| //===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements semantic analysis for statements. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Sema.h" |
| #include "clang/AST/APValue.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/Basic/TargetInfo.h" |
| using namespace clang; |
| |
| Sema::OwningStmtResult Sema::ActOnExprStmt(ExprArg expr) { |
| Expr *E = static_cast<Expr*>(expr.release()); |
| assert(E && "ActOnExprStmt(): missing expression"); |
| |
| // C99 6.8.3p2: The expression in an expression statement is evaluated as a |
| // void expression for its side effects. Conversion to void allows any |
| // operand, even incomplete types. |
| |
| // Same thing in for stmt first clause (when expr) and third clause. |
| return Owned(static_cast<Stmt*>(E)); |
| } |
| |
| |
| Sema::OwningStmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc) { |
| return Owned(new (Context) NullStmt(SemiLoc)); |
| } |
| |
| Sema::OwningStmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, |
| SourceLocation StartLoc, |
| SourceLocation EndLoc) { |
| DeclGroupRef DG = dg.getAsVal<DeclGroupRef>(); |
| |
| // If we have an invalid decl, just return an error. |
| if (DG.isNull()) return StmtError(); |
| |
| return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc)); |
| } |
| |
| Action::OwningStmtResult |
| Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R, |
| MultiStmtArg elts, bool isStmtExpr) { |
| unsigned NumElts = elts.size(); |
| Stmt **Elts = reinterpret_cast<Stmt**>(elts.release()); |
| // If we're in C89 mode, check that we don't have any decls after stmts. If |
| // so, emit an extension diagnostic. |
| if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) { |
| // Note that __extension__ can be around a decl. |
| unsigned i = 0; |
| // Skip over all declarations. |
| for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i) |
| /*empty*/; |
| |
| // We found the end of the list or a statement. Scan for another declstmt. |
| for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i) |
| /*empty*/; |
| |
| if (i != NumElts) { |
| Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin(); |
| Diag(D->getLocation(), diag::ext_mixed_decls_code); |
| } |
| } |
| // Warn about unused expressions in statements. |
| for (unsigned i = 0; i != NumElts; ++i) { |
| Expr *E = dyn_cast<Expr>(Elts[i]); |
| if (!E) continue; |
| |
| // Warn about expressions with unused results if they are non-void and if |
| // this not the last stmt in a stmt expr. |
| if (E->getType()->isVoidType() || (isStmtExpr && i == NumElts-1)) |
| continue; |
| |
| SourceLocation Loc; |
| SourceRange R1, R2; |
| if (!E->isUnusedResultAWarning(Loc, R1, R2)) |
| continue; |
| |
| Diag(Loc, diag::warn_unused_expr) << R1 << R2; |
| } |
| |
| return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R)); |
| } |
| |
| Action::OwningStmtResult |
| Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprArg lhsval, |
| SourceLocation DotDotDotLoc, ExprArg rhsval, |
| SourceLocation ColonLoc) { |
| assert((lhsval.get() != 0) && "missing expression in case statement"); |
| |
| // C99 6.8.4.2p3: The expression shall be an integer constant. |
| // However, GCC allows any evaluatable integer expression. |
| Expr *LHSVal = static_cast<Expr*>(lhsval.get()); |
| if (VerifyIntegerConstantExpression(LHSVal)) |
| return StmtError(); |
| |
| // GCC extension: The expression shall be an integer constant. |
| |
| Expr *RHSVal = static_cast<Expr*>(rhsval.get()); |
| if (RHSVal && VerifyIntegerConstantExpression(RHSVal)) { |
| RHSVal = 0; // Recover by just forgetting about it. |
| rhsval = 0; |
| } |
| |
| if (SwitchStack.empty()) { |
| Diag(CaseLoc, diag::err_case_not_in_switch); |
| return StmtError(); |
| } |
| |
| // Only now release the smart pointers. |
| lhsval.release(); |
| rhsval.release(); |
| CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc); |
| SwitchStack.back()->addSwitchCase(CS); |
| return Owned(CS); |
| } |
| |
| /// ActOnCaseStmtBody - This installs a statement as the body of a case. |
| void Sema::ActOnCaseStmtBody(StmtTy *caseStmt, StmtArg subStmt) { |
| CaseStmt *CS = static_cast<CaseStmt*>(caseStmt); |
| Stmt *SubStmt = static_cast<Stmt*>(subStmt.release()); |
| CS->setSubStmt(SubStmt); |
| } |
| |
| Action::OwningStmtResult |
| Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc, |
| StmtArg subStmt, Scope *CurScope) { |
| Stmt *SubStmt = static_cast<Stmt*>(subStmt.release()); |
| |
| if (SwitchStack.empty()) { |
| Diag(DefaultLoc, diag::err_default_not_in_switch); |
| return Owned(SubStmt); |
| } |
| |
| DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, SubStmt); |
| SwitchStack.back()->addSwitchCase(DS); |
| return Owned(DS); |
| } |
| |
| Action::OwningStmtResult |
| Sema::ActOnLabelStmt(SourceLocation IdentLoc, IdentifierInfo *II, |
| SourceLocation ColonLoc, StmtArg subStmt) { |
| Stmt *SubStmt = static_cast<Stmt*>(subStmt.release()); |
| // Look up the record for this label identifier. |
| LabelStmt *&LabelDecl = CurBlock ? CurBlock->LabelMap[II] : LabelMap[II]; |
| |
| // If not forward referenced or defined already, just create a new LabelStmt. |
| if (LabelDecl == 0) |
| return Owned(LabelDecl = new (Context) LabelStmt(IdentLoc, II, SubStmt)); |
