<UsingShadowDecl>(Target)->getTargetDecl(); | 
 |  | 
 |   // If the target happens to be one of the previous declarations, we | 
 |   // don't have a conflict. | 
 |   //  | 
 |   // FIXME: but we might be increasing its access, in which case we | 
 |   // should redeclare it. | 
 |   NamedDecl *NonTag = 0, *Tag = 0; | 
 |   for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); | 
 |          I != E; ++I) { | 
 |     NamedDecl *D = (*I)->getUnderlyingDecl(); | 
 |     bool Result; | 
 |     if (IsEquivalentForUsingDecl(Context, D, Target, Result)) | 
 |       return Result; | 
 |  | 
 |     (isa<TagDecl>(D) ? Tag : NonTag) = D; | 
 |   } | 
 |  | 
 |   if (Target->isFunctionOrFunctionTemplate()) { | 
 |     FunctionDecl *FD; | 
 |     if (isa<FunctionTemplateDecl>(Target)) | 
 |       FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl(); | 
 |     else | 
 |       FD = cast<FunctionDecl>(Target); | 
 |  | 
 |     NamedDecl *OldDecl = 0; | 
 |     switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) { | 
 |     case Ovl_Overload: | 
 |       return false; | 
 |  | 
 |     case Ovl_NonFunction: | 
 |       Diag(Using->getLocation(), diag::err_using_decl_conflict); | 
 |       break; | 
 |        | 
 |     // We found a decl with the exact signature. | 
 |     case Ovl_Match: | 
 |       // If we're in a record, we want to hide the target, so we | 
 |       // return true (without a diagnostic) to tell the caller not to | 
 |       // build a shadow decl. | 
 |       if (CurContext->isRecord()) | 
 |         return true; | 
 |  | 
 |       // If we're not in a record, this is an error. | 
 |       Diag(Using->getLocation(), diag::err_using_decl_conflict); | 
 |       break; | 
 |     } | 
 |  | 
 |     Diag(Target->getLocation(), diag::note_using_decl_target); | 
 |     Diag(OldDecl->getLocation(), diag::note_using_decl_conflict); | 
 |     return true; | 
 |   } | 
 |  | 
 |   // Target is not a function. | 
 |  | 
 |   if (isa<TagDecl>(Target)) { | 
 |     // No conflict between a tag and a non-tag. | 
 |     if (!Tag) return false; | 
 |  | 
 |     Diag(Using->getLocation(), diag::err_using_decl_conflict); | 
 |     Diag(Target->getLocation(), diag::note_using_decl_target); | 
 |     Diag(Tag->getLocation(), diag::note_using_decl_conflict); | 
 |     return true; | 
 |   } | 
 |  | 
 |   // No conflict between a tag and a non-tag. | 
 |   if (!NonTag) return false; | 
 |  | 
 |   Diag(Using->getLocation(), diag::err_using_decl_conflict); | 
 |   Diag(Target->getLocation(), diag::note_using_decl_target); | 
 |   Diag(NonTag->getLocation(), diag::note_using_decl_conflict); | 
 |   return true; | 
 | } | 
 |  | 
 | /// Builds a shadow declaration corresponding to a 'using' declaration. | 
 | UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S, | 
 |                                             UsingDecl *UD, | 
 |                                             NamedDecl *Orig) { | 
 |  | 
 |   // If we resolved to another shadow declaration, just coalesce them. | 
 |   NamedDecl *Target = Orig; | 
 |   if (isa<UsingShadowDecl>(Target)) { | 
 |     Target = cast<UsingShadowDecl>(Target)->getTargetDecl(); | 
 |     assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration"); | 
 |   } | 
 |    | 
 |   UsingShadowDecl *Shadow | 
 |     = UsingShadowDecl::Create(Context, CurContext, | 
 |                               UD->getLocation(), UD, Target); | 
 |   UD->addShadowDecl(Shadow); | 
 |    | 
 |   Shadow->setAccess(UD->getAccess()); | 
 |   if (Orig->isInvalidDecl() || UD->isInvalidDecl()) | 
 |     Shadow->setInvalidDecl(); | 
 |    | 
 |   if (S) | 
 |     PushOnScopeChains(Shadow, S); | 
 |   else | 
 |     CurContext->addDecl(Shadow); | 
 |  | 
 |  | 
 |   return Shadow; | 
 | } | 
 |  | 
 | /// Hides a using shadow declaration.  This is required by the current | 
 | /// using-decl implementation when a resolvable using declaration in a | 
 | /// class is followed by a declaration which would hide or override | 
 | /// one or more of the using decl's targets; for example: | 
 | /// | 
 | ///   struct Base { void foo(int); }; | 
 | ///   struct Derived : Base { | 
 | ///     using Base::foo; | 
 | ///     void foo(int); | 
 | ///   }; | 
 | /// | 
 | /// The governing language is C++03 [namespace.udecl]p12: | 
 | /// | 
 | ///   When a using-declaration brings names from a base class into a | 
 | ///   derived class scope, member functions in the derived class | 
 | ///   override and/or hide member functions with the same name and | 
 | ///   parameter types in a base class (rather than conflicting). | 
 | /// | 
 | /// There are two ways to implement this: | 
 | ///   (1) optimistically create shadow decls when they're not hidden | 
 | ///       by existing declarations, or | 
 | ///   (2) don't create any shadow decls (or at least don't make them | 
 | ///       visible) until we've fully parsed/instantiated the class. | 
 | /// The problem with (1) is that we might have to retroactively remove | 
 | /// a shadow decl, which requires several O(n) operations because the | 
 | /// decl structures are (very reasonably) not designed for removal. | 
 | /// (2) avoids this but is very fiddly and phase-dependent. | 
 | void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) { | 
 |   if (Shadow->getDeclName().getNameKind() == | 
 |         DeclarationName::CXXConversionFunctionName) | 
 |     cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow); | 
 |  | 
 |   // Remove it from the DeclContext... | 
 |   Shadow->getDeclContext()->removeDecl(Shadow); | 
 |  | 
 |   // ...and the scope, if applicable... | 
 |   if (S) { | 
 |     S->RemoveDecl(Shadow); | 
 |     IdResolver.RemoveDecl(Shadow); | 
 |   } | 
 |  | 
 |   // ...and the using decl. | 
 |   Shadow->getUsingDecl()->removeShadowDecl(Shadow); | 
 |  | 
 |   // TODO: complain somehow if Shadow was used.  It shouldn't | 
 |   // be possible for this to happen, because...? | 
 | } | 
 |  | 
 | /// Builds a using declaration. | 
 | /// | 
 | /// \param IsInstantiation - Whether this call arises from an | 
 | ///   instantiation of an unresolved using declaration.  We treat | 
 | ///   the lookup differently for these declarations. | 
 | NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS, | 
 |                                        SourceLocation UsingLoc, | 
 |                                        CXXScopeSpec &SS, | 
 |                                        const DeclarationNameInfo &NameInfo, | 
 |                                        AttributeList *AttrList, | 
 |                                        bool IsInstantiation, | 
 |                                        bool IsTypeName, | 
 |                                        SourceLocation TypenameLoc) { | 
 |   assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); | 
 |   SourceLocation IdentLoc = NameInfo.getLoc(); | 
 |   assert(IdentLoc.isValid() && "Invalid TargetName location."); | 
 |  | 
 |   // FIXME: We ignore attributes for now. | 
 |  | 
 |   if (SS.isEmpty()) { | 
 |     Diag(IdentLoc, diag::err_using_requires_qualname); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // Do the redeclaration lookup in the current scope. | 
 |   LookupResult Previous(*this, NameInfo, LookupUsingDeclName, | 
 |                         ForRedeclaration); | 
 |   Previous.setHideTags(false); | 
 |   if (S) { | 
 |     LookupName(Previous, S); | 
 |  | 
 |     // It is really dumb that we have to do this. | 
 |     LookupResult::Filter F = Previous.makeFilter(); | 
 |     while (F.hasNext()) { | 
 |       NamedDecl *D = F.next(); | 
 |       if (!isDeclInScope(D, CurContext, S)) | 
 |         F.erase(); | 
 |     } | 
 |     F.done(); | 
 |   } else { | 
 |     assert(IsInstantiation && "no scope in non-instantiation"); | 
 |     assert(CurContext->isRecord() && "scope not record in instantiation"); | 
 |     LookupQualifiedName(Previous, CurContext); | 
 |   } | 
 |  | 
 |   // Check for invalid redeclarations. | 
 |   if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous)) | 
 |     return 0; | 
 |  | 
 |   // Check for bad qualifiers. | 
 |   if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc)) | 
 |     return 0; | 
 |  | 
 |   DeclContext *LookupContext = computeDeclContext(SS); | 
 |   NamedDecl *D; | 
 |   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); | 
 |   if (!LookupContext) { | 
 |     if (IsTypeName) { | 
 |       // FIXME: not all declaration name kinds are legal here | 
 |       D = UnresolvedUsingTypenameDecl::Create(Context, CurContext, | 
 |                                               UsingLoc, TypenameLoc, | 
 |                                               QualifierLoc, | 
 |                                               IdentLoc, NameInfo.getName()); | 
 |     } else { | 
 |       D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,  | 
 |                                            QualifierLoc, NameInfo); | 
 |     } | 
 |   } else { | 
 |     D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc, | 
 |                           NameInfo, IsTypeName); | 
 |   } | 
 |   D->setAccess(AS); | 
 |   CurContext->addDecl(D); | 
 |  | 
 |   if (!LookupContext) return D; | 
 |   UsingDecl *UD = cast<UsingDecl>(D); | 
 |  | 
 |   if (RequireCompleteDeclContext(SS, LookupContext)) { | 
 |     UD->setInvalidDecl(); | 
 |     return UD; | 
 |   } | 
 |  | 
 |   // Constructor inheriting using decls get special treatment. | 
 |   if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) { | 
 |     if (CheckInheritedConstructorUsingDecl(UD)) | 
 |       UD->setInvalidDecl(); | 
 |     return UD; | 
 |   } | 
 |  | 
 |   // Otherwise, look up the target name. | 
 |  | 
 |   LookupResult R(*this, NameInfo, LookupOrdinaryName); | 
 |  | 
 |   // Unlike most lookups, we don't always want to hide tag | 
 |   // declarations: tag names are visible through the using declaration | 
 |   // even if hidden by ordinary names, *except* in a dependent context | 
 |   // where it's important for the sanity of two-phase lookup. | 
 |   if (!IsInstantiation) | 
 |     R.setHideTags(false); | 
 |  | 
 |   LookupQualifiedName(R, LookupContext); | 
 |  | 
 |   if (R.empty()) { | 
 |     Diag(IdentLoc, diag::err_no_member)  | 
 |       << NameInfo.getName() << LookupContext << SS.getRange(); | 
 |     UD->setInvalidDecl(); | 
 |     return UD; | 
 |   } | 
 |  | 
 |   if (R.isAmbiguous()) { | 
 |     UD->setInvalidDecl(); | 
 |     return UD; | 
 |   } | 
 |  | 
 |   if (IsTypeName) { | 
 |     // If we asked for a typename and got a non-type decl, error out. | 
 |     if (!R.getAsSingle<TypeDecl>()) { | 
 |       Diag(IdentLoc, diag::err_using_typename_non_type); | 
 |       for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) | 
 |         Diag((*I)->getUnderlyingDecl()->getLocation(), | 
 |              diag::note_using_decl_target); | 
 |       UD->setInvalidDecl(); | 
 |       return UD; | 
 |     } | 
 |   } else { | 
 |     // If we asked for a non-typename and we got a type, error out, | 
 |     // but only if this is an instantiation of an unresolved using | 
 |     // decl.  Otherwise just silently find the type name. | 
 |     if (IsInstantiation && R.getAsSingle<TypeDecl>()) { | 
 |       Diag(IdentLoc, diag::err_using_dependent_value_is_type); | 
 |       Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target); | 
 |       UD->setInvalidDecl(); | 
 |       return UD; | 
 |     } | 
 |   } | 
 |  | 
 |   // C++0x N2914 [namespace.udecl]p6: | 
 |   // A using-declaration shall not name a namespace. | 
 |   if (R.getAsSingle<NamespaceDecl>()) { | 
 |     Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace) | 
 |       << SS.getRange(); | 
 |     UD->setInvalidDecl(); | 
 |     return UD; | 
 |   } | 
 |  | 
 |   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { | 
 |     if (!CheckUsingShadowDecl(UD, *I, Previous)) | 
 |       BuildUsingShadowDecl(S, UD, *I); | 
 |   } | 
 |  | 
 |   return UD; | 
 | } | 
 |  | 
 | /// Additional checks for a using declaration referring to a constructor name. | 
 | bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) { | 
 |   if (UD->isTypeName()) { | 
 |     // FIXME: Cannot specify typename when specifying constructor | 
 |     return true; | 
 |   } | 
 |  | 
 |   const Type *SourceType = UD->getQualifier()->getAsType(); | 
 |   assert(SourceType && | 
 |          "Using decl naming constructor doesn't have type in scope spec."); | 
 |   CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext); | 
 |  | 
 |   // Check whether the named type is a direct base class. | 
 |   CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified(); | 
 |   CXXRecordDecl::base_class_iterator BaseIt, BaseE; | 
 |   for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end(); | 
 |        BaseIt != BaseE; ++BaseIt) { | 
 |     CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified(); | 
 |     if (CanonicalSourceType == BaseType) | 
 |       break; | 
 |   } | 
 |  | 
 |   if (BaseIt == BaseE) { | 
 |     // Did not find SourceType in the bases. | 
 |     Diag(UD->getUsingLocation(), | 
 |          diag::err_using_decl_constructor_not_in_direct_base) | 
 |       << UD->getNameInfo().getSourceRange() | 
 |       << QualType(SourceType, 0) << TargetClass; | 
 |     return true; | 
 |   } | 
 |  | 
 |   BaseIt->setInheritConstructors(); | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// Checks that the given using declaration is not an invalid | 
 | /// redeclaration.  Note that this is checking only for the using decl | 
 | /// itself, not for any ill-formedness among the UsingShadowDecls. | 
 | bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc, | 
 |                                        bool isTypeName, | 
 |                                        const CXXScopeSpec &SS, | 
 |                                        SourceLocation NameLoc, | 
 |                                        const LookupResult &Prev) { | 
 |   // C++03 [namespace.udecl]p8: | 
 |   // C++0x [namespace.udecl]p10: | 
 |   //   A using-declaration is a declaration and can therefore be used | 
 |   //   repeatedly where (and only where) multiple declarations are | 
 |   //   allowed. | 
 |   // | 
 |   // That's in non-member contexts. | 
 |   if (!CurContext->getRedeclContext()->isRecord()) | 
 |     return false; | 
 |  | 
 |   NestedNameSpecifier *Qual | 
 |     = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); | 
 |  | 
 |   for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) { | 
 |     NamedDecl *D = *I; | 
 |  | 
 |     bool DTypename; | 
 |     NestedNameSpecifier *DQual; | 
 |     if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) { | 
 |       DTypename = UD->isTypeName(); | 
 |       DQual = UD->getQualifier(); | 
 |     } else if (UnresolvedUsingValueDecl *UD | 
 |                  = dyn_cast<UnresolvedUsingValueDecl>(D)) { | 
 |       DTypename = false; | 
 |       DQual = UD->getQualifier(); | 
 |     } else if (UnresolvedUsingTypenameDecl *UD | 
 |                  = dyn_cast<UnresolvedUsingTypenameDecl>(D)) { | 
 |       DTypename = true; | 
 |       DQual = UD->getQualifier(); | 
 |     } else continue; | 
 |  | 
 |     // using decls differ if one says 'typename' and the other doesn't. | 
 |     // FIXME: non-dependent using decls? | 
 |     if (isTypeName != DTypename) continue; | 
 |  | 
 |     // using decls differ if they name different scopes (but note that | 
 |     // template instantiation can cause this check to trigger when it | 
 |     // didn't before instantiation). | 
 |     if (Context.getCanonicalNestedNameSpecifier(Qual) != | 
 |         Context.getCanonicalNestedNameSpecifier(DQual)) | 
 |       continue; | 
 |  | 
 |     Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange(); | 
 |     Diag(D->getLocation(), diag::note_using_decl) << 1; | 
 |     return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 |  | 
 | /// Checks that the given nested-name qualifier used in a using decl | 
 | /// in the current context is appropriately related to the current | 
 | /// scope.  If an error is found, diagnoses it and returns true. | 
 | bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc, | 
 |                                    const CXXScopeSpec &SS, | 
 |                                    SourceLocation NameLoc) { | 
 |   DeclContext *NamedContext = computeDeclContext(SS); | 
 |  | 
 |   if (!CurContext->isRecord()) { | 
 |     // C++03 [namespace.udecl]p3: | 
 |     // C++0x [namespace.udecl]p8: | 
 |     //   A using-declaration for a class member shall be a member-declaration. | 
 |  | 
 |     // If we weren't able to compute a valid scope, it must be a | 
 |     // dependent class scope. | 
 |     if (!NamedContext || NamedContext->isRecord()) { | 
 |       Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member) | 
 |         << SS.getRange(); | 
 |       return true; | 
 |     } | 
 |  | 
 |     // Otherwise, everything is known to be fine. | 
 |     return false; | 
 |   } | 
 |  | 
 |   // The current scope is a record. | 
 |  | 
 |   // If the named context is dependent, we can't decide much. | 
 |   if (!NamedContext) { | 
 |     // FIXME: in C++0x, we can diagnose if we can prove that the | 
 |     // nested-name-specifier does not refer to a base class, which is | 
 |     // still possible in some cases. | 
 |  | 
 |     // Otherwise we have to conservatively report that things might be | 
 |     // okay. | 
 |     return false; | 
 |   } | 
 |  | 
 |   if (!NamedContext->isRecord()) { | 
 |     // Ideally this would point at the last name in the specifier, | 
 |     // but we don't have that level of source info. | 
 |     Diag(SS.getRange().getBegin(), | 
 |          diag::err_using_decl_nested_name_specifier_is_not_class) | 
 |       << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   if (!NamedContext->isDependentContext() && | 
 |       RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext)) | 
 |     return true; | 
 |  | 
 |   if (getLangOptions().CPlusPlus0x) { | 
 |     // C++0x [namespace.udecl]p3: | 
 |     //   In a using-declaration used as a member-declaration, the | 
 |     //   nested-name-specifier shall name a base class of the class | 
 |     //   being defined. | 
 |  | 
 |     if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom( | 
 |                                  cast<CXXRecordDecl>(NamedContext))) { | 
 |       if (CurContext == NamedContext) { | 
 |         Diag(NameLoc, | 
 |              diag::err_using_decl_nested_name_specifier_is_current_class) | 
 |           << SS.getRange(); | 
 |         return true; | 
 |       } | 
 |  | 
 |       Diag(SS.getRange().getBegin(), | 
 |            diag::err_using_decl_nested_name_specifier_is_not_base_class) | 
 |         << (NestedNameSpecifier*) SS.getScopeRep() | 
 |         << cast<CXXRecordDecl>(CurContext) | 
 |         << SS.getRange(); | 
 |       return true; | 
 |     } | 
 |  | 
 |     return false; | 
 |   } | 
 |  | 
 |   // C++03 [namespace.udecl]p4: | 
 |   //   A using-declaration used as a member-declaration shall refer | 
 |   //   to a member of a base class of the class being defined [etc.]. | 
 |  | 
 |   // Salient point: SS doesn't have to name a base class as long as | 
 |   // lookup only finds members from base classes.  Therefore we can | 
 |   // diagnose here only if we can prove that that can't happen, | 
 |   // i.e. if the class hierarchies provably don't intersect. | 
 |  | 
 |   // TODO: it would be nice if "definitely valid" results were cached | 
 |   // in the UsingDecl and UsingShadowDecl so that these checks didn't | 
 |   // need to be repeated. | 
 |  | 
 |   struct UserData { | 
 |     llvm::DenseSet<const CXXRecordDecl*> Bases; | 
 |  | 
 |     static bool collect(const CXXRecordDecl *Base, void *OpaqueData) { | 
 |       UserData *Data = reinterpret_cast<UserData*>(OpaqueData); | 
 |       Data->Bases.insert(Base); | 
 |       return true; | 
 |     } | 
 |  | 
 |     bool hasDependentBases(const CXXRecordDecl *Class) { | 
 |       return !Class->forallBases(collect, this); | 
 |     } | 
 |  | 
 |     /// Returns true if the base is dependent or is one of the | 
 |     /// accumulated base classes. | 
 |     static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) { | 
 |       UserData *Data = reinterpret_cast<UserData*>(OpaqueData); | 
 |       return !Data->Bases.count(Base); | 
 |     } | 
 |  | 
 |     bool mightShareBases(const CXXRecordDecl *Class) { | 
 |       return Bases.count(Class) || !Class->forallBases(doesNotContain, this); | 
 |     } | 
 |   }; | 
 |  | 
 |   UserData Data; | 
 |  | 
 |   // Returns false if we find a dependent base. | 
 |   if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext))) | 
 |     return false; | 
 |  | 
 |   // Returns false if the class has a dependent base or if it or one | 
 |   // of its bases is present in the base set of the current context. | 
 |   if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext))) | 
 |     return false; | 
 |  | 
 |   Diag(SS.getRange().getBegin(), | 
 |        diag::err_using_decl_nested_name_specifier_is_not_base_class) | 
 |     << (NestedNameSpecifier*) SS.getScopeRep() | 
 |     << cast<CXXRecordDecl>(CurContext) | 
 |     << SS.getRange(); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | Decl *Sema::ActOnAliasDeclaration(Scope *S, | 
 |                                   AccessSpecifier AS, | 
 |                                   MultiTemplateParamsArg TemplateParamLists, | 
 |                                   SourceLocation UsingLoc, | 
 |                                   UnqualifiedId &Name, | 
 |                                   TypeResult Type) { | 
 |   // Skip up to the relevant declaration scope. | 
 |   while (S->getFlags() & Scope::TemplateParamScope) | 
 |     S = S->getParent(); | 
 |   assert((S->getFlags() & Scope::DeclScope) && | 
 |          "got alias-declaration outside of declaration scope"); | 
 |  | 
 |   if (Type.isInvalid()) | 
 |     return 0; | 
 |  | 
 |   bool Invalid = false; | 
 |   DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name); | 
 |   TypeSourceInfo *TInfo = 0; | 
 |   GetTypeFromParser(Type.get(), &TInfo); | 
 |  | 
 |   if (DiagnoseClassNameShadow(CurContext, NameInfo)) | 
 |     return 0; | 
 |  | 
 |   if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo, | 
 |                                       UPPC_DeclarationType)) { | 
 |     Invalid = true; | 
 |     TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,  | 
 |                                              TInfo->getTypeLoc().getBeginLoc()); | 
 |   } | 
 |  | 
 |   LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration); | 
 |   LookupName(Previous, S); | 
 |  | 
 |   // Warn about shadowing the name of a template parameter. | 
 |   if (Previous.isSingleResult() && | 
 |       Previous.getFoundDecl()->isTemplateParameter()) { | 
 |     DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl()); | 
 |     Previous.clear(); | 
 |   } | 
 |  | 
 |   assert(Name.Kind == UnqualifiedId::IK_Identifier && | 
 |          "name in alias declaration must be an identifier"); | 
 |   TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc, | 
 |                                                Name.StartLocation, | 
 |                                                Name.Identifier, TInfo); | 
 |  | 
 |   NewTD->setAccess(AS); | 
 |  | 
 |   if (Invalid) | 
 |     NewTD->setInvalidDecl(); | 
 |  | 
 |   CheckTypedefForVariablyModifiedType(S, NewTD); | 
 |   Invalid |= NewTD->isInvalidDecl(); | 
 |  | 
 |   bool Redeclaration = false; | 
 |  | 
 |   NamedDecl *NewND; | 
 |   if (TemplateParamLists.size()) { | 
 |     TypeAliasTemplateDecl *OldDecl = 0; | 
 |     TemplateParameterList *OldTemplateParams = 0; | 
 |  | 
 |     if (TemplateParamLists.size() != 1) { | 
 |       Diag(UsingLoc, diag::err_alias_template_extra_headers) | 
 |         << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(), | 
 |          TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc()); | 
 |     } | 
 |     TemplateParameterList *TemplateParams = TemplateParamLists.get()[0]; | 
 |  | 
 |     // Only consider previous declarations in the same scope. | 
 |     FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false, | 
 |                          /*ExplicitInstantiationOrSpecialization*/false); | 
 |     if (!Previous.empty()) { | 
 |       Redeclaration = true; | 
 |  | 
 |       OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>(); | 
 |       if (!OldDecl && !Invalid) { | 
 |         Diag(UsingLoc, diag::err_redefinition_different_kind) | 
 |           << Name.Identifier; | 
 |  | 
 |         NamedDecl *OldD = Previous.getRepresentativeDecl(); | 
 |         if (OldD->getLocation().isValid()) | 
 |           Diag(OldD->getLocation(), diag::note_previous_definition); | 
 |  | 
 |         Invalid = true; | 
 |       } | 
 |  | 
 |       if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) { | 
 |         if (TemplateParameterListsAreEqual(TemplateParams, | 
 |                                            OldDecl->getTemplateParameters(), | 
 |                                            /*Complain=*/true, | 
 |                                            TPL_TemplateMatch)) | 
 |           OldTemplateParams = OldDecl->getTemplateParameters(); | 
 |         else | 
 |           Invalid = true; | 
 |  | 
 |         TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl(); | 
 |         if (!Invalid && | 
 |             !Context.hasSameType(OldTD->getUnderlyingType(), | 
 |                                  NewTD->getUnderlyingType())) { | 
 |           // FIXME: The C++0x standard does not clearly say this is ill-formed, | 
 |           // but we can't reasonably accept it. | 
 |           Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef) | 
 |             << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType(); | 
 |           if (OldTD->getLocation().isValid()) | 
 |             Diag(OldTD->getLocation(), diag::note_previous_definition); | 
 |           Invalid = true; | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // Merge any previous default template arguments into our parameters, | 
 |     // and check the parameter list. | 
 |     if (CheckTemplateParameterList(TemplateParams, OldTemplateParams, | 
 |                                    TPC_TypeAliasTemplate)) | 
 |       return 0; | 
 |  | 
 |     TypeAliasTemplateDecl *NewDecl = | 
 |       TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc, | 
 |                                     Name.Identifier, TemplateParams, | 
 |                                     NewTD); | 
 |  | 
 |     NewDecl->setAccess(AS); | 
 |  | 
 |     if (Invalid) | 
 |       NewDecl->setInvalidDecl(); | 
 |     else if (OldDecl) | 
 |       NewDecl->setPreviousDeclaration(OldDecl); | 
 |  | 
 |     NewND = NewDecl; | 
 |   } else { | 
 |     ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration); | 
 |     NewND = NewTD; | 
 |   } | 
 |  | 
 |   if (!Redeclaration) | 
 |     PushOnScopeChains(NewND, S); | 
 |  | 
 |   return NewND; | 
 | } | 
 |  | 
