| //===--------------------- SemaLookup.cpp - Name Lookup ------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements name lookup for C, C++, Objective-C, and |
| // Objective-C++. |
| // |
| //===----------------------------------------------------------------------===// |
| #include "clang/Sema/Sema.h" |
| #include "clang/Sema/SemaInternal.h" |
| #include "clang/Sema/Lookup.h" |
| #include "clang/Sema/Overload.h" |
| #include "clang/Sema/DeclSpec.h" |
| #include "clang/Sema/Scope.h" |
| #include "clang/Sema/ScopeInfo.h" |
| #include "clang/Sema/TemplateDeduction.h" |
| #include "clang/Sema/ExternalSemaSource.h" |
| #include "clang/Sema/TypoCorrection.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/CXXInheritance.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/Basic/Builtins.h" |
| #include "clang/Basic/LangOptions.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/StringMap.h" |
| #include "llvm/ADT/TinyPtrVector.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include <limits> |
| #include <list> |
| #include <set> |
| #include <vector> |
| #include <iterator> |
| #include <utility> |
| #include <algorithm> |
| #include <map> |
| |
| using namespace clang; |
| using namespace sema; |
| |
| namespace { |
| class UnqualUsingEntry { |
| const DeclContext *Nominated; |
| const DeclContext *CommonAncestor; |
| |
| public: |
| UnqualUsingEntry(const DeclContext *Nominated, |
| const DeclContext *CommonAncestor) |
| : Nominated(Nominated), CommonAncestor(CommonAncestor) { |
| } |
| |
| const DeclContext *getCommonAncestor() const { |
| return CommonAncestor; |
| } |
| |
| const DeclContext *getNominatedNamespace() const { |
| return Nominated; |
| } |
| |
| // Sort by the pointer value of the common ancestor. |
| struct Comparator { |
| bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) { |
| return L.getCommonAncestor() < R.getCommonAncestor(); |
| } |
| |
| bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) { |
| return E.getCommonAncestor() < DC; |
| } |
| |
| bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) { |
| return DC < E.getCommonAncestor(); |
| } |
| }; |
| }; |
| |
| /// A collection of using directives, as used by C++ unqualified |
| /// lookup. |
| class UnqualUsingDirectiveSet { |
| typedef SmallVector<UnqualUsingEntry, 8> ListTy; |
| |
| ListTy list; |
| llvm::SmallPtrSet<DeclContext*, 8> visited; |
| |
| public: |
| UnqualUsingDirectiveSet() {} |
| |
| void visitScopeChain(Scope *S, Scope *InnermostFileScope) { |
| // C++ [namespace.udir]p1: |
| // During unqualified name lookup, the names appear as if they |
| // were declared in the nearest enclosing namespace which contains |
| // both the using-directive and the nominated namespace. |
| DeclContext *InnermostFileDC |
| = static_cast<DeclContext*>(InnermostFileScope->getEntity()); |
| assert(InnermostFileDC && InnermostFileDC->isFileContext()); |
| |
| for (; S; S = S->getParent()) { |
| if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) { |
| DeclContext *EffectiveDC = (Ctx->isFileContext() ? Ctx : InnermostFileDC); |
| visit(Ctx, EffectiveDC); |
| } else { |
| Scope::udir_iterator I = S->using_directives_begin(), |
| End = S->using_directives_end(); |
| |
| for (; I != End; ++I) |
| visit(*I, InnermostFileDC); |
| } |
| } |
| } |
| |
| // Visits a context and collect all of its using directives |
| // recursively. Treats all using directives as if they were |
| // declared in the context. |
| // |
| // A given context is only every visited once, so it is important |
| // that contexts be visited from the inside out in order to get |
| // the effective DCs right. |
| void visit(DeclContext *DC, DeclContext *EffectiveDC) { |
| if (!visited.insert(DC)) |
| return; |
| |
| addUsingDirectives(DC, EffectiveDC); |
| } |
| |
| // Visits a using directive and collects all of its using |
| // directives recursively. Treats all using directives as if they |
| // were declared in the effective DC. |
| void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) { |
| DeclContext *NS = UD->getNominatedNamespace(); |
| if (!visited.insert(NS)) |
| return; |
| |
| addUsingDirective(UD, EffectiveDC); |
| addUsingDirectives(NS, EffectiveDC); |
| } |
| |
| // Adds all the using directives in a context (and those nominated |
| // by its using directives, transitively) as if they appeared in |
| // the given effective context. |
| void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) { |
| SmallVector<DeclContext*,4> queue; |
| while (true) { |
| DeclContext::udir_iterator I, End; |
| for (llvm::tie(I, End) = DC->getUsingDirectives(); I != End; ++I) { |
| UsingDirectiveDecl *UD = *I; |
| DeclContext *NS = UD->getNominatedNamespace(); |
| if (visited.insert(NS)) { |
| addUsingDirective(UD, EffectiveDC); |
| queue.push_back(NS); |
| } |
| } |
| |
| if (queue.empty()) |
| return; |
| |
| DC = queue.back(); |
| queue.pop_back(); |
| } |
| } |
| |
| // Add a using directive as if it had been declared in the given |
| // context. This helps implement C++ [namespace.udir]p3: |
| // The using-directive is transitive: if a scope contains a |
| // using-directive that nominates a second namespace that itself |
| // contains using-directives, the effect is as if the |
| // using-directives from the second namespace also appeared in |
| // the first. |
| void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) { |
| // Find the common ancestor between the effective context and |
| // the nominated namespace. |
| DeclContext *Common = UD->getNominatedNamespace(); |
| while (!Common->Encloses(EffectiveDC)) |
| Common = Common->getParent(); |
| Common = Common->getPrimaryContext(); |
| |
| list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common)); |
| } |
| |
| void done() { |
| std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator()); |
| } |
| |
| typedef ListTy::const_iterator const_iterator; |
| |
| const_iterator begin() const { return list.begin(); } |
| const_iterator end() const { return list.end(); } |
| |
| std::pair<const_iterator,const_iterator> |
| getNamespacesFor(DeclContext *DC) const { |
| return std::equal_range(begin(), end(), DC->getPrimaryContext(), |
| UnqualUsingEntry::Comparator()); |
| } |
| }; |
| } |
| |
| // Retrieve the set of identifier namespaces that correspond to a |
| // specific kind of name lookup. |
| static inline unsigned getIDNS(Sema::LookupNameKind NameKind, |
| bool CPlusPlus, |
| bool Redeclaration) { |
| unsigned IDNS = 0; |
| switch (NameKind) { |
| case Sema::LookupObjCImplicitSelfParam: |
| case Sema::LookupOrdinaryName: |
| case Sema::LookupRedeclarationWithLinkage: |
| IDNS = Decl::IDNS_Ordinary; |
| if (CPlusPlus) { |
| IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace; |
| if (Redeclaration) |
| IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend; |
| } |
| break; |
| |
| case Sema::LookupOperatorName: |
| // Operator lookup is its own crazy thing; it is not the same |
| // as (e.g.) looking up an operator name for redeclaration. |
| assert(!Redeclaration && "cannot do redeclaration operator lookup"); |
| IDNS = Decl::IDNS_NonMemberOperator; |
| break; |
| |
| case Sema::LookupTagName: |
| if (CPlusPlus) { |
| IDNS = Decl::IDNS_Type; |
| |
| // When looking for a redeclaration of a tag name, we add: |
| // 1) TagFriend to find undeclared friend decls |
| // 2) Namespace because they can't "overload" with tag decls. |
| // 3) Tag because it includes class templates, which can't |
| // "overload" with tag decls. |
| if (Redeclaration) |
| IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace; |
| } else { |
| IDNS = Decl::IDNS_Tag; |
| } |
| break; |
| case Sema::LookupLabel: |
| IDNS = Decl::IDNS_Label; |
| break; |
| |
| case Sema::LookupMemberName: |
| IDNS = Decl::IDNS_Member; |
| if (CPlusPlus) |
| IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary; |
| break; |
| |
| case Sema::LookupNestedNameSpecifierName: |
| IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace; |
| break; |
| |
| case Sema::LookupNamespaceName: |
| IDNS = Decl::IDNS_Namespace; |
| break; |
| |
| case Sema::LookupUsingDeclName: |
| IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag |
| | Decl::IDNS_Member | Decl::IDNS_Using; |
| break; |
| |
| case Sema::LookupObjCProtocolName: |
| IDNS = Decl::IDNS_ObjCProtocol; |
| break; |
| |
| case Sema::LookupAnyName: |
| IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
| | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol |
| | Decl::IDNS_Type; |
| break; |
| } |
| return IDNS; |
| } |
| |
| void LookupResult::configure() { |
| IDNS = getIDNS(LookupKind, SemaRef.getLangOptions().CPlusPlus, |