| |
| assert(LabelDecl->getID() == II && "Label mismatch!"); |
| |
| // Otherwise, this label was either forward reference or multiply defined. If |
| // multiply defined, reject it now. |
| if (LabelDecl->getSubStmt()) { |
| Diag(IdentLoc, diag::err_redefinition_of_label) << LabelDecl->getID(); |
| Diag(LabelDecl->getIdentLoc(), diag::note_previous_definition); |
| return Owned(SubStmt); |
| } |
| |
| // Otherwise, this label was forward declared, and we just found its real |
| // definition. Fill in the forward definition and return it. |
| LabelDecl->setIdentLoc(IdentLoc); |
| LabelDecl->setSubStmt(SubStmt); |
| return Owned(LabelDecl); |
| } |
| |
| Action::OwningStmtResult |
| Sema::ActOnIfStmt(SourceLocation IfLoc, ExprArg CondVal, |
| StmtArg ThenVal, SourceLocation ElseLoc, |
| StmtArg ElseVal) { |
| Expr *condExpr = (Expr *)CondVal.release(); |
| |
| assert(condExpr && "ActOnIfStmt(): missing expression"); |
| |
| DefaultFunctionArrayConversion(condExpr); |
| // Take ownership again until we're past the error checking. |
| CondVal = condExpr; |
| QualType condType = condExpr->getType(); |
| |
| if (getLangOptions().CPlusPlus) { |
| if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4 |
| return StmtError(); |
| } else if (!condType->isScalarType()) // C99 6.8.4.1p1 |
| return StmtError(Diag(IfLoc, diag::err_typecheck_statement_requires_scalar) |
| << condType << condExpr->getSourceRange()); |
| |
| Stmt *thenStmt = (Stmt *)ThenVal.release(); |
| |
| // Warn if the if block has a null body without an else value. |
| // this helps prevent bugs due to typos, such as |
| // if (condition); |
| // do_stuff(); |
| if (!ElseVal.get()) { |
| if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt)) |
| Diag(stmt->getSemiLoc(), diag::warn_empty_if_body); |
| } |
| |
| CondVal.release(); |
| return Owned(new (Context) IfStmt(IfLoc, condExpr, thenStmt, |
| (Stmt*)ElseVal.release())); |
| } |
| |
| Action::OwningStmtResult |
| Sema::ActOnStartOfSwitchStmt(ExprArg cond) { |
| Expr *Cond = static_cast<Expr*>(cond.release()); |
| |
| if (getLangOptions().CPlusPlus) { |
| // C++ 6.4.2.p2: |
| // The condition shall be of integral type, enumeration type, or of a class |
| // type for which a single conversion function to integral or enumeration |
| // type exists (12.3). If the condition is of class type, the condition is |
| // converted by calling that conversion function, and the result of the |
| // conversion is used in place of the original condition for the remainder |
| // of this section. Integral promotions are performed. |
| |
| QualType Ty = Cond->getType(); |
| |
| // FIXME: Handle class types. |
| |
| // If the type is wrong a diagnostic will be emitted later at |
| // ActOnFinishSwitchStmt. |
| if (Ty->isIntegralType() || Ty->isEnumeralType()) { |
| // Integral promotions are performed. |
| // FIXME: Integral promotions for C++ are not complete. |
| UsualUnaryConversions(Cond); |
| } |
| } else { |
| // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr. |
| UsualUnaryConversions(Cond); |
| } |
| |
| SwitchStmt *SS = new (Context) SwitchStmt(Cond); |
| SwitchStack.push_back(SS); |
| return Owned(SS); |
| } |
| |
| /// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have |
| /// the specified width and sign. If an overflow occurs, detect it and emit |
| /// the specified diagnostic. |
| void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val, |
| unsigned NewWidth, bool NewSign, |
| SourceLocation Loc, |
| unsigned DiagID) { |
| // Perform a conversion to the promoted condition type if needed. |
| if (NewWidth > Val.getBitWidth()) { |
| // If this is an extension, just do it. |
| llvm::APSInt OldVal(Val); |
| Val.extend(NewWidth); |
| |
| // If the input was signed and negative and the output is unsigned, |
| // warn. |
| if (!NewSign && OldVal.isSigned() && OldVal.isNegative()) |
| Diag(Loc, DiagID) << OldVal.toString(10) << Val.toString(10); |
| |
| Val.setIsSigned(NewSign); |
| } else if (NewWidth < Val.getBitWidth()) { |
| // If this is a truncation, check for overflow. |
| llvm::APSInt ConvVal(Val); |
| ConvVal.trunc(NewWidth); |
| ConvVal.setIsSigned(NewSign); |
| ConvVal.extend(Val.getBitWidth()); |
| ConvVal.setIsSigned(Val.isSigned()); |
| if (ConvVal != Val) |
| Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10); |
| |
| // Regardless of whether a diagnostic was emitted, really do the |
| // truncation. |
| Val.trunc(NewWidth); |
| Val.setIsSigned(NewSign); |
| } else if (NewSign != Val.isSigned()) { |
| // Convert the sign to match the sign of the condition. This can cause |
| // overflow as well: unsigned(INTMIN) |
| llvm::APSInt OldVal(Val); |
| Val.setIsSigned(NewSign); |
| |
| if (Val.isNegative()) // Sign bit changes meaning. |
| Diag(Loc, DiagID) << OldVal.toString(10) << Val.toString(10); |
| } |
| } |
| |
| namespace { |
| struct CaseCompareFunctor { |
| bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS, |
| const llvm::APSInt &RHS) { |
| return LHS.first < RHS; |
| } |
| bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS, |
| const std::pair<llvm::APSInt, CaseStmt*> &RHS) { |
| return LHS.first < RHS.first; |
| } |
| bool operator()(const llvm::APSInt &LHS, |
| const std::pair<llvm::APSInt, CaseStmt*> &RHS) { |