 | Decl *Sema::ActOnNamespaceAliasDef(Scope *S, | 
 |                                              SourceLocation NamespaceLoc, | 
 |                                              SourceLocation AliasLoc, | 
 |                                              IdentifierInfo *Alias, | 
 |                                              CXXScopeSpec &SS, | 
 |                                              SourceLocation IdentLoc, | 
 |                                              IdentifierInfo *Ident) { | 
 |  | 
 |   // Lookup the namespace name. | 
 |   LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName); | 
 |   LookupParsedName(R, S, &SS); | 
 |  | 
 |   // Check if we have a previous declaration with the same name. | 
 |   NamedDecl *PrevDecl | 
 |     = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,  | 
 |                        ForRedeclaration); | 
 |   if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S)) | 
 |     PrevDecl = 0; | 
 |  | 
 |   if (PrevDecl) { | 
 |     if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) { | 
 |       // We already have an alias with the same name that points to the same | 
 |       // namespace, so don't create a new one. | 
 |       // FIXME: At some point, we'll want to create the (redundant) | 
 |       // declaration to maintain better source information. | 
 |       if (!R.isAmbiguous() && !R.empty() && | 
 |           AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl()))) | 
 |         return 0; | 
 |     } | 
 |  | 
 |     unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition : | 
 |       diag::err_redefinition_different_kind; | 
 |     Diag(AliasLoc, DiagID) << Alias; | 
 |     Diag(PrevDecl->getLocation(), diag::note_previous_definition); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (R.isAmbiguous()) | 
 |     return 0; | 
 |  | 
 |   if (R.empty()) { | 
 |     if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) { | 
 |       Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange(); | 
 |       return 0; | 
 |     } | 
 |   } | 
 |  | 
 |   NamespaceAliasDecl *AliasDecl = | 
 |     NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc, | 
 |                                Alias, SS.getWithLocInContext(Context), | 
 |                                IdentLoc, R.getFoundDecl()); | 
 |  | 
 |   PushOnScopeChains(AliasDecl, S); | 
 |   return AliasDecl; | 
 | } | 
 |  | 
 | namespace { | 
 |   /// \brief Scoped object used to handle the state changes required in Sema | 
 |   /// to implicitly define the body of a C++ member function; | 
 |   class ImplicitlyDefinedFunctionScope { | 
 |     Sema &S; | 
 |     Sema::ContextRAII SavedContext; | 
 |      | 
 |   public: | 
 |     ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method) | 
 |       : S(S), SavedContext(S, Method)  | 
 |     { | 
 |       S.PushFunctionScope(); | 
 |       S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated); | 
 |     } | 
 |      | 
 |     ~ImplicitlyDefinedFunctionScope() { | 
 |       S.PopExpressionEvaluationContext(); | 
 |       S.PopFunctionScopeInfo(); | 
 |     } | 
 |   }; | 
 | } | 
 |  | 
 | Sema::ImplicitExceptionSpecification | 
 | Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) { | 
 |   // C++ [except.spec]p14: | 
 |   //   An implicitly declared special member function (Clause 12) shall have an  | 
 |   //   exception-specification. [...] | 
 |   ImplicitExceptionSpecification ExceptSpec(Context); | 
 |   if (ClassDecl->isInvalidDecl()) | 
 |     return ExceptSpec; | 
 |  | 
 |   // Direct base-class constructors. | 
 |   for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(), | 
 |                                        BEnd = ClassDecl->bases_end(); | 
 |        B != BEnd; ++B) { | 
 |     if (B->isVirtual()) // Handled below. | 
 |       continue; | 
 |      | 
 |     if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) { | 
 |       CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl()); | 
 |       CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl); | 
 |       // If this is a deleted function, add it anyway. This might be conformant | 
 |       // with the standard. This might not. I'm not sure. It might not matter. | 
 |       if (Constructor) | 
 |         ExceptSpec.CalledDecl(Constructor); | 
 |     } | 
 |   } | 
 |  | 
 |   // Virtual base-class constructors. | 
 |   for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(), | 
 |                                        BEnd = ClassDecl->vbases_end(); | 
 |        B != BEnd; ++B) { | 
 |     if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) { | 
 |       CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl()); | 
 |       CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl); | 
 |       // If this is a deleted function, add it anyway. This might be conformant | 
 |       // with the standard. This might not. I'm not sure. It might not matter. | 
 |       if (Constructor) | 
 |         ExceptSpec.CalledDecl(Constructor); | 
 |     } | 
 |   } | 
 |  | 
 |   // Field constructors. | 
 |   for (RecordDecl::field_iterator F = ClassDecl->field_begin(), | 
 |                                FEnd = ClassDecl->field_end(); | 
 |        F != FEnd; ++F) { | 
 |     if (F->hasInClassInitializer()) { | 
 |       if (Expr *E = F->getInClassInitializer()) | 
 |         ExceptSpec.CalledExpr(E); | 
 |       else if (!F->isInvalidDecl()) | 
 |         ExceptSpec.SetDelayed(); | 
 |     } else if (const RecordType *RecordTy | 
 |               = Context.getBaseElementType(F->getType())->getAs<RecordType>()) { | 
 |       CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl()); | 
 |       CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl); | 
 |       // If this is a deleted function, add it anyway. This might be conformant | 
 |       // with the standard. This might not. I'm not sure. It might not matter. | 
 |       // In particular, the problem is that this function never gets called. It | 
 |       // might just be ill-formed because this function attempts to refer to | 
 |       // a deleted function here. | 
 |       if (Constructor) | 
 |         ExceptSpec.CalledDecl(Constructor); | 
 |     } | 
 |   } | 
 |  | 
 |   return ExceptSpec; | 
 | } | 
 |  | 
 | CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor( | 
 |                                                      CXXRecordDecl *ClassDecl) { | 
 |   // C++ [class.ctor]p5: | 
 |   //   A default constructor for a class X is a constructor of class X | 
 |   //   that can be called without an argument. If there is no | 
 |   //   user-declared constructor for class X, a default constructor is | 
 |   //   implicitly declared. An implicitly-declared default constructor | 
 |   //   is an inline public member of its class. | 
 |   assert(!ClassDecl->hasUserDeclaredConstructor() &&  | 
 |          "Should not build implicit default constructor!"); | 
 |  | 
 |   ImplicitExceptionSpecification Spec =  | 
 |     ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl); | 
 |   FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI(); | 
 |  | 
 |   // Create the actual constructor declaration. | 
 |   CanQualType ClassType | 
 |     = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); | 
 |   SourceLocation ClassLoc = ClassDecl->getLocation(); | 
 |   DeclarationName Name | 
 |     = Context.DeclarationNames.getCXXConstructorName(ClassType); | 
 |   DeclarationNameInfo NameInfo(Name, ClassLoc); | 
 |   CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create( | 
 |       Context, ClassDecl, ClassLoc, NameInfo, | 
 |       Context.getFunctionType(Context.VoidTy, 0, 0, EPI), /*TInfo=*/0, | 
 |       /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true, | 
 |       /*isConstexpr=*/ClassDecl->defaultedDefaultConstructorIsConstexpr() && | 
 |         getLangOptions().CPlusPlus0x); | 
 |   DefaultCon->setAccess(AS_public); | 
 |   DefaultCon->setDefaulted(); | 
 |   DefaultCon->setImplicit(); | 
 |   DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor()); | 
 |    | 
 |   // Note that we have declared this constructor. | 
 |   ++ASTContext::NumImplicitDefaultConstructorsDeclared; | 
 |    | 
 |   if (Scope *S = getScopeForContext(ClassDecl)) | 
 |     PushOnScopeChains(DefaultCon, S, false); | 
 |   ClassDecl->addDecl(DefaultCon); | 
 |  | 
 |   if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor)) | 
 |     DefaultCon->setDeletedAsWritten(); | 
 |    | 
 |   return DefaultCon; | 
 | } | 
 |  | 
 | void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation, | 
 |                                             CXXConstructorDecl *Constructor) { | 
 |   assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() && | 
 |           !Constructor->doesThisDeclarationHaveABody() && | 
 |           !Constructor->isDeleted()) && | 
 |     "DefineImplicitDefaultConstructor - call it for implicit default ctor"); | 
 |  | 
 |   CXXRecordDecl *ClassDecl = Constructor->getParent(); | 
 |   assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor"); | 
 |  | 
 |   ImplicitlyDefinedFunctionScope Scope(*this, Constructor); | 
 |   DiagnosticErrorTrap Trap(Diags); | 
 |   if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) || | 
 |       Trap.hasErrorOccurred()) { | 
 |     Diag(CurrentLocation, diag::note_member_synthesized_at)  | 
 |       << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl); | 
 |     Constructor->setInvalidDecl(); | 
 |     return; | 
 |   } | 
 |  | 
 |   SourceLocation Loc = Constructor->getLocation(); | 
 |   Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc)); | 
 |  | 
 |   Constructor->setUsed(); | 
 |   MarkVTableUsed(CurrentLocation, ClassDecl); | 
 |  | 
 |   if (ASTMutationListener *L = getASTMutationListener()) { | 
 |     L->CompletedImplicitDefinition(Constructor); | 
 |   } | 
 | } | 
 |  | 
 | /// Get any existing defaulted default constructor for the given class. Do not | 
 | /// implicitly define one if it does not exist. | 
 | static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self, | 
 |                                                              CXXRecordDecl *D) { | 
 |   ASTContext &Context = Self.Context; | 
 |   QualType ClassType = Context.getTypeDeclType(D); | 
 |   DeclarationName ConstructorName | 
 |     = Context.DeclarationNames.getCXXConstructorName( | 
 |                       Context.getCanonicalType(ClassType.getUnqualifiedType())); | 
 |  | 
 |   DeclContext::lookup_const_iterator Con, ConEnd; | 
 |   for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName); | 
 |        Con != ConEnd; ++Con) { | 
 |     // A function template cannot be defaulted. | 
 |     if (isa<FunctionTemplateDecl>(*Con)) | 
 |       continue; | 
 |  | 
 |     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con); | 
 |     if (Constructor->isDefaultConstructor()) | 
 |       return Constructor->isDefaulted() ? Constructor : 0; | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) { | 
 |   if (!D) return; | 
 |   AdjustDeclIfTemplate(D); | 
 |  | 
 |   CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D); | 
 |   CXXConstructorDecl *CtorDecl | 
 |     = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl); | 
 |  | 
 |   if (!CtorDecl) return; | 
 |  | 
 |   // Compute the exception specification for the default constructor. | 
 |   const FunctionProtoType *CtorTy = | 
 |     CtorDecl->getType()->castAs<FunctionProtoType>(); | 
 |   if (CtorTy->getExceptionSpecType() == EST_Delayed) { | 
 |     ImplicitExceptionSpecification Spec =  | 
 |       ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl); | 
 |     FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI(); | 
 |     assert(EPI.ExceptionSpecType != EST_Delayed); | 
 |  | 
 |     CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI)); | 
 |   } | 
 |  | 
 |   // If the default constructor is explicitly defaulted, checking the exception | 
 |   // specification is deferred until now. | 
 |   if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() && | 
 |       !ClassDecl->isDependentType()) | 
 |     CheckExplicitlyDefaultedDefaultConstructor(CtorDecl); | 
 | } | 
 |  | 
 | void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) { | 
 |   // We start with an initial pass over the base classes to collect those that | 
 |   // inherit constructors from. If there are none, we can forgo all further | 
 |   // processing. | 
 |   typedef SmallVector<const RecordType *, 4> BasesVector; | 
 |   BasesVector BasesToInheritFrom; | 
 |   for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(), | 
 |                                           BaseE = ClassDecl->bases_end(); | 
 |          BaseIt != BaseE; ++BaseIt) { | 
 |     if (BaseIt->getInheritConstructors()) { | 
 |       QualType Base = BaseIt->getType(); | 
 |       if (Base->isDependentType()) { | 
 |         // If we inherit constructors from anything that is dependent, just | 
 |         // abort processing altogether. We'll get another chance for the | 
 |         // instantiations. | 
 |         return; | 
 |       } | 
 |       BasesToInheritFrom.push_back(Base->castAs<RecordType>()); | 
 |     } | 
 |   } | 
 |   if (BasesToInheritFrom.empty()) | 
 |     return; | 
 |  | 
 |   // Now collect the constructors that we already have in the current class. | 
 |   // Those take precedence over inherited constructors. | 
 |   // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...] | 
 |   //   unless there is a user-declared constructor with the same signature in | 
 |   //   the class where the using-declaration appears. | 
 |   llvm::SmallSet<const Type *, 8> ExistingConstructors; | 
 |   for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(), | 
 |                                     CtorE = ClassDecl->ctor_end(); | 
 |        CtorIt != CtorE; ++CtorIt) { | 
 |     ExistingConstructors.insert( | 
 |         Context.getCanonicalType(CtorIt->getType()).getTypePtr()); | 
 |   } | 
 |  | 
 |   Scope *S = getScopeForContext(ClassDecl); | 
 |   DeclarationName CreatedCtorName = | 
 |       Context.DeclarationNames.getCXXConstructorName( | 
 |           ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified()); | 
 |  | 
 |   // Now comes the true work. | 
 |   // First, we keep a map from constructor types to the base that introduced | 
 |   // them. Needed for finding conflicting constructors. We also keep the | 
 |   // actually inserted declarations in there, for pretty diagnostics. | 
 |   typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo; | 
 |   typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap; | 
 |   ConstructorToSourceMap InheritedConstructors; | 
 |   for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(), | 
 |                              BaseE = BasesToInheritFrom.end(); | 
 |        BaseIt != BaseE; ++BaseIt) { | 
 |     const RecordType *Base = *BaseIt; | 
 |     CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified(); | 
 |     CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl()); | 
 |     for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(), | 
 |                                       CtorE = BaseDecl->ctor_end(); | 
 |          CtorIt != CtorE; ++CtorIt) { | 
 |       // Find the using declaration for inheriting this base's constructors. | 
 |       DeclarationName Name = | 
 |           Context.DeclarationNames.getCXXConstructorName(CanonicalBase); | 
 |       UsingDecl *UD = dyn_cast_or_null<UsingDecl>( | 
 |           LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName)); | 
 |       SourceLocation UsingLoc = UD ? UD->getLocation() : | 
 |                                      ClassDecl->getLocation(); | 
 |  | 
 |       // C++0x [class.inhctor]p1: The candidate set of inherited constructors | 
 |       //   from the class X named in the using-declaration consists of actual | 
 |       //   constructors and notional constructors that result from the | 
 |       //   transformation of defaulted parameters as follows: | 
 |       //   - all non-template default constructors of X, and | 
 |       //   - for each non-template constructor of X that has at least one | 
 |       //     parameter with a default argument, the set of constructors that | 
 |       //     results from omitting any ellipsis parameter specification and | 
 |       //     successively omitting parameters with a default argument from the | 
 |       //     end of the parameter-type-list. | 
 |       CXXConstructorDecl *BaseCtor = *CtorIt; | 
 |       bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor(); | 
 |       const FunctionProtoType *BaseCtorType = | 
 |           BaseCtor->getType()->getAs<FunctionProtoType>(); | 
 |  | 
 |       for (unsigned params = BaseCtor->getMinRequiredArguments(), | 
 |                     maxParams = BaseCtor->getNumParams(); | 
 |            params <= maxParams; ++params) { | 
 |         // Skip default constructors. They're never inherited. | 
 |         if (params == 0) | 
 |           continue; | 
 |         // Skip copy and move constructors for the same reason. | 
 |         if (CanBeCopyOrMove && params == 1) | 
 |           continue; | 
 |  | 
 |         // Build up a function type for this particular constructor. | 
 |         // FIXME: The working paper does not consider that the exception spec | 
 |         // for the inheriting constructor might be larger than that of the | 
 |         // source. This code doesn't yet, either. When it does, this code will | 
 |         // need to be delayed until after exception specifications and in-class | 
 |         // member initializers are attached. | 
 |         const Type *NewCtorType; | 
 |         if (params == maxParams) | 
 |           NewCtorType = BaseCtorType; | 
 |         else { | 
 |           SmallVector<QualType, 16> Args; | 
 |           for (unsigned i = 0; i < params; ++i) { | 
 |             Args.push_back(BaseCtorType->getArgType(i)); | 
 |           } | 
 |           FunctionProtoType::ExtProtoInfo ExtInfo = | 
 |               BaseCtorType->getExtProtoInfo(); | 
 |           ExtInfo.Variadic = false; | 
 |           NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(), | 
 |                                                 Args.data(), params, ExtInfo) | 
 |                        .getTypePtr(); | 
 |         } | 
 |         const Type *CanonicalNewCtorType = | 
 |             Context.getCanonicalType(NewCtorType); | 
 |  | 
 |         // Now that we have the type, first check if the class already has a | 
 |         // constructor with this signature. | 
 |         if (ExistingConstructors.count(CanonicalNewCtorType)) | 
 |           continue; | 
 |  | 
 |         // Then we check if we have already declared an inherited constructor | 
 |         // with this signature. | 
 |         std::pair<ConstructorToSourceMap::iterator, bool> result = | 
 |             InheritedConstructors.insert(std::make_pair( | 
 |                 CanonicalNewCtorType, | 
 |                 std::make_pair(CanonicalBase, (CXXConstructorDecl*)0))); | 
 |         if (!result.second) { | 
 |           // Already in the map. If it came from a different class, that's an | 
 |           // error. Not if it's from the same. | 
 |           CanQualType PreviousBase = result.first->second.first; | 
 |           if (CanonicalBase != PreviousBase) { | 
 |             const CXXConstructorDecl *PrevCtor = result.first->second.second; | 
 |             const CXXConstructorDecl *PrevBaseCtor = | 
 |                 PrevCtor->getInheritedConstructor(); | 
 |             assert(PrevBaseCtor && "Conflicting constructor was not inherited"); | 
 |  | 
 |             Diag(UsingLoc, diag::err_using_decl_constructor_conflict); | 
 |             Diag(BaseCtor->getLocation(), | 
 |                  diag::note_using_decl_constructor_conflict_current_ctor); | 
 |             Diag(PrevBaseCtor->getLocation(), | 
 |                  diag::note_using_decl_constructor_conflict_previous_ctor); | 
 |             Diag(PrevCtor->getLocation(), | 
 |                  diag::note_using_decl_constructor_conflict_previous_using); | 
 |           } | 
 |           continue; | 
 |         } | 
 |  | 
 |         // OK, we're there, now add the constructor. | 
 |         // C++0x [class.inhctor]p8: [...] that would be performed by a | 
 |         //   user-written inline constructor [...] | 
 |         DeclarationNameInfo DNI(CreatedCtorName, UsingLoc); | 
 |         CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create( | 
 |             Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0), | 
 |             /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true, | 
 |             /*ImplicitlyDeclared=*/true, | 
 |             // FIXME: Due to a defect in the standard, we treat inherited | 
 |             // constructors as constexpr even if that makes them ill-formed. | 
 |             /*Constexpr=*/BaseCtor->isConstexpr()); | 
 |         NewCtor->setAccess(BaseCtor->getAccess()); | 
 |  | 
 |         // Build up the parameter decls and add them. | 
 |         SmallVector<ParmVarDecl *, 16> ParamDecls; | 
 |         for (unsigned i = 0; i < params; ++i) { | 
 |           ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor, | 
 |                                                    UsingLoc, UsingLoc, | 
 |                                                    /*IdentifierInfo=*/0, | 
 |                                                    BaseCtorType->getArgType(i), | 
 |                                                    /*TInfo=*/0, SC_None, | 
 |                                                    SC_None, /*DefaultArg=*/0)); | 
 |         } | 
 |         NewCtor->setParams(ParamDecls); | 
 |         NewCtor->setInheritedConstructor(BaseCtor); | 
 |  | 
 |         PushOnScopeChains(NewCtor, S, false); | 
 |         ClassDecl->addDecl(NewCtor); | 
 |         result.first->second.second = NewCtor; | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | Sema::ImplicitExceptionSpecification | 
 | Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) { | 
 |   // C++ [except.spec]p14:  | 
 |   //   An implicitly declared special member function (Clause 12) shall have  | 
 |   //   an exception-specification. | 
 |   ImplicitExceptionSpecification ExceptSpec(Context); | 
 |   if (ClassDecl->isInvalidDecl()) | 
 |     return ExceptSpec; | 
 |  | 
 |   // Direct base-class destructors. | 
 |   for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(), | 
 |                                        BEnd = ClassDecl->bases_end(); | 
 |        B != BEnd; ++B) { | 
 |     if (B->isVirtual()) // Handled below. | 
 |       continue; | 
 |      | 
 |     if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) | 
 |       ExceptSpec.CalledDecl( | 
 |                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl()))); | 
 |   } | 
 |  | 
 |   // Virtual base-class destructors. | 
 |   for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(), | 
 |                                        BEnd = ClassDecl->vbases_end(); | 
 |        B != BEnd; ++B) { | 
 |     if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) | 
 |       ExceptSpec.CalledDecl( | 
 |                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl()))); | 
 |   } | 
 |  | 
 |   // Field destructors. | 
 |   for (RecordDecl::field_iterator F = ClassDecl->field_begin(), | 
 |                                FEnd = ClassDecl->field_end(); | 
 |        F != FEnd; ++F) { | 
 |     if (const RecordType *RecordTy | 
 |         = Context.getBaseElementType(F->getType())->getAs<RecordType>()) | 
 |       ExceptSpec.CalledDecl( | 
 |                   LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl()))); | 
 |   } | 
 |  | 
 |   return ExceptSpec; | 
 | } | 
 |  | 
 | CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) { | 
 |   // C++ [class.dtor]p2: | 
 |   //   If a class has no user-declared destructor, a destructor is | 
 |   //   declared implicitly. An implicitly-declared destructor is an | 
 |   //   inline public member of its class. | 
 |    | 
 |   ImplicitExceptionSpecification Spec = | 
 |       ComputeDefaultedDtorExceptionSpec(ClassDecl);  | 
 |   FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI(); | 
 |  | 
 |   // Create the actual destructor declaration. | 
 |   QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI); | 
 |  | 
 |   CanQualType ClassType | 
 |     = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); | 
 |   SourceLocation ClassLoc = ClassDecl->getLocation(); | 
 |   DeclarationName Name | 
 |     = Context.DeclarationNames.getCXXDestructorName(ClassType); | 
 |   DeclarationNameInfo NameInfo(Name, ClassLoc); | 
 |   CXXDestructorDecl *Destructor | 
 |       = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0, | 
 |                                   /*isInline=*/true, | 
 |                                   /*isImplicitlyDeclared=*/true); | 
 |   Destructor->setAccess(AS_public); | 
 |   Destructor->setDefaulted(); | 
 |   Destructor->setImplicit(); | 
 |   Destructor->setTrivial(ClassDecl->hasTrivialDestructor()); | 
 |    | 
 |   // Note that we have declared this destructor. | 
 |   ++ASTContext::NumImplicitDestructorsDeclared; | 
 |    | 
 |   // Introduce this destructor into its scope. | 
 |   if (Scope *S = getScopeForContext(ClassDecl)) | 
 |     PushOnScopeChains(Destructor, S, false); | 
 |   ClassDecl->addDecl(Destructor); | 
 |    | 
 |   // This could be uniqued if it ever proves significant. | 
 |   Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty)); | 
 |  | 
 |   if (ShouldDeleteSpecialMember(Destructor, CXXDestructor)) | 
 |     Destructor->setDeletedAsWritten(); | 
 |    | 
 |   AddOverriddenMethods(ClassDecl, Destructor); | 
 |    | 
 |   return Destructor; | 
 | } | 
 |  | 
 | void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation, | 
 |                                     CXXDestructorDecl *Destructor) { | 
 |   assert((Destructor->isDefaulted() && | 
 |           !Destructor->doesThisDeclarationHaveABody()) && | 
 |          "DefineImplicitDestructor - call it for implicit default dtor"); | 
 |   CXXRecordDecl *ClassDecl = Destructor->getParent(); | 
 |   assert(ClassDecl && "DefineImplicitDestructor - invalid destructor"); | 
 |  | 
 |   if (Destructor->isInvalidDecl()) | 
 |     return; | 
 |  | 
 |   ImplicitlyDefinedFunctionScope Scope(*this, Destructor); | 
 |  | 
 |   DiagnosticErrorTrap Trap(Diags); | 
 |   MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(), | 
 |                                          Destructor->getParent()); | 
 |  | 
 |   if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) { | 
 |     Diag(CurrentLocation, diag::note_member_synthesized_at)  | 
 |       << CXXDestructor << Context.getTagDeclType(ClassDecl); | 
 |  | 
 |     Destructor->setInvalidDecl(); | 
 |     return; | 
 |   } | 
 |  | 
 |   SourceLocation Loc = Destructor->getLocation(); | 
 |   Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc)); | 
 |   Destructor->setImplicitlyDefined(true); | 
 |   Destructor->setUsed(); | 
 |   MarkVTableUsed(CurrentLocation, ClassDecl); | 
 |  | 
 |   if (ASTMutationListener *L = getASTMutationListener()) { | 