| isForRedeclaration()); |
| |
| // If we're looking for one of the allocation or deallocation |
| // operators, make sure that the implicitly-declared new and delete |
| // operators can be found. |
| if (!isForRedeclaration()) { |
| switch (NameInfo.getName().getCXXOverloadedOperator()) { |
| case OO_New: |
| case OO_Delete: |
| case OO_Array_New: |
| case OO_Array_Delete: |
| SemaRef.DeclareGlobalNewDelete(); |
| break; |
| |
| default: |
| break; |
| } |
| } |
| } |
| |
| void LookupResult::sanity() const { |
| assert(ResultKind != NotFound || Decls.size() == 0); |
| assert(ResultKind != Found || Decls.size() == 1); |
| assert(ResultKind != FoundOverloaded || Decls.size() > 1 || |
| (Decls.size() == 1 && |
| isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))); |
| assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved()); |
| assert(ResultKind != Ambiguous || Decls.size() > 1 || |
| (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || |
| Ambiguity == AmbiguousBaseSubobjectTypes))); |
| assert((Paths != NULL) == (ResultKind == Ambiguous && |
| (Ambiguity == AmbiguousBaseSubobjectTypes || |
| Ambiguity == AmbiguousBaseSubobjects))); |
| } |
| |
| // Necessary because CXXBasePaths is not complete in Sema.h |
| void LookupResult::deletePaths(CXXBasePaths *Paths) { |
| delete Paths; |
| } |
| |
| static NamedDecl *getVisibleDecl(NamedDecl *D); |
| |
| NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const { |
| return getVisibleDecl(D); |
| } |
| |
| /// Resolves the result kind of this lookup. |
| void LookupResult::resolveKind() { |
| unsigned N = Decls.size(); |
| |
| // Fast case: no possible ambiguity. |
| if (N == 0) { |
| assert(ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation); |
| return; |
| } |
| |
| // If there's a single decl, we need to examine it to decide what |
| // kind of lookup this is. |
| if (N == 1) { |
| NamedDecl *D = (*Decls.begin())->getUnderlyingDecl(); |
| if (isa<FunctionTemplateDecl>(D)) |
| ResultKind = FoundOverloaded; |
| else if (isa<UnresolvedUsingValueDecl>(D)) |
| ResultKind = FoundUnresolvedValue; |
| return; |
| } |
| |
| // Don't do any extra resolution if we've already resolved as ambiguous. |
| if (ResultKind == Ambiguous) return; |
| |
| llvm::SmallPtrSet<NamedDecl*, 16> Unique; |
| llvm::SmallPtrSet<QualType, 16> UniqueTypes; |
| |
| bool Ambiguous = false; |
| bool HasTag = false, HasFunction = false, HasNonFunction = false; |
| bool HasFunctionTemplate = false, HasUnresolved = false; |
| |
| unsigned UniqueTagIndex = 0; |
| |
| unsigned I = 0; |
| while (I < N) { |
| NamedDecl *D = Decls[I]->getUnderlyingDecl(); |
| D = cast<NamedDecl>(D->getCanonicalDecl()); |
| |
| // Redeclarations of types via typedef can occur both within a scope |
| // and, through using declarations and directives, across scopes. There is |
| // no ambiguity if they all refer to the same type, so unique based on the |
| // canonical type. |
| if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) { |
| if (!TD->getDeclContext()->isRecord()) { |
| QualType T = SemaRef.Context.getTypeDeclType(TD); |
| if (!UniqueTypes.insert(SemaRef.Context.getCanonicalType(T))) { |
| // The type is not unique; pull something off the back and continue |
| // at this index. |
| Decls[I] = Decls[--N]; |
| continue; |
| } |
| } |
| } |
| |
| if (!Unique.insert(D)) { |
| // If it's not unique, pull something off the back (and |
| // continue at this index). |
| Decls[I] = Decls[--N]; |
| continue; |
| } |
| |
| // Otherwise, do some decl type analysis and then continue. |
| |
| if (isa<UnresolvedUsingValueDecl>(D)) { |
| HasUnresolved = true; |
| } else if (isa<TagDecl>(D)) { |
| if (HasTag) |
| Ambiguous = true; |
| UniqueTagIndex = I; |
| HasTag = true; |
| } else if (isa<FunctionTemplateDecl>(D)) { |
| HasFunction = true; |
| HasFunctionTemplate = true; |
| } else if (isa<FunctionDecl>(D)) { |
| HasFunction = true; |
| } else { |
| if (HasNonFunction) |
| Ambiguous = true; |
| HasNonFunction = true; |
| } |
| I++; |
| } |
| |
| // C++ [basic.scope.hiding]p2: |
| // A class name or enumeration name can be hidden by the name of |
| // an object, function, or enumerator declared in the same |
| // scope. If a class or enumeration name and an object, function, |
| // or enumerator are declared in the same scope (in any order) |
| // with the same name, the class or enumeration name is hidden |
| // wherever the object, function, or enumerator name is visible. |
| // But it's still an error if there are distinct tag types found, |
| // even if they're not visible. (ref?) |
| if (HideTags && HasTag && !Ambiguous && |
| (HasFunction || HasNonFunction || HasUnresolved)) { |
| if (Decls[UniqueTagIndex]->getDeclContext()->getRedeclContext()->Equals( |
| Decls[UniqueTagIndex? 0 : N-1]->getDeclContext()->getRedeclContext())) |
| Decls[UniqueTagIndex] = Decls[--N]; |
| else |
| Ambiguous = true; |
| } |
| |
| Decls.set_size(N); |
| |
| if (HasNonFunction && (HasFunction || HasUnresolved)) |
| Ambiguous = true; |
| |
| if (Ambiguous) |
| setAmbiguous(LookupResult::AmbiguousReference); |
| else if (HasUnresolved) |
| ResultKind = LookupResult::FoundUnresolvedValue; |
| else if (N > 1 || HasFunctionTemplate) |
| ResultKind = LookupResult::FoundOverloaded; |
| else |
| ResultKind = LookupResult::Found; |
| } |
| |
| void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) { |
| CXXBasePaths::const_paths_iterator I, E; |
| DeclContext::lookup_iterator DI, DE; |
| for (I = P.begin(), E = P.end(); I != E; ++I) |
| for (llvm::tie(DI,DE) = I->Decls; DI != DE; ++DI) |
| addDecl(*DI); |
| } |
| |
| void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) { |
| Paths = new CXXBasePaths; |
| Paths->swap(P); |
| addDeclsFromBasePaths(*Paths); |
| resolveKind(); |
| setAmbiguous(AmbiguousBaseSubobjects); |
| } |
| |
| void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) { |
| Paths = new CXXBasePaths; |
| Paths->swap(P); |
| addDeclsFromBasePaths(*Paths); |
| resolveKind(); |
| setAmbiguous(AmbiguousBaseSubobjectTypes); |
| } |
| |
| void LookupResult::print(raw_ostream &Out) { |
| Out << Decls.size() << " result(s)"; |
| if (isAmbiguous()) Out << ", ambiguous"; |
| if (Paths) Out << ", base paths present"; |
| |
| for (iterator I = begin(), E = end(); I != E; ++I) { |
| Out << "\n"; |
| (*I)->print(Out, 2); |
| } |
| } |
| |
| /// \brief Lookup a builtin function, when name lookup would otherwise |
| /// fail. |
| static bool LookupBuiltin(Sema &S, LookupResult &R) { |
| Sema::LookupNameKind NameKind = R.getLookupKind(); |
| |
| // If we didn't find a use of this identifier, and if the identifier |
| // corresponds to a compiler builtin, create the decl object for the builtin |
| // now, injecting it into translation unit scope, and return it. |
| if (NameKind == Sema::LookupOrdinaryName || |
| NameKind == Sema::LookupRedeclarationWithLinkage) { |
| IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo(); |
| if (II) { |
| // If this is a builtin on this (or all) targets, create the decl. |
| if (unsigned BuiltinID = II->getBuiltinID()) { |
| // In C++, we don't have any predefined library functions like |
| // 'malloc'. Instead, we'll just error. |
| if (S.getLangOptions().CPlusPlus && |
| S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) |
| return false; |
| |
| if (NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II, |
| BuiltinID, S.TUScope, |
| R.isForRedeclaration(), |
| R.getNameLoc())) { |
| R.addDecl(D); |
| return true; |
| } |
| |
| if (R.isForRedeclaration()) { |
| // If we're redeclaring this function anyway, forget that |
| // this was a builtin at all. |
| S.Context.BuiltinInfo.ForgetBuiltin(BuiltinID, S.Context.Idents); |
| } |
| |
| return false; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| /// \brief Determine whether we can declare a special member function within |
| /// the class at this point. |
| static bool CanDeclareSpecialMemberFunction(ASTContext &Context, |
| const CXXRecordDecl *Class) { |
| // Don't do it if the class is invalid. |
| if (Class->isInvalidDecl()) |
| return false; |
| |
| // We need to have a definition for the class. |
| if (!Class->getDefinition() || Class->isDependentContext()) |
| return false; |
| |
| // We can't be in the middle of defining the class. |
| if (const RecordType *RecordTy |
| = Context.getTypeDeclType(Class)->getAs<RecordType>()) |
| return !RecordTy->isBeingDefined(); |
| |
| return false; |
| } |
| |
| void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) { |
| if (!CanDeclareSpecialMemberFunction(Context, Class)) |
| return; |
| |