| return LHS < RHS.first; |
| } |
| }; |
| } |
| |
| /// CmpCaseVals - Comparison predicate for sorting case values. |
| /// |
| static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs, |
| const std::pair<llvm::APSInt, CaseStmt*>& rhs) { |
| if (lhs.first < rhs.first) |
| return true; |
| |
| if (lhs.first == rhs.first && |
| lhs.second->getCaseLoc().getRawEncoding() |
| < rhs.second->getCaseLoc().getRawEncoding()) |
| return true; |
| return false; |
| } |
| |
| Action::OwningStmtResult |
| Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, StmtArg Switch, |
| StmtArg Body) { |
| Stmt *BodyStmt = (Stmt*)Body.release(); |
| |
| SwitchStmt *SS = SwitchStack.back(); |
| assert(SS == (SwitchStmt*)Switch.get() && "switch stack missing push/pop!"); |
| |
| SS->setBody(BodyStmt, SwitchLoc); |
| SwitchStack.pop_back(); |
| |
| Expr *CondExpr = SS->getCond(); |
| QualType CondType = CondExpr->getType(); |
| |
| if (!CondType->isIntegerType()) { // C99 6.8.4.2p1 |
| Diag(SwitchLoc, diag::err_typecheck_statement_requires_integer) |
| << CondType << CondExpr->getSourceRange(); |
| return StmtError(); |
| } |
| |
| // Get the bitwidth of the switched-on value before promotions. We must |
| // convert the integer case values to this width before comparison. |
| unsigned CondWidth = static_cast<unsigned>(Context.getTypeSize(CondType)); |
| bool CondIsSigned = CondType->isSignedIntegerType(); |
| |
| // Accumulate all of the case values in a vector so that we can sort them |
| // and detect duplicates. This vector contains the APInt for the case after |
| // it has been converted to the condition type. |
| typedef llvm::SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy; |
| CaseValsTy CaseVals; |
| |
| // Keep track of any GNU case ranges we see. The APSInt is the low value. |
| std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRanges; |
| |
| DefaultStmt *TheDefaultStmt = 0; |
| |
| bool CaseListIsErroneous = false; |
| |
| for (SwitchCase *SC = SS->getSwitchCaseList(); SC; |
| SC = SC->getNextSwitchCase()) { |
| |
| if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) { |
| if (TheDefaultStmt) { |
| Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined); |
| Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev); |
| |
| // FIXME: Remove the default statement from the switch block so that |
| // we'll return a valid AST. This requires recursing down the |
| // AST and finding it, not something we are set up to do right now. For |
| // now, just lop the entire switch stmt out of the AST. |
| CaseListIsErroneous = true; |
| } |
| TheDefaultStmt = DS; |
| |
| } else { |
| CaseStmt *CS = cast<CaseStmt>(SC); |
| |
| // We already verified that the expression has a i-c-e value (C99 |
| // 6.8.4.2p3) - get that value now. |
| Expr *Lo = CS->getLHS(); |
| llvm::APSInt LoVal = Lo->EvaluateAsInt(Context); |
| |
| // Convert the value to the same width/sign as the condition. |
| ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned, |
| CS->getLHS()->getLocStart(), |
| diag::warn_case_value_overflow); |
| |
| // If the LHS is not the same type as the condition, insert an implicit |
| // cast. |
| ImpCastExprToType(Lo, CondType); |
| CS->setLHS(Lo); |
| |
| // If this is a case range, remember it in CaseRanges, otherwise CaseVals. |
| if (CS->getRHS()) |
| CaseRanges.push_back(std::make_pair(LoVal, CS)); |
| else |
| CaseVals.push_back(std::make_pair(LoVal, CS)); |
| } |
| } |
| |
| // Sort all the scalar case values so we can easily detect duplicates. |
| std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals); |
| |
| if (!CaseVals.empty()) { |
| for (unsigned i = 0, e = CaseVals.size()-1; i != e; ++i) { |
| if (CaseVals[i].first == CaseVals[i+1].first) { |
| // If we have a duplicate, report it. |
| Diag(CaseVals[i+1].second->getLHS()->getLocStart(), |
| diag::err_duplicate_case) << CaseVals[i].first.toString(10); |
| Diag(CaseVals[i].second->getLHS()->getLocStart(), |
| diag::note_duplicate_case_prev); |
| // FIXME: We really want to remove the bogus case stmt from the substmt, |
| // but we have no way to do this right now. |
| CaseListIsErroneous = true; |
| } |
| } |
| } |
| |
| // Detect duplicate case ranges, which usually don't exist at all in the first |
| // place. |
| if (!CaseRanges.empty()) { |
| // Sort all the case ranges by their low value so we can easily detect |
| // overlaps between ranges. |
| std::stable_sort(CaseRanges.begin(), CaseRanges.end()); |
| |
| // Scan the ranges, computing the high values and removing empty ranges. |
| std::vector<llvm::APSInt> HiVals; |
| for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) { |
| CaseStmt *CR = CaseRanges[i].second; |
| Expr *Hi = CR->getRHS(); |
| llvm::APSInt HiVal = Hi->EvaluateAsInt(Context); |
| |
| // Convert the value to the same width/sign as the condition. |
| ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned, |
| CR->getRHS()->getLocStart(), |
| diag::warn_case_value_overflow); |
| |
| // If the LHS is not the same type as the condition, insert an implicit |
| // cast. |
| ImpCastExprToType(Hi, CondType); |
| CR->setRHS(Hi); |
| |
| // If the low value is bigger than the high value, the case is empty. |
| if (CaseRanges[i].first > HiVal) { |
| Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range) |
| << SourceRange(CR->getLHS()->getLocStart(), |
| CR->getRHS()->getLocEnd()); |
| CaseRanges.erase(CaseRanges.begin()+i); |
| --i, --e; |
| continue; |
| } |
| HiVals.push_back(HiVal); |
| } |
| |
| // Rescan the ranges, looking for overlap with singleton values and other |
| // ranges. Since the range list is sorted, we only need to compare case |
| // ranges with their neighbors. |
| for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) { |
| llvm::APSInt &CRLo = CaseRanges[i].first; |
| llvm::APSInt &CRHi = HiVals[i]; |
| CaseStmt *CR = CaseRanges[i].second; |
| |
| // Check to see whether the case range overlaps with any singleton cases. |
| CaseStmt *OverlapStmt = 0; |
| llvm::APSInt OverlapVal(32); |
| |
| // Find the smallest value >= the lower bound. If I is in the case range, |
| // then we have overlap. |
| CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(), |
| CaseVals.end(), CRLo, |
| CaseCompareFunctor()); |
| if (I != CaseVals.end() && I->first < CRHi) { |
| OverlapVal = I->first; // Found overlap with scalar. |
| OverlapStmt = I->second; |
| } |
| |
| // Find the smallest value bigger than the upper bound. |
| I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor()); |
| if (I != CaseVals.begin() && (I-1)->first >= CRLo) { |
| OverlapVal = (I-1)->first; // Found overlap with scalar. |
| OverlapStmt = (I-1)->second; |
| } |
| |
| // Check to see if this case stmt overlaps with the subsequent case range. |
| if (i && CRLo <= HiVals[i-1]) { |
| OverlapVal = HiVals[i-1]; // Found overlap with range. |
| OverlapStmt = CaseRanges[i-1].second; |
| } |
| |
| if (OverlapStmt) { |
| // If we have a duplicate, report it. |
| Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case) |
| << OverlapVal.toString(10); |
| Diag(OverlapStmt->getLHS()->getLocStart(), |
| diag::note_duplicate_case_prev); |
| // FIXME: We really want to remove the bogus case stmt from the substmt, |
| // but we have no way to do this right now. |
| CaseListIsErroneous = true; |
| } |
| } |
| } |
| |
| // FIXME: If the case list was broken is some way, we don't have a good system |
| // to patch it up. Instead, just return the whole substmt as broken. |
| if (CaseListIsErroneous) |
| return StmtError(); |
| |
| Switch.release(); |
| return Owned(SS); |
| } |
| |
| Action::OwningStmtResult |
| Sema::ActOnWhileStmt(SourceLocation WhileLoc, ExprArg Cond, StmtArg Body) { |
| Expr *condExpr = (Expr *)Cond.release(); |
| assert(condExpr && "ActOnWhileStmt(): missing expression"); |
| |
| DefaultFunctionArrayConversion(condExpr); |
| Cond = condExpr; |
| QualType condType = condExpr->getType(); |
| |
| if (getLangOptions().CPlusPlus) { |
| if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4 |
| return StmtError(); |
| } else if (!condType->isScalarType()) // C99 6.8.5p2 |
| return StmtError(Diag(WhileLoc, |
| diag::err_typecheck_statement_requires_scalar) |
| << condType << condExpr->getSourceRange()); |
| |
| Cond.release(); |
| return Owned(new (Context) WhileStmt(condExpr, (Stmt*)Body.release(), |
| WhileLoc)); |
| } |
| |
| Action::OwningStmtResult |
| Sema::ActOnDoStmt(SourceLocation DoLoc, StmtArg Body, |
| SourceLocation WhileLoc, ExprArg Cond) { |
| Expr *condExpr = (Expr *)Cond.release(); |
| assert(condExpr && "ActOnDoStmt(): missing expression"); |
| |
| DefaultFunctionArrayConversion(condExpr); |
| Cond = condExpr; |
| QualType condType = condExpr->getType(); |
| |
| if (getLangOptions().CPlusPlus) { |
| if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4 |
| return StmtError(); |
| } else if (!condType->isScalarType()) // C99 6.8.5p2 |
| return StmtError(Diag(DoLoc, diag::err_typecheck_statement_requires_scalar) |
| << condType << condExpr->getSourceRange()); |
| |
| Cond.release(); |
| return Owned(new (Context) DoStmt((Stmt*)Body.release(), condExpr, DoLoc)); |
| } |
| |
| Action::OwningStmtResult |
| Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc, |
| StmtArg first, ExprArg second, ExprArg third, |
| SourceLocation RParenLoc, StmtArg body) { |
| Stmt *First = static_cast<Stmt*>(first.get()); |
| Expr *Second = static_cast<Expr*>(second.get()); |
| Expr *Third = static_cast<Expr*>(third.get()); |
| Stmt *Body = static_cast<Stmt*>(body.get()); |
| |
| if (!getLangOptions().CPlusPlus) { |
| if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) { |
| // C99 6.8.5p3: The declaration part of a 'for' statement shall only |
| // declare identifiers for objects having storage class 'auto' or |
| // 'register'. |
| for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end(); |
| DI!=DE; ++DI) { |
| VarDecl *VD = dyn_cast<VarDecl>(*DI); |
| if (VD && VD->isBlockVarDecl() && !VD->hasLocalStorage()) |
| VD = 0; |
| if (VD == 0) |
| Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for); |
| // FIXME: mark decl erroneous! |
| } |
| } |
| } |
| if (Second) { |
| DefaultFunctionArrayConversion(Second); |
| QualType SecondType = Second->getType(); |
| |
| if (getLangOptions().CPlusPlus) { |
| if (CheckCXXBooleanCondition(Second)) // C++ 6.4p4 |
| return StmtError(); |
| } else if (!SecondType->isScalarType()) // C99 6.8.5p2 |
| return StmtError(Diag(ForLoc, |