 |     L->CompletedImplicitDefinition(Destructor); | 
 |   } | 
 | } | 
 |  | 
 | void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl, | 
 |                                          CXXDestructorDecl *destructor) { | 
 |   // C++11 [class.dtor]p3: | 
 |   //   A declaration of a destructor that does not have an exception- | 
 |   //   specification is implicitly considered to have the same exception- | 
 |   //   specification as an implicit declaration. | 
 |   const FunctionProtoType *dtorType = destructor->getType()-> | 
 |                                         getAs<FunctionProtoType>(); | 
 |   if (dtorType->hasExceptionSpec()) | 
 |     return; | 
 |  | 
 |   ImplicitExceptionSpecification exceptSpec = | 
 |       ComputeDefaultedDtorExceptionSpec(classDecl); | 
 |  | 
 |   // Replace the destructor's type, building off the existing one. Fortunately, | 
 |   // the only thing of interest in the destructor type is its extended info. | 
 |   // The return and arguments are fixed. | 
 |   FunctionProtoType::ExtProtoInfo epi = dtorType->getExtProtoInfo(); | 
 |   epi.ExceptionSpecType = exceptSpec.getExceptionSpecType(); | 
 |   epi.NumExceptions = exceptSpec.size(); | 
 |   epi.Exceptions = exceptSpec.data(); | 
 |   QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi); | 
 |  | 
 |   destructor->setType(ty); | 
 |  | 
 |   // FIXME: If the destructor has a body that could throw, and the newly created | 
 |   // spec doesn't allow exceptions, we should emit a warning, because this | 
 |   // change in behavior can break conforming C++03 programs at runtime. | 
 |   // However, we don't have a body yet, so it needs to be done somewhere else. | 
 | } | 
 |  | 
 | /// \brief Builds a statement that copies/moves the given entity from \p From to | 
 | /// \c To. | 
 | /// | 
 | /// This routine is used to copy/move the members of a class with an | 
 | /// implicitly-declared copy/move assignment operator. When the entities being | 
 | /// copied are arrays, this routine builds for loops to copy them. | 
 | /// | 
 | /// \param S The Sema object used for type-checking. | 
 | /// | 
 | /// \param Loc The location where the implicit copy/move is being generated. | 
 | /// | 
 | /// \param T The type of the expressions being copied/moved. Both expressions | 
 | /// must have this type. | 
 | /// | 
 | /// \param To The expression we are copying/moving to. | 
 | /// | 
 | /// \param From The expression we are copying/moving from. | 
 | /// | 
 | /// \param CopyingBaseSubobject Whether we're copying/moving a base subobject. | 
 | /// Otherwise, it's a non-static member subobject. | 
 | /// | 
 | /// \param Copying Whether we're copying or moving. | 
 | /// | 
 | /// \param Depth Internal parameter recording the depth of the recursion. | 
 | /// | 
 | /// \returns A statement or a loop that copies the expressions. | 
 | static StmtResult | 
 | BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,  | 
 |                       Expr *To, Expr *From, | 
 |                       bool CopyingBaseSubobject, bool Copying, | 
 |                       unsigned Depth = 0) { | 
 |   // C++0x [class.copy]p28: | 
 |   //   Each subobject is assigned in the manner appropriate to its type: | 
 |   // | 
 |   //     - if the subobject is of class type, as if by a call to operator= with | 
 |   //       the subobject as the object expression and the corresponding | 
 |   //       subobject of x as a single function argument (as if by explicit | 
 |   //       qualification; that is, ignoring any possible virtual overriding | 
 |   //       functions in more derived classes); | 
 |   if (const RecordType *RecordTy = T->getAs<RecordType>()) { | 
 |     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl()); | 
 |      | 
 |     // Look for operator=. | 
 |     DeclarationName Name | 
 |       = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal); | 
 |     LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName); | 
 |     S.LookupQualifiedName(OpLookup, ClassDecl, false); | 
 |      | 
 |     // Filter out any result that isn't a copy/move-assignment operator. | 
 |     LookupResult::Filter F = OpLookup.makeFilter(); | 
 |     while (F.hasNext()) { | 
 |       NamedDecl *D = F.next(); | 
 |       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) | 
 |         if (Copying ? Method->isCopyAssignmentOperator() : | 
 |                       Method->isMoveAssignmentOperator()) | 
 |           continue; | 
 |  | 
 |       F.erase(); | 
 |     } | 
 |     F.done(); | 
 |      | 
 |     // Suppress the protected check (C++ [class.protected]) for each of the | 
 |     // assignment operators we found. This strange dance is required when  | 
 |     // we're assigning via a base classes's copy-assignment operator. To | 
 |     // ensure that we're getting the right base class subobject (without  | 
 |     // ambiguities), we need to cast "this" to that subobject type; to | 
 |     // ensure that we don't go through the virtual call mechanism, we need | 
 |     // to qualify the operator= name with the base class (see below). However, | 
 |     // this means that if the base class has a protected copy assignment | 
 |     // operator, the protected member access check will fail. So, we | 
 |     // rewrite "protected" access to "public" access in this case, since we | 
 |     // know by construction that we're calling from a derived class. | 
 |     if (CopyingBaseSubobject) { | 
 |       for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end(); | 
 |            L != LEnd; ++L) { | 
 |         if (L.getAccess() == AS_protected) | 
 |           L.setAccess(AS_public); | 
 |       } | 
 |     } | 
 |      | 
 |     // Create the nested-name-specifier that will be used to qualify the | 
 |     // reference to operator=; this is required to suppress the virtual | 
 |     // call mechanism. | 
 |     CXXScopeSpec SS; | 
 |     const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr()); | 
 |     SS.MakeTrivial(S.Context,  | 
 |                    NestedNameSpecifier::Create(S.Context, 0, false,  | 
 |                                                CanonicalT), | 
 |                    Loc); | 
 |      | 
 |     // Create the reference to operator=. | 
 |     ExprResult OpEqualRef | 
 |       = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,  | 
 |                                    /*TemplateKWLoc=*/SourceLocation(), | 
 |                                    /*FirstQualifierInScope=*/0, | 
 |                                    OpLookup, | 
 |                                    /*TemplateArgs=*/0, | 
 |                                    /*SuppressQualifierCheck=*/true); | 
 |     if (OpEqualRef.isInvalid()) | 
 |       return StmtError(); | 
 |      | 
 |     // Build the call to the assignment operator. | 
 |  | 
 |     ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,  | 
 |                                                   OpEqualRef.takeAs<Expr>(), | 
 |                                                   Loc, &From, 1, Loc); | 
 |     if (Call.isInvalid()) | 
 |       return StmtError(); | 
 |      | 
 |     return S.Owned(Call.takeAs<Stmt>()); | 
 |   } | 
 |  | 
 |   //     - if the subobject is of scalar type, the built-in assignment  | 
 |   //       operator is used. | 
 |   const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);   | 
 |   if (!ArrayTy) { | 
 |     ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From); | 
 |     if (Assignment.isInvalid()) | 
 |       return StmtError(); | 
 |      | 
 |     return S.Owned(Assignment.takeAs<Stmt>()); | 
 |   } | 
 |      | 
 |   //     - if the subobject is an array, each element is assigned, in the  | 
 |   //       manner appropriate to the element type; | 
 |    | 
 |   // Construct a loop over the array bounds, e.g., | 
 |   // | 
 |   //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0) | 
 |   // | 
 |   // that will copy each of the array elements.  | 
 |   QualType SizeType = S.Context.getSizeType(); | 
 |    | 
 |   // Create the iteration variable. | 
 |   IdentifierInfo *IterationVarName = 0; | 
 |   { | 
 |     SmallString<8> Str; | 
 |     llvm::raw_svector_ostream OS(Str); | 
 |     OS << "__i" << Depth; | 
 |     IterationVarName = &S.Context.Idents.get(OS.str()); | 
 |   } | 
 |   VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc, | 
 |                                           IterationVarName, SizeType, | 
 |                             S.Context.getTrivialTypeSourceInfo(SizeType, Loc), | 
 |                                           SC_None, SC_None); | 
 |    | 
 |   // Initialize the iteration variable to zero. | 
 |   llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0); | 
 |   IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc)); | 
 |  | 
 |   // Create a reference to the iteration variable; we'll use this several | 
 |   // times throughout. | 
 |   Expr *IterationVarRef | 
 |     = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take(); | 
 |   assert(IterationVarRef && "Reference to invented variable cannot fail!"); | 
 |   Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take(); | 
 |   assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!"); | 
 |  | 
 |   // Create the DeclStmt that holds the iteration variable. | 
 |   Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc); | 
 |    | 
 |   // Create the comparison against the array bound. | 
 |   llvm::APInt Upper | 
 |     = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType)); | 
 |   Expr *Comparison | 
 |     = new (S.Context) BinaryOperator(IterationVarRefRVal, | 
 |                      IntegerLiteral::Create(S.Context, Upper, SizeType, Loc), | 
 |                                      BO_NE, S.Context.BoolTy, | 
 |                                      VK_RValue, OK_Ordinary, Loc); | 
 |    | 
 |   // Create the pre-increment of the iteration variable. | 
 |   Expr *Increment | 
 |     = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType, | 
 |                                     VK_LValue, OK_Ordinary, Loc); | 
 |    | 
 |   // Subscript the "from" and "to" expressions with the iteration variable. | 
 |   From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc, | 
 |                                                          IterationVarRefRVal, | 
 |                                                          Loc)); | 
 |   To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc, | 
 |                                                        IterationVarRefRVal, | 
 |                                                        Loc)); | 
 |   if (!Copying) // Cast to rvalue | 
 |     From = CastForMoving(S, From); | 
 |  | 
 |   // Build the copy/move for an individual element of the array. | 
 |   StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(), | 
 |                                           To, From, CopyingBaseSubobject, | 
 |                                           Copying, Depth + 1); | 
 |   if (Copy.isInvalid()) | 
 |     return StmtError(); | 
 |    | 
 |   // Construct the loop that copies all elements of this array. | 
 |   return S.ActOnForStmt(Loc, Loc, InitStmt,  | 
 |                         S.MakeFullExpr(Comparison), | 
 |                         0, S.MakeFullExpr(Increment), | 
 |                         Loc, Copy.take()); | 
 | } | 
 |  | 
 | std::pair<Sema::ImplicitExceptionSpecification, bool> | 
 | Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst( | 
 |                                                    CXXRecordDecl *ClassDecl) { | 
 |   if (ClassDecl->isInvalidDecl()) | 
 |     return std::make_pair(ImplicitExceptionSpecification(Context), false); | 
 |  | 
 |   // C++ [class.copy]p10: | 
 |   //   If the class definition does not explicitly declare a copy | 
 |   //   assignment operator, one is declared implicitly. | 
 |   //   The implicitly-defined copy assignment operator for a class X | 
 |   //   will have the form | 
 |   // | 
 |   //       X& X::operator=(const X&) | 
 |   // | 
 |   //   if | 
 |   bool HasConstCopyAssignment = true; | 
 |    | 
 |   //       -- each direct base class B of X has a copy assignment operator | 
 |   //          whose parameter is of type const B&, const volatile B& or B, | 
 |   //          and | 
 |   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), | 
 |                                        BaseEnd = ClassDecl->bases_end(); | 
 |        HasConstCopyAssignment && Base != BaseEnd; ++Base) { | 
 |     // We'll handle this below | 
 |     if (LangOpts.CPlusPlus0x && Base->isVirtual()) | 
 |       continue; | 
 |  | 
 |     assert(!Base->getType()->isDependentType() && | 
 |            "Cannot generate implicit members for class with dependent bases."); | 
 |     CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl(); | 
 |     LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0, | 
 |                             &HasConstCopyAssignment); | 
 |   } | 
 |  | 
 |   // In C++11, the above citation has "or virtual" added | 
 |   if (LangOpts.CPlusPlus0x) { | 
 |     for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(), | 
 |                                          BaseEnd = ClassDecl->vbases_end(); | 
 |          HasConstCopyAssignment && Base != BaseEnd; ++Base) { | 
 |       assert(!Base->getType()->isDependentType() && | 
 |              "Cannot generate implicit members for class with dependent bases."); | 
 |       CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl(); | 
 |       LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0, | 
 |                               &HasConstCopyAssignment); | 
 |     } | 
 |   } | 
 |    | 
 |   //       -- for all the nonstatic data members of X that are of a class | 
 |   //          type M (or array thereof), each such class type has a copy | 
 |   //          assignment operator whose parameter is of type const M&, | 
 |   //          const volatile M& or M. | 
 |   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), | 
 |                                   FieldEnd = ClassDecl->field_end(); | 
 |        HasConstCopyAssignment && Field != FieldEnd; | 
 |        ++Field) { | 
 |     QualType FieldType = Context.getBaseElementType((*Field)->getType()); | 
 |     if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) { | 
 |       LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0, | 
 |                               &HasConstCopyAssignment); | 
 |     } | 
 |   } | 
 |    | 
 |   //   Otherwise, the implicitly declared copy assignment operator will | 
 |   //   have the form | 
 |   // | 
 |   //       X& X::operator=(X&) | 
 |    | 
 |   // C++ [except.spec]p14: | 
 |   //   An implicitly declared special member function (Clause 12) shall have an  | 
 |   //   exception-specification. [...] | 
 |  | 
 |   // It is unspecified whether or not an implicit copy assignment operator | 
 |   // attempts to deduplicate calls to assignment operators of virtual bases are | 
 |   // made. As such, this exception specification is effectively unspecified. | 
 |   // Based on a similar decision made for constness in C++0x, we're erring on | 
 |   // the side of assuming such calls to be made regardless of whether they | 
 |   // actually happen. | 
 |   ImplicitExceptionSpecification ExceptSpec(Context); | 
 |   unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0; | 
 |   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), | 
 |                                        BaseEnd = ClassDecl->bases_end(); | 
 |        Base != BaseEnd; ++Base) { | 
 |     if (Base->isVirtual()) | 
 |       continue; | 
 |  | 
 |     CXXRecordDecl *BaseClassDecl | 
 |       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); | 
 |     if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl, | 
 |                                                             ArgQuals, false, 0)) | 
 |       ExceptSpec.CalledDecl(CopyAssign); | 
 |   } | 
 |  | 
 |   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(), | 
 |                                        BaseEnd = ClassDecl->vbases_end(); | 
 |        Base != BaseEnd; ++Base) { | 
 |     CXXRecordDecl *BaseClassDecl | 
 |       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); | 
 |     if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl, | 
 |                                                             ArgQuals, false, 0)) | 
 |       ExceptSpec.CalledDecl(CopyAssign); | 
 |   } | 
 |  | 
 |   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), | 
 |                                   FieldEnd = ClassDecl->field_end(); | 
 |        Field != FieldEnd; | 
 |        ++Field) { | 
 |     QualType FieldType = Context.getBaseElementType((*Field)->getType()); | 
 |     if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) { | 
 |       if (CXXMethodDecl *CopyAssign = | 
 |           LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0)) | 
 |         ExceptSpec.CalledDecl(CopyAssign); | 
 |     } | 
 |   } | 
 |  | 
 |   return std::make_pair(ExceptSpec, HasConstCopyAssignment); | 
 | } | 
 |  | 
 | CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) { | 
 |   // Note: The following rules are largely analoguous to the copy | 
 |   // constructor rules. Note that virtual bases are not taken into account | 
 |   // for determining the argument type of the operator. Note also that | 
 |   // operators taking an object instead of a reference are allowed. | 
 |  | 
 |   ImplicitExceptionSpecification Spec(Context); | 
 |   bool Const; | 
 |   llvm::tie(Spec, Const) = | 
 |     ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl); | 
 |  | 
 |   QualType ArgType = Context.getTypeDeclType(ClassDecl); | 
 |   QualType RetType = Context.getLValueReferenceType(ArgType); | 
 |   if (Const) | 
 |     ArgType = ArgType.withConst(); | 
 |   ArgType = Context.getLValueReferenceType(ArgType); | 
 |  | 
 |   //   An implicitly-declared copy assignment operator is an inline public | 
 |   //   member of its class. | 
 |   FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI(); | 
 |   DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); | 
 |   SourceLocation ClassLoc = ClassDecl->getLocation(); | 
 |   DeclarationNameInfo NameInfo(Name, ClassLoc); | 
 |   CXXMethodDecl *CopyAssignment | 
 |     = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, | 
 |                             Context.getFunctionType(RetType, &ArgType, 1, EPI), | 
 |                             /*TInfo=*/0, /*isStatic=*/false, | 
 |                             /*StorageClassAsWritten=*/SC_None, | 
 |                             /*isInline=*/true, /*isConstexpr=*/false, | 
 |                             SourceLocation()); | 
 |   CopyAssignment->setAccess(AS_public); | 
 |   CopyAssignment->setDefaulted(); | 
 |   CopyAssignment->setImplicit(); | 
 |   CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment()); | 
 |    | 
 |   // Add the parameter to the operator. | 
 |   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment, | 
 |                                                ClassLoc, ClassLoc, /*Id=*/0, | 
 |                                                ArgType, /*TInfo=*/0, | 
 |                                                SC_None, | 
 |                                                SC_None, 0); | 
 |   CopyAssignment->setParams(FromParam); | 
 |    | 
 |   // Note that we have added this copy-assignment operator. | 
 |   ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared; | 
 |  | 
 |   if (Scope *S = getScopeForContext(ClassDecl)) | 
 |     PushOnScopeChains(CopyAssignment, S, false); | 
 |   ClassDecl->addDecl(CopyAssignment); | 
 |    | 
 |   // C++0x [class.copy]p19: | 
 |   //   ....  If the class definition does not explicitly declare a copy | 
 |   //   assignment operator, there is no user-declared move constructor, and | 
 |   //   there is no user-declared move assignment operator, a copy assignment | 
 |   //   operator is implicitly declared as defaulted. | 
 |   if ((ClassDecl->hasUserDeclaredMoveConstructor() && | 
 |           !getLangOptions().MicrosoftMode) || | 
 |       ClassDecl->hasUserDeclaredMoveAssignment() || | 
 |       ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment)) | 
 |     CopyAssignment->setDeletedAsWritten(); | 
 |    | 
 |   AddOverriddenMethods(ClassDecl, CopyAssignment); | 
 |   return CopyAssignment; | 
 | } | 
 |  | 
 | void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation, | 
 |                                         CXXMethodDecl *CopyAssignOperator) { | 
 |   assert((CopyAssignOperator->isDefaulted() &&  | 
 |           CopyAssignOperator->isOverloadedOperator() && | 
 |           CopyAssignOperator->getOverloadedOperator() == OO_Equal && | 
 |           !CopyAssignOperator->doesThisDeclarationHaveABody()) && | 
 |          "DefineImplicitCopyAssignment called for wrong function"); | 
 |  | 
 |   CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent(); | 
 |  | 
 |   if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) { | 
 |     CopyAssignOperator->setInvalidDecl(); | 
 |     return; | 
 |   } | 
 |    | 
 |   CopyAssignOperator->setUsed(); | 
 |  | 
 |   ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator); | 
 |   DiagnosticErrorTrap Trap(Diags); | 
 |  | 
 |   // C++0x [class.copy]p30: | 
 |   //   The implicitly-defined or explicitly-defaulted copy assignment operator | 
 |   //   for a non-union class X performs memberwise copy assignment of its  | 
 |   //   subobjects. The direct base classes of X are assigned first, in the  | 
 |   //   order of their declaration in the base-specifier-list, and then the  | 
 |   //   immediate non-static data members of X are assigned, in the order in  | 
 |   //   which they were declared in the class definition. | 
 |    | 
 |   // The statements that form the synthesized function body. | 
 |   ASTOwningVector<Stmt*> Statements(*this); | 
 |    | 
 |   // The parameter for the "other" object, which we are copying from. | 
 |   ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0); | 
 |   Qualifiers OtherQuals = Other->getType().getQualifiers(); | 
 |   QualType OtherRefType = Other->getType(); | 
 |   if (const LValueReferenceType *OtherRef | 
 |                                 = OtherRefType->getAs<LValueReferenceType>()) { | 
 |     OtherRefType = OtherRef->getPointeeType(); | 
 |     OtherQuals = OtherRefType.getQualifiers(); | 
 |   } | 
 |    | 
 |   // Our location for everything implicitly-generated. | 
 |   SourceLocation Loc = CopyAssignOperator->getLocation(); | 
 |    | 
 |   // Construct a reference to the "other" object. We'll be using this  | 
 |   // throughout the generated ASTs. | 
 |   Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take(); | 
 |   assert(OtherRef && "Reference to parameter cannot fail!"); | 
 |    | 
 |   // Construct the "this" pointer. We'll be using this throughout the generated | 
 |   // ASTs. | 
 |   Expr *This = ActOnCXXThis(Loc).takeAs<Expr>(); | 
 |   assert(This && "Reference to this cannot fail!"); | 
 |    | 
 |   // Assign base classes. | 
 |   bool Invalid = false; | 
 |   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), | 
 |        E = ClassDecl->bases_end(); Base != E; ++Base) { | 
 |     // Form the assignment: | 
 |     //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other)); | 
 |     QualType BaseType = Base->getType().getUnqualifiedType(); | 
 |     if (!BaseType->isRecordType()) { | 
 |       Invalid = true; | 
 |       continue; | 
 |     } | 
 |  | 
 |     CXXCastPath BasePath; | 
 |     BasePath.push_back(Base); | 
 |  | 
 |     // Construct the "from" expression, which is an implicit cast to the | 
 |     // appropriately-qualified base type. | 
 |     Expr *From = OtherRef; | 
 |     From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals), | 
 |                              CK_UncheckedDerivedToBase, | 
 |                              VK_LValue, &BasePath).take(); | 
 |  | 
 |     // Dereference "this". | 
 |     ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This); | 
 |      | 
 |     // Implicitly cast "this" to the appropriately-qualified base type. | 
 |     To = ImpCastExprToType(To.take(),  | 
 |                            Context.getCVRQualifiedType(BaseType, | 
 |                                      CopyAssignOperator->getTypeQualifiers()), | 
 |                            CK_UncheckedDerivedToBase,  | 
 |                            VK_LValue, &BasePath); | 
 |  | 
 |     // Build the copy. | 
 |     StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType, | 
 |                                             To.get(), From, | 
 |                                             /*CopyingBaseSubobject=*/true, | 
 |                                             /*Copying=*/true); | 
 |     if (Copy.isInvalid()) { | 
 |       Diag(CurrentLocation, diag::note_member_synthesized_at)  | 
 |         << CXXCopyAssignment << Context.getTagDeclType(ClassDecl); | 
 |       CopyAssignOperator->setInvalidDecl(); | 
 |       return; | 
 |     } | 
 |      | 
 |     // Success! Record the copy. | 
 |     Statements.push_back(Copy.takeAs<Expr>()); | 
 |   } | 
 |    | 
 |   // \brief Reference to the __builtin_memcpy function. | 
 |   Expr *BuiltinMemCpyRef = 0; | 
 |   // \brief Reference to the __builtin_objc_memmove_collectable function. | 
 |   Expr *CollectableMemCpyRef = 0; | 
 |    | 
 |   // Assign non-static members. | 
 |   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), | 
 |                                   FieldEnd = ClassDecl->field_end();  | 
 |        Field != FieldEnd; ++Field) { | 
 |     if (Field->isUnnamedBitfield()) | 
 |       continue; | 
 |      | 
 |     // Check for members of reference type; we can't copy those. | 
 |     if (Field->getType()->isReferenceType()) { | 
 |       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) | 
 |         << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); | 
 |       Diag(Field->getLocation(), diag::note_declared_at); | 
 |       Diag(CurrentLocation, diag::note_member_synthesized_at)  | 
 |         << CXXCopyAssignment << Context.getTagDeclType(ClassDecl); | 
 |       Invalid = true; | 
 |       continue; | 
 |     } | 
 |      | 
 |     // Check for members of const-qualified, non-class type. | 
 |     QualType BaseType = Context.getBaseElementType(Field->getType()); | 
 |     if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) { | 
 |       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) | 
 |         << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); | 
 |       Diag(Field->getLocation(), diag::note_declared_at); | 
 |       Diag(CurrentLocation, diag::note_member_synthesized_at)  | 
 |         << CXXCopyAssignment << Context.getTagDeclType(ClassDecl); | 
 |       Invalid = true;       | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Suppress assigning zero-width bitfields. | 
 |     if (Field->isBitField() && Field->getBitWidthValue(Context) == 0) | 
 |       continue; | 
 |      | 
 |     QualType FieldType = Field->getType().getNonReferenceType(); | 
 |     if (FieldType->isIncompleteArrayType()) { | 