| // If the default constructor has not yet been declared, do so now. |
| if (Class->needsImplicitDefaultConstructor()) |
| DeclareImplicitDefaultConstructor(Class); |
| |
| // If the copy constructor has not yet been declared, do so now. |
| if (!Class->hasDeclaredCopyConstructor()) |
| DeclareImplicitCopyConstructor(Class); |
| |
| // If the copy assignment operator has not yet been declared, do so now. |
| if (!Class->hasDeclaredCopyAssignment()) |
| DeclareImplicitCopyAssignment(Class); |
| |
| if (getLangOptions().CPlusPlus0x) { |
| // If the move constructor has not yet been declared, do so now. |
| if (Class->needsImplicitMoveConstructor()) |
| DeclareImplicitMoveConstructor(Class); // might not actually do it |
| |
| // If the move assignment operator has not yet been declared, do so now. |
| if (Class->needsImplicitMoveAssignment()) |
| DeclareImplicitMoveAssignment(Class); // might not actually do it |
| } |
| |
| // If the destructor has not yet been declared, do so now. |
| if (!Class->hasDeclaredDestructor()) |
| DeclareImplicitDestructor(Class); |
| } |
| |
| /// \brief Determine whether this is the name of an implicitly-declared |
| /// special member function. |
| static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) { |
| switch (Name.getNameKind()) { |
| case DeclarationName::CXXConstructorName: |
| case DeclarationName::CXXDestructorName: |
| return true; |
| |
| case DeclarationName::CXXOperatorName: |
| return Name.getCXXOverloadedOperator() == OO_Equal; |
| |
| default: |
| break; |
| } |
| |
| return false; |
| } |
| |
| /// \brief If there are any implicit member functions with the given name |
| /// that need to be declared in the given declaration context, do so. |
| static void DeclareImplicitMemberFunctionsWithName(Sema &S, |
| DeclarationName Name, |
| const DeclContext *DC) { |
| if (!DC) |
| return; |
| |
| switch (Name.getNameKind()) { |
| case DeclarationName::CXXConstructorName: |
| if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) |
| if (Record->getDefinition() && |
| CanDeclareSpecialMemberFunction(S.Context, Record)) { |
| CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record); |
| if (Record->needsImplicitDefaultConstructor()) |
| S.DeclareImplicitDefaultConstructor(Class); |
| if (!Record->hasDeclaredCopyConstructor()) |
| S.DeclareImplicitCopyConstructor(Class); |
| if (S.getLangOptions().CPlusPlus0x && |
| Record->needsImplicitMoveConstructor()) |
| S.DeclareImplicitMoveConstructor(Class); |
| } |
| break; |
| |
| case DeclarationName::CXXDestructorName: |
| if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) |
| if (Record->getDefinition() && !Record->hasDeclaredDestructor() && |
| CanDeclareSpecialMemberFunction(S.Context, Record)) |
| S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record)); |
| break; |
| |
| case DeclarationName::CXXOperatorName: |
| if (Name.getCXXOverloadedOperator() != OO_Equal) |
| break; |
| |
| if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) { |
| if (Record->getDefinition() && |
| CanDeclareSpecialMemberFunction(S.Context, Record)) { |
| CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record); |
| if (!Record->hasDeclaredCopyAssignment()) |
| S.DeclareImplicitCopyAssignment(Class); |
| if (S.getLangOptions().CPlusPlus0x && |
| Record->needsImplicitMoveAssignment()) |
| S.DeclareImplicitMoveAssignment(Class); |
| } |
| } |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| // Adds all qualifying matches for a name within a decl context to the |
| // given lookup result. Returns true if any matches were found. |
| static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) { |
| bool Found = false; |
| |
| // Lazily declare C++ special member functions. |
| if (S.getLangOptions().CPlusPlus) |
| DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), DC); |
| |
| // Perform lookup into this declaration context. |
| DeclContext::lookup_const_iterator I, E; |
| for (llvm::tie(I, E) = DC->lookup(R.getLookupName()); I != E; ++I) { |
| NamedDecl *D = *I; |
| if ((D = R.getAcceptableDecl(D))) { |
| R.addDecl(D); |
| Found = true; |
| } |
| } |
| |
| if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R)) |
| return true; |
| |
| if (R.getLookupName().getNameKind() |
| != DeclarationName::CXXConversionFunctionName || |
| R.getLookupName().getCXXNameType()->isDependentType() || |
| !isa<CXXRecordDecl>(DC)) |
| return Found; |
| |
| // C++ [temp.mem]p6: |
| // A specialization of a conversion function template is not found by |
| // name lookup. Instead, any conversion function templates visible in the |
| // context of the use are considered. [...] |
| const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); |
| if (!Record->isCompleteDefinition()) |
| return Found; |
| |
| const UnresolvedSetImpl *Unresolved = Record->getConversionFunctions(); |
| for (UnresolvedSetImpl::iterator U = Unresolved->begin(), |
| UEnd = Unresolved->end(); U != UEnd; ++U) { |
| FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U); |
| if (!ConvTemplate) |
| continue; |
| |
| // When we're performing lookup for the purposes of redeclaration, just |
| // add the conversion function template. When we deduce template |
| // arguments for specializations, we'll end up unifying the return |
| // type of the new declaration with the type of the function template. |
| if (R.isForRedeclaration()) { |
| R.addDecl(ConvTemplate); |
| Found = true; |
| continue; |
| } |
| |
| // C++ [temp.mem]p6: |
| // [...] For each such operator, if argument deduction succeeds |
| // (14.9.2.3), the resulting specialization is used as if found by |
| // name lookup. |
| // |
| // When referencing a conversion function for any purpose other than |
| // a redeclaration (such that we'll be building an expression with the |
| // result), perform template argument deduction and place the |
| // specialization into the result set. We do this to avoid forcing all |
| // callers to perform special deduction for conversion functions. |
| TemplateDeductionInfo Info(R.getSema().Context, R.getNameLoc()); |
| FunctionDecl *Specialization = 0; |
| |
| const FunctionProtoType *ConvProto |
| = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>(); |
| assert(ConvProto && "Nonsensical conversion function template type"); |
| |
| // Compute the type of the function that we would expect the conversion |
| // function to have, if it were to match the name given. |
| // FIXME: Calling convention! |
| FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo(); |
| EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_Default); |
| EPI.ExceptionSpecType = EST_None; |
| EPI.NumExceptions = 0; |
| QualType ExpectedType |
| = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(), |
| 0, 0, EPI); |
| |
| // Perform template argument deduction against the type that we would |
| // expect the function to have. |
| if (R.getSema().DeduceTemplateArguments(ConvTemplate, 0, ExpectedType, |
| Specialization, Info) |
| == Sema::TDK_Success) { |
| R.addDecl(Specialization); |
| Found = true; |
| } |
| } |
| |
| return Found; |
| } |
| |
| // Performs C++ unqualified lookup into the given file context. |
| static bool |
| CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context, |
| DeclContext *NS, UnqualUsingDirectiveSet &UDirs) { |
| |
| assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!"); |
| |
| // Perform direct name lookup into the LookupCtx. |
| bool Found = LookupDirect(S, R, NS); |
| |
| // Perform direct name lookup into the namespaces nominated by the |
| // using directives whose common ancestor is this namespace. |
| UnqualUsingDirectiveSet::const_iterator UI, UEnd; |
| llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(NS); |
| |
| for (; UI != UEnd; ++UI) |
| if (LookupDirect(S, R, UI->getNominatedNamespace())) |
| Found = true; |
| |
| R.resolveKind(); |
| |
| return Found; |
| } |
| |
| static bool isNamespaceOrTranslationUnitScope(Scope *S) { |
| if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) |
| return Ctx->isFileContext(); |
| return false; |
| } |
| |
| // Find the next outer declaration context from this scope. This |
| // routine actually returns the semantic outer context, which may |
| // differ from the lexical context (encoded directly in the Scope |
| // stack) when we are parsing a member of a class template. In this |
| // case, the second element of the pair will be true, to indicate that |
| // name lookup should continue searching in this semantic context when |
| // it leaves the current template parameter scope. |
| static std::pair<DeclContext *, bool> findOuterContext(Scope *S) { |