| diag::err_typecheck_statement_requires_scalar) |
| << SecondType << Second->getSourceRange()); |
| } |
| first.release(); |
| second.release(); |
| third.release(); |
| body.release(); |
| return Owned(new (Context) ForStmt(First, Second, Third, Body, ForLoc)); |
| } |
| |
| Action::OwningStmtResult |
| Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc, |
| SourceLocation LParenLoc, |
| StmtArg first, ExprArg second, |
| SourceLocation RParenLoc, StmtArg body) { |
| Stmt *First = static_cast<Stmt*>(first.get()); |
| Expr *Second = static_cast<Expr*>(second.get()); |
| Stmt *Body = static_cast<Stmt*>(body.get()); |
| if (First) { |
| QualType FirstType; |
| if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) { |
| if (!DS->isSingleDecl()) |
| return StmtError(Diag((*DS->decl_begin())->getLocation(), |
| diag::err_toomany_element_decls)); |
| |
| Decl *D = DS->getSingleDecl(); |
| FirstType = cast<ValueDecl>(D)->getType(); |
| // C99 6.8.5p3: The declaration part of a 'for' statement shall only |
| // declare identifiers for objects having storage class 'auto' or |
| // 'register'. |
| VarDecl *VD = cast<VarDecl>(D); |
| if (VD->isBlockVarDecl() && !VD->hasLocalStorage()) |
| return StmtError(Diag(VD->getLocation(), |
| diag::err_non_variable_decl_in_for)); |
| } else { |
| if (cast<Expr>(First)->isLvalue(Context) != Expr::LV_Valid) |
| return StmtError(Diag(First->getLocStart(), |
| diag::err_selector_element_not_lvalue) |
| << First->getSourceRange()); |
| |
| FirstType = static_cast<Expr*>(First)->getType(); |
| } |
| if (!Context.isObjCObjectPointerType(FirstType)) |
| Diag(ForLoc, diag::err_selector_element_type) |
| << FirstType << First->getSourceRange(); |
| } |
| if (Second) { |
| DefaultFunctionArrayConversion(Second); |
| QualType SecondType = Second->getType(); |
| if (!Context.isObjCObjectPointerType(SecondType)) |
| Diag(ForLoc, diag::err_collection_expr_type) |
| << SecondType << Second->getSourceRange(); |
| } |
| first.release(); |
| second.release(); |
| body.release(); |
| return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body, |
| ForLoc, RParenLoc)); |
| } |
| |
| Action::OwningStmtResult |
| Sema::ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc, |
| IdentifierInfo *LabelII) { |
| // If we are in a block, reject all gotos for now. |
| if (CurBlock) |
| return StmtError(Diag(GotoLoc, diag::err_goto_in_block)); |
| |
| // Look up the record for this label identifier. |
| LabelStmt *&LabelDecl = CurBlock ? CurBlock->LabelMap[LabelII] : |
| LabelMap[LabelII]; |
| |
| // If we haven't seen this label yet, create a forward reference. |
| if (LabelDecl == 0) |
| LabelDecl = new (Context) LabelStmt(LabelLoc, LabelII, 0); |
| |
| return Owned(new (Context) GotoStmt(LabelDecl, GotoLoc, LabelLoc)); |
| } |
| |
| Action::OwningStmtResult |
| Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc,SourceLocation StarLoc, |
| ExprArg DestExp) { |
| // Convert operand to void* |
| Expr* E = DestExp.takeAs<Expr>(); |
| QualType ETy = E->getType(); |
| AssignConvertType ConvTy = |
| CheckSingleAssignmentConstraints(Context.VoidPtrTy, E); |
| if (DiagnoseAssignmentResult(ConvTy, StarLoc, Context.VoidPtrTy, ETy, |
| E, "passing")) |
| return StmtError(); |
| return Owned(new (Context) IndirectGotoStmt(E)); |
| } |
| |
| Action::OwningStmtResult |
| Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) { |
| Scope *S = CurScope->getContinueParent(); |
| if (!S) { |
| // C99 6.8.6.2p1: A break shall appear only in or as a loop body. |
| return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop)); |
| } |
| |
| return Owned(new (Context) ContinueStmt(ContinueLoc)); |
| } |
| |
| Action::OwningStmtResult |
| Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) { |
| Scope *S = CurScope->getBreakParent(); |
| if (!S) { |
| // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body. |
| return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch)); |
| } |
| |
| return Owned(new (Context) BreakStmt(BreakLoc)); |
| } |
| |
| /// ActOnBlockReturnStmt - Utility routine to figure out block's return type. |
| /// |
| Action::OwningStmtResult |
| Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) { |
| |
| // If this is the first return we've seen in the block, infer the type of |
| // the block from it. |
| if (CurBlock->ReturnType == 0) { |
| if (RetValExp) { |
| // Don't call UsualUnaryConversions(), since we don't want to do |
| // integer promotions here. |
| DefaultFunctionArrayConversion(RetValExp); |
| CurBlock->ReturnType = RetValExp->getType().getTypePtr(); |
| } else |
| CurBlock->ReturnType = Context.VoidTy.getTypePtr(); |
| } |
| QualType FnRetType = QualType(CurBlock->ReturnType, 0); |
| |
| // Otherwise, verify that this result type matches the previous one. We are |
| // pickier with blocks than for normal functions because we don't have GCC |
| // compatibility to worry about here. |
| if (CurBlock->ReturnType->isVoidType()) { |
| if (RetValExp) { |
| Diag(ReturnLoc, diag::err_return_block_has_expr); |
| RetValExp->Destroy(Context); |
| RetValExp = 0; |
| } |
| return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp)); |
| } |
| |
| if (!RetValExp) |
| return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr)); |
| |