 |       assert(ClassDecl->hasFlexibleArrayMember() &&  | 
 |              "Incomplete array type is not valid"); | 
 |       continue; | 
 |     } | 
 |      | 
 |     // Build references to the field in the object we're copying from and to. | 
 |     CXXScopeSpec SS; // Intentionally empty | 
 |     LookupResult MemberLookup(*this, Field->getDeclName(), Loc, | 
 |                               LookupMemberName); | 
 |     MemberLookup.addDecl(*Field); | 
 |     MemberLookup.resolveKind(); | 
 |     ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType, | 
 |                                                Loc, /*IsArrow=*/false, | 
 |                                                SS, SourceLocation(), 0, | 
 |                                                MemberLookup, 0); | 
 |     ExprResult To = BuildMemberReferenceExpr(This, This->getType(), | 
 |                                              Loc, /*IsArrow=*/true, | 
 |                                              SS, SourceLocation(), 0, | 
 |                                              MemberLookup, 0); | 
 |     assert(!From.isInvalid() && "Implicit field reference cannot fail"); | 
 |     assert(!To.isInvalid() && "Implicit field reference cannot fail"); | 
 |      | 
 |     // If the field should be copied with __builtin_memcpy rather than via | 
 |     // explicit assignments, do so. This optimization only applies for arrays  | 
 |     // of scalars and arrays of class type with trivial copy-assignment  | 
 |     // operators. | 
 |     if (FieldType->isArrayType() && !FieldType.isVolatileQualified() | 
 |         && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) { | 
 |       // Compute the size of the memory buffer to be copied. | 
 |       QualType SizeType = Context.getSizeType(); | 
 |       llvm::APInt Size(Context.getTypeSize(SizeType),  | 
 |                        Context.getTypeSizeInChars(BaseType).getQuantity()); | 
 |       for (const ConstantArrayType *Array | 
 |               = Context.getAsConstantArrayType(FieldType); | 
 |            Array;  | 
 |            Array = Context.getAsConstantArrayType(Array->getElementType())) { | 
 |         llvm::APInt ArraySize | 
 |           = Array->getSize().zextOrTrunc(Size.getBitWidth()); | 
 |         Size *= ArraySize; | 
 |       } | 
 |            | 
 |       // Take the address of the field references for "from" and "to". | 
 |       From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get()); | 
 |       To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get()); | 
 |            | 
 |       bool NeedsCollectableMemCpy =  | 
 |           (BaseType->isRecordType() &&  | 
 |            BaseType->getAs<RecordType>()->getDecl()->hasObjectMember()); | 
 |            | 
 |       if (NeedsCollectableMemCpy) { | 
 |         if (!CollectableMemCpyRef) { | 
 |           // Create a reference to the __builtin_objc_memmove_collectable function. | 
 |           LookupResult R(*this,  | 
 |                          &Context.Idents.get("__builtin_objc_memmove_collectable"),  | 
 |                          Loc, LookupOrdinaryName); | 
 |           LookupName(R, TUScope, true); | 
 |          | 
 |           FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>(); | 
 |           if (!CollectableMemCpy) { | 
 |             // Something went horribly wrong earlier, and we will have  | 
 |             // complained about it. | 
 |             Invalid = true; | 
 |             continue; | 
 |           } | 
 |          | 
 |           CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,  | 
 |                                                   CollectableMemCpy->getType(), | 
 |                                                   VK_LValue, Loc, 0).take(); | 
 |           assert(CollectableMemCpyRef && "Builtin reference cannot fail"); | 
 |         } | 
 |       } | 
 |       // Create a reference to the __builtin_memcpy builtin function. | 
 |       else if (!BuiltinMemCpyRef) { | 
 |         LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc, | 
 |                        LookupOrdinaryName); | 
 |         LookupName(R, TUScope, true); | 
 |          | 
 |         FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>(); | 
 |         if (!BuiltinMemCpy) { | 
 |           // Something went horribly wrong earlier, and we will have complained | 
 |           // about it. | 
 |           Invalid = true; | 
 |           continue; | 
 |         } | 
 |  | 
 |         BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,  | 
 |                                             BuiltinMemCpy->getType(), | 
 |                                             VK_LValue, Loc, 0).take(); | 
 |         assert(BuiltinMemCpyRef && "Builtin reference cannot fail"); | 
 |       } | 
 |            | 
 |       ASTOwningVector<Expr*> CallArgs(*this); | 
 |       CallArgs.push_back(To.takeAs<Expr>()); | 
 |       CallArgs.push_back(From.takeAs<Expr>()); | 
 |       CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc)); | 
 |       ExprResult Call = ExprError(); | 
 |       if (NeedsCollectableMemCpy) | 
 |         Call = ActOnCallExpr(/*Scope=*/0, | 
 |                              CollectableMemCpyRef, | 
 |                              Loc, move_arg(CallArgs),  | 
 |                              Loc); | 
 |       else | 
 |         Call = ActOnCallExpr(/*Scope=*/0, | 
 |                              BuiltinMemCpyRef, | 
 |                              Loc, move_arg(CallArgs),  | 
 |                              Loc); | 
 |            | 
 |       assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!"); | 
 |       Statements.push_back(Call.takeAs<Expr>()); | 
 |       continue; | 
 |     } | 
 |      | 
 |     // Build the copy of this field. | 
 |     StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,  | 
 |                                             To.get(), From.get(), | 
 |                                             /*CopyingBaseSubobject=*/false, | 
 |                                             /*Copying=*/true); | 
 |     if (Copy.isInvalid()) { | 
 |       Diag(CurrentLocation, diag::note_member_synthesized_at)  | 
 |         << CXXCopyAssignment << Context.getTagDeclType(ClassDecl); | 
 |       CopyAssignOperator->setInvalidDecl(); | 
 |       return; | 
 |     } | 
 |      | 
 |     // Success! Record the copy. | 
 |     Statements.push_back(Copy.takeAs<Stmt>()); | 
 |   } | 
 |  | 
 |   if (!Invalid) { | 
 |     // Add a "return *this;" | 
 |     ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This); | 
 |      | 
 |     StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get()); | 
 |     if (Return.isInvalid()) | 
 |       Invalid = true; | 
 |     else { | 
 |       Statements.push_back(Return.takeAs<Stmt>()); | 
 |  | 
 |       if (Trap.hasErrorOccurred()) { | 
 |         Diag(CurrentLocation, diag::note_member_synthesized_at)  | 
 |           << CXXCopyAssignment << Context.getTagDeclType(ClassDecl); | 
 |         Invalid = true; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (Invalid) { | 
 |     CopyAssignOperator->setInvalidDecl(); | 
 |     return; | 
 |   } | 
 |  | 
 |   StmtResult Body; | 
 |   { | 
 |     CompoundScopeRAII CompoundScope(*this); | 
 |     Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements), | 
 |                              /*isStmtExpr=*/false); | 
 |     assert(!Body.isInvalid() && "Compound statement creation cannot fail"); | 
 |   } | 
 |   CopyAssignOperator->setBody(Body.takeAs<Stmt>()); | 
 |  | 
 |   if (ASTMutationListener *L = getASTMutationListener()) { | 
 |     L->CompletedImplicitDefinition(CopyAssignOperator); | 
 |   } | 
 | } | 
 |  | 
 | Sema::ImplicitExceptionSpecification | 
 | Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) { | 
 |   ImplicitExceptionSpecification ExceptSpec(Context); | 
 |  | 
 |   if (ClassDecl->isInvalidDecl()) | 
 |     return ExceptSpec; | 
 |  | 
 |   // C++0x [except.spec]p14: | 
 |   //   An implicitly declared special member function (Clause 12) shall have an  | 
 |   //   exception-specification. [...] | 
 |  | 
 |   // It is unspecified whether or not an implicit move assignment operator | 
 |   // attempts to deduplicate calls to assignment operators of virtual bases are | 
 |   // made. As such, this exception specification is effectively unspecified. | 
 |   // Based on a similar decision made for constness in C++0x, we're erring on | 
 |   // the side of assuming such calls to be made regardless of whether they | 
 |   // actually happen. | 
 |   // Note that a move constructor is not implicitly declared when there are | 
 |   // virtual bases, but it can still be user-declared and explicitly defaulted. | 
 |   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), | 
 |                                        BaseEnd = ClassDecl->bases_end(); | 
 |        Base != BaseEnd; ++Base) { | 
 |     if (Base->isVirtual()) | 
 |       continue; | 
 |  | 
 |     CXXRecordDecl *BaseClassDecl | 
 |       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); | 
 |     if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl, | 
 |                                                            false, 0)) | 
 |       ExceptSpec.CalledDecl(MoveAssign); | 
 |   } | 
 |  | 
 |   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(), | 
 |                                        BaseEnd = ClassDecl->vbases_end(); | 
 |        Base != BaseEnd; ++Base) { | 
 |     CXXRecordDecl *BaseClassDecl | 
 |       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); | 
 |     if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl, | 
 |                                                            false, 0)) | 
 |       ExceptSpec.CalledDecl(MoveAssign); | 
 |   } | 
 |  | 
 |   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), | 
 |                                   FieldEnd = ClassDecl->field_end(); | 
 |        Field != FieldEnd; | 
 |        ++Field) { | 
 |     QualType FieldType = Context.getBaseElementType((*Field)->getType()); | 
 |     if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) { | 
 |       if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(FieldClassDecl, | 
 |                                                              false, 0)) | 
 |         ExceptSpec.CalledDecl(MoveAssign); | 
 |     } | 
 |   } | 
 |  | 
 |   return ExceptSpec; | 
 | } | 
 |  | 
 | CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) { | 
 |   // Note: The following rules are largely analoguous to the move | 
 |   // constructor rules. | 
 |  | 
 |   ImplicitExceptionSpecification Spec( | 
 |       ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl)); | 
 |  | 
 |   QualType ArgType = Context.getTypeDeclType(ClassDecl); | 
 |   QualType RetType = Context.getLValueReferenceType(ArgType); | 
 |   ArgType = Context.getRValueReferenceType(ArgType); | 
 |  | 
 |   //   An implicitly-declared move assignment operator is an inline public | 
 |   //   member of its class. | 
 |   FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI(); | 
 |   DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); | 
 |   SourceLocation ClassLoc = ClassDecl->getLocation(); | 
 |   DeclarationNameInfo NameInfo(Name, ClassLoc); | 
 |   CXXMethodDecl *MoveAssignment | 
 |     = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, | 
 |                             Context.getFunctionType(RetType, &ArgType, 1, EPI), | 
 |                             /*TInfo=*/0, /*isStatic=*/false, | 
 |                             /*StorageClassAsWritten=*/SC_None, | 
 |                             /*isInline=*/true, | 
 |                             /*isConstexpr=*/false, | 
 |                             SourceLocation()); | 
 |   MoveAssignment->setAccess(AS_public); | 
 |   MoveAssignment->setDefaulted(); | 
 |   MoveAssignment->setImplicit(); | 
 |   MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment()); | 
 |  | 
 |   // Add the parameter to the operator. | 
 |   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment, | 
 |                                                ClassLoc, ClassLoc, /*Id=*/0, | 
 |                                                ArgType, /*TInfo=*/0, | 
 |                                                SC_None, | 
 |                                                SC_None, 0); | 
 |   MoveAssignment->setParams(FromParam); | 
 |  | 
 |   // Note that we have added this copy-assignment operator. | 
 |   ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared; | 
 |  | 
 |   // C++0x [class.copy]p9: | 
 |   //   If the definition of a class X does not explicitly declare a move | 
 |   //   assignment operator, one will be implicitly declared as defaulted if and | 
 |   //   only if: | 
 |   //   [...] | 
 |   //   - the move assignment operator would not be implicitly defined as | 
 |   //     deleted. | 
 |   if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) { | 
 |     // Cache this result so that we don't try to generate this over and over | 
 |     // on every lookup, leaking memory and wasting time. | 
 |     ClassDecl->setFailedImplicitMoveAssignment(); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (Scope *S = getScopeForContext(ClassDecl)) | 
 |     PushOnScopeChains(MoveAssignment, S, false); | 
 |   ClassDecl->addDecl(MoveAssignment); | 
 |  | 
 |   AddOverriddenMethods(ClassDecl, MoveAssignment); | 
 |   return MoveAssignment; | 
 | } | 
 |  | 
 | void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation, | 
 |                                         CXXMethodDecl *MoveAssignOperator) { | 
 |   assert((MoveAssignOperator->isDefaulted() &&  | 
 |           MoveAssignOperator->isOverloadedOperator() && | 
 |           MoveAssignOperator->getOverloadedOperator() == OO_Equal && | 
 |           !MoveAssignOperator->doesThisDeclarationHaveABody()) && | 
 |          "DefineImplicitMoveAssignment called for wrong function"); | 
 |  | 
 |   CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent(); | 
 |  | 
 |   if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) { | 
 |     MoveAssignOperator->setInvalidDecl(); | 
 |     return; | 
 |   } | 
 |    | 
 |   MoveAssignOperator->setUsed(); | 
 |  | 
 |   ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator); | 
 |   DiagnosticErrorTrap Trap(Diags); | 
 |  | 
 |   // C++0x [class.copy]p28: | 
 |   //   The implicitly-defined or move assignment operator for a non-union class | 
 |   //   X performs memberwise move assignment of its subobjects. The direct base | 
 |   //   classes of X are assigned first, in the order of their declaration in the | 
 |   //   base-specifier-list, and then the immediate non-static data members of X | 
 |   //   are assigned, in the order in which they were declared in the class | 
 |   //   definition. | 
 |  | 
 |   // The statements that form the synthesized function body. | 
 |   ASTOwningVector<Stmt*> Statements(*this); | 
 |  | 
 |   // The parameter for the "other" object, which we are move from. | 
 |   ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0); | 
 |   QualType OtherRefType = Other->getType()-> | 
 |       getAs<RValueReferenceType>()->getPointeeType(); | 
 |   assert(OtherRefType.getQualifiers() == 0 && | 
 |          "Bad argument type of defaulted move assignment"); | 
 |  | 
 |   // Our location for everything implicitly-generated. | 
 |   SourceLocation Loc = MoveAssignOperator->getLocation(); | 
 |  | 
 |   // Construct a reference to the "other" object. We'll be using this  | 
 |   // throughout the generated ASTs. | 
 |   Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take(); | 
 |   assert(OtherRef && "Reference to parameter cannot fail!"); | 
 |   // Cast to rvalue. | 
 |   OtherRef = CastForMoving(*this, OtherRef); | 
 |  | 
 |   // Construct the "this" pointer. We'll be using this throughout the generated | 
 |   // ASTs. | 
 |   Expr *This = ActOnCXXThis(Loc).takeAs<Expr>(); | 
 |   assert(This && "Reference to this cannot fail!"); | 
 |    | 
 |   // Assign base classes. | 
 |   bool Invalid = false; | 
 |   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), | 
 |        E = ClassDecl->bases_end(); Base != E; ++Base) { | 
 |     // Form the assignment: | 
 |     //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other)); | 
 |     QualType BaseType = Base->getType().getUnqualifiedType(); | 
 |     if (!BaseType->isRecordType()) { | 
 |       Invalid = true; | 
 |       continue; | 
 |     } | 
 |  | 
 |     CXXCastPath BasePath; | 
 |     BasePath.push_back(Base); | 
 |  | 
 |     // Construct the "from" expression, which is an implicit cast to the | 
 |     // appropriately-qualified base type. | 
 |     Expr *From = OtherRef; | 
 |     From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase, | 
 |                              VK_XValue, &BasePath).take(); | 
 |  | 
 |     // Dereference "this". | 
 |     ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This); | 
 |  | 
 |     // Implicitly cast "this" to the appropriately-qualified base type. | 
 |     To = ImpCastExprToType(To.take(),  | 
 |                            Context.getCVRQualifiedType(BaseType, | 
 |                                      MoveAssignOperator->getTypeQualifiers()), | 
 |                            CK_UncheckedDerivedToBase,  | 
 |                            VK_LValue, &BasePath); | 
 |  | 
 |     // Build the move. | 
 |     StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType, | 
 |                                             To.get(), From, | 
 |                                             /*CopyingBaseSubobject=*/true, | 
 |                                             /*Copying=*/false); | 
 |     if (Move.isInvalid()) { | 
 |       Diag(CurrentLocation, diag::note_member_synthesized_at)  | 
 |         << CXXMoveAssignment << Context.getTagDeclType(ClassDecl); | 
 |       MoveAssignOperator->setInvalidDecl(); | 
 |       return; | 
 |     } | 
 |  | 
 |     // Success! Record the move. | 
 |     Statements.push_back(Move.takeAs<Expr>()); | 
 |   } | 
 |  | 
 |   // \brief Reference to the __builtin_memcpy function. | 
 |   Expr *BuiltinMemCpyRef = 0; | 
 |   // \brief Reference to the __builtin_objc_memmove_collectable function. | 
 |   Expr *CollectableMemCpyRef = 0; | 
 |  | 
 |   // Assign non-static members. | 
 |   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), | 
 |                                   FieldEnd = ClassDecl->field_end();  | 
 |        Field != FieldEnd; ++Field) { | 
 |     if (Field->isUnnamedBitfield()) | 
 |       continue; | 
 |  | 
 |     // Check for members of reference type; we can't move those. | 
 |     if (Field->getType()->isReferenceType()) { | 
 |       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) | 
 |         << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); | 
 |       Diag(Field->getLocation(), diag::note_declared_at); | 
 |       Diag(CurrentLocation, diag::note_member_synthesized_at)  | 
 |         << CXXMoveAssignment << Context.getTagDeclType(ClassDecl); | 
 |       Invalid = true; | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Check for members of const-qualified, non-class type. | 
 |     QualType BaseType = Context.getBaseElementType(Field->getType()); | 
 |     if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) { | 
 |       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) | 
 |         << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); | 
 |       Diag(Field->getLocation(), diag::note_declared_at); | 
 |       Diag(CurrentLocation, diag::note_member_synthesized_at)  | 
 |         << CXXMoveAssignment << Context.getTagDeclType(ClassDecl); | 
 |       Invalid = true;       | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Suppress assigning zero-width bitfields. | 
 |     if (Field->isBitField() && Field->getBitWidthValue(Context) == 0) | 
 |       continue; | 
 |      | 
 |     QualType FieldType = Field->getType().getNonReferenceType(); | 
 |     if (FieldType->isIncompleteArrayType()) { | 
 |       assert(ClassDecl->hasFlexibleArrayMember() &&  | 
 |              "Incomplete array type is not valid"); | 
 |       continue; | 
 |     } | 
 |      | 
 |     // Build references to the field in the object we're copying from and to. | 
 |     CXXScopeSpec SS; // Intentionally empty | 
 |     LookupResult MemberLookup(*this, Field->getDeclName(), Loc, | 
 |                               LookupMemberName); | 
 |     MemberLookup.addDecl(*Field); | 
 |     MemberLookup.resolveKind(); | 
 |     ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType, | 
 |                                                Loc, /*IsArrow=*/false, | 
 |                                                SS, SourceLocation(), 0, | 
 |                                                MemberLookup, 0); | 
 |     ExprResult To = BuildMemberReferenceExpr(This, This->getType(), | 
 |                                              Loc, /*IsArrow=*/true, | 
 |                                              SS, SourceLocation(), 0, | 
 |                                              MemberLookup, 0); | 
 |     assert(!From.isInvalid() && "Implicit field reference cannot fail"); | 
 |     assert(!To.isInvalid() && "Implicit field reference cannot fail"); | 
 |  | 
 |     assert(!From.get()->isLValue() && // could be xvalue or prvalue | 
 |         "Member reference with rvalue base must be rvalue except for reference " | 
 |         "members, which aren't allowed for move assignment."); | 
 |  | 
 |     // If the field should be copied with __builtin_memcpy rather than via | 
 |     // explicit assignments, do so. This optimization only applies for arrays  | 
 |     // of scalars and arrays of class type with trivial move-assignment  | 
 |     // operators. | 
 |     if (FieldType->isArrayType() && !FieldType.isVolatileQualified() | 
 |         && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) { | 
 |       // Compute the size of the memory buffer to be copied. | 
 |       QualType SizeType = Context.getSizeType(); | 
 |       llvm::APInt Size(Context.getTypeSize(SizeType),  | 
 |                        Context.getTypeSizeInChars(BaseType).getQuantity()); | 
 |       for (const ConstantArrayType *Array | 
 |               = Context.getAsConstantArrayType(FieldType); | 
 |            Array;  | 
 |            Array = Context.getAsConstantArrayType(Array->getElementType())) { | 
 |         llvm::APInt ArraySize | 
 |           = Array->getSize().zextOrTrunc(Size.getBitWidth()); | 
 |         Size *= ArraySize; | 
 |       } | 
 |  | 
 |       // Take the address of the field references for "from" and "to". We | 
 |       // directly construct UnaryOperators here because semantic analysis | 
 |       // does not permit us to take the address of an xvalue. | 
 |       From = new (Context) UnaryOperator(From.get(), UO_AddrOf, | 
 |                              Context.getPointerType(From.get()->getType()), | 
 |                              VK_RValue, OK_Ordinary, Loc); | 
 |       To = new (Context) UnaryOperator(To.get(), UO_AddrOf, | 
 |                            Context.getPointerType(To.get()->getType()), | 
 |                            VK_RValue, OK_Ordinary, Loc); | 
 |            | 
 |       bool NeedsCollectableMemCpy =  | 
 |           (BaseType->isRecordType() &&  | 
 |            BaseType->getAs<RecordType>()->getDecl()->hasObjectMember()); | 
 |            | 
 |       if (NeedsCollectableMemCpy) { | 
 |         if (!CollectableMemCpyRef) { | 
 |           // Create a reference to the __builtin_objc_memmove_collectable function. | 
 |           LookupResult R(*this,  | 
 |                          &Context.Idents.get("__builtin_objc_memmove_collectable"),  | 
 |                          Loc, LookupOrdinaryName); | 
 |           LookupName(R, TUScope, true); | 
 |          | 
 |           FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>(); | 
 |           if (!CollectableMemCpy) { | 
 |             // Something went horribly wrong earlier, and we will have  | 
 |             // complained about it. | 
 |             Invalid = true; | 
 |             continue; | 
 |           } | 
 |          | 
 |           CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,  | 
 |                                                   CollectableMemCpy->getType(), | 
 |                                                   VK_LValue, Loc, 0).take(); | 
 |           assert(CollectableMemCpyRef && "Builtin reference cannot fail"); | 
 |         } | 
 |       } | 
 |       // Create a reference to the __builtin_memcpy builtin function. | 
 |       else if (!BuiltinMemCpyRef) { | 
 |         LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc, | 
 |                        LookupOrdinaryName); | 
 |         LookupName(R, TUScope, true); | 
 |          | 
 |         FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>(); | 
 |         if (!BuiltinMemCpy) { | 
 |           // Something went horribly wrong earlier, and we will have complained | 
 |           // about it. | 
 |           Invalid = true; | 
 |           continue; | 
 |         } | 
 |  | 
 |         BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,  | 
 |                                             BuiltinMemCpy->getType(), | 
 |                                             VK_LValue, Loc, 0).take(); | 
 |         assert(BuiltinMemCpyRef && "Builtin reference cannot fail"); | 
 |       } | 
 |            | 
 |       ASTOwningVector<Expr*> CallArgs(*this); | 
 |       CallArgs.push_back(To.takeAs<Expr>()); | 
 |       CallArgs.push_back(From.takeAs<Expr>()); | 
 |       CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc)); | 
 |       ExprResult Call = ExprError(); | 
 |       if (NeedsCollectableMemCpy) | 
 |         Call = ActOnCallExpr(/*Scope=*/0, | 
 |                              CollectableMemCpyRef, | 
 |                              Loc, move_arg(CallArgs),  | 
 |                              Loc); | 
 |       else | 
 |         Call = ActOnCallExpr(/*Scope=*/0, | 
 |                              BuiltinMemCpyRef, | 
 |                              Loc, move_arg(CallArgs),  | 
 |                              Loc); | 
 |            | 
 |       assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!"); | 
 |       Statements.push_back(Call.takeAs<Expr>()); | 
 |       continue; | 
 |     } | 
 |      | 
 |     // Build the move of this field. | 
 |     StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,  | 
 |                                             To.get(), From.get(), | 
 |                                             /*CopyingBaseSubobject=*/false, | 
 |                                             /*Copying=*/false); | 
 |     if (Move.isInvalid()) { | 
 |       Diag(CurrentLocation, diag::note_member_synthesized_at)  | 
 |         << CXXMoveAssignment << Context.getTagDeclType(ClassDecl); | 
 |       MoveAssignOperator->setInvalidDecl(); | 
 |       return; | 
 |     } | 
 |      | 
 |     // Success! Record the copy. | 
 |     Statements.push_back(Move.takeAs<Stmt>()); | 
 |   } | 
 |  | 
 |   if (!Invalid) { | 
 |     // Add a "return *this;" | 