| DeclContext *DC = static_cast<DeclContext *>(S->getEntity()); |
| DeclContext *Lexical = 0; |
| for (Scope *OuterS = S->getParent(); OuterS; |
| OuterS = OuterS->getParent()) { |
| if (OuterS->getEntity()) { |
| Lexical = static_cast<DeclContext *>(OuterS->getEntity()); |
| break; |
| } |
| } |
| |
| // C++ [temp.local]p8: |
| // In the definition of a member of a class template that appears |
| // outside of the namespace containing the class template |
| // definition, the name of a template-parameter hides the name of |
| // a member of this namespace. |
| // |
| // Example: |
| // |
| // namespace N { |
| // class C { }; |
| // |
| // template<class T> class B { |
| // void f(T); |
| // }; |
| // } |
| // |
| // template<class C> void N::B<C>::f(C) { |
| // C b; // C is the template parameter, not N::C |
| // } |
| // |
| // In this example, the lexical context we return is the |
| // TranslationUnit, while the semantic context is the namespace N. |
| if (!Lexical || !DC || !S->getParent() || |
| !S->getParent()->isTemplateParamScope()) |
| return std::make_pair(Lexical, false); |
| |
| // Find the outermost template parameter scope. |
| // For the example, this is the scope for the template parameters of |
| // template<class C>. |
| Scope *OutermostTemplateScope = S->getParent(); |
| while (OutermostTemplateScope->getParent() && |
| OutermostTemplateScope->getParent()->isTemplateParamScope()) |
| OutermostTemplateScope = OutermostTemplateScope->getParent(); |
| |
| // Find the namespace context in which the original scope occurs. In |
| // the example, this is namespace N. |
| DeclContext *Semantic = DC; |
| while (!Semantic->isFileContext()) |
| Semantic = Semantic->getParent(); |
| |
| // Find the declaration context just outside of the template |
| // parameter scope. This is the context in which the template is |
| // being lexically declaration (a namespace context). In the |
| // example, this is the global scope. |
| if (Lexical->isFileContext() && !Lexical->Equals(Semantic) && |
| Lexical->Encloses(Semantic)) |
| return std::make_pair(Semantic, true); |
| |
| return std::make_pair(Lexical, false); |
| } |
| |
| bool Sema::CppLookupName(LookupResult &R, Scope *S) { |
| assert(getLangOptions().CPlusPlus && "Can perform only C++ lookup"); |
| |
| DeclarationName Name = R.getLookupName(); |
| |
| // If this is the name of an implicitly-declared special member function, |
| // go through the scope stack to implicitly declare |
| if (isImplicitlyDeclaredMemberFunctionName(Name)) { |
| for (Scope *PreS = S; PreS; PreS = PreS->getParent()) |
| if (DeclContext *DC = static_cast<DeclContext *>(PreS->getEntity())) |
| DeclareImplicitMemberFunctionsWithName(*this, Name, DC); |
| } |
| |
| // Implicitly declare member functions with the name we're looking for, if in |
| // fact we are in a scope where it matters. |
| |
| Scope *Initial = S; |
| IdentifierResolver::iterator |
| I = IdResolver.begin(Name), |
| IEnd = IdResolver.end(); |
| |
| // First we lookup local scope. |
| // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir] |
| // ...During unqualified name lookup (3.4.1), the names appear as if |
| // they were declared in the nearest enclosing namespace which contains |
| // both the using-directive and the nominated namespace. |
| // [Note: in this context, "contains" means "contains directly or |
| // indirectly". |
| // |
| // For example: |
| // namespace A { int i; } |
| // void foo() { |
| // int i; |
| // { |
| // using namespace A; |
| // ++i; // finds local 'i', A::i appears at global scope |
| // } |
| // } |
| // |
| DeclContext *OutsideOfTemplateParamDC = 0; |
| for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) { |
| DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()); |
| |
| // Check whether the IdResolver has anything in this scope. |
| bool Found = false; |
| for (; I != IEnd && S->isDeclScope(*I); ++I) { |
| if (NamedDecl *ND = R.getAcceptableDecl(*I)) { |
| Found = true; |
| R.addDecl(ND); |
| } |
| } |
| if (Found) { |
| R.resolveKind(); |
| if (S->isClassScope()) |
| if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx)) |
| R.setNamingClass(Record); |
| return true; |
| } |
| |
| if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC && |
| S->getParent() && !S->getParent()->isTemplateParamScope()) { |
| // We've just searched the last template parameter scope and |
| // found nothing, so look into the the contexts between the |
| // lexical and semantic declaration contexts returned by |
| // findOuterContext(). This implements the name lookup behavior |
| // of C++ [temp.local]p8. |
| Ctx = OutsideOfTemplateParamDC; |
| OutsideOfTemplateParamDC = 0; |
| } |
| |
| if (Ctx) { |
| DeclContext *OuterCtx; |
| bool SearchAfterTemplateScope; |
| llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S); |
| if (SearchAfterTemplateScope) |
| OutsideOfTemplateParamDC = OuterCtx; |
| |
| for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) { |
| // We do not directly look into transparent contexts, since |
| // those entities will be found in the nearest enclosing |
| // non-transparent context. |
| if (Ctx->isTransparentContext()) |
| continue; |
| |
| // We do not look directly into function or method contexts, |
| // since all of the local variables and parameters of the |
| // function/method are present within the Scope. |
| if (Ctx->isFunctionOrMethod()) { |
| // If we have an Objective-C instance method, look for ivars |
| // in the corresponding interface. |
| if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) { |
| if (Method->isInstanceMethod() && Name.getAsIdentifierInfo()) |
| if (ObjCInterfaceDecl *Class = Method->getClassInterface()) { |
| ObjCInterfaceDecl *ClassDeclared; |
| if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable( |
| Name.getAsIdentifierInfo(), |
| ClassDeclared)) { |
| if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) { |
| R.addDecl(ND); |
| R.resolveKind(); |
| return true; |
| } |
| } |
| } |
| } |
| |
| continue; |
| } |
| |
| // Perform qualified name lookup into this context. |
| // FIXME: In some cases, we know that every name that could be found by |
| // this qualified name lookup will also be on the identifier chain. For |
| // example, inside a class without any base classes, we never need to |
| // perform qualified lookup because all of the members are on top of the |
| // identifier chain. |
| if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true)) |
| return true; |
| } |
| } |
| } |
| |
| // Stop if we ran out of scopes. |
| // FIXME: This really, really shouldn't be happening. |
| if (!S) return false; |
| |
| // If we are looking for members, no need to look into global/namespace scope. |
| if (R.getLookupKind() == LookupMemberName) |
| return false; |
| |
| // Collect UsingDirectiveDecls in all scopes, and recursively all |
| // nominated namespaces by those using-directives. |
| // |
| // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we |
| // don't build it for each lookup! |
| |
| UnqualUsingDirectiveSet UDirs; |
| UDirs.visitScopeChain(Initial, S); |
| UDirs.done(); |
| |
| // Lookup namespace scope, and global scope. |
| // Unqualified name lookup in C++ requires looking into scopes |
| // that aren't strictly lexical, and therefore we walk through the |
| // context as well as walking through the scopes. |
| |
| for (; S; S = S->getParent()) { |
| // Check whether the IdResolver has anything in this scope. |
| bool Found = false; |
| for (; I != IEnd && S->isDeclScope(*I); ++I) { |
| if (NamedDecl *ND = R.getAcceptableDecl(*I)) { |
| // We found something. Look for anything else in our scope |
| // with this same name and in an acceptable identifier |
| // namespace, so that we can construct an overload set if we |
| // need to. |
| Found = true; |
| R.addDecl(ND); |
| } |
| } |
| |
| if (Found && S->isTemplateParamScope()) { |
| R.resolveKind(); |
| return true; |
| } |
| |
| DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); |
| if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC && |
| S->getParent() && !S->getParent()->isTemplateParamScope()) { |
| // We've just searched the last template parameter scope and |
| // found nothing, so look into the the contexts between the |
| // lexical and semantic declaration contexts returned by |
| // findOuterContext(). This implements the name lookup behavior |
| // of C++ [temp.local]p8. |
| Ctx = OutsideOfTemplateParamDC; |
| OutsideOfTemplateParamDC = 0; |
| } |
| |
| if (Ctx) { |
| DeclContext *OuterCtx; |
| bool SearchAfterTemplateScope; |
| llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S); |
| if (SearchAfterTemplateScope) |