| if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) { |
| // we have a non-void block with an expression, continue checking |
| QualType RetValType = RetValExp->getType(); |
| |
| // C99 6.8.6.4p3(136): The return statement is not an assignment. The |
| // overlap restriction of subclause 6.5.16.1 does not apply to the case of |
| // function return. |
| |
| // In C++ the return statement is handled via a copy initialization. |
| // the C version of which boils down to CheckSingleAssignmentConstraints. |
| // FIXME: Leaks RetValExp. |
| if (PerformCopyInitialization(RetValExp, FnRetType, "returning")) |
| return StmtError(); |
| |
| if (RetValExp) CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc); |
| } |
| |
| return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp)); |
| } |
| |
| /// IsReturnCopyElidable - Whether returning @p RetExpr from a function that |
| /// returns a @p RetType fulfills the criteria for copy elision (C++0x 12.8p15). |
| static bool IsReturnCopyElidable(ASTContext &Ctx, QualType RetType, |
| Expr *RetExpr) { |
| QualType ExprType = RetExpr->getType(); |
| // - in a return statement in a function with ... |
| // ... a class return type ... |
| if (!RetType->isRecordType()) |
| return false; |
| // ... the same cv-unqualified type as the function return type ... |
| if (Ctx.getCanonicalType(RetType).getUnqualifiedType() != |
| Ctx.getCanonicalType(ExprType).getUnqualifiedType()) |
| return false; |
| // ... the expression is the name of a non-volatile automatic object ... |
| // We ignore parentheses here. |
| // FIXME: Is this compliant? |
| const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(RetExpr->IgnoreParens()); |
| if (!DR) |
| return false; |
| const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl()); |
| if (!VD) |
| return false; |
| return VD->hasLocalStorage() && !VD->getType()->isReferenceType() |
| && !VD->getType().isVolatileQualified(); |
| } |
| |
| Action::OwningStmtResult |
| Sema::ActOnReturnStmt(SourceLocation ReturnLoc, ExprArg rex) { |
| Expr *RetValExp = static_cast<Expr *>(rex.release()); |
| if (CurBlock) |
| return ActOnBlockReturnStmt(ReturnLoc, RetValExp); |
| |
| QualType FnRetType; |
| if (FunctionDecl *FD = getCurFunctionDecl()) |
| FnRetType = FD->getResultType(); |
| else if (ObjCMethodDecl *MD = getCurMethodDecl()) |
| FnRetType = MD->getResultType(); |
| else // If we don't have a function/method context, bail. |
| return StmtError(); |
| |
| if (FnRetType->isVoidType()) { |
| if (RetValExp) {// C99 6.8.6.4p1 (ext_ since GCC warns) |
| unsigned D = diag::ext_return_has_expr; |
| if (RetValExp->getType()->isVoidType()) |
| D = diag::ext_return_has_void_expr; |
| |
| // return (some void expression); is legal in C++. |
| if (D != diag::ext_return_has_void_expr || |
| !getLangOptions().CPlusPlus) { |
| NamedDecl *CurDecl = getCurFunctionOrMethodDecl(); |
| Diag(ReturnLoc, D) |
| << CurDecl->getDeclName() << isa<ObjCMethodDecl>(CurDecl) |
| << RetValExp->getSourceRange(); |
| } |
| } |
| return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp)); |
| } |
| |
| if (!RetValExp) { |
| unsigned DiagID = diag::warn_return_missing_expr; // C90 6.6.6.4p4 |
| // C99 6.8.6.4p1 (ext_ since GCC warns) |
| if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr; |
| |
| if (FunctionDecl *FD = getCurFunctionDecl()) |
| Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/; |
| else |
| Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/; |
| return Owned(new (Context) ReturnStmt(ReturnLoc, (Expr*)0)); |
| } |
| |
| if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) { |
| // we have a non-void function with an expression, continue checking |
| |
| // C99 6.8.6.4p3(136): The return statement is not an assignment. The |
| // overlap restriction of subclause 6.5.16.1 does not apply to the case of |
| // function return. |
| |
| // C++0x 12.8p15: When certain criteria are met, an implementation is |
| // allowed to omit the copy construction of a class object, [...] |
| // - in a return statement in a function with a class return type, when |
| // the expression is the name of a non-volatile automatic object with |
| // the same cv-unqualified type as the function return type, the copy |
| // operation can be omitted [...] |
| // C++0x 12.8p16: When the criteria for elision of a copy operation are met |
| // and the object to be copied is designated by an lvalue, overload |
| // resolution to select the constructor for the copy is first performed |
| // as if the object were designated by an rvalue. |
| // Note that we only compute Elidable if we're in C++0x, since we don't |
| // care otherwise. |
| bool Elidable = getLangOptions().CPlusPlus0x ? |
| IsReturnCopyElidable(Context, FnRetType, RetValExp) : |
| false; |
| |
| // In C++ the return statement is handled via a copy initialization. |
| // the C version of which boils down to CheckSingleAssignmentConstraints. |
| // FIXME: Leaks RetValExp on error. |
| if (PerformCopyInitialization(RetValExp, FnRetType, "returning", Elidable)) |
| return StmtError(); |
| |
| if (RetValExp) CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc); |
| } |
| |
| return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp)); |
| } |
| |