 |     ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This); | 
 |      | 
 |     StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get()); | 
 |     if (Return.isInvalid()) | 
 |       Invalid = true; | 
 |     else { | 
 |       Statements.push_back(Return.takeAs<Stmt>()); | 
 |  | 
 |       if (Trap.hasErrorOccurred()) { | 
 |         Diag(CurrentLocation, diag::note_member_synthesized_at)  | 
 |           << CXXMoveAssignment << Context.getTagDeclType(ClassDecl); | 
 |         Invalid = true; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (Invalid) { | 
 |     MoveAssignOperator->setInvalidDecl(); | 
 |     return; | 
 |   } | 
 |  | 
 |   StmtResult Body; | 
 |   { | 
 |     CompoundScopeRAII CompoundScope(*this); | 
 |     Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements), | 
 |                              /*isStmtExpr=*/false); | 
 |     assert(!Body.isInvalid() && "Compound statement creation cannot fail"); | 
 |   } | 
 |   MoveAssignOperator->setBody(Body.takeAs<Stmt>()); | 
 |  | 
 |   if (ASTMutationListener *L = getASTMutationListener()) { | 
 |     L->CompletedImplicitDefinition(MoveAssignOperator); | 
 |   } | 
 | } | 
 |  | 
 | std::pair<Sema::ImplicitExceptionSpecification, bool> | 
 | Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) { | 
 |   if (ClassDecl->isInvalidDecl()) | 
 |     return std::make_pair(ImplicitExceptionSpecification(Context), false); | 
 |  | 
 |   // C++ [class.copy]p5: | 
 |   //   The implicitly-declared copy constructor for a class X will | 
 |   //   have the form | 
 |   // | 
 |   //       X::X(const X&) | 
 |   // | 
 |   //   if | 
 |   // FIXME: It ought to be possible to store this on the record. | 
 |   bool HasConstCopyConstructor = true; | 
 |    | 
 |   //     -- each direct or virtual base class B of X has a copy | 
 |   //        constructor whose first parameter is of type const B& or | 
 |   //        const volatile B&, and | 
 |   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), | 
 |                                        BaseEnd = ClassDecl->bases_end(); | 
 |        HasConstCopyConstructor && Base != BaseEnd;  | 
 |        ++Base) { | 
 |     // Virtual bases are handled below. | 
 |     if (Base->isVirtual()) | 
 |       continue; | 
 |      | 
 |     CXXRecordDecl *BaseClassDecl | 
 |       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); | 
 |     LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const, | 
 |                              &HasConstCopyConstructor); | 
 |   } | 
 |  | 
 |   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(), | 
 |                                        BaseEnd = ClassDecl->vbases_end(); | 
 |        HasConstCopyConstructor && Base != BaseEnd;  | 
 |        ++Base) { | 
 |     CXXRecordDecl *BaseClassDecl | 
 |       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); | 
 |     LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const, | 
 |                              &HasConstCopyConstructor); | 
 |   } | 
 |    | 
 |   //     -- for all the nonstatic data members of X that are of a | 
 |   //        class type M (or array thereof), each such class type | 
 |   //        has a copy constructor whose first parameter is of type | 
 |   //        const M& or const volatile M&. | 
 |   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), | 
 |                                   FieldEnd = ClassDecl->field_end(); | 
 |        HasConstCopyConstructor && Field != FieldEnd; | 
 |        ++Field) { | 
 |     QualType FieldType = Context.getBaseElementType((*Field)->getType()); | 
 |     if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) { | 
 |       LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const, | 
 |                                &HasConstCopyConstructor); | 
 |     } | 
 |   } | 
 |   //   Otherwise, the implicitly declared copy constructor will have | 
 |   //   the form | 
 |   // | 
 |   //       X::X(X&) | 
 |   | 
 |   // C++ [except.spec]p14: | 
 |   //   An implicitly declared special member function (Clause 12) shall have an  | 
 |   //   exception-specification. [...] | 
 |   ImplicitExceptionSpecification ExceptSpec(Context); | 
 |   unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0; | 
 |   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), | 
 |                                        BaseEnd = ClassDecl->bases_end(); | 
 |        Base != BaseEnd;  | 
 |        ++Base) { | 
 |     // Virtual bases are handled below. | 
 |     if (Base->isVirtual()) | 
 |       continue; | 
 |      | 
 |     CXXRecordDecl *BaseClassDecl | 
 |       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); | 
 |     if (CXXConstructorDecl *CopyConstructor = | 
 |           LookupCopyingConstructor(BaseClassDecl, Quals)) | 
 |       ExceptSpec.CalledDecl(CopyConstructor); | 
 |   } | 
 |   for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(), | 
 |                                        BaseEnd = ClassDecl->vbases_end(); | 
 |        Base != BaseEnd;  | 
 |        ++Base) { | 
 |     CXXRecordDecl *BaseClassDecl | 
 |       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); | 
 |     if (CXXConstructorDecl *CopyConstructor = | 
 |           LookupCopyingConstructor(BaseClassDecl, Quals)) | 
 |       ExceptSpec.CalledDecl(CopyConstructor); | 
 |   } | 
 |   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), | 
 |                                   FieldEnd = ClassDecl->field_end(); | 
 |        Field != FieldEnd; | 
 |        ++Field) { | 
 |     QualType FieldType = Context.getBaseElementType((*Field)->getType()); | 
 |     if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) { | 
 |       if (CXXConstructorDecl *CopyConstructor = | 
 |         LookupCopyingConstructor(FieldClassDecl, Quals)) | 
 |       ExceptSpec.CalledDecl(CopyConstructor); | 
 |     } | 
 |   } | 
 |  | 
 |   return std::make_pair(ExceptSpec, HasConstCopyConstructor); | 
 | } | 
 |  | 
 | CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor( | 
 |                                                     CXXRecordDecl *ClassDecl) { | 
 |   // C++ [class.copy]p4: | 
 |   //   If the class definition does not explicitly declare a copy | 
 |   //   constructor, one is declared implicitly. | 
 |  | 
 |   ImplicitExceptionSpecification Spec(Context); | 
 |   bool Const; | 
 |   llvm::tie(Spec, Const) = | 
 |     ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl); | 
 |  | 
 |   QualType ClassType = Context.getTypeDeclType(ClassDecl); | 
 |   QualType ArgType = ClassType; | 
 |   if (Const) | 
 |     ArgType = ArgType.withConst(); | 
 |   ArgType = Context.getLValueReferenceType(ArgType); | 
 |   | 
 |   FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI(); | 
 |  | 
 |   DeclarationName Name | 
 |     = Context.DeclarationNames.getCXXConstructorName( | 
 |                                            Context.getCanonicalType(ClassType)); | 
 |   SourceLocation ClassLoc = ClassDecl->getLocation(); | 
 |   DeclarationNameInfo NameInfo(Name, ClassLoc); | 
 |  | 
 |   //   An implicitly-declared copy constructor is an inline public | 
 |   //   member of its class. | 
 |   CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create( | 
 |       Context, ClassDecl, ClassLoc, NameInfo, | 
 |       Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0, | 
 |       /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true, | 
 |       /*isConstexpr=*/ClassDecl->defaultedCopyConstructorIsConstexpr() && | 
 |         getLangOptions().CPlusPlus0x); | 
 |   CopyConstructor->setAccess(AS_public); | 
 |   CopyConstructor->setDefaulted(); | 
 |   CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor()); | 
 |  | 
 |   // Note that we have declared this constructor. | 
 |   ++ASTContext::NumImplicitCopyConstructorsDeclared; | 
 |    | 
 |   // Add the parameter to the constructor. | 
 |   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor, | 
 |                                                ClassLoc, ClassLoc, | 
 |                                                /*IdentifierInfo=*/0, | 
 |                                                ArgType, /*TInfo=*/0, | 
 |                                                SC_None, | 
 |                                                SC_None, 0); | 
 |   CopyConstructor->setParams(FromParam); | 
 |  | 
 |   if (Scope *S = getScopeForContext(ClassDecl)) | 
 |     PushOnScopeChains(CopyConstructor, S, false); | 
 |   ClassDecl->addDecl(CopyConstructor); | 
 |  | 
 |   // C++11 [class.copy]p8: | 
 |   //   ... If the class definition does not explicitly declare a copy | 
 |   //   constructor, there is no user-declared move constructor, and there is no | 
 |   //   user-declared move assignment operator, a copy constructor is implicitly | 
 |   //   declared as defaulted. | 
 |   if (ClassDecl->hasUserDeclaredMoveConstructor() || | 
 |       (ClassDecl->hasUserDeclaredMoveAssignment() && | 
 |           !getLangOptions().MicrosoftMode) || | 
 |       ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor)) | 
 |     CopyConstructor->setDeletedAsWritten(); | 
 |    | 
 |   return CopyConstructor; | 
 | } | 
 |  | 
 | void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation, | 
 |                                    CXXConstructorDecl *CopyConstructor) { | 
 |   assert((CopyConstructor->isDefaulted() && | 
 |           CopyConstructor->isCopyConstructor() && | 
 |           !CopyConstructor->doesThisDeclarationHaveABody()) && | 
 |          "DefineImplicitCopyConstructor - call it for implicit copy ctor"); | 
 |  | 
 |   CXXRecordDecl *ClassDecl = CopyConstructor->getParent(); | 
 |   assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor"); | 
 |  | 
 |   ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor); | 
 |   DiagnosticErrorTrap Trap(Diags); | 
 |  | 
 |   if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) || | 
 |       Trap.hasErrorOccurred()) { | 
 |     Diag(CurrentLocation, diag::note_member_synthesized_at)  | 
 |       << CXXCopyConstructor << Context.getTagDeclType(ClassDecl); | 
 |     CopyConstructor->setInvalidDecl(); | 
 |   }  else { | 
 |     Sema::CompoundScopeRAII CompoundScope(*this); | 
 |     CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(), | 
 |                                                CopyConstructor->getLocation(), | 
 |                                                MultiStmtArg(*this, 0, 0), | 
 |                                                /*isStmtExpr=*/false) | 
 |                                                               .takeAs<Stmt>()); | 
 |     CopyConstructor->setImplicitlyDefined(true); | 
 |   } | 
 |    | 
 |   CopyConstructor->setUsed(); | 
 |   if (ASTMutationListener *L = getASTMutationListener()) { | 
 |     L->CompletedImplicitDefinition(CopyConstructor); | 
 |   } | 
 | } | 
 |  | 
 | Sema::ImplicitExceptionSpecification | 
 | Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) { | 
 |   // C++ [except.spec]p14: | 
 |   //   An implicitly declared special member function (Clause 12) shall have an  | 
 |   //   exception-specification. [...] | 
 |   ImplicitExceptionSpecification ExceptSpec(Context); | 
 |   if (ClassDecl->isInvalidDecl()) | 
 |     return ExceptSpec; | 
 |  | 
 |   // Direct base-class constructors. | 
 |   for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(), | 
 |                                        BEnd = ClassDecl->bases_end(); | 
 |        B != BEnd; ++B) { | 
 |     if (B->isVirtual()) // Handled below. | 
 |       continue; | 
 |      | 
 |     if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) { | 
 |       CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl()); | 
 |       CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl); | 
 |       // If this is a deleted function, add it anyway. This might be conformant | 
 |       // with the standard. This might not. I'm not sure. It might not matter. | 
 |       if (Constructor) | 
 |         ExceptSpec.CalledDecl(Constructor); | 
 |     } | 
 |   } | 
 |  | 
 |   // Virtual base-class constructors. | 
 |   for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(), | 
 |                                        BEnd = ClassDecl->vbases_end(); | 
 |        B != BEnd; ++B) { | 
 |     if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) { | 
 |       CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl()); | 
 |       CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl); | 
 |       // If this is a deleted function, add it anyway. This might be conformant | 
 |       // with the standard. This might not. I'm not sure. It might not matter. | 
 |       if (Constructor) | 
 |         ExceptSpec.CalledDecl(Constructor); | 
 |     } | 
 |   } | 
 |  | 
 |   // Field constructors. | 
 |   for (RecordDecl::field_iterator F = ClassDecl->field_begin(), | 
 |                                FEnd = ClassDecl->field_end(); | 
 |        F != FEnd; ++F) { | 
 |     if (const RecordType *RecordTy | 
 |               = Context.getBaseElementType(F->getType())->getAs<RecordType>()) { | 
 |       CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl()); | 
 |       CXXConstructorDecl *Constructor = LookupMovingConstructor(FieldRecDecl); | 
 |       // If this is a deleted function, add it anyway. This might be conformant | 
 |       // with the standard. This might not. I'm not sure. It might not matter. | 
 |       // In particular, the problem is that this function never gets called. It | 
 |       // might just be ill-formed because this function attempts to refer to | 
 |       // a deleted function here. | 
 |       if (Constructor) | 
 |         ExceptSpec.CalledDecl(Constructor); | 
 |     } | 
 |   } | 
 |  | 
 |   return ExceptSpec; | 
 | } | 
 |  | 
 | CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor( | 
 |                                                     CXXRecordDecl *ClassDecl) { | 
 |   ImplicitExceptionSpecification Spec( | 
 |       ComputeDefaultedMoveCtorExceptionSpec(ClassDecl)); | 
 |  | 
 |   QualType ClassType = Context.getTypeDeclType(ClassDecl); | 
 |   QualType ArgType = Context.getRValueReferenceType(ClassType); | 
 |   | 
 |   FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI(); | 
 |  | 
 |   DeclarationName Name | 
 |     = Context.DeclarationNames.getCXXConstructorName( | 
 |                                            Context.getCanonicalType(ClassType)); | 
 |   SourceLocation ClassLoc = ClassDecl->getLocation(); | 
 |   DeclarationNameInfo NameInfo(Name, ClassLoc); | 
 |  | 
 |   // C++0x [class.copy]p11: | 
 |   //   An implicitly-declared copy/move constructor is an inline public | 
 |   //   member of its class. | 
 |   CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create( | 
 |       Context, ClassDecl, ClassLoc, NameInfo, | 
 |       Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0, | 
 |       /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true, | 
 |       /*isConstexpr=*/ClassDecl->defaultedMoveConstructorIsConstexpr() && | 
 |         getLangOptions().CPlusPlus0x); | 
 |   MoveConstructor->setAccess(AS_public); | 
 |   MoveConstructor->setDefaulted(); | 
 |   MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor()); | 
 |  | 
 |   // Add the parameter to the constructor. | 
 |   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor, | 
 |                                                ClassLoc, ClassLoc, | 
 |                                                /*IdentifierInfo=*/0, | 
 |                                                ArgType, /*TInfo=*/0, | 
 |                                                SC_None, | 
 |                                                SC_None, 0); | 
 |   MoveConstructor->setParams(FromParam); | 
 |  | 
 |   // C++0x [class.copy]p9: | 
 |   //   If the definition of a class X does not explicitly declare a move | 
 |   //   constructor, one will be implicitly declared as defaulted if and only if: | 
 |   //   [...] | 
 |   //   - the move constructor would not be implicitly defined as deleted. | 
 |   if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) { | 
 |     // Cache this result so that we don't try to generate this over and over | 
 |     // on every lookup, leaking memory and wasting time. | 
 |     ClassDecl->setFailedImplicitMoveConstructor(); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // Note that we have declared this constructor. | 
 |   ++ASTContext::NumImplicitMoveConstructorsDeclared; | 
 |  | 
 |   if (Scope *S = getScopeForContext(ClassDecl)) | 
 |     PushOnScopeChains(MoveConstructor, S, false); | 
 |   ClassDecl->addDecl(MoveConstructor); | 
 |  | 
 |   return MoveConstructor; | 
 | } | 
 |  | 
 | void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation, | 
 |                                    CXXConstructorDecl *MoveConstructor) { | 
 |   assert((MoveConstructor->isDefaulted() && | 
 |           MoveConstructor->isMoveConstructor() && | 
 |           !MoveConstructor->doesThisDeclarationHaveABody()) && | 
 |          "DefineImplicitMoveConstructor - call it for implicit move ctor"); | 
 |  | 
 |   CXXRecordDecl *ClassDecl = MoveConstructor->getParent(); | 
 |   assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor"); | 
 |  | 
 |   ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor); | 
 |   DiagnosticErrorTrap Trap(Diags); | 
 |  | 
 |   if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) || | 
 |       Trap.hasErrorOccurred()) { | 
 |     Diag(CurrentLocation, diag::note_member_synthesized_at)  | 
 |       << CXXMoveConstructor << Context.getTagDeclType(ClassDecl); | 
 |     MoveConstructor->setInvalidDecl(); | 
 |   }  else { | 
 |     Sema::CompoundScopeRAII CompoundScope(*this); | 
 |     MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(), | 
 |                                                MoveConstructor->getLocation(), | 
 |                                                MultiStmtArg(*this, 0, 0), | 
 |                                                /*isStmtExpr=*/false) | 
 |                                                               .takeAs<Stmt>()); | 
 |     MoveConstructor->setImplicitlyDefined(true); | 
 |   } | 
 |  | 
 |   MoveConstructor->setUsed(); | 
 |  | 
 |   if (ASTMutationListener *L = getASTMutationListener()) { | 
 |     L->CompletedImplicitDefinition(MoveConstructor); | 
 |   } | 
 | } | 
 |  | 
 | bool Sema::isImplicitlyDeleted(FunctionDecl *FD) { | 
 |   return FD->isDeleted() &&  | 
 |          (FD->isDefaulted() || FD->isImplicit()) && | 
 |          isa<CXXMethodDecl>(FD); | 
 | } | 
 |  | 
 | /// \brief Mark the call operator of the given lambda closure type as "used". | 
 | static void markLambdaCallOperatorUsed(Sema &S, CXXRecordDecl *Lambda) { | 
 |   CXXMethodDecl *CallOperator  | 
 |   = cast<CXXMethodDecl>( | 
 |       *Lambda->lookup( | 
 |         S.Context.DeclarationNames.getCXXOperatorName(OO_Call)).first); | 
 |   CallOperator->setReferenced(); | 
 |   CallOperator->setUsed(); | 
 | } | 
 |  | 
 | void Sema::DefineImplicitLambdaToFunctionPointerConversion( | 
 |        SourceLocation CurrentLocation, | 
 |        CXXConversionDecl *Conv)  | 
 | { | 
 |   CXXRecordDecl *Lambda = Conv->getParent(); | 
 |    | 
 |   // Make sure that the lambda call operator is marked used. | 
 |   markLambdaCallOperatorUsed(*this, Lambda); | 
 |    | 
 |   Conv->setUsed(); | 
 |    | 
 |   ImplicitlyDefinedFunctionScope Scope(*this, Conv); | 
 |   DiagnosticErrorTrap Trap(Diags); | 
 |    | 
 |   // Return the address of the __invoke function. | 
 |   DeclarationName InvokeName = &Context.Idents.get("__invoke"); | 
 |   CXXMethodDecl *Invoke  | 
 |     = cast<CXXMethodDecl>(*Lambda->lookup(InvokeName).first); | 
 |   Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(), | 
 |                                        VK_LValue, Conv->getLocation()).take(); | 
 |   assert(FunctionRef && "Can't refer to __invoke function?"); | 
 |   Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take(); | 
 |   Conv->setBody(new (Context) CompoundStmt(Context, &Return, 1,  | 
 |                                            Conv->getLocation(), | 
 |                                            Conv->getLocation())); | 
 |      | 
 |   // Fill in the __invoke function with a dummy implementation. IR generation | 
 |   // will fill in the actual details. | 
 |   Invoke->setUsed(); | 
 |   Invoke->setReferenced(); | 
 |   Invoke->setBody(new (Context) CompoundStmt(Context, 0, 0, Conv->getLocation(), | 
 |                                              Conv->getLocation())); | 
 |    | 
 |   if (ASTMutationListener *L = getASTMutationListener()) { | 
 |     L->CompletedImplicitDefinition(Conv); | 
 |     L->CompletedImplicitDefinition(Invoke); | 
 |   } | 
 | } | 
 |  | 
 | void Sema::DefineImplicitLambdaToBlockPointerConversion( | 
 |        SourceLocation CurrentLocation, | 
 |        CXXConversionDecl *Conv)  | 
 | { | 
 |   // Make sure that the lambda call operator is marked used. | 
 |   markLambdaCallOperatorUsed(*this, Conv->getParent()); | 
 |   Conv->setUsed(); | 
 |    | 
 |   ImplicitlyDefinedFunctionScope Scope(*this, Conv); | 
 |   DiagnosticErrorTrap Trap(Diags); | 
 |    | 
 |   // Copy-initialize the lambda object as needed to capture | 
 |   Expr *This = ActOnCXXThis(CurrentLocation).take(); | 
 |   Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take(); | 
 |   ExprResult Init = PerformCopyInitialization( | 
 |                       InitializedEntity::InitializeBlock(CurrentLocation,  | 
 |                                                          DerefThis->getType(),  | 
 |                                                          /*NRVO=*/false), | 
 |                       CurrentLocation, DerefThis); | 
 |   if (!Init.isInvalid()) | 
 |     Init = ActOnFinishFullExpr(Init.take()); | 
 |    | 
 |   if (!Init.isInvalid()) | 
 |     Conv->setLambdaToBlockPointerCopyInit(Init.take()); | 
 |   else { | 
 |     Diag(CurrentLocation, diag::note_lambda_to_block_conv); | 
 |   } | 
 |    | 
 |   // Introduce a bogus body, which IR generation will override anyway. | 
 |   Conv->setBody(new (Context) CompoundStmt(Context, 0, 0, Conv->getLocation(), | 
 |                                            Conv->getLocation())); | 
 |    | 
 |   if (ASTMutationListener *L = getASTMutationListener()) { | 
 |     L->CompletedImplicitDefinition(Conv); | 
 |   } | 
 | } | 
 |  | 
 | ExprResult | 
 | Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, | 
 |                             CXXConstructorDecl *Constructor, | 
 |                             MultiExprArg ExprArgs, | 
 |                             bool HadMultipleCandidates, | 
 |                             bool RequiresZeroInit, | 
 |                             unsigned ConstructKind, | 
 |                             SourceRange ParenRange) { | 
 |   bool Elidable = false; | 
 |  | 
 |   // C++0x [class.copy]p34: | 
 |   //   When certain criteria are met, an implementation is allowed to | 
 |   //   omit the copy/move construction of a class object, even if the | 
 |   //   copy/move constructor and/or destructor for the object have | 
 |   //   side effects. [...] | 
 |   //     - when a temporary class object that has not been bound to a | 
 |   //       reference (12.2) would be copied/moved to a class object | 
 |   //       with the same cv-unqualified type, the copy/move operation | 
 |   //       can be omitted by constructing the temporary object | 
 |   //       directly into the target of the omitted copy/move | 
 |   if (ConstructKind == CXXConstructExpr::CK_Complete && | 
 |       Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) { | 
 |     Expr *SubExpr = ((Expr **)ExprArgs.get())[0]; | 
 |     Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent()); | 
 |   } | 
 |  | 
 |   return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor, | 
 |                                Elidable, move(ExprArgs), HadMultipleCandidates, | 
 |                                RequiresZeroInit, ConstructKind, ParenRange); | 
 | } | 
 |  | 
 | /// BuildCXXConstructExpr - Creates a complete call to a constructor, | 
 | /// including handling of its default argument expressions. | 
 | ExprResult | 
 | Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, | 
 |                             CXXConstructorDecl *Constructor, bool Elidable, | 
 |                             MultiExprArg ExprArgs, | 
 |                             bool HadMultipleCandidates, | 
 |                             bool RequiresZeroInit, | 
 |                             unsigned ConstructKind, | 
 |                             SourceRange ParenRange) { | 
 |   unsigned NumExprs = ExprArgs.size(); | 
 |   Expr **Exprs = (Expr **)ExprArgs.release(); | 
 |  | 
 |   for (specific_attr_iterator<NonNullAttr> | 
 |            i = Constructor->specific_attr_begin<NonNullAttr>(), | 
 |            e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) { | 
 |     const NonNullAttr *NonNull = *i; | 
 |     CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc); | 
 |   } | 
 |  | 
 |   MarkFunctionReferenced(ConstructLoc, Constructor); | 
 |   return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc, | 
 |                                         Constructor, Elidable, Exprs, NumExprs, | 
 |                                         HadMultipleCandidates, /*FIXME*/false, | 
 |                                         RequiresZeroInit, | 
 |               static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind), | 
 |                                         ParenRange)); | 
 | } | 
 |  | 
 | bool Sema::InitializeVarWithConstructor(VarDecl *VD, | 
 |                                         CXXConstructorDecl *Constructor, | 
 |                                         MultiExprArg Exprs, | 
 |                                         bool HadMultipleCandidates) { | 
 |   // FIXME: Provide the correct paren SourceRange when available. | 
 |   ExprResult TempResult = | 
 |     BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor, | 
 |                           move(Exprs), HadMultipleCandidates, false, | 
 |                           CXXConstructExpr::CK_Complete, SourceRange()); | 
 |   if (TempResult.isInvalid()) | 
 |     return true; | 
 |  | 
 |   Expr *Temp = TempResult.takeAs<Expr>(); | 
 |   CheckImplicitConversions(Temp, VD->getLocation()); | 
 |   MarkFunctionReferenced(VD->getLocation(), Constructor); | 
 |   Temp = MaybeCreateExprWithCleanups(Temp); | 
 |   VD->setInit(Temp); | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) { | 
 |   if (VD->isInvalidDecl()) return; | 
 |  | 
 |   CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl()); | 
 |   if (ClassDecl->isInvalidDecl()) return; | 
 |   if (ClassDecl->hasIrrelevantDestructor()) return; | 
 |   if (ClassDecl->isDependentContext()) return; | 
 |  | 
 |   CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl); | 
 |   MarkFunctionReferenced(VD->getLocation(), Destructor); | 
 |   CheckDestructorAccess(VD->getLocation(), Destructor, | 
 |                         PDiag(diag::err_access_dtor_var) | 
 |                         << VD->getDeclName() | 