| OutsideOfTemplateParamDC = OuterCtx; |
| |
| for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) { |
| // We do not directly look into transparent contexts, since |
| // those entities will be found in the nearest enclosing |
| // non-transparent context. |
| if (Ctx->isTransparentContext()) |
| continue; |
| |
| // If we have a context, and it's not a context stashed in the |
| // template parameter scope for an out-of-line definition, also |
| // look into that context. |
| if (!(Found && S && S->isTemplateParamScope())) { |
| assert(Ctx->isFileContext() && |
| "We should have been looking only at file context here already."); |
| |
| // Look into context considering using-directives. |
| if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) |
| Found = true; |
| } |
| |
| if (Found) { |
| R.resolveKind(); |
| return true; |
| } |
| |
| if (R.isForRedeclaration() && !Ctx->isTransparentContext()) |
| return false; |
| } |
| } |
| |
| if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext()) |
| return false; |
| } |
| |
| return !R.empty(); |
| } |
| |
| /// \brief Retrieve the visible declaration corresponding to D, if any. |
| /// |
| /// This routine determines whether the declaration D is visible in the current |
| /// module, with the current imports. If not, it checks whether any |
| /// redeclaration of D is visible, and if so, returns that declaration. |
| /// |
| /// \returns D, or a visible previous declaration of D, whichever is more recent |
| /// and visible. If no declaration of D is visible, returns null. |
| static NamedDecl *getVisibleDecl(NamedDecl *D) { |
| if (LookupResult::isVisible(D)) |
| return D; |
| |
| for (Decl::redecl_iterator RD = D->redecls_begin(), RDEnd = D->redecls_end(); |
| RD != RDEnd; ++RD) { |
| if (NamedDecl *ND = dyn_cast<NamedDecl>(*RD)) { |
| if (LookupResult::isVisible(ND)) |
| return ND; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /// @brief Perform unqualified name lookup starting from a given |
| /// scope. |
| /// |
| /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is |
| /// used to find names within the current scope. For example, 'x' in |
| /// @code |
| /// int x; |
| /// int f() { |
| /// return x; // unqualified name look finds 'x' in the global scope |
| /// } |
| /// @endcode |
| /// |
| /// Different lookup criteria can find different names. For example, a |
| /// particular scope can have both a struct and a function of the same |
| /// name, and each can be found by certain lookup criteria. For more |
| /// information about lookup criteria, see the documentation for the |
| /// class LookupCriteria. |
| /// |
| /// @param S The scope from which unqualified name lookup will |
| /// begin. If the lookup criteria permits, name lookup may also search |
| /// in the parent scopes. |
| /// |
| /// @param Name The name of the entity that we are searching for. |
| /// |
| /// @param Loc If provided, the source location where we're performing |
| /// name lookup. At present, this is only used to produce diagnostics when |
| /// C library functions (like "malloc") are implicitly declared. |
| /// |
| /// @returns The result of name lookup, which includes zero or more |
| /// declarations and possibly additional information used to diagnose |
| /// ambiguities. |
| bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) { |
| DeclarationName Name = R.getLookupName(); |
| if (!Name) return false; |
| |
| LookupNameKind NameKind = R.getLookupKind(); |
| |
| if (!getLangOptions().CPlusPlus) { |
| // Unqualified name lookup in C/Objective-C is purely lexical, so |
| // search in the declarations attached to the name. |
| if (NameKind == Sema::LookupRedeclarationWithLinkage) { |
| // Find the nearest non-transparent declaration scope. |
| while (!(S->getFlags() & Scope::DeclScope) || |
| (S->getEntity() && |
| static_cast<DeclContext *>(S->getEntity()) |
| ->isTransparentContext())) |
| S = S->getParent(); |
| } |
| |
| unsigned IDNS = R.getIdentifierNamespace(); |
| |
| // Scan up the scope chain looking for a decl that matches this |
| // identifier that is in the appropriate namespace. This search |
| // should not take long, as shadowing of names is uncommon, and |
| // deep shadowing is extremely uncommon. |
| bool LeftStartingScope = false; |
| |
| for (IdentifierResolver::iterator I = IdResolver.begin(Name), |
| IEnd = IdResolver.end(); |
| I != IEnd; ++I) |
| if ((*I)->isInIdentifierNamespace(IDNS)) { |
| if (NameKind == LookupRedeclarationWithLinkage) { |
| // Determine whether this (or a previous) declaration is |
| // out-of-scope. |
| if (!LeftStartingScope && !S->isDeclScope(*I)) |
| LeftStartingScope = true; |
| |
| // If we found something outside of our starting scope that |
| // does not have linkage, skip it. |
| if (LeftStartingScope && !((*I)->hasLinkage())) |
| continue; |
| } |
| else if (NameKind == LookupObjCImplicitSelfParam && |
| !isa<ImplicitParamDecl>(*I)) |
| continue; |
| |
| // If this declaration is module-private and it came from an AST |
| // file, we can't see it. |
| NamedDecl *D = R.isHiddenDeclarationVisible()? *I : getVisibleDecl(*I); |
| if (!D) |
| continue; |
| |
| R.addDecl(D); |
| |
| // Check whether there are any other declarations with the same name |
| // and in the same scope. |
| if (I != IEnd) { |
| // Find the scope in which this declaration was declared (if it |
| // actually exists in a Scope). |
| while (S && !S->isDeclScope(D)) |
| S = S->getParent(); |
| |
| // If the scope containing the declaration is the translation unit, |
| // then we'll need to perform our checks based on the matching |
| // DeclContexts rather than matching scopes. |
| if (S && isNamespaceOrTranslationUnitScope(S)) |
| S = 0; |
| |
| // Compute the DeclContext, if we need it. |
| DeclContext *DC = 0; |
| if (!S) |
| DC = (*I)->getDeclContext()->getRedeclContext(); |
| |
| IdentifierResolver::iterator LastI = I; |
| for (++LastI; LastI != IEnd; ++LastI) { |
| if (S) { |
| // Match based on scope. |
| if (!S->isDeclScope(*LastI)) |
| break; |
| } else { |
| // Match based on DeclContext. |
| DeclContext *LastDC |
| = (*LastI)->getDeclContext()->getRedeclContext(); |
| if (!LastDC->Equals(DC)) |
| break; |
| } |
| |
| // If the declaration isn't in the right namespace, skip it. |
| if (!(*LastI)->isInIdentifierNamespace(IDNS)) |
| continue; |
| |
| D = R.isHiddenDeclarationVisible()? *LastI : getVisibleDecl(*LastI); |
| if (D) |
| R.addDecl(D); |
| } |
| |
| R.resolveKind(); |
| } |
| return true; |
| } |
| } else { |
| // Perform C++ unqualified name lookup. |
| if (CppLookupName(R, S)) |
| return true; |
| } |
| |
| // If we didn't find a use of this identifier, and if the identifier |
| // corresponds to a compiler builtin, create the decl object for the builtin |
| // now, injecting it into translation unit scope, and return it. |
| if (AllowBuiltinCreation && LookupBuiltin(*this, R)) |
| return true; |
| |
| // If we didn't find a use of this identifier, the ExternalSource |
| // may be able to handle the situation. |
| // Note: some lookup failures are expected! |
| // See e.g. R.isForRedeclaration(). |
| return (ExternalSource && ExternalSource->LookupUnqualified(R, S)); |
| } |
| |
| /// @brief Perform qualified name lookup in the namespaces nominated by |
| /// using directives by the given context. |
| /// |
| /// C++98 [namespace.qual]p2: |
| /// Given X::m (where X is a user-declared namespace), or given ::m |
| /// (where X is the global namespace), let S be the set of all |
| /// declarations of m in X and in the transitive closure of all |
| /// namespaces nominated by using-directives in X and its used |
| /// namespaces, except that using-directives are ignored in any |
| /// namespace, including X, directly containing one or more |
| /// declarations of m. No namespace is searched more than once in |
| /// the lookup of a name. If S is the empty set, the program is |
| /// ill-formed. Otherwise, if S has exactly one member, or if the |
| /// context of the reference is a using-declaration |
| /// (namespace.udecl), S is the required set of declarations of |
| /// m. Otherwise if the use of m is not one that allows a unique |
| /// declaration to be chosen from S, the program is ill-formed. |
| /// C++98 [namespace.qual]p5: |
| /// During the lookup of a qualified namespace member name, if the |
| /// lookup finds more than one declaration of the member, and if one |
| /// declaration introduces a class name or enumeration name and the |
| /// other declarations either introduce the same object, the same |
| /// enumerator or a set of functions, the non-type name hides the |