| /// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently |
| /// ignore "noop" casts in places where an lvalue is required by an inline asm. |
| /// We emulate this behavior when -fheinous-gnu-extensions is specified, but |
| /// provide a strong guidance to not use it. |
| /// |
| /// This method checks to see if the argument is an acceptable l-value and |
| /// returns false if it is a case we can handle. |
| static bool CheckAsmLValue(const Expr *E, Sema &S) { |
| if (E->isLvalue(S.Context) == Expr::LV_Valid) |
| return false; // Cool, this is an lvalue. |
| |
| // Okay, this is not an lvalue, but perhaps it is the result of a cast that we |
| // are supposed to allow. |
| const Expr *E2 = E->IgnoreParenNoopCasts(S.Context); |
| if (E != E2 && E2->isLvalue(S.Context) == Expr::LV_Valid) { |
| if (!S.getLangOptions().HeinousExtensions) |
| S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue) |
| << E->getSourceRange(); |
| else |
| S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue) |
| << E->getSourceRange(); |
| // Accept, even if we emitted an error diagnostic. |
| return false; |
| } |
| |
| // None of the above, just randomly invalid non-lvalue. |
| return true; |
| } |
| |
| |
| Sema::OwningStmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc, |
| bool IsSimple, |
| bool IsVolatile, |
| unsigned NumOutputs, |
| unsigned NumInputs, |
| std::string *Names, |
| MultiExprArg constraints, |
| MultiExprArg exprs, |
| ExprArg asmString, |
| MultiExprArg clobbers, |
| SourceLocation RParenLoc) { |
| unsigned NumClobbers = clobbers.size(); |
| StringLiteral **Constraints = |
| reinterpret_cast<StringLiteral**>(constraints.get()); |
| Expr **Exprs = reinterpret_cast<Expr **>(exprs.get()); |
| StringLiteral *AsmString = cast<StringLiteral>((Expr *)asmString.get()); |
| StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get()); |
| |
| llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; |
| |
| // The parser verifies that there is a string literal here. |
| if (AsmString->isWide()) |
| return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character) |
| << AsmString->getSourceRange()); |
| |
| |
| for (unsigned i = 0; i != NumOutputs; i++) { |
| StringLiteral *Literal = Constraints[i]; |
| if (Literal->isWide()) |
| return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character) |
| << Literal->getSourceRange()); |
| |
| std::string OutputConstraint(Literal->getStrData(), |
| Literal->getByteLength()); |
| |
| TargetInfo::ConstraintInfo info; |
| if (!Context.Target.validateOutputConstraint(OutputConstraint.c_str(),info)) |
| return StmtError(Diag(Literal->getLocStart(), |
| diag::err_asm_invalid_output_constraint) << OutputConstraint); |
| |
| // Check that the output exprs are valid lvalues. |
| ParenExpr *OutputExpr = cast<ParenExpr>(Exprs[i]); |
| if (CheckAsmLValue(OutputExpr, *this)) { |
| return StmtError(Diag(OutputExpr->getSubExpr()->getLocStart(), |
| diag::err_asm_invalid_lvalue_in_output) |
| << OutputExpr->getSubExpr()->getSourceRange()); |
| } |
| |
| OutputConstraintInfos.push_back(info); |
| } |
| |
| for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) { |
| StringLiteral *Literal = Constraints[i]; |
| if (Literal->isWide()) |
| return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character) |
| << Literal->getSourceRange()); |
| |
| std::string InputConstraint(Literal->getStrData(), |
| Literal->getByteLength()); |
| |
| TargetInfo::ConstraintInfo info; |
| if (!Context.Target.validateInputConstraint(InputConstraint.c_str(), |
| &Names[0], |
| &Names[0] + NumOutputs, |
| &OutputConstraintInfos[0], |
| info)) { |
| return StmtError(Diag(Literal->getLocStart(), |
| diag::err_asm_invalid_input_constraint) << InputConstraint); |
| } |
| |
| ParenExpr *InputExpr = cast<ParenExpr>(Exprs[i]); |
| |
| // Only allow void types for memory constraints. |
| if ((info & TargetInfo::CI_AllowsMemory) |
| && !(info & TargetInfo::CI_AllowsRegister)) { |
| if (CheckAsmLValue(InputExpr, *this)) |
| return StmtError(Diag(InputExpr->getSubExpr()->getLocStart(), |
| diag::err_asm_invalid_lvalue_in_input) |
| << InputConstraint << InputExpr->getSubExpr()->getSourceRange()); |
| } |
| |
| if (info & TargetInfo::CI_AllowsRegister) { |
| if (InputExpr->getType()->isVoidType()) { |
| return StmtError(Diag(InputExpr->getSubExpr()->getLocStart(), |
| diag::err_asm_invalid_type_in_input) |
| << InputExpr->getType() << InputConstraint |
| << InputExpr->getSubExpr()->getSourceRange()); |
| } |
| } |
| |
| DefaultFunctionArrayConversion(Exprs[i]); |
| } |
| |
| // Check that the clobbers are valid. |
| for (unsigned i = 0; i != NumClobbers; i++) { |
| StringLiteral *Literal = Clobbers[i]; |
| if (Literal->isWide()) |
| return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character) |
| << Literal->getSourceRange()); |
| |
| llvm::SmallString<16> Clobber(Literal->getStrData(), |
| Literal->getStrData() + |
| Literal->getByteLength()); |
| |
| if (!Context.Target.isValidGCCRegisterName(Clobber.c_str())) |
| return StmtError(Diag(Literal->getLocStart(), |
| diag::err_asm_unknown_register_name) << Clobber.c_str()); |
| } |
| |
| constraints.release(); |
| exprs.release(); |
| asmString.release(); |
| clobbers.release(); |