 |                         << VD->getType()); | 
 |   DiagnoseUseOfDecl(Destructor, VD->getLocation()); | 
 |  | 
 |   if (!VD->hasGlobalStorage()) return; | 
 |  | 
 |   // Emit warning for non-trivial dtor in global scope (a real global, | 
 |   // class-static, function-static). | 
 |   Diag(VD->getLocation(), diag::warn_exit_time_destructor); | 
 |  | 
 |   // TODO: this should be re-enabled for static locals by !CXAAtExit | 
 |   if (!VD->isStaticLocal()) | 
 |     Diag(VD->getLocation(), diag::warn_global_destructor); | 
 | } | 
 |  | 
 | /// \brief Given a constructor and the set of arguments provided for the | 
 | /// constructor, convert the arguments and add any required default arguments | 
 | /// to form a proper call to this constructor. | 
 | /// | 
 | /// \returns true if an error occurred, false otherwise. | 
 | bool  | 
 | Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor, | 
 |                               MultiExprArg ArgsPtr, | 
 |                               SourceLocation Loc,                                     | 
 |                               ASTOwningVector<Expr*> &ConvertedArgs) { | 
 |   // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall. | 
 |   unsigned NumArgs = ArgsPtr.size(); | 
 |   Expr **Args = (Expr **)ArgsPtr.get(); | 
 |  | 
 |   const FunctionProtoType *Proto  | 
 |     = Constructor->getType()->getAs<FunctionProtoType>(); | 
 |   assert(Proto && "Constructor without a prototype?"); | 
 |   unsigned NumArgsInProto = Proto->getNumArgs(); | 
 |    | 
 |   // If too few arguments are available, we'll fill in the rest with defaults. | 
 |   if (NumArgs < NumArgsInProto) | 
 |     ConvertedArgs.reserve(NumArgsInProto); | 
 |   else | 
 |     ConvertedArgs.reserve(NumArgs); | 
 |  | 
 |   VariadicCallType CallType =  | 
 |     Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply; | 
 |   SmallVector<Expr *, 8> AllArgs; | 
 |   bool Invalid = GatherArgumentsForCall(Loc, Constructor, | 
 |                                         Proto, 0, Args, NumArgs, AllArgs,  | 
 |                                         CallType); | 
 |   ConvertedArgs.append(AllArgs.begin(), AllArgs.end()); | 
 |   return Invalid; | 
 | } | 
 |  | 
 | static inline bool | 
 | CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,  | 
 |                                        const FunctionDecl *FnDecl) { | 
 |   const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext(); | 
 |   if (isa<NamespaceDecl>(DC)) { | 
 |     return SemaRef.Diag(FnDecl->getLocation(),  | 
 |                         diag::err_operator_new_delete_declared_in_namespace) | 
 |       << FnDecl->getDeclName(); | 
 |   } | 
 |    | 
 |   if (isa<TranslationUnitDecl>(DC) &&  | 
 |       FnDecl->getStorageClass() == SC_Static) { | 
 |     return SemaRef.Diag(FnDecl->getLocation(), | 
 |                         diag::err_operator_new_delete_declared_static) | 
 |       << FnDecl->getDeclName(); | 
 |   } | 
 |    | 
 |   return false; | 
 | } | 
 |  | 
 | static inline bool | 
 | CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl, | 
 |                             CanQualType ExpectedResultType, | 
 |                             CanQualType ExpectedFirstParamType, | 
 |                             unsigned DependentParamTypeDiag, | 
 |                             unsigned InvalidParamTypeDiag) { | 
 |   QualType ResultType =  | 
 |     FnDecl->getType()->getAs<FunctionType>()->getResultType(); | 
 |  | 
 |   // Check that the result type is not dependent. | 
 |   if (ResultType->isDependentType()) | 
 |     return SemaRef.Diag(FnDecl->getLocation(), | 
 |                         diag::err_operator_new_delete_dependent_result_type) | 
 |     << FnDecl->getDeclName() << ExpectedResultType; | 
 |  | 
 |   // Check that the result type is what we expect. | 
 |   if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType) | 
 |     return SemaRef.Diag(FnDecl->getLocation(), | 
 |                         diag::err_operator_new_delete_invalid_result_type)  | 
 |     << FnDecl->getDeclName() << ExpectedResultType; | 
 |    | 
 |   // A function template must have at least 2 parameters. | 
 |   if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2) | 
 |     return SemaRef.Diag(FnDecl->getLocation(), | 
 |                       diag::err_operator_new_delete_template_too_few_parameters) | 
 |         << FnDecl->getDeclName(); | 
 |    | 
 |   // The function decl must have at least 1 parameter. | 
 |   if (FnDecl->getNumParams() == 0) | 
 |     return SemaRef.Diag(FnDecl->getLocation(), | 
 |                         diag::err_operator_new_delete_too_few_parameters) | 
 |       << FnDecl->getDeclName(); | 
 |   | 
 |   // Check the the first parameter type is not dependent. | 
 |   QualType FirstParamType = FnDecl->getParamDecl(0)->getType(); | 
 |   if (FirstParamType->isDependentType()) | 
 |     return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag) | 
 |       << FnDecl->getDeclName() << ExpectedFirstParamType; | 
 |  | 
 |   // Check that the first parameter type is what we expect. | 
 |   if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=  | 
 |       ExpectedFirstParamType) | 
 |     return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag) | 
 |     << FnDecl->getDeclName() << ExpectedFirstParamType; | 
 |    | 
 |   return false; | 
 | } | 
 |  | 
 | static bool | 
 | CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) { | 
 |   // C++ [basic.stc.dynamic.allocation]p1: | 
 |   //   A program is ill-formed if an allocation function is declared in a | 
 |   //   namespace scope other than global scope or declared static in global  | 
 |   //   scope. | 
 |   if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) | 
 |     return true; | 
 |  | 
 |   CanQualType SizeTy =  | 
 |     SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType()); | 
 |  | 
 |   // C++ [basic.stc.dynamic.allocation]p1: | 
 |   //  The return type shall be void*. The first parameter shall have type  | 
 |   //  std::size_t. | 
 |   if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,  | 
 |                                   SizeTy, | 
 |                                   diag::err_operator_new_dependent_param_type, | 
 |                                   diag::err_operator_new_param_type)) | 
 |     return true; | 
 |  | 
 |   // C++ [basic.stc.dynamic.allocation]p1: | 
 |   //  The first parameter shall not have an associated default argument. | 
 |   if (FnDecl->getParamDecl(0)->hasDefaultArg()) | 
 |     return SemaRef.Diag(FnDecl->getLocation(), | 
 |                         diag::err_operator_new_default_arg) | 
 |       << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange(); | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | static bool | 
 | CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) { | 
 |   // C++ [basic.stc.dynamic.deallocation]p1: | 
 |   //   A program is ill-formed if deallocation functions are declared in a | 
 |   //   namespace scope other than global scope or declared static in global  | 
 |   //   scope. | 
 |   if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) | 
 |     return true; | 
 |  | 
 |   // C++ [basic.stc.dynamic.deallocation]p2: | 
 |   //   Each deallocation function shall return void and its first parameter  | 
 |   //   shall be void*. | 
 |   if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,  | 
 |                                   SemaRef.Context.VoidPtrTy, | 
 |                                  diag::err_operator_delete_dependent_param_type, | 
 |                                  diag::err_operator_delete_param_type)) | 
 |     return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// CheckOverloadedOperatorDeclaration - Check whether the declaration | 
 | /// of this overloaded operator is well-formed. If so, returns false; | 
 | /// otherwise, emits appropriate diagnostics and returns true. | 
 | bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) { | 
 |   assert(FnDecl && FnDecl->isOverloadedOperator() && | 
 |          "Expected an overloaded operator declaration"); | 
 |  | 
 |   OverloadedOperatorKind Op = FnDecl->getOverloadedOperator(); | 
 |  | 
 |   // C++ [over.oper]p5: | 
 |   //   The allocation and deallocation functions, operator new, | 
 |   //   operator new[], operator delete and operator delete[], are | 
 |   //   described completely in 3.7.3. The attributes and restrictions | 
 |   //   found in the rest of this subclause do not apply to them unless | 
 |   //   explicitly stated in 3.7.3. | 
 |   if (Op == OO_Delete || Op == OO_Array_Delete) | 
 |     return CheckOperatorDeleteDeclaration(*this, FnDecl); | 
 |    | 
 |   if (Op == OO_New || Op == OO_Array_New) | 
 |     return CheckOperatorNewDeclaration(*this, FnDecl); | 
 |  | 
 |   // C++ [over.oper]p6: | 
 |   //   An operator function shall either be a non-static member | 
 |   //   function or be a non-member function and have at least one | 
 |   //   parameter whose type is a class, a reference to a class, an | 
 |   //   enumeration, or a reference to an enumeration. | 
 |   if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) { | 
 |     if (MethodDecl->isStatic()) | 
 |       return Diag(FnDecl->getLocation(), | 
 |                   diag::err_operator_overload_static) << FnDecl->getDeclName(); | 
 |   } else { | 
 |     bool ClassOrEnumParam = false; | 
 |     for (FunctionDecl::param_iterator Param = FnDecl->param_begin(), | 
 |                                    ParamEnd = FnDecl->param_end(); | 
 |          Param != ParamEnd; ++Param) { | 
 |       QualType ParamType = (*Param)->getType().getNonReferenceType(); | 
 |       if (ParamType->isDependentType() || ParamType->isRecordType() || | 
 |           ParamType->isEnumeralType()) { | 
 |         ClassOrEnumParam = true; | 
 |         break; | 
 |       } | 
 |     } | 
 |  | 
 |     if (!ClassOrEnumParam) | 
 |       return Diag(FnDecl->getLocation(), | 
 |                   diag::err_operator_overload_needs_class_or_enum) | 
 |         << FnDecl->getDeclName(); | 
 |   } | 
 |  | 
 |   // C++ [over.oper]p8: | 
 |   //   An operator function cannot have default arguments (8.3.6), | 
 |   //   except where explicitly stated below. | 
 |   // | 
 |   // Only the function-call operator allows default arguments | 
 |   // (C++ [over.call]p1). | 
 |   if (Op != OO_Call) { | 
 |     for (FunctionDecl::param_iterator Param = FnDecl->param_begin(); | 
 |          Param != FnDecl->param_end(); ++Param) { | 
 |       if ((*Param)->hasDefaultArg()) | 
 |         return Diag((*Param)->getLocation(), | 
 |                     diag::err_operator_overload_default_arg) | 
 |           << FnDecl->getDeclName() << (*Param)->getDefaultArgRange(); | 
 |     } | 
 |   } | 
 |  | 
 |   static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = { | 
 |     { false, false, false } | 
 | #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ | 
 |     , { Unary, Binary, MemberOnly } | 
 | #include "clang/Basic/OperatorKinds.def" | 
 |   }; | 
 |  | 
 |   bool CanBeUnaryOperator = OperatorUses[Op][0]; | 
 |   bool CanBeBinaryOperator = OperatorUses[Op][1]; | 
 |   bool MustBeMemberOperator = OperatorUses[Op][2]; | 
 |  | 
 |   // C++ [over.oper]p8: | 
 |   //   [...] Operator functions cannot have more or fewer parameters | 
 |   //   than the number required for the corresponding operator, as | 
 |   //   described in the rest of this subclause. | 
 |   unsigned NumParams = FnDecl->getNumParams() | 
 |                      + (isa<CXXMethodDecl>(FnDecl)? 1 : 0); | 
 |   if (Op != OO_Call && | 
 |       ((NumParams == 1 && !CanBeUnaryOperator) || | 
 |        (NumParams == 2 && !CanBeBinaryOperator) || | 
 |        (NumParams < 1) || (NumParams > 2))) { | 
 |     // We have the wrong number of parameters. | 
 |     unsigned ErrorKind; | 
 |     if (CanBeUnaryOperator && CanBeBinaryOperator) { | 
 |       ErrorKind = 2;  // 2 -> unary or binary. | 
 |     } else if (CanBeUnaryOperator) { | 
 |       ErrorKind = 0;  // 0 -> unary | 
 |     } else { | 
 |       assert(CanBeBinaryOperator && | 
 |              "All non-call overloaded operators are unary or binary!"); | 
 |       ErrorKind = 1;  // 1 -> binary | 
 |     } | 
 |  | 
 |     return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be) | 
 |       << FnDecl->getDeclName() << NumParams << ErrorKind; | 
 |   } | 
 |  | 
 |   // Overloaded operators other than operator() cannot be variadic. | 
 |   if (Op != OO_Call && | 
 |       FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) { | 
 |     return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic) | 
 |       << FnDecl->getDeclName(); | 
 |   } | 
 |  | 
 |   // Some operators must be non-static member functions. | 
 |   if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) { | 
 |     return Diag(FnDecl->getLocation(), | 
 |                 diag::err_operator_overload_must_be_member) | 
 |       << FnDecl->getDeclName(); | 
 |   } | 
 |  | 
 |   // C++ [over.inc]p1: | 
 |   //   The user-defined function called operator++ implements the | 
 |   //   prefix and postfix ++ operator. If this function is a member | 
 |   //   function with no parameters, or a non-member function with one | 
 |   //   parameter of class or enumeration type, it defines the prefix | 
 |   //   increment operator ++ for objects of that type. If the function | 
 |   //   is a member function with one parameter (which shall be of type | 
 |   //   int) or a non-member function with two parameters (the second | 
 |   //   of which shall be of type int), it defines the postfix | 
 |   //   increment operator ++ for objects of that type. | 
 |   if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) { | 
 |     ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1); | 
 |     bool ParamIsInt = false; | 
 |     if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>()) | 
 |       ParamIsInt = BT->getKind() == BuiltinType::Int; | 
 |  | 
 |     if (!ParamIsInt) | 
 |       return Diag(LastParam->getLocation(), | 
 |                   diag::err_operator_overload_post_incdec_must_be_int) | 
 |         << LastParam->getType() << (Op == OO_MinusMinus); | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// CheckLiteralOperatorDeclaration - Check whether the declaration | 
 | /// of this literal operator function is well-formed. If so, returns | 
 | /// false; otherwise, emits appropriate diagnostics and returns true. | 
 | bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) { | 
 |   DeclContext *DC = FnDecl->getDeclContext(); | 
 |   Decl::Kind Kind = DC->getDeclKind(); | 
 |   if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace && | 
 |       Kind != Decl::LinkageSpec) { | 
 |     Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace) | 
 |       << FnDecl->getDeclName(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   bool Valid = false; | 
 |  | 
 |   // template <char...> type operator "" name() is the only valid template | 
 |   // signature, and the only valid signature with no parameters. | 
 |   if (FnDecl->param_size() == 0) { | 
 |     if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) { | 
 |       // Must have only one template parameter | 
 |       TemplateParameterList *Params = TpDecl->getTemplateParameters(); | 
 |       if (Params->size() == 1) { | 
 |         NonTypeTemplateParmDecl *PmDecl = | 
 |           cast<NonTypeTemplateParmDecl>(Params->getParam(0)); | 
 |  | 
 |         // The template parameter must be a char parameter pack. | 
 |         if (PmDecl && PmDecl->isTemplateParameterPack() && | 
 |             Context.hasSameType(PmDecl->getType(), Context.CharTy)) | 
 |           Valid = true; | 
 |       } | 
 |     } | 
 |   } else { | 
 |     // Check the first parameter | 
 |     FunctionDecl::param_iterator Param = FnDecl->param_begin(); | 
 |  | 
 |     QualType T = (*Param)->getType(); | 
 |  | 
 |     // unsigned long long int, long double, and any character type are allowed | 
 |     // as the only parameters. | 
 |     if (Context.hasSameType(T, Context.UnsignedLongLongTy) || | 
 |         Context.hasSameType(T, Context.LongDoubleTy) || | 
 |         Context.hasSameType(T, Context.CharTy) || | 
 |         Context.hasSameType(T, Context.WCharTy) || | 
 |         Context.hasSameType(T, Context.Char16Ty) || | 
 |         Context.hasSameType(T, Context.Char32Ty)) { | 
 |       if (++Param == FnDecl->param_end()) | 
 |         Valid = true; | 
 |       goto FinishedParams; | 
 |     } | 
 |  | 
 |     // Otherwise it must be a pointer to const; let's strip those qualifiers. | 
 |     const PointerType *PT = T->getAs<PointerType>(); | 
 |     if (!PT) | 
 |       goto FinishedParams; | 
 |     T = PT->getPointeeType(); | 
 |     if (!T.isConstQualified()) | 
 |       goto FinishedParams; | 
 |     T = T.getUnqualifiedType(); | 
 |  | 
 |     // Move on to the second parameter; | 
 |     ++Param; | 
 |  | 
 |     // If there is no second parameter, the first must be a const char * | 
 |     if (Param == FnDecl->param_end()) { | 
 |       if (Context.hasSameType(T, Context.CharTy)) | 
 |         Valid = true; | 
 |       goto FinishedParams; | 
 |     } | 
 |  | 
 |     // const char *, const wchar_t*, const char16_t*, and const char32_t* | 
 |     // are allowed as the first parameter to a two-parameter function | 
 |     if (!(Context.hasSameType(T, Context.CharTy) || | 
 |           Context.hasSameType(T, Context.WCharTy) || | 
 |           Context.hasSameType(T, Context.Char16Ty) || | 
 |           Context.hasSameType(T, Context.Char32Ty))) | 
 |       goto FinishedParams; | 
 |  | 
 |     // The second and final parameter must be an std::size_t | 
 |     T = (*Param)->getType().getUnqualifiedType(); | 
 |     if (Context.hasSameType(T, Context.getSizeType()) && | 
 |         ++Param == FnDecl->param_end()) | 
 |       Valid = true; | 
 |   } | 
 |  | 
 |   // FIXME: This diagnostic is absolutely terrible. | 
 | FinishedParams: | 
 |   if (!Valid) { | 
 |     Diag(FnDecl->getLocation(), diag::err_literal_operator_params) | 
 |       << FnDecl->getDeclName(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   StringRef LiteralName  | 
 |     = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName(); | 
 |   if (LiteralName[0] != '_') { | 
 |     // C++0x [usrlit.suffix]p1: | 
 |     //   Literal suffix identifiers that do not start with an underscore are  | 
 |     //   reserved for future standardization. | 
 |     bool IsHexFloat = true; | 
 |     if (LiteralName.size() > 1 &&  | 
 |         (LiteralName[0] == 'P' || LiteralName[0] == 'p')) { | 
 |       for (unsigned I = 1, N = LiteralName.size(); I < N; ++I) { | 
 |         if (!isdigit(LiteralName[I])) { | 
 |           IsHexFloat = false; | 
 |           break; | 
 |         } | 
 |       } | 
 |     } | 
 |      | 
 |     if (IsHexFloat) | 
 |       Diag(FnDecl->getLocation(), diag::warn_user_literal_hexfloat) | 
 |         << LiteralName; | 
 |     else | 
 |       Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved); | 
 |   } | 
 |    | 
 |   return false; | 
 | } | 
 |  | 
 | /// ActOnStartLinkageSpecification - Parsed the beginning of a C++ | 
 | /// linkage specification, including the language and (if present) | 
 | /// the '{'. ExternLoc is the location of the 'extern', LangLoc is | 
 | /// the location of the language string literal, which is provided | 
 | /// by Lang/StrSize. LBraceLoc, if valid, provides the location of | 
 | /// the '{' brace. Otherwise, this linkage specification does not | 
 | /// have any braces. | 
 | Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc, | 
 |                                            SourceLocation LangLoc, | 
 |                                            StringRef Lang, | 
 |                                            SourceLocation LBraceLoc) { | 
 |   LinkageSpecDecl::LanguageIDs Language; | 
 |   if (Lang == "\"C\"") | 
 |     Language = LinkageSpecDecl::lang_c; | 
 |   else if (Lang == "\"C++\"") | 
 |     Language = LinkageSpecDecl::lang_cxx; | 
 |   else { | 
 |     Diag(LangLoc, diag::err_bad_language); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // FIXME: Add all the various semantics of linkage specifications | 
 |  | 
 |   LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, | 
 |                                                ExternLoc, LangLoc, Language); | 
 |   CurContext->addDecl(D); | 
 |   PushDeclContext(S, D); | 
 |   return D; | 
 | } | 
 |  | 
 | /// ActOnFinishLinkageSpecification - Complete the definition of | 
 | /// the C++ linkage specification LinkageSpec. If RBraceLoc is | 
 | /// valid, it's the position of the closing '}' brace in a linkage | 
 | /// specification that uses braces. | 
 | Decl *Sema::ActOnFinishLinkageSpecification(Scope *S, | 
 |                                             Decl *LinkageSpec, | 
 |                                             SourceLocation RBraceLoc) { | 
 |   if (LinkageSpec) { | 
 |     if (RBraceLoc.isValid()) { | 
 |       LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec); | 
 |       LSDecl->setRBraceLoc(RBraceLoc); | 
 |     } | 
 |     PopDeclContext(); | 
 |   } | 
 |   return LinkageSpec; | 
 | } | 
 |  | 
 | /// \brief Perform semantic analysis for the variable declaration that | 
 | /// occurs within a C++ catch clause, returning the newly-created | 
 | /// variable. | 
 | VarDecl *Sema::BuildExceptionDeclaration(Scope *S, | 
 |                                          TypeSourceInfo *TInfo, | 
 |                                          SourceLocation StartLoc, | 
 |                                          SourceLocation Loc, | 
 |                                          IdentifierInfo *Name) { | 
 |   bool Invalid = false; | 
 |   QualType ExDeclType = TInfo->getType(); | 
 |    | 
 |   // Arrays and functions decay. | 
 |   if (ExDeclType->isArrayType()) | 
 |     ExDeclType = Context.getArrayDecayedType(ExDeclType); | 
 |   else if (ExDeclType->isFunctionType()) | 
 |     ExDeclType = Context.getPointerType(ExDeclType); | 
 |  | 
 |   // C++ 15.3p1: The exception-declaration shall not denote an incomplete type. | 
 |   // The exception-declaration shall not denote a pointer or reference to an | 
 |   // incomplete type, other than [cv] void*. | 
 |   // N2844 forbids rvalue references. | 
 |   if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) { | 
 |     Diag(Loc, diag::err_catch_rvalue_ref); | 
 |     Invalid = true; | 
 |   } | 
 |  | 
 |   QualType BaseType = ExDeclType; | 
 |   int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference | 
 |   unsigned DK = diag::err_catch_incomplete; | 
 |   if (const PointerType *Ptr = BaseType->getAs<PointerType>()) { | 
 |     BaseType = Ptr->getPointeeType(); | 
 |     Mode = 1; | 
 |     DK = diag::err_catch_incomplete_ptr; | 
 |   } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) { | 
 |     // For the purpose of error recovery, we treat rvalue refs like lvalue refs. | 
 |     BaseType = Ref->getPointeeType(); | 
 |     Mode = 2; | 
 |     DK = diag::err_catch_incomplete_ref; | 
 |   } | 
 |   if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) && | 
 |       !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK)) | 
 |     Invalid = true; | 
 |  | 
 |   if (!Invalid && !ExDeclType->isDependentType() && | 
 |       RequireNonAbstractType(Loc, ExDeclType, | 
 |                              diag::err_abstract_type_in_decl, | 
 |                              AbstractVariableType)) | 
 |     Invalid = true; | 
 |  | 
 |   // Only the non-fragile NeXT runtime currently supports C++ catches | 
 |   // of ObjC types, and no runtime supports catching ObjC types by value. | 
 |   if (!Invalid && getLangOptions().ObjC1) { | 
 |     QualType T = ExDeclType; | 
 |     if (const ReferenceType *RT = T->getAs<ReferenceType>()) | 
 |       T = RT->getPointeeType(); | 
 |  | 
 |     if (T->isObjCObjectType()) { | 
 |       Diag(Loc, diag::err_objc_object_catch); | 
 |       Invalid = true; | 
 |     } else if (T->isObjCObjectPointerType()) { | 
 |       if (!getLangOptions().ObjCNonFragileABI) | 
 |         Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile); | 
 |     } | 
 |   } | 
 |  | 
 |   VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name, | 
 |                                     ExDeclType, TInfo, SC_None, SC_None); | 
 |   ExDecl->setExceptionVariable(true); | 
 |    | 
 |   // In ARC, infer 'retaining' for variables of retainable type. | 
 |   if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl)) | 
 |     Invalid = true; | 
 |  | 
 |   if (!Invalid && !ExDeclType->isDependentType()) { | 
 |     if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) { | 
 |       // C++ [except.handle]p16: | 
 |       //   The object declared in an exception-declaration or, if the  | 
 |       //   exception-declaration does not specify a name, a temporary (12.2) is  | 
 |       //   copy-initialized (8.5) from the exception object. [...] | 
 |       //   The object is destroyed when the handler exits, after the destruction | 
 |       //   of any automatic objects initialized within the handler. | 
 |       // | 
 |       // We just pretend to initialize the object with itself, then make sure  | 
 |       // it can be destroyed later. | 
 |       QualType initType = ExDeclType; | 
 |  | 
 |       InitializedEntity entity = | 
 |         InitializedEntity::InitializeVariable(ExDecl); | 
 |       InitializationKind initKind = | 
 |         InitializationKind::CreateCopy(Loc, SourceLocation()); | 
 |  | 
 |       Expr *opaqueValue = | 
 |         new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary); | 
 |       InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1); | 
 |       ExprResult result = sequence.Perform(*this, entity, initKind, | 
 |                                            MultiExprArg(&opaqueValue, 1)); | 
 |       if (result.isInvalid()) | 
 |         Invalid = true; | 
 |       else { | 
 |         // If the constructor used was non-trivial, set this as the | 
 |         // "initializer". | 
 |         CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take()); | 
 |         if (!construct->getConstructor()->isTrivial()) { | 
 |           Expr *init = MaybeCreateExprWithCleanups(construct); | 
 |           ExDecl->setInit(init); | 
 |         } | 
 |          | 
 |         // And make sure it's destructable. | 
 |         FinalizeVarWithDestructor(ExDecl, recordType); | 
 |       } | 
 |     } | 
 |   } | 
 |    | 
 |   if (Invalid) | 
 |     ExDecl->setInvalidDecl(); | 
 |  | 
 |   return ExDecl; | 
 | } | 
 |  | 
 | /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch | 
 | /// handler. | 
 | Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) { | 
 |   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); | 
 |   bool Invalid = D.isInvalidType(); | 
 |  | 
 |   // Check for unexpanded parameter packs. | 
 |   if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, | 
 |                                                UPPC_ExceptionType)) { | 
 |     TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,  | 
 |                                              D.getIdentifierLoc()); | 