| /// class or enumeration name if and only if the declarations are |
| /// from the same namespace; otherwise (the declarations are from |
| /// different namespaces), the program is ill-formed. |
| static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R, |
| DeclContext *StartDC) { |
| assert(StartDC->isFileContext() && "start context is not a file context"); |
| |
| DeclContext::udir_iterator I = StartDC->using_directives_begin(); |
| DeclContext::udir_iterator E = StartDC->using_directives_end(); |
| |
| if (I == E) return false; |
| |
| // We have at least added all these contexts to the queue. |
| llvm::DenseSet<DeclContext*> Visited; |
| Visited.insert(StartDC); |
| |
| // We have not yet looked into these namespaces, much less added |
| // their "using-children" to the queue. |
| SmallVector<NamespaceDecl*, 8> Queue; |
| |
| // We have already looked into the initial namespace; seed the queue |
| // with its using-children. |
| for (; I != E; ++I) { |
| NamespaceDecl *ND = (*I)->getNominatedNamespace()->getOriginalNamespace(); |
| if (Visited.insert(ND).second) |
| Queue.push_back(ND); |
| } |
| |
| // The easiest way to implement the restriction in [namespace.qual]p5 |
| // is to check whether any of the individual results found a tag |
| // and, if so, to declare an ambiguity if the final result is not |
| // a tag. |
| bool FoundTag = false; |
| bool FoundNonTag = false; |
| |
| LookupResult LocalR(LookupResult::Temporary, R); |
| |
| bool Found = false; |
| while (!Queue.empty()) { |
| NamespaceDecl *ND = Queue.back(); |
| Queue.pop_back(); |
| |
| // We go through some convolutions here to avoid copying results |
| // between LookupResults. |
| bool UseLocal = !R.empty(); |
| LookupResult &DirectR = UseLocal ? LocalR : R; |
| bool FoundDirect = LookupDirect(S, DirectR, ND); |
| |
| if (FoundDirect) { |
| // First do any local hiding. |
| DirectR.resolveKind(); |
| |
| // If the local result is a tag, remember that. |
| if (DirectR.isSingleTagDecl()) |
| FoundTag = true; |
| else |
| FoundNonTag = true; |
| |
| // Append the local results to the total results if necessary. |
| if (UseLocal) { |
| R.addAllDecls(LocalR); |
| LocalR.clear(); |
| } |
| } |
| |
| // If we find names in this namespace, ignore its using directives. |
| if (FoundDirect) { |
| Found = true; |
| continue; |
| } |
| |
| for (llvm::tie(I,E) = ND->getUsingDirectives(); I != E; ++I) { |
| NamespaceDecl *Nom = (*I)->getNominatedNamespace(); |
| if (Visited.insert(Nom).second) |
| Queue.push_back(Nom); |
| } |
| } |
| |
| if (Found) { |
| if (FoundTag && FoundNonTag) |
| R.setAmbiguousQualifiedTagHiding(); |
| else |
| R.resolveKind(); |
| } |
| |
| return Found; |
| } |
| |
| /// \brief Callback that looks for any member of a class with the given name. |
| static bool LookupAnyMember(const CXXBaseSpecifier *Specifier, |
| CXXBasePath &Path, |
| void *Name) { |
| RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl(); |
| |
| DeclarationName N = DeclarationName::getFromOpaquePtr(Name); |
| Path.Decls = BaseRecord->lookup(N); |
| return Path.Decls.first != Path.Decls.second; |
| } |
| |
| /// \brief Determine whether the given set of member declarations contains only |
| /// static members, nested types, and enumerators. |
| template<typename InputIterator> |
| static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) { |
| Decl *D = (*First)->getUnderlyingDecl(); |
| if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D)) |
| return true; |
| |
| if (isa<CXXMethodDecl>(D)) { |
| // Determine whether all of the methods are static. |
| bool AllMethodsAreStatic = true; |
| for(; First != Last; ++First) { |
| D = (*First)->getUnderlyingDecl(); |
| |
| if (!isa<CXXMethodDecl>(D)) { |
| assert(isa<TagDecl>(D) && "Non-function must be a tag decl"); |
| break; |
| } |
| |
| if (!cast<CXXMethodDecl>(D)->isStatic()) { |
| AllMethodsAreStatic = false; |
| break; |
| } |
| } |
| |
| if (AllMethodsAreStatic) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// \brief Perform qualified name lookup into a given context. |
| /// |
| /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find |
| /// names when the context of those names is explicit specified, e.g., |
| /// "std::vector" or "x->member", or as part of unqualified name lookup. |
| /// |
| /// Different lookup criteria can find different names. For example, a |
| /// particular scope can have both a struct and a function of the same |
| /// name, and each can be found by certain lookup criteria. For more |
| /// information about lookup criteria, see the documentation for the |
| /// class LookupCriteria. |
| /// |
| /// \param R captures both the lookup criteria and any lookup results found. |
| /// |
| /// \param LookupCtx The context in which qualified name lookup will |
| /// search. If the lookup criteria permits, name lookup may also search |
| /// in the parent contexts or (for C++ classes) base classes. |
| /// |
| /// \param InUnqualifiedLookup true if this is qualified name lookup that |
| /// occurs as part of unqualified name lookup. |
| /// |
| /// \returns true if lookup succeeded, false if it failed. |
| bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, |
| bool InUnqualifiedLookup) { |
| assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context"); |
| |
| if (!R.getLookupName()) |
| return false; |
| |
| // Make sure that the declaration context is complete. |
| assert((!isa<TagDecl>(LookupCtx) || |
| LookupCtx->isDependentContext() || |
| cast<TagDecl>(LookupCtx)->isCompleteDefinition() || |
| Context.getTypeDeclType(cast<TagDecl>(LookupCtx))->getAs<TagType>() |
| ->isBeingDefined()) && |
| "Declaration context must already be complete!"); |
| |
| // Perform qualified name lookup into the LookupCtx. |
| if (LookupDirect(*this, R, LookupCtx)) { |
| R.resolveKind(); |
| if (isa<CXXRecordDecl>(LookupCtx)) |
| R.setNamingClass(cast<CXXRecordDecl>(LookupCtx)); |
| return true; |
| } |
| |
| // Don't descend into implied contexts for redeclarations. |
| // C++98 [namespace.qual]p6: |
| // In a declaration for a namespace member in which the |
| // declarator-id is a qualified-id, given that the qualified-id |
| // for the namespace member has the form |
| // nested-name-specifier unqualified-id |
| // the unqualified-id shall name a member of the namespace |
| // designated by the nested-name-specifier. |
| // See also [class.mfct]p5 and [class.static.data]p2. |
| if (R.isForRedeclaration()) |
| return false; |
| |
| // If this is a namespace, look it up in the implied namespaces. |
| if (LookupCtx->isFileContext()) |
| return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx); |
| |
| // If this isn't a C++ class, we aren't allowed to look into base |
| // classes, we're done. |
| CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx); |
| if (!LookupRec || !LookupRec->getDefinition()) |
| return false; |
| |
| // If we're performing qualified name lookup into a dependent class, |
| // then we are actually looking into a current instantiation. If we have any |
| // dependent base classes, then we either have to delay lookup until |
| // template instantiation time (at which point all bases will be available) |
| // or we have to fail. |
| if (!InUnqualifiedLookup && LookupRec->isDependentContext() && |
| LookupRec->hasAnyDependentBases()) { |
| R.setNotFoundInCurrentInstantiation(); |
| return false; |
| } |
| |
| // Perform lookup into our base classes. |
| CXXBasePaths Paths; |
| Paths.setOrigin(LookupRec); |
| |
| // Look for this member in our base classes |
| CXXRecordDecl::BaseMatchesCallback *BaseCallback = 0; |
| switch (R.getLookupKind()) { |
| case LookupObjCImplicitSelfParam: |
| case LookupOrdinaryName: |
| case LookupMemberName: |
| case LookupRedeclarationWithLinkage: |
| BaseCallback = &CXXRecordDecl::FindOrdinaryMember; |
| break; |
| |
| case LookupTagName: |
| BaseCallback = &CXXRecordDecl::FindTagMember; |
| break; |
| |
| case LookupAnyName: |
| BaseCallback = &LookupAnyMember; |
| break; |
| |
| case LookupUsingDeclName: |
| // This lookup is for redeclarations only. |
| |
| case LookupOperatorName: |
| case LookupNamespaceName: |
| case LookupObjCProtocolName: |
| case LookupLabel: |
| // These lookups will never find a member in a C++ class (or base class). |
| return false; |
| |
| case LookupNestedNameSpecifierName: |
| BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember; |
| break; |
| } |
| |
| if (!LookupRec->lookupInBases(BaseCallback, |
| R.getLookupName().getAsOpaquePtr(), Paths)) |
| return false; |
| |
| R.setNamingClass(LookupRec); |
| |
| // C++ [class.member.lookup]p2: |