| AsmStmt *NS = |
| new (Context) AsmStmt(AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs, |
| Names, Constraints, Exprs, AsmString, NumClobbers, |
| Clobbers, RParenLoc); |
| // Validate the asm string, ensuring it makes sense given the operands we |
| // have. |
| llvm::SmallVector<AsmStmt::AsmStringPiece, 8> Pieces; |
| unsigned DiagOffs; |
| if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) { |
| Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID) |
| << AsmString->getSourceRange(); |
| DeleteStmt(NS); |
| return StmtError(); |
| } |
| |
| |
| return Owned(NS); |
| } |
| |
| Action::OwningStmtResult |
| Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc, |
| SourceLocation RParen, DeclPtrTy Parm, |
| StmtArg Body, StmtArg catchList) { |
| Stmt *CatchList = static_cast<Stmt*>(catchList.release()); |
| ParmVarDecl *PVD = cast_or_null<ParmVarDecl>(Parm.getAs<Decl>()); |
| |
| // PVD == 0 implies @catch(...). |
| if (PVD) { |
| // If we already know the decl is invalid, reject it. |
| if (PVD->isInvalidDecl()) |
| return StmtError(); |
| |
| if (!Context.isObjCObjectPointerType(PVD->getType())) |
| return StmtError(Diag(PVD->getLocation(), |
| diag::err_catch_param_not_objc_type)); |
| if (PVD->getType()->isObjCQualifiedIdType()) |
| return StmtError(Diag(PVD->getLocation(), |
| diag::err_illegal_qualifiers_on_catch_parm)); |
| } |
| |
| ObjCAtCatchStmt *CS = new (Context) ObjCAtCatchStmt(AtLoc, RParen, |
| PVD, static_cast<Stmt*>(Body.release()), CatchList); |
| return Owned(CatchList ? CatchList : CS); |
| } |
| |
| Action::OwningStmtResult |
| Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, StmtArg Body) { |
| return Owned(new (Context) ObjCAtFinallyStmt(AtLoc, |
| static_cast<Stmt*>(Body.release()))); |
| } |
| |
| Action::OwningStmtResult |
| Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, |
| StmtArg Try, StmtArg Catch, StmtArg Finally) { |
| return Owned(new (Context) ObjCAtTryStmt(AtLoc, |
| static_cast<Stmt*>(Try.release()), |
| static_cast<Stmt*>(Catch.release()), |
| static_cast<Stmt*>(Finally.release()))); |
| } |
| |
| Action::OwningStmtResult |
| Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, ExprArg expr,Scope *CurScope) { |
| Expr *ThrowExpr = static_cast<Expr*>(expr.release()); |
| if (!ThrowExpr) { |
| // @throw without an expression designates a rethrow (which much occur |
| // in the context of an @catch clause). |
| Scope *AtCatchParent = CurScope; |
| while (AtCatchParent && !AtCatchParent->isAtCatchScope()) |
| AtCatchParent = AtCatchParent->getParent(); |
| if (!AtCatchParent) |
| return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch)); |
| } else { |
| QualType ThrowType = ThrowExpr->getType(); |
| // Make sure the expression type is an ObjC pointer or "void *". |
| if (!Context.isObjCObjectPointerType(ThrowType)) { |
| const PointerType *PT = ThrowType->getAsPointerType(); |
| if (!PT || !PT->getPointeeType()->isVoidType()) |
| return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object) |
| << ThrowExpr->getType() << ThrowExpr->getSourceRange()); |
| } |
| } |
| return Owned(new (Context) ObjCAtThrowStmt(AtLoc, ThrowExpr)); |
| } |
| |
| Action::OwningStmtResult |
| Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, ExprArg SynchExpr, |
| StmtArg SynchBody) { |
| return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc, |
| static_cast<Stmt*>(SynchExpr.release()), |
| static_cast<Stmt*>(SynchBody.release()))); |
| } |
| |
| /// ActOnCXXCatchBlock - Takes an exception declaration and a handler block |
| /// and creates a proper catch handler from them. |
| Action::OwningStmtResult |
| Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, DeclPtrTy ExDecl, |
| StmtArg HandlerBlock) { |
| // There's nothing to test that ActOnExceptionDecl didn't already test. |
| return Owned(new (Context) CXXCatchStmt(CatchLoc, |
| cast_or_null<VarDecl>(ExDecl.getAs<Decl>()), |
| static_cast<Stmt*>(HandlerBlock.release()))); |
| } |
| |
| /// ActOnCXXTryBlock - Takes a try compound-statement and a number of |
| /// handlers and creates a try statement from them. |
| Action::OwningStmtResult |
| Sema::ActOnCXXTryBlock(SourceLocation TryLoc, StmtArg TryBlock, |
| MultiStmtArg RawHandlers) { |
| unsigned NumHandlers = RawHandlers.size(); |
| assert(NumHandlers > 0 && |
| "The parser shouldn't call this if there are no handlers."); |
| Stmt **Handlers = reinterpret_cast<Stmt**>(RawHandlers.get()); |
| |
| for(unsigned i = 0; i < NumHandlers - 1; ++i) { |
| CXXCatchStmt *Handler = llvm::cast<CXXCatchStmt>(Handlers[i]); |
| if (!Handler->getExceptionDecl()) |
| return StmtError(Diag(Handler->getLocStart(), diag::err_early_catch_all)); |
| } |
| // FIXME: We should detect handlers for the same type as an earlier one. |
| // This one is rather easy. |
| // FIXME: We should detect handlers that cannot catch anything because an |
| // earlier handler catches a superclass. Need to find a method that is not |
| // quadratic for this. |
| // Neither of these are explicitly forbidden, but every compiler detects them |
| // and warns. |
| |
| RawHandlers.release(); |
| return Owned(new (Context) CXXTryStmt(TryLoc, |
| static_cast<Stmt*>(TryBlock.release()), |
| Handlers, NumHandlers)); |
| } |