 |     Invalid = true; | 
 |   } | 
 |  | 
 |   IdentifierInfo *II = D.getIdentifier(); | 
 |   if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(), | 
 |                                              LookupOrdinaryName, | 
 |                                              ForRedeclaration)) { | 
 |     // The scope should be freshly made just for us. There is just no way | 
 |     // it contains any previous declaration. | 
 |     assert(!S->isDeclScope(PrevDecl)); | 
 |     if (PrevDecl->isTemplateParameter()) { | 
 |       // Maybe we will complain about the shadowed template parameter. | 
 |       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); | 
 |       PrevDecl = 0; | 
 |     } | 
 |   } | 
 |  | 
 |   if (D.getCXXScopeSpec().isSet() && !Invalid) { | 
 |     Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator) | 
 |       << D.getCXXScopeSpec().getRange(); | 
 |     Invalid = true; | 
 |   } | 
 |  | 
 |   VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo, | 
 |                                               D.getSourceRange().getBegin(), | 
 |                                               D.getIdentifierLoc(), | 
 |                                               D.getIdentifier()); | 
 |   if (Invalid) | 
 |     ExDecl->setInvalidDecl(); | 
 |  | 
 |   // Add the exception declaration into this scope. | 
 |   if (II) | 
 |     PushOnScopeChains(ExDecl, S); | 
 |   else | 
 |     CurContext->addDecl(ExDecl); | 
 |  | 
 |   ProcessDeclAttributes(S, ExDecl, D); | 
 |   return ExDecl; | 
 | } | 
 |  | 
 | Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc, | 
 |                                          Expr *AssertExpr, | 
 |                                          Expr *AssertMessageExpr_, | 
 |                                          SourceLocation RParenLoc) { | 
 |   StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_); | 
 |  | 
 |   if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) { | 
 |     // In a static_assert-declaration, the constant-expression shall be a | 
 |     // constant expression that can be contextually converted to bool. | 
 |     ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr); | 
 |     if (Converted.isInvalid()) | 
 |       return 0; | 
 |  | 
 |     llvm::APSInt Cond; | 
 |     if (VerifyIntegerConstantExpression(Converted.get(), &Cond, | 
 |           PDiag(diag::err_static_assert_expression_is_not_constant), | 
 |           /*AllowFold=*/false).isInvalid()) | 
 |       return 0; | 
 |  | 
 |     if (!Cond) | 
 |       Diag(StaticAssertLoc, diag::err_static_assert_failed) | 
 |         << AssertMessage->getString() << AssertExpr->getSourceRange(); | 
 |   } | 
 |  | 
 |   if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression)) | 
 |     return 0; | 
 |  | 
 |   Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc, | 
 |                                         AssertExpr, AssertMessage, RParenLoc); | 
 |  | 
 |   CurContext->addDecl(Decl); | 
 |   return Decl; | 
 | } | 
 |  | 
 | /// \brief Perform semantic analysis of the given friend type declaration. | 
 | /// | 
 | /// \returns A friend declaration that. | 
 | FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation Loc, | 
 |                                       SourceLocation FriendLoc, | 
 |                                       TypeSourceInfo *TSInfo) { | 
 |   assert(TSInfo && "NULL TypeSourceInfo for friend type declaration"); | 
 |    | 
 |   QualType T = TSInfo->getType(); | 
 |   SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange(); | 
 |    | 
 |   // C++03 [class.friend]p2: | 
 |   //   An elaborated-type-specifier shall be used in a friend declaration | 
 |   //   for a class.* | 
 |   // | 
 |   //   * The class-key of the elaborated-type-specifier is required. | 
 |   if (!ActiveTemplateInstantiations.empty()) { | 
 |     // Do not complain about the form of friend template types during | 
 |     // template instantiation; we will already have complained when the | 
 |     // template was declared. | 
 |   } else if (!T->isElaboratedTypeSpecifier()) { | 
 |     // If we evaluated the type to a record type, suggest putting | 
 |     // a tag in front. | 
 |     if (const RecordType *RT = T->getAs<RecordType>()) { | 
 |       RecordDecl *RD = RT->getDecl(); | 
 |        | 
 |       std::string InsertionText = std::string(" ") + RD->getKindName(); | 
 |        | 
 |       Diag(TypeRange.getBegin(), | 
 |            getLangOptions().CPlusPlus0x ? | 
 |              diag::warn_cxx98_compat_unelaborated_friend_type : | 
 |              diag::ext_unelaborated_friend_type) | 
 |         << (unsigned) RD->getTagKind() | 
 |         << T | 
 |         << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc), | 
 |                                       InsertionText); | 
 |     } else { | 
 |       Diag(FriendLoc, | 
 |            getLangOptions().CPlusPlus0x ? | 
 |              diag::warn_cxx98_compat_nonclass_type_friend : | 
 |              diag::ext_nonclass_type_friend) | 
 |         << T | 
 |         << SourceRange(FriendLoc, TypeRange.getEnd()); | 
 |     } | 
 |   } else if (T->getAs<EnumType>()) { | 
 |     Diag(FriendLoc, | 
 |          getLangOptions().CPlusPlus0x ? | 
 |            diag::warn_cxx98_compat_enum_friend : | 
 |            diag::ext_enum_friend) | 
 |       << T | 
 |       << SourceRange(FriendLoc, TypeRange.getEnd()); | 
 |   } | 
 |    | 
 |   // C++0x [class.friend]p3: | 
 |   //   If the type specifier in a friend declaration designates a (possibly | 
 |   //   cv-qualified) class type, that class is declared as a friend; otherwise,  | 
 |   //   the friend declaration is ignored. | 
 |    | 
 |   // FIXME: C++0x has some syntactic restrictions on friend type declarations | 
 |   // in [class.friend]p3 that we do not implement. | 
 |    | 
 |   return FriendDecl::Create(Context, CurContext, Loc, TSInfo, FriendLoc); | 
 | } | 
 |  | 
 | /// Handle a friend tag declaration where the scope specifier was | 
 | /// templated. | 
 | Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc, | 
 |                                     unsigned TagSpec, SourceLocation TagLoc, | 
 |                                     CXXScopeSpec &SS, | 
 |                                     IdentifierInfo *Name, SourceLocation NameLoc, | 
 |                                     AttributeList *Attr, | 
 |                                     MultiTemplateParamsArg TempParamLists) { | 
 |   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); | 
 |  | 
 |   bool isExplicitSpecialization = false; | 
 |   bool Invalid = false; | 
 |  | 
 |   if (TemplateParameterList *TemplateParams | 
 |         = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS, | 
 |                                                   TempParamLists.get(), | 
 |                                                   TempParamLists.size(), | 
 |                                                   /*friend*/ true, | 
 |                                                   isExplicitSpecialization, | 
 |                                                   Invalid)) { | 
 |     if (TemplateParams->size() > 0) { | 
 |       // This is a declaration of a class template. | 
 |       if (Invalid) | 
 |         return 0; | 
 |  | 
 |       return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc, | 
 |                                 SS, Name, NameLoc, Attr, | 
 |                                 TemplateParams, AS_public, | 
 |                                 /*ModulePrivateLoc=*/SourceLocation(), | 
 |                                 TempParamLists.size() - 1, | 
 |                    (TemplateParameterList**) TempParamLists.release()).take(); | 
 |     } else { | 
 |       // The "template<>" header is extraneous. | 
 |       Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams) | 
 |         << TypeWithKeyword::getTagTypeKindName(Kind) << Name; | 
 |       isExplicitSpecialization = true; | 
 |     } | 
 |   } | 
 |  | 
 |   if (Invalid) return 0; | 
 |  | 
 |   bool isAllExplicitSpecializations = true; | 
 |   for (unsigned I = TempParamLists.size(); I-- > 0; ) { | 
 |     if (TempParamLists.get()[I]->size()) { | 
 |       isAllExplicitSpecializations = false; | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   // FIXME: don't ignore attributes. | 
 |  | 
 |   // If it's explicit specializations all the way down, just forget | 
 |   // about the template header and build an appropriate non-templated | 
 |   // friend.  TODO: for source fidelity, remember the headers. | 
 |   if (isAllExplicitSpecializations) { | 
 |     if (SS.isEmpty()) { | 
 |       bool Owned = false; | 
 |       bool IsDependent = false; | 
 |       return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc, | 
 |                       Attr, AS_public,  | 
 |                       /*ModulePrivateLoc=*/SourceLocation(), | 
 |                       MultiTemplateParamsArg(), Owned, IsDependent,  | 
 |                       /*ScopedEnumKWLoc=*/SourceLocation(), | 
 |                       /*ScopedEnumUsesClassTag=*/false, | 
 |                       /*UnderlyingType=*/TypeResult());           | 
 |     } | 
 |      | 
 |     NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); | 
 |     ElaboratedTypeKeyword Keyword | 
 |       = TypeWithKeyword::getKeywordForTagTypeKind(Kind); | 
 |     QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc, | 
 |                                    *Name, NameLoc); | 
 |     if (T.isNull()) | 
 |       return 0; | 
 |  | 
 |     TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); | 
 |     if (isa<DependentNameType>(T)) { | 
 |       DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc()); | 
 |       TL.setElaboratedKeywordLoc(TagLoc); | 
 |       TL.setQualifierLoc(QualifierLoc); | 
 |       TL.setNameLoc(NameLoc); | 
 |     } else { | 
 |       ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc()); | 
 |       TL.setElaboratedKeywordLoc(TagLoc); | 
 |       TL.setQualifierLoc(QualifierLoc); | 
 |       cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc); | 
 |     } | 
 |  | 
 |     FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc, | 
 |                                             TSI, FriendLoc); | 
 |     Friend->setAccess(AS_public); | 
 |     CurContext->addDecl(Friend); | 
 |     return Friend; | 
 |   } | 
 |    | 
 |   assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?"); | 
 |    | 
 |  | 
 |  | 
 |   // Handle the case of a templated-scope friend class.  e.g. | 
 |   //   template <class T> class A<T>::B; | 
 |   // FIXME: we don't support these right now. | 
 |   ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind); | 
 |   QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name); | 
 |   TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); | 
 |   DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc()); | 
 |   TL.setElaboratedKeywordLoc(TagLoc); | 
 |   TL.setQualifierLoc(SS.getWithLocInContext(Context)); | 
 |   TL.setNameLoc(NameLoc); | 
 |  | 
 |   FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc, | 
 |                                           TSI, FriendLoc); | 
 |   Friend->setAccess(AS_public); | 
 |   Friend->setUnsupportedFriend(true); | 
 |   CurContext->addDecl(Friend); | 
 |   return Friend; | 
 | } | 
 |  | 
 |  | 
 | /// Handle a friend type declaration.  This works in tandem with | 
 | /// ActOnTag. | 
 | /// | 
 | /// Notes on friend class templates: | 
 | /// | 
 | /// We generally treat friend class declarations as if they were | 
 | /// declaring a class.  So, for example, the elaborated type specifier | 
 | /// in a friend declaration is required to obey the restrictions of a | 
 | /// class-head (i.e. no typedefs in the scope chain), template | 
 | /// parameters are required to match up with simple template-ids, &c. | 
 | /// However, unlike when declaring a template specialization, it's | 
 | /// okay to refer to a template specialization without an empty | 
 | /// template parameter declaration, e.g. | 
 | ///   friend class A<T>::B<unsigned>; | 
 | /// We permit this as a special case; if there are any template | 
 | /// parameters present at all, require proper matching, i.e. | 
 | ///   template <> template <class T> friend class A<int>::B; | 
 | Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS, | 
 |                                 MultiTemplateParamsArg TempParams) { | 
 |   SourceLocation Loc = DS.getSourceRange().getBegin(); | 
 |  | 
 |   assert(DS.isFriendSpecified()); | 
 |   assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); | 
 |  | 
 |   // Try to convert the decl specifier to a type.  This works for | 
 |   // friend templates because ActOnTag never produces a ClassTemplateDecl | 
 |   // for a TUK_Friend. | 
 |   Declarator TheDeclarator(DS, Declarator::MemberContext); | 
 |   TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S); | 
 |   QualType T = TSI->getType(); | 
 |   if (TheDeclarator.isInvalidType()) | 
 |     return 0; | 
 |  | 
 |   if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration)) | 
 |     return 0; | 
 |  | 
 |   // This is definitely an error in C++98.  It's probably meant to | 
 |   // be forbidden in C++0x, too, but the specification is just | 
 |   // poorly written. | 
 |   // | 
 |   // The problem is with declarations like the following: | 
 |   //   template <T> friend A<T>::foo; | 
 |   // where deciding whether a class C is a friend or not now hinges | 
 |   // on whether there exists an instantiation of A that causes | 
 |   // 'foo' to equal C.  There are restrictions on class-heads | 
 |   // (which we declare (by fiat) elaborated friend declarations to | 
 |   // be) that makes this tractable. | 
 |   // | 
 |   // FIXME: handle "template <> friend class A<T>;", which | 
 |   // is possibly well-formed?  Who even knows? | 
 |   if (TempParams.size() && !T->isElaboratedTypeSpecifier()) { | 
 |     Diag(Loc, diag::err_tagless_friend_type_template) | 
 |       << DS.getSourceRange(); | 
 |     return 0; | 
 |   } | 
 |    | 
 |   // C++98 [class.friend]p1: A friend of a class is a function | 
 |   //   or class that is not a member of the class . . . | 
 |   // This is fixed in DR77, which just barely didn't make the C++03 | 
 |   // deadline.  It's also a very silly restriction that seriously | 
 |   // affects inner classes and which nobody else seems to implement; | 
 |   // thus we never diagnose it, not even in -pedantic. | 
 |   // | 
 |   // But note that we could warn about it: it's always useless to | 
 |   // friend one of your own members (it's not, however, worthless to | 
 |   // friend a member of an arbitrary specialization of your template). | 
 |  | 
 |   Decl *D; | 
 |   if (unsigned NumTempParamLists = TempParams.size()) | 
 |     D = FriendTemplateDecl::Create(Context, CurContext, Loc, | 
 |                                    NumTempParamLists, | 
 |                                    TempParams.release(), | 
 |                                    TSI, | 
 |                                    DS.getFriendSpecLoc()); | 
 |   else | 
 |     D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI); | 
 |    | 
 |   if (!D) | 
 |     return 0; | 
 |    | 
 |   D->setAccess(AS_public); | 
 |   CurContext->addDecl(D); | 
 |  | 
 |   return D; | 
 | } | 
 |  | 
 | Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, | 
 |                                     MultiTemplateParamsArg TemplateParams) { | 
 |   const DeclSpec &DS = D.getDeclSpec(); | 
 |  | 
 |   assert(DS.isFriendSpecified()); | 
 |   assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); | 
 |  | 
 |   SourceLocation Loc = D.getIdentifierLoc(); | 
 |   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); | 
 |  | 
 |   // C++ [class.friend]p1 | 
 |   //   A friend of a class is a function or class.... | 
 |   // Note that this sees through typedefs, which is intended. | 
 |   // It *doesn't* see through dependent types, which is correct | 
 |   // according to [temp.arg.type]p3: | 
 |   //   If a declaration acquires a function type through a | 
 |   //   type dependent on a template-parameter and this causes | 
 |   //   a declaration that does not use the syntactic form of a | 
 |   //   function declarator to have a function type, the program | 
 |   //   is ill-formed. | 
 |   if (!TInfo->getType()->isFunctionType()) { | 
 |     Diag(Loc, diag::err_unexpected_friend); | 
 |  | 
 |     // It might be worthwhile to try to recover by creating an | 
 |     // appropriate declaration. | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // C++ [namespace.memdef]p3 | 
 |   //  - If a friend declaration in a non-local class first declares a | 
 |   //    class or function, the friend class or function is a member | 
 |   //    of the innermost enclosing namespace. | 
 |   //  - The name of the friend is not found by simple name lookup | 
 |   //    until a matching declaration is provided in that namespace | 
 |   //    scope (either before or after the class declaration granting | 
 |   //    friendship). | 
 |   //  - If a friend function is called, its name may be found by the | 
 |   //    name lookup that considers functions from namespaces and | 
 |   //    classes associated with the types of the function arguments. | 
 |   //  - When looking for a prior declaration of a class or a function | 
 |   //    declared as a friend, scopes outside the innermost enclosing | 
 |   //    namespace scope are not considered. | 
 |  | 
 |   CXXScopeSpec &SS = D.getCXXScopeSpec(); | 
 |   DeclarationNameInfo NameInfo = GetNameForDeclarator(D); | 
 |   DeclarationName Name = NameInfo.getName(); | 
 |   assert(Name); | 
 |  | 
 |   // Check for unexpanded parameter packs. | 
 |   if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) || | 
 |       DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) || | 
 |       DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration)) | 
 |     return 0; | 
 |  | 
 |   // The context we found the declaration in, or in which we should | 
 |   // create the declaration. | 
 |   DeclContext *DC; | 
 |   Scope *DCScope = S; | 
 |   LookupResult Previous(*this, NameInfo, LookupOrdinaryName, | 
 |                         ForRedeclaration); | 
 |  | 
 |   // FIXME: there are different rules in local classes | 
 |  | 
 |   // There are four cases here. | 
 |   //   - There's no scope specifier, in which case we just go to the | 
 |   //     appropriate scope and look for a function or function template | 
 |   //     there as appropriate. | 
 |   // Recover from invalid scope qualifiers as if they just weren't there. | 
 |   if (SS.isInvalid() || !SS.isSet()) { | 
 |     // C++0x [namespace.memdef]p3: | 
 |     //   If the name in a friend declaration is neither qualified nor | 
 |     //   a template-id and the declaration is a function or an | 
 |     //   elaborated-type-specifier, the lookup to determine whether | 
 |     //   the entity has been previously declared shall not consider | 
 |     //   any scopes outside the innermost enclosing namespace. | 
 |     // C++0x [class.friend]p11: | 
 |     //   If a friend declaration appears in a local class and the name | 
 |     //   specified is an unqualified name, a prior declaration is | 
 |     //   looked up without considering scopes that are outside the | 
 |     //   innermost enclosing non-class scope. For a friend function | 
 |     //   declaration, if there is no prior declaration, the program is | 
 |     //   ill-formed. | 
 |     bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass(); | 
 |     bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId; | 
 |  | 
 |     // Find the appropriate context according to the above. | 
 |     DC = CurContext; | 
 |     while (true) { | 
 |       // Skip class contexts.  If someone can cite chapter and verse | 
 |       // for this behavior, that would be nice --- it's what GCC and | 
 |       // EDG do, and it seems like a reasonable intent, but the spec | 
 |       // really only says that checks for unqualified existing | 
 |       // declarations should stop at the nearest enclosing namespace, | 
 |       // not that they should only consider the nearest enclosing | 
 |       // namespace. | 
 |       while (DC->isRecord())  | 
 |         DC = DC->getParent(); | 
 |  | 
 |       LookupQualifiedName(Previous, DC); | 
 |  | 
 |       // TODO: decide what we think about using declarations. | 
 |       if (isLocal || !Previous.empty()) | 
 |         break; | 
 |  | 
 |       if (isTemplateId) { | 
 |         if (isa<TranslationUnitDecl>(DC)) break; | 
 |       } else { | 
 |         if (DC->isFileContext()) break; | 
 |       } | 
 |       DC = DC->getParent(); | 
 |     } | 
 |  | 
 |     // C++ [class.friend]p1: A friend of a class is a function or | 
 |     //   class that is not a member of the class . . . | 
 |     // C++11 changes this for both friend types and functions. | 
 |     // Most C++ 98 compilers do seem to give an error here, so | 
 |     // we do, too. | 
 |     if (!Previous.empty() && DC->Equals(CurContext)) | 
 |       Diag(DS.getFriendSpecLoc(), | 
 |            getLangOptions().CPlusPlus0x ? | 
 |              diag::warn_cxx98_compat_friend_is_member : | 
 |              diag::err_friend_is_member); | 
 |  | 
 |     DCScope = getScopeForDeclContext(S, DC); | 
 |      | 
 |     // C++ [class.friend]p6: | 
 |     //   A function can be defined in a friend declaration of a class if and  | 
 |     //   only if the class is a non-local class (9.8), the function name is | 
 |     //   unqualified, and the function has namespace scope. | 
 |     if (isLocal && D.isFunctionDefinition()) { | 
 |       Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class); | 
 |     } | 
 |      | 
 |   //   - There's a non-dependent scope specifier, in which case we | 
 |   //     compute it and do a previous lookup there for a function | 
 |   //     or function template. | 
 |   } else if (!SS.getScopeRep()->isDependent()) { | 
 |     DC = computeDeclContext(SS); | 
 |     if (!DC) return 0; | 
 |  | 
 |     if (RequireCompleteDeclContext(SS, DC)) return 0; | 
 |  | 
 |     LookupQualifiedName(Previous, DC); | 
 |  | 
 |     // Ignore things found implicitly in the wrong scope. | 
 |     // TODO: better diagnostics for this case.  Suggesting the right | 
 |     // qualified scope would be nice... | 
 |     LookupResult::Filter F = Previous.makeFilter(); | 
 |     while (F.hasNext()) { | 
 |       NamedDecl *D = F.next(); | 
 |       if (!DC->InEnclosingNamespaceSetOf( | 
 |               D->getDeclContext()->getRedeclContext())) | 
 |         F.erase(); | 
 |     } | 
 |     F.done(); | 
 |  | 
 |     if (Previous.empty()) { | 
 |       D.setInvalidType(); | 
 |       Diag(Loc, diag::err_qualified_friend_not_found) | 
 |           << Name << TInfo->getType(); | 
 |       return 0; | 
 |     } | 
 |  | 
 |     // C++ [class.friend]p1: A friend of a class is a function or | 
 |     //   class that is not a member of the class . . . | 
 |     if (DC->Equals(CurContext)) | 
 |       Diag(DS.getFriendSpecLoc(), | 
 |            getLangOptions().CPlusPlus0x ? | 
 |              diag::warn_cxx98_compat_friend_is_member : | 
 |              diag::err_friend_is_member); | 
 |      | 
 |     if (D.isFunctionDefinition()) { | 
 |       // C++ [class.friend]p6: | 
 |       //   A function can be defined in a friend declaration of a class if and  | 
 |       //   only if the class is a non-local class (9.8), the function name is | 
 |       //   unqualified, and the function has namespace scope. | 
 |       SemaDiagnosticBuilder DB | 
 |         = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def); | 
 |        | 
 |       DB << SS.getScopeRep(); | 
 |       if (DC->isFileContext()) | 
 |         DB << FixItHint::CreateRemoval(SS.getRange()); | 
 |       SS.clear(); | 
 |     } | 
 |  | 
 |   //   - There's a scope specifier that does not match any template | 
 |   //     parameter lists, in which case we use some arbitrary context, | 
 |   //     create a method or method template, and wait for instantiation. | 
 |   //   - There's a scope specifier that does match some template | 
 |   //     parameter lists, which we don't handle right now. | 
 |   } else { | 
 |     if (D.isFunctionDefinition()) { | 
 |       // C++ [class.friend]p6: | 
 |       //   A function can be defined in a friend declaration of a class if and  | 
 |       //   only if the class is a non-local class (9.8), the function name is | 
 |       //   unqualified, and the function has namespace scope. | 
 |       Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def) | 
 |         << SS.getScopeRep(); | 
 |     } | 
 |      | 
 |     DC = CurContext; | 
 |     assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?"); | 
 |   } | 
 |    | 
 |   if (!DC->isRecord()) { | 
 |     // This implies that it has to be an operator or function. | 
 |     if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName || | 
 |         D.getName().getKind() == UnqualifiedId::IK_DestructorName || | 
 |         D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) { | 
 |       Diag(Loc, diag::err_introducing_special_friend) << | 
 |         (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 : | 
 |          D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2); | 
 |       return 0; | 
 |     } | 
 |   } | 
 |  | 
 |   // FIXME: This is an egregious hack to cope with cases where the scope stack | 
 |   // does not contain the declaration context, i.e., in an out-of-line  | 
 |   // definition of a class. | 
 |   Scope FakeDCScope(S, Scope::DeclScope, Diags); | 
 |   if (!DCScope) { | 
 |     FakeDCScope.setEntity(DC); | 
 |     DCScope = &FakeDCScope; | 
 |   } | 
 |    | 
 |   bool AddToScope = true; | 
 |   NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous, | 
 |                                           move(TemplateParams), AddToScope); | 
 |   if (!ND) return 0; | 
 |  | 
 |   assert(ND->getDeclContext() == DC); | 
 |   assert(ND->getLexicalDeclContext() == CurContext); | 
 |  | 
 |   // Add the function declaration to the appropriate lookup tables, | 
 |   // adjusting the redeclarations list as necessary.  We don't | 
 |   // want to do this yet if the friending class is dependent. | 
 |   // | 
 |   // Also update the scope-based lookup if the target context's | 
 |   // lookup context is in lexical scope. | 
 |   if (!CurContext->isDependentContext()) { | 
 |     DC = DC->getRedeclContext(); | 
 |     DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false); | 
 |     if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) | 
 |       PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false); | 
 |   } | 
 |  | 
 |   FriendDecl *FrD = FriendDecl::Create(Context, CurContext, | 
 |                                        D.getIdentifierLoc(), ND, | 
 |                                        DS.getFriendSpecLoc()); | 
 |   FrD->setAccess(AS_public); | 
 |   CurContext->addDecl(FrD); | 
 |  | 
 |   if (ND->isInvalidDecl()) | 
 |     FrD->setInvalidDecl(); | 
 |   else { | 