| // [...] If the resulting set of declarations are not all from |
| // sub-objects of the same type, or the set has a nonstatic member |
| // and includes members from distinct sub-objects, there is an |
| // ambiguity and the program is ill-formed. Otherwise that set is |
| // the result of the lookup. |
| QualType SubobjectType; |
| int SubobjectNumber = 0; |
| AccessSpecifier SubobjectAccess = AS_none; |
| |
| for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end(); |
| Path != PathEnd; ++Path) { |
| const CXXBasePathElement &PathElement = Path->back(); |
| |
| // Pick the best (i.e. most permissive i.e. numerically lowest) access |
| // across all paths. |
| SubobjectAccess = std::min(SubobjectAccess, Path->Access); |
| |
| // Determine whether we're looking at a distinct sub-object or not. |
| if (SubobjectType.isNull()) { |
| // This is the first subobject we've looked at. Record its type. |
| SubobjectType = Context.getCanonicalType(PathElement.Base->getType()); |
| SubobjectNumber = PathElement.SubobjectNumber; |
| continue; |
| } |
| |
| if (SubobjectType |
| != Context.getCanonicalType(PathElement.Base->getType())) { |
| // We found members of the given name in two subobjects of |
| // different types. If the declaration sets aren't the same, this |
| // this lookup is ambiguous. |
| if (HasOnlyStaticMembers(Path->Decls.first, Path->Decls.second)) { |
| CXXBasePaths::paths_iterator FirstPath = Paths.begin(); |
| DeclContext::lookup_iterator FirstD = FirstPath->Decls.first; |
| DeclContext::lookup_iterator CurrentD = Path->Decls.first; |
| |
| while (FirstD != FirstPath->Decls.second && |
| CurrentD != Path->Decls.second) { |
| if ((*FirstD)->getUnderlyingDecl()->getCanonicalDecl() != |
| (*CurrentD)->getUnderlyingDecl()->getCanonicalDecl()) |
| break; |
| |
| ++FirstD; |
| ++CurrentD; |
| } |
| |
| if (FirstD == FirstPath->Decls.second && |
| CurrentD == Path->Decls.second) |
| continue; |
| } |
| |
| R.setAmbiguousBaseSubobjectTypes(Paths); |
| return true; |
| } |
| |
| if (SubobjectNumber != PathElement.SubobjectNumber) { |
| // We have a different subobject of the same type. |
| |
| // C++ [class.member.lookup]p5: |
| // A static member, a nested type or an enumerator defined in |
| // a base class T can unambiguously be found even if an object |
| // has more than one base class subobject of type T. |
| if (HasOnlyStaticMembers(Path->Decls.first, Path->Decls.second)) |
| continue; |
| |
| // We have found a nonstatic member name in multiple, distinct |
| // subobjects. Name lookup is ambiguous. |
| R.setAmbiguousBaseSubobjects(Paths); |
| return true; |
| } |
| } |
| |
| // Lookup in a base class succeeded; return these results. |
| |
| DeclContext::lookup_iterator I, E; |
| for (llvm::tie(I,E) = Paths.front().Decls; I != E; ++I) { |
| NamedDecl *D = *I; |
| AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess, |
| D->getAccess()); |
| R.addDecl(D, AS); |
| } |
| R.resolveKind(); |
| return true; |
| } |
| |
| /// @brief Performs name lookup for a name that was parsed in the |
| /// source code, and may contain a C++ scope specifier. |
| /// |
| /// This routine is a convenience routine meant to be called from |
| /// contexts that receive a name and an optional C++ scope specifier |
| /// (e.g., "N::M::x"). It will then perform either qualified or |
| /// unqualified name lookup (with LookupQualifiedName or LookupName, |
| /// respectively) on the given name and return those results. |
| /// |
| /// @param S The scope from which unqualified name lookup will |
| /// begin. |
| /// |
| /// @param SS An optional C++ scope-specifier, e.g., "::N::M". |
| /// |
| /// @param EnteringContext Indicates whether we are going to enter the |
| /// context of the scope-specifier SS (if present). |
| /// |
| /// @returns True if any decls were found (but possibly ambiguous) |
| bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS, |
| bool AllowBuiltinCreation, bool EnteringContext) { |
| if (SS && SS->isInvalid()) { |
| // When the scope specifier is invalid, don't even look for |
| // anything. |
| return false; |
| } |
| |
| if (SS && SS->isSet()) { |
| if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) { |
| // We have resolved the scope specifier to a particular declaration |
| // contex, and will perform name lookup in that context. |
| if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC)) |
| return false; |
| |
| R.setContextRange(SS->getRange()); |
| return LookupQualifiedName(R, DC); |
| } |
| |
| // We could not resolve the scope specified to a specific declaration |
| // context, which means that SS refers to an unknown specialization. |
| // Name lookup can't find anything in this case. |
| R.setNotFoundInCurrentInstantiation(); |
| R.setContextRange(SS->getRange()); |
| return false; |
| } |
| |
| // Perform unqualified name lookup starting in the given scope. |
| return LookupName(R, S, AllowBuiltinCreation); |
| } |
| |
| |
| /// @brief Produce a diagnostic describing the ambiguity that resulted |
| /// from name lookup. |
| /// |
| /// @param Result The ambiguous name lookup result. |
| /// |
| /// @param Name The name of the entity that name lookup was |
| /// searching for. |
| /// |
| /// @param NameLoc The location of the name within the source code. |
| /// |
| /// @param LookupRange A source range that provides more |
| /// source-location information concerning the lookup itself. For |
| /// example, this range might highlight a nested-name-specifier that |
| /// precedes the name. |
| /// |
| /// @returns true |
| bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result) { |
| assert(Result.isAmbiguous() && "Lookup result must be ambiguous"); |
| |
| DeclarationName Name = Result.getLookupName(); |
| SourceLocation NameLoc = Result.getNameLoc(); |
| SourceRange LookupRange = Result.getContextRange(); |
| |
| switch (Result.getAmbiguityKind()) { |
| case LookupResult::AmbiguousBaseSubobjects: { |
| CXXBasePaths *Paths = Result.getBasePaths(); |
| QualType SubobjectType = Paths->front().back().Base->getType(); |
| Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects) |
| << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths) |
| << LookupRange; |
| |
| DeclContext::lookup_iterator Found = Paths->front().Decls.first; |
| while (isa<CXXMethodDecl>(*Found) && |
| cast<CXXMethodDecl>(*Found)->isStatic()) |
| ++Found; |
| |
| Diag((*Found)->getLocation(), diag::note_ambiguous_member_found); |
| |
| return true; |
| } |
| |
| case LookupResult::AmbiguousBaseSubobjectTypes: { |
| Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types) |
| << Name << LookupRange; |
| |
| CXXBasePaths *Paths = Result.getBasePaths(); |
| std::set<Decl *> DeclsPrinted; |
| for (CXXBasePaths::paths_iterator Path = Paths->begin(), |
| PathEnd = Paths->end(); |
| Path != PathEnd; ++Path) { |
| Decl *D = *Path->Decls.first; |
| if (DeclsPrinted.insert(D).second) |
| Diag(D->getLocation(), diag::note_ambiguous_member_found); |
| } |
| |
| return true; |
| } |
| |
| case LookupResult::AmbiguousTagHiding: { |
| Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange; |
| |
| llvm::SmallPtrSet<NamedDecl*,8> TagDecls; |
| |
| LookupResult::iterator DI, DE = Result.end(); |
| for (DI = Result.begin(); DI != DE; ++DI) |
| if (TagDecl *TD = dyn_cast<TagDecl>(*DI)) { |
| TagDecls.insert(TD); |
| Diag(TD->getLocation(), diag::note_hidden_tag); |
| } |
| |
| for (DI = Result.begin(); DI != DE; ++DI) |
| if (!isa<TagDecl>(*DI)) |
| Diag((*DI)->getLocation(), diag::note_hiding_object); |
| |
| // For recovery purposes, go ahead and implement the hiding. |
| LookupResult::Filter F = Result.makeFilter(); |
| while (F.hasNext()) { |
| if (TagDecls.count(F.next())) |
| F.erase(); |
| } |
| F.done(); |
| |
| return true; |
| } |
| |
| case LookupResult::AmbiguousReference: { |
| Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange; |
| |
| LookupResult::iterator DI = Result.begin(), DE = Result.end(); |
| for (; DI != DE; ++DI) |
| Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI; |
| |
| return true; |
| } |
| } |
| |
| llvm_unreachable("unknown ambiguity kind"); |
| } |
| |
| namespace { |
| struct AssociatedLookup { |
| AssociatedLookup(Sema &S, |
| Sema::AssociatedNamespaceSet &Namespaces, |
| Sema::AssociatedClassSet &Classes) |
| : S(S), Namespaces(Namespaces), Classes(Classes) { |
| } |
| |
| Sema &S; |
| Sema::AssociatedNamespaceSet &Namespaces; |
| Sema::AssociatedClassSet &Classes; |
| }; |
| } |
| |
| static void |
| addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T); |
| |
| static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces, |