 |     FunctionDecl *FD; | 
 |     if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) | 
 |       FD = FTD->getTemplatedDecl(); | 
 |     else | 
 |       FD = cast<FunctionDecl>(ND); | 
 |  | 
 |     // Mark templated-scope function declarations as unsupported. | 
 |     if (FD->getNumTemplateParameterLists()) | 
 |       FrD->setUnsupportedFriend(true); | 
 |   } | 
 |  | 
 |   return ND; | 
 | } | 
 |  | 
 | void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) { | 
 |   AdjustDeclIfTemplate(Dcl); | 
 |  | 
 |   FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl); | 
 |   if (!Fn) { | 
 |     Diag(DelLoc, diag::err_deleted_non_function); | 
 |     return; | 
 |   } | 
 |   if (const FunctionDecl *Prev = Fn->getPreviousDecl()) { | 
 |     Diag(DelLoc, diag::err_deleted_decl_not_first); | 
 |     Diag(Prev->getLocation(), diag::note_previous_declaration); | 
 |     // If the declaration wasn't the first, we delete the function anyway for | 
 |     // recovery. | 
 |   } | 
 |   Fn->setDeletedAsWritten(); | 
 | } | 
 |  | 
 | void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) { | 
 |   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl); | 
 |  | 
 |   if (MD) { | 
 |     if (MD->getParent()->isDependentType()) { | 
 |       MD->setDefaulted(); | 
 |       MD->setExplicitlyDefaulted(); | 
 |       return; | 
 |     } | 
 |  | 
 |     CXXSpecialMember Member = getSpecialMember(MD); | 
 |     if (Member == CXXInvalid) { | 
 |       Diag(DefaultLoc, diag::err_default_special_members); | 
 |       return; | 
 |     } | 
 |  | 
 |     MD->setDefaulted(); | 
 |     MD->setExplicitlyDefaulted(); | 
 |  | 
 |     // If this definition appears within the record, do the checking when | 
 |     // the record is complete. | 
 |     const FunctionDecl *Primary = MD; | 
 |     if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate) | 
 |       // Find the uninstantiated declaration that actually had the '= default' | 
 |       // on it. | 
 |       MD->getTemplateInstantiationPattern()->isDefined(Primary); | 
 |  | 
 |     if (Primary == Primary->getCanonicalDecl()) | 
 |       return; | 
 |  | 
 |     switch (Member) { | 
 |     case CXXDefaultConstructor: { | 
 |       CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD); | 
 |       CheckExplicitlyDefaultedDefaultConstructor(CD); | 
 |       if (!CD->isInvalidDecl()) | 
 |         DefineImplicitDefaultConstructor(DefaultLoc, CD); | 
 |       break; | 
 |     } | 
 |  | 
 |     case CXXCopyConstructor: { | 
 |       CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD); | 
 |       CheckExplicitlyDefaultedCopyConstructor(CD); | 
 |       if (!CD->isInvalidDecl()) | 
 |         DefineImplicitCopyConstructor(DefaultLoc, CD); | 
 |       break; | 
 |     } | 
 |  | 
 |     case CXXCopyAssignment: { | 
 |       CheckExplicitlyDefaultedCopyAssignment(MD); | 
 |       if (!MD->isInvalidDecl()) | 
 |         DefineImplicitCopyAssignment(DefaultLoc, MD); | 
 |       break; | 
 |     } | 
 |  | 
 |     case CXXDestructor: { | 
 |       CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD); | 
 |       CheckExplicitlyDefaultedDestructor(DD); | 
 |       if (!DD->isInvalidDecl()) | 
 |         DefineImplicitDestructor(DefaultLoc, DD); | 
 |       break; | 
 |     } | 
 |  | 
 |     case CXXMoveConstructor: { | 
 |       CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD); | 
 |       CheckExplicitlyDefaultedMoveConstructor(CD); | 
 |       if (!CD->isInvalidDecl()) | 
 |         DefineImplicitMoveConstructor(DefaultLoc, CD); | 
 |       break; | 
 |     } | 
 |  | 
 |     case CXXMoveAssignment: { | 
 |       CheckExplicitlyDefaultedMoveAssignment(MD); | 
 |       if (!MD->isInvalidDecl()) | 
 |         DefineImplicitMoveAssignment(DefaultLoc, MD); | 
 |       break; | 
 |     } | 
 |  | 
 |     case CXXInvalid: | 
 |       llvm_unreachable("Invalid special member."); | 
 |     } | 
 |   } else { | 
 |     Diag(DefaultLoc, diag::err_default_special_members); | 
 |   } | 
 | } | 
 |  | 
 | static void SearchForReturnInStmt(Sema &Self, Stmt *S) { | 
 |   for (Stmt::child_range CI = S->children(); CI; ++CI) { | 
 |     Stmt *SubStmt = *CI; | 
 |     if (!SubStmt) | 
 |       continue; | 
 |     if (isa<ReturnStmt>(SubStmt)) | 
 |       Self.Diag(SubStmt->getSourceRange().getBegin(), | 
 |            diag::err_return_in_constructor_handler); | 
 |     if (!isa<Expr>(SubStmt)) | 
 |       SearchForReturnInStmt(Self, SubStmt); | 
 |   } | 
 | } | 
 |  | 
 | void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) { | 
 |   for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) { | 
 |     CXXCatchStmt *Handler = TryBlock->getHandler(I); | 
 |     SearchForReturnInStmt(*this, Handler); | 
 |   } | 
 | } | 
 |  | 
 | bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New, | 
 |                                              const CXXMethodDecl *Old) { | 
 |   QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType(); | 
 |   QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType(); | 
 |  | 
 |   if (Context.hasSameType(NewTy, OldTy) || | 
 |       NewTy->isDependentType() || OldTy->isDependentType()) | 
 |     return false; | 
 |  | 
 |   // Check if the return types are covariant | 
 |   QualType NewClassTy, OldClassTy; | 
 |  | 
 |   /// Both types must be pointers or references to classes. | 
 |   if (const PointerType *NewPT = NewTy->getAs<PointerType>()) { | 
 |     if (const PointerType *OldPT = OldTy->getAs<PointerType>()) { | 
 |       NewClassTy = NewPT->getPointeeType(); | 
 |       OldClassTy = OldPT->getPointeeType(); | 
 |     } | 
 |   } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) { | 
 |     if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) { | 
 |       if (NewRT->getTypeClass() == OldRT->getTypeClass()) { | 
 |         NewClassTy = NewRT->getPointeeType(); | 
 |         OldClassTy = OldRT->getPointeeType(); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // The return types aren't either both pointers or references to a class type. | 
 |   if (NewClassTy.isNull()) { | 
 |     Diag(New->getLocation(), | 
 |          diag::err_different_return_type_for_overriding_virtual_function) | 
 |       << New->getDeclName() << NewTy << OldTy; | 
 |     Diag(Old->getLocation(), diag::note_overridden_virtual_function); | 
 |  | 
 |     return true; | 
 |   } | 
 |  | 
 |   // C++ [class.virtual]p6: | 
 |   //   If the return type of D::f differs from the return type of B::f, the  | 
 |   //   class type in the return type of D::f shall be complete at the point of | 
 |   //   declaration of D::f or shall be the class type D. | 
 |   if (const RecordType *RT = NewClassTy->getAs<RecordType>()) { | 
 |     if (!RT->isBeingDefined() && | 
 |         RequireCompleteType(New->getLocation(), NewClassTy,  | 
 |                             PDiag(diag::err_covariant_return_incomplete) | 
 |                               << New->getDeclName())) | 
 |     return true; | 
 |   } | 
 |  | 
 |   if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) { | 
 |     // Check if the new class derives from the old class. | 
 |     if (!IsDerivedFrom(NewClassTy, OldClassTy)) { | 
 |       Diag(New->getLocation(), | 
 |            diag::err_covariant_return_not_derived) | 
 |       << New->getDeclName() << NewTy << OldTy; | 
 |       Diag(Old->getLocation(), diag::note_overridden_virtual_function); | 
 |       return true; | 
 |     } | 
 |  | 
 |     // Check if we the conversion from derived to base is valid. | 
 |     if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy, | 
 |                     diag::err_covariant_return_inaccessible_base, | 
 |                     diag::err_covariant_return_ambiguous_derived_to_base_conv, | 
 |                     // FIXME: Should this point to the return type? | 
 |                     New->getLocation(), SourceRange(), New->getDeclName(), 0)) { | 
 |       // FIXME: this note won't trigger for delayed access control | 
 |       // diagnostics, and it's impossible to get an undelayed error | 
 |       // here from access control during the original parse because | 
 |       // the ParsingDeclSpec/ParsingDeclarator are still in scope. | 
 |       Diag(Old->getLocation(), diag::note_overridden_virtual_function); | 
 |       return true; | 
 |     } | 
 |   } | 
 |  | 
 |   // The qualifiers of the return types must be the same. | 
 |   if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) { | 
 |     Diag(New->getLocation(), | 
 |          diag::err_covariant_return_type_different_qualifications) | 
 |     << New->getDeclName() << NewTy << OldTy; | 
 |     Diag(Old->getLocation(), diag::note_overridden_virtual_function); | 
 |     return true; | 
 |   }; | 
 |  | 
 |  | 
 |   // The new class type must have the same or less qualifiers as the old type. | 
 |   if (NewClassTy.isMoreQualifiedThan(OldClassTy)) { | 
 |     Diag(New->getLocation(), | 
 |          diag::err_covariant_return_type_class_type_more_qualified) | 
 |     << New->getDeclName() << NewTy << OldTy; | 
 |     Diag(Old->getLocation(), diag::note_overridden_virtual_function); | 
 |     return true; | 
 |   }; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// \brief Mark the given method pure. | 
 | /// | 
 | /// \param Method the method to be marked pure. | 
 | /// | 
 | /// \param InitRange the source range that covers the "0" initializer. | 
 | bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) { | 
 |   SourceLocation EndLoc = InitRange.getEnd(); | 
 |   if (EndLoc.isValid()) | 
 |     Method->setRangeEnd(EndLoc); | 
 |  | 
 |   if (Method->isVirtual() || Method->getParent()->isDependentContext()) { | 
 |     Method->setPure(); | 
 |     return false; | 
 |   } | 
 |  | 
 |   if (!Method->isInvalidDecl()) | 
 |     Diag(Method->getLocation(), diag::err_non_virtual_pure) | 
 |       << Method->getDeclName() << InitRange; | 
 |   return true; | 
 | } | 
 |  | 
 | /// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse | 
 | /// an initializer for the out-of-line declaration 'Dcl'.  The scope | 
 | /// is a fresh scope pushed for just this purpose. | 
 | /// | 
 | /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a | 
 | /// static data member of class X, names should be looked up in the scope of | 
 | /// class X. | 
 | void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) { | 
 |   // If there is no declaration, there was an error parsing it. | 
 |   if (D == 0 || D->isInvalidDecl()) return; | 
 |  | 
 |   // We should only get called for declarations with scope specifiers, like: | 
 |   //   int foo::bar; | 
 |   assert(D->isOutOfLine()); | 
 |   EnterDeclaratorContext(S, D->getDeclContext()); | 
 | } | 
 |  | 
 | /// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an | 
 | /// initializer for the out-of-line declaration 'D'. | 
 | void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) { | 
 |   // If there is no declaration, there was an error parsing it. | 
 |   if (D == 0 || D->isInvalidDecl()) return; | 
 |  | 
 |   assert(D->isOutOfLine()); | 
 |   ExitDeclaratorContext(S); | 
 | } | 
 |  | 
 | /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a | 
 | /// C++ if/switch/while/for statement. | 
 | /// e.g: "if (int x = f()) {...}" | 
 | DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) { | 
 |   // C++ 6.4p2: | 
 |   // The declarator shall not specify a function or an array. | 
 |   // The type-specifier-seq shall not contain typedef and shall not declare a | 
 |   // new class or enumeration. | 
 |   assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && | 
 |          "Parser allowed 'typedef' as storage class of condition decl."); | 
 |  | 
 |   Decl *Dcl = ActOnDeclarator(S, D); | 
 |   if (!Dcl) | 
 |     return true; | 
 |  | 
 |   if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function. | 
 |     Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type) | 
 |       << D.getSourceRange(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   return Dcl; | 
 | } | 
 |  | 
 | void Sema::LoadExternalVTableUses() { | 
 |   if (!ExternalSource) | 
 |     return; | 
 |    | 
 |   SmallVector<ExternalVTableUse, 4> VTables; | 
 |   ExternalSource->ReadUsedVTables(VTables); | 
 |   SmallVector<VTableUse, 4> NewUses; | 
 |   for (unsigned I = 0, N = VTables.size(); I != N; ++I) { | 
 |     llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos | 
 |       = VTablesUsed.find(VTables[I].Record); | 
 |     // Even if a definition wasn't required before, it may be required now. | 
 |     if (Pos != VTablesUsed.end()) { | 
 |       if (!Pos->second && VTables[I].DefinitionRequired) | 
 |         Pos->second = true; | 
 |       continue; | 
 |     } | 
 |      | 
 |     VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired; | 
 |     NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location)); | 
 |   } | 
 |    | 
 |   VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end()); | 
 | } | 
 |  | 
 | void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class, | 
 |                           bool DefinitionRequired) { | 
 |   // Ignore any vtable uses in unevaluated operands or for classes that do | 
 |   // not have a vtable. | 
 |   if (!Class->isDynamicClass() || Class->isDependentContext() || | 
 |       CurContext->isDependentContext() || | 
 |       ExprEvalContexts.back().Context == Unevaluated) | 
 |     return; | 
 |  | 
 |   // Try to insert this class into the map. | 
 |   LoadExternalVTableUses(); | 
 |   Class = cast<CXXRecordDecl>(Class->getCanonicalDecl()); | 
 |   std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool> | 
 |     Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired)); | 
 |   if (!Pos.second) { | 
 |     // If we already had an entry, check to see if we are promoting this vtable | 
 |     // to required a definition. If so, we need to reappend to the VTableUses | 
 |     // list, since we may have already processed the first entry. | 
 |     if (DefinitionRequired && !Pos.first->second) { | 
 |       Pos.first->second = true; | 
 |     } else { | 
 |       // Otherwise, we can early exit. | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   // Local classes need to have their virtual members marked | 
 |   // immediately. For all other classes, we mark their virtual members | 
 |   // at the end of the translation unit. | 
 |   if (Class->isLocalClass()) | 
 |     MarkVirtualMembersReferenced(Loc, Class); | 
 |   else | 
 |     VTableUses.push_back(std::make_pair(Class, Loc)); | 
 | } | 
 |  | 
 | bool Sema::DefineUsedVTables() { | 
 |   LoadExternalVTableUses(); | 
 |   if (VTableUses.empty()) | 
 |     return false; | 
 |  | 
 |   // Note: The VTableUses vector could grow as a result of marking | 
 |   // the members of a class as "used", so we check the size each | 
 |   // time through the loop and prefer indices (with are stable) to | 
 |   // iterators (which are not). | 
 |   bool DefinedAnything = false; | 
 |   for (unsigned I = 0; I != VTableUses.size(); ++I) { | 
 |     CXXRecordDecl *Class = VTableUses[I].first->getDefinition(); | 
 |     if (!Class) | 
 |       continue; | 
 |  | 
 |     SourceLocation Loc = VTableUses[I].second; | 
 |  | 
 |     // If this class has a key function, but that key function is | 
 |     // defined in another translation unit, we don't need to emit the | 
 |     // vtable even though we're using it. | 
 |     const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class); | 
 |     if (KeyFunction && !KeyFunction->hasBody()) { | 
 |       switch (KeyFunction->getTemplateSpecializationKind()) { | 
 |       case TSK_Undeclared: | 
 |       case TSK_ExplicitSpecialization: | 
 |       case TSK_ExplicitInstantiationDeclaration: | 
 |         // The key function is in another translation unit. | 
 |         continue; | 
 |  | 
 |       case TSK_ExplicitInstantiationDefinition: | 
 |       case TSK_ImplicitInstantiation: | 
 |         // We will be instantiating the key function. | 
 |         break; | 
 |       } | 
 |     } else if (!KeyFunction) { | 
 |       // If we have a class with no key function that is the subject | 
 |       // of an explicit instantiation declaration, suppress the | 
 |       // vtable; it will live with the explicit instantiation | 
 |       // definition. | 
 |       bool IsExplicitInstantiationDeclaration | 
 |         = Class->getTemplateSpecializationKind() | 
 |                                       == TSK_ExplicitInstantiationDeclaration; | 
 |       for (TagDecl::redecl_iterator R = Class->redecls_begin(), | 
 |                                  REnd = Class->redecls_end(); | 
 |            R != REnd; ++R) { | 
 |         TemplateSpecializationKind TSK | 
 |           = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind(); | 
 |         if (TSK == TSK_ExplicitInstantiationDeclaration) | 
 |           IsExplicitInstantiationDeclaration = true; | 
 |         else if (TSK == TSK_ExplicitInstantiationDefinition) { | 
 |           IsExplicitInstantiationDeclaration = false; | 
 |           break; | 
 |         } | 
 |       } | 
 |  | 
 |       if (IsExplicitInstantiationDeclaration) | 
 |         continue; | 
 |     } | 
 |  | 
 |     // Mark all of the virtual members of this class as referenced, so | 
 |     // that we can build a vtable. Then, tell the AST consumer that a | 
 |     // vtable for this class is required. | 
 |     DefinedAnything = true; | 
 |     MarkVirtualMembersReferenced(Loc, Class); | 
 |     CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl()); | 
 |     Consumer.HandleVTable(Class, VTablesUsed[Canonical]); | 
 |  | 
 |     // Optionally warn if we're emitting a weak vtable. | 
 |     if (Class->getLinkage() == ExternalLinkage && | 
 |         Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) { | 
 |       const FunctionDecl *KeyFunctionDef = 0; | 
 |       if (!KeyFunction ||  | 
 |           (KeyFunction->hasBody(KeyFunctionDef) &&  | 
 |            KeyFunctionDef->isInlined())) | 
 |         Diag(Class->getLocation(), Class->getTemplateSpecializationKind() == | 
 |              TSK_ExplicitInstantiationDefinition  | 
 |              ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)  | 
 |           << Class; | 
 |     } | 
 |   } | 
 |   VTableUses.clear(); | 
 |  | 
 |   return DefinedAnything; | 
 | } | 
 |  | 
 | void Sema::MarkVirtualMembersReferenced(SourceLocation Loc, | 
 |                                         const CXXRecordDecl *RD) { | 
 |   for (CXXRecordDecl::method_iterator i = RD->method_begin(),  | 
 |        e = RD->method_end(); i != e; ++i) { | 
 |     CXXMethodDecl *MD = *i; | 
 |  | 
 |     // C++ [basic.def.odr]p2: | 
 |     //   [...] A virtual member function is used if it is not pure. [...] | 
 |     if (MD->isVirtual() && !MD->isPure()) | 
 |       MarkFunctionReferenced(Loc, MD); | 
 |   } | 
 |  | 
 |   // Only classes that have virtual bases need a VTT. | 
 |   if (RD->getNumVBases() == 0) | 
 |     return; | 
 |  | 
 |   for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(), | 
 |            e = RD->bases_end(); i != e; ++i) { | 
 |     const CXXRecordDecl *Base = | 
 |         cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl()); | 
 |     if (Base->getNumVBases() == 0) | 
 |       continue; | 
 |     MarkVirtualMembersReferenced(Loc, Base); | 
 |   } | 
 | } | 
 |  | 
 | /// SetIvarInitializers - This routine builds initialization ASTs for the | 
 | /// Objective-C implementation whose ivars need be initialized. | 
 | void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) { | 
 |   if (!getLangOptions().CPlusPlus) | 
 |     return; | 
 |   if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) { | 
 |     SmallVector<ObjCIvarDecl*, 8> ivars; | 
 |     CollectIvarsToConstructOrDestruct(OID, ivars); | 
 |     if (ivars.empty()) | 
 |       return; | 
 |     SmallVector<CXXCtorInitializer*, 32> AllToInit; | 
 |     for (unsigned i = 0; i < ivars.size(); i++) { | 
 |       FieldDecl *Field = ivars[i]; | 
 |       if (Field->isInvalidDecl()) | 
 |         continue; | 
 |        | 
 |       CXXCtorInitializer *Member; | 
 |       InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field); | 
 |       InitializationKind InitKind =  | 
 |         InitializationKind::CreateDefault(ObjCImplementation->getLocation()); | 
 |        | 
 |       InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0); | 
 |       ExprResult MemberInit =  | 
 |         InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg()); | 
 |       MemberInit = MaybeCreateExprWithCleanups(MemberInit); | 
 |       // Note, MemberInit could actually come back empty if no initialization  | 
 |       // is required (e.g., because it would call a trivial default constructor) | 
 |       if (!MemberInit.get() || MemberInit.isInvalid()) | 
 |         continue; | 
 |  | 
 |       Member = | 
 |         new (Context) CXXCtorInitializer(Context, Field, SourceLocation(), | 
 |                                          SourceLocation(), | 
 |                                          MemberInit.takeAs<Expr>(), | 
 |                                          SourceLocation()); | 
 |       AllToInit.push_back(Member); | 
 |        | 
 |       // Be sure that the destructor is accessible and is marked as referenced. | 
 |       if (const RecordType *RecordTy | 
 |                   = Context.getBaseElementType(Field->getType()) | 
 |                                                         ->getAs<RecordType>()) { | 
 |                     CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl()); | 
 |         if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) { | 
 |           MarkFunctionReferenced(Field->getLocation(), Destructor); | 
 |           CheckDestructorAccess(Field->getLocation(), Destructor, | 
 |                             PDiag(diag::err_access_dtor_ivar) | 
 |                               << Context.getBaseElementType(Field->getType())); | 
 |         } | 
 |       }       | 
 |     } | 
 |     ObjCImplementation->setIvarInitializers(Context,  | 
 |                                             AllToInit.data(), AllToInit.size()); | 
 |   } | 
 | } | 
 |  | 
 | static | 
 | void DelegatingCycleHelper(CXXConstructorDecl* Ctor, | 
 |                            llvm::SmallSet<CXXConstructorDecl*, 4> &Valid, | 
 |                            llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid, | 
 |                            llvm::SmallSet<CXXConstructorDecl*, 4> &Current, | 
 |                            Sema &S) { | 
 |   llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(), | 
 |                                                    CE = Current.end(); | 
 |   if (Ctor->isInvalidDecl()) | 
 |     return; | 
 |  | 
 |   const FunctionDecl *FNTarget = 0; | 
 |   CXXConstructorDecl *Target; | 
 |    | 
 |   // We ignore the result here since if we don't have a body, Target will be | 
 |   // null below. | 
 |   (void)Ctor->getTargetConstructor()->hasBody(FNTarget); | 
 |   Target | 
 | = const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget)); | 
 |  | 
 |   CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(), | 
 |                      // Avoid dereferencing a null pointer here. | 
 |                      *TCanonical = Target ? Target->getCanonicalDecl() : 0; | 
 |  | 
 |   if (!Current.insert(Canonical)) | 
 |     return; | 
 |  | 
 |   // We know that beyond here, we aren't chaining into a cycle. | 
 |   if (!Target || !Target->isDelegatingConstructor() || | 
 |       Target->isInvalidDecl() || Valid.count(TCanonical)) { | 
 |     for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI) | 
 |       Valid.insert(*CI); | 
 |     Current.clear(); | 
 |   // We've hit a cycle. | 
 |   } else if (TCanonical == Canonical || Invalid.count(TCanonical) || | 
 |              Current.count(TCanonical)) { | 
 |     // If we haven't diagnosed this cycle yet, do so now. | 
 |     if (!Invalid.count(TCanonical)) { | 
 |       S.Diag((*Ctor->init_begin())->getSourceLocation(), | 
 |              diag::warn_delegating_ctor_cycle) | 
 |         << Ctor; | 
 |  | 
 |       // Don't add a note for a function delegating directo to itself. | 
 |       if (TCanonical != Canonical) | 
 |         S.Diag(Target->getLocation(), diag::note_it_delegates_to); | 
 |  | 
 |       CXXConstructorDecl *C = Target; | 
 |       while (C->getCanonicalDecl() != Canonical) { | 
 |         (void)C->getTargetConstructor()->hasBody(FNTarget); | 
 |         assert(FNTarget && "Ctor cycle through bodiless function"); | 
 |  | 
 |         C | 
 |        = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget)); | 
 |         S.Diag(C->getLocation(), diag::note_which_delegates_to); | 
 |       } | 
 |     } | 
 |  | 
 |     for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI) | 
 |       Invalid.insert(*CI); | 
 |     Current.clear(); | 
 |   } else { | 
 |     DelegatingCycleHelper(Target, Valid, Invalid, Current, S); | 
 |   } | 
 | } | 
 |     | 
 |  | 
 | void Sema::CheckDelegatingCtorCycles() { | 
 |   llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current; | 
 |  | 
 |   llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(), | 
 |                                                    CE = Current.end(); | 
 |  | 
 |   for (DelegatingCtorDeclsType::iterator | 
 |          I = DelegatingCtorDecls.begin(ExternalSource), | 
 |          E = DelegatingCtorDecls.end(); | 
 |        I != E; ++I) { | 
 |    DelegatingCycleHelper(*I, Valid, Invalid, Current, *this); | 
 |   } | 
 |  | 
 |   for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI) | 
 |     (*CI)->setInvalidDecl(); | 
 | } | 
 |  | 
 | /// IdentifyCUDATarget - Determine the CUDA compilation target for this function | 
 | Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) { | 
 |   // Implicitly declared functions (e.g. copy constructors) are | 
 |   // __host__ __device__ | 
 |   if (D->isImplicit()) | 
 |     return CFT_HostDevice; | 
 |  | 
 |   if (D->hasAttr<CUDAGlobalAttr>()) | 
 |     return CFT_Global; | 
 |  | 
 |   if (D->hasAttr<CUDADeviceAttr>()) { | 
 |     if (D->hasAttr<CUDAHostAttr>()) | 
 |       return CFT_HostDevice; | 
 |     else | 
 |       return CFT_Device; | 
 |   } | 
 |  | 
 |   return CFT_Host; | 
 | } | 
 |  | 
 | bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget, | 
 |                            CUDAFunctionTarget CalleeTarget) { | 
 |   // CUDA B.1.1 "The __device__ qualifier declares a function that is... | 
 |   // Callable from the device only." | 
 |   if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device) | 
 |     return true; | 
 |  | 
 |   // CUDA B.1.2 "The __global__ qualifier declares a function that is... | 
 |   // Callable from the host only." | 
 |   // CUDA B.1.3 "The __host__ qualifier declares a function that is... | 
 |   // Callable from the host only." | 
 |   if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) && | 
 |       (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global)) | 
 |     return true; | 
 |  | 
 |   if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice) | 
 |     return true; | 
 |  | 
 |   return false; | 
 | } |