| DeclContext *Ctx) { |
| // Add the associated namespace for this class. |
| |
| // We don't use DeclContext::getEnclosingNamespaceContext() as this may |
| // be a locally scoped record. |
| |
| // We skip out of inline namespaces. The innermost non-inline namespace |
| // contains all names of all its nested inline namespaces anyway, so we can |
| // replace the entire inline namespace tree with its root. |
| while (Ctx->isRecord() || Ctx->isTransparentContext() || |
| Ctx->isInlineNamespace()) |
| Ctx = Ctx->getParent(); |
| |
| if (Ctx->isFileContext()) |
| Namespaces.insert(Ctx->getPrimaryContext()); |
| } |
| |
| // \brief Add the associated classes and namespaces for argument-dependent |
| // lookup that involves a template argument (C++ [basic.lookup.koenig]p2). |
| static void |
| addAssociatedClassesAndNamespaces(AssociatedLookup &Result, |
| const TemplateArgument &Arg) { |
| // C++ [basic.lookup.koenig]p2, last bullet: |
| // -- [...] ; |
| switch (Arg.getKind()) { |
| case TemplateArgument::Null: |
| break; |
| |
| case TemplateArgument::Type: |
| // [...] the namespaces and classes associated with the types of the |
| // template arguments provided for template type parameters (excluding |
| // template template parameters) |
| addAssociatedClassesAndNamespaces(Result, Arg.getAsType()); |
| break; |
| |
| case TemplateArgument::Template: |
| case TemplateArgument::TemplateExpansion: { |
| // [...] the namespaces in which any template template arguments are |
| // defined; and the classes in which any member templates used as |
| // template template arguments are defined. |
| TemplateName Template = Arg.getAsTemplateOrTemplatePattern(); |
| if (ClassTemplateDecl *ClassTemplate |
| = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) { |
| DeclContext *Ctx = ClassTemplate->getDeclContext(); |
| if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) |
| Result.Classes.insert(EnclosingClass); |
| // Add the associated namespace for this class. |
| CollectEnclosingNamespace(Result.Namespaces, Ctx); |
| } |
| break; |
| } |
| |
| case TemplateArgument::Declaration: |
| case TemplateArgument::Integral: |
| case TemplateArgument::Expression: |
| // [Note: non-type template arguments do not contribute to the set of |
| // associated namespaces. ] |
| break; |
| |
| case TemplateArgument::Pack: |
| for (TemplateArgument::pack_iterator P = Arg.pack_begin(), |
| PEnd = Arg.pack_end(); |
| P != PEnd; ++P) |
| addAssociatedClassesAndNamespaces(Result, *P); |
| break; |
| } |
| } |
| |
| // \brief Add the associated classes and namespaces for |
| // argument-dependent lookup with an argument of class type |
| // (C++ [basic.lookup.koenig]p2). |
| static void |
| addAssociatedClassesAndNamespaces(AssociatedLookup &Result, |
| CXXRecordDecl *Class) { |
| |
| // Just silently ignore anything whose name is __va_list_tag. |
| if (Class->getDeclName() == Result.S.VAListTagName) |
| return; |
| |
| // C++ [basic.lookup.koenig]p2: |
| // [...] |
| // -- If T is a class type (including unions), its associated |
| // classes are: the class itself; the class of which it is a |
| // member, if any; and its direct and indirect base |
| // classes. Its associated namespaces are the namespaces in |
| // which its associated classes are defined. |
| |
| // Add the class of which it is a member, if any. |
| DeclContext *Ctx = Class->getDeclContext(); |
| if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) |
| Result.Classes.insert(EnclosingClass); |
| // Add the associated namespace for this class. |
| CollectEnclosingNamespace(Result.Namespaces, Ctx); |
| |
| // Add the class itself. If we've already seen this class, we don't |
| // need to visit base classes. |
| if (!Result.Classes.insert(Class)) |
| return; |
| |
| // -- If T is a template-id, its associated namespaces and classes are |
| // the namespace in which the template is defined; for member |
| // templates, the member template's class; the namespaces and classes |
| // associated with the types of the template arguments provided for |
| // template type parameters (excluding template template parameters); the |
| // namespaces in which any template template arguments are defined; and |
| // the classes in which any member templates used as template template |
| // arguments are defined. [Note: non-type template arguments do not |
| // contribute to the set of associated namespaces. ] |
| if (ClassTemplateSpecializationDecl *Spec |
| = dyn_cast<ClassTemplateSpecializationDecl>(Class)) { |
| DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext(); |
| if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) |
| Result.Classes.insert(EnclosingClass); |
| // Add the associated namespace for this class. |
| CollectEnclosingNamespace(Result.Namespaces, Ctx); |
| |
| const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); |
| for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) |
| addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]); |
| } |
| |
| // Only recurse into base classes for complete types. |
| if (!Class->hasDefinition()) { |
| // FIXME: we might need to instantiate templates here |
| return; |
| } |
| |
| // Add direct and indirect base classes along with their associated |
| // namespaces. |
| SmallVector<CXXRecordDecl *, 32> Bases; |
| Bases.push_back(Class); |
| while (!Bases.empty()) { |
| // Pop this class off the stack. |
| Class = Bases.back(); |
| Bases.pop_back(); |
| |
| // Visit the base classes. |
| for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(), |
| BaseEnd = Class->bases_end(); |
| Base != BaseEnd; ++Base) { |
| const RecordType *BaseType = Base->getType()->getAs<RecordType>(); |
| // In dependent contexts, we do ADL twice, and the first time around, |
| // the base type might be a dependent TemplateSpecializationType, or a |
| // TemplateTypeParmType. If that happens, simply ignore it. |
| // FIXME: If we want to support export, we probably need to add the |
| // namespace of the template in a TemplateSpecializationType, or even |
| // the classes and namespaces of known non-dependent arguments. |
| if (!BaseType) |
| continue; |
| CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl()); |
| if (Result.Classes.insert(BaseDecl)) { |
| // Find the associated namespace for this base class. |
| DeclContext *BaseCtx = BaseDecl->getDeclContext(); |
| CollectEnclosingNamespace(Result.Namespaces, BaseCtx); |
| |
| // Make sure we visit the bases of this base class. |
| if (BaseDecl->bases_begin() != BaseDecl->bases_end()) |
| Bases.push_back(BaseDecl); |
| } |
| } |
| } |
| } |
| |
| // \brief Add the associated classes and namespaces for |
| // argument-dependent lookup with an argument of type T |
| // (C++ [basic.lookup.koenig]p2). |
| static void |
| addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) { |
| // C++ [basic.lookup.koenig]p2: |
| // |
| // For each argument type T in the function call, there is a set |
| // of zero or more associated namespaces and a set of zero or more |
| // associated classes to be considered. The sets of namespaces and |
| // classes is determined entirely by the types of the function |
| // arguments (and the namespace of any template template |
| // argument). Typedef names and using-declarations used to specify |
| // the types do not contribute to this set. The sets of namespaces |
| // and classes are determined in the following way: |
| |
| SmallVector<const Type *, 16> Queue; |
| const Type *T = Ty->getCanonicalTypeInternal().getTypePtr(); |
| |
| while (true) { |
| switch (T->getTypeClass()) { |
| |
| #define TYPE(Class, Base) |
| #define DEPENDENT_TYPE(Class, Base) case Type::Class: |
| #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: |
| #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: |
| #define ABSTRACT_TYPE(Class, Base) |
| #include "clang/AST/TypeNodes.def" |
| // T is canonical. We can also ignore dependent types because |
| // we don't need to do ADL at the definition point, but if we |
| // wanted to implement template export (or if we find some other |
| // use for associated classes and namespaces...) this would be |
| // wrong. |
| break; |
| |
| // -- If T is a pointer to U or an array of U, its associated |
| // namespaces and classes are those associated with U. |
| case Type::Pointer: |
| T = cast<PointerType>(T)->getPointeeType().getTypePtr(); |
| continue; |
| case Type::ConstantArray: |
| case Type::IncompleteArray: |
| case Type::VariableArray: |
| T = cast<ArrayType>(T)->getElementType().getTypePtr(); |
| continue; |
| |
| // -- If T is a fundamental type, its associated sets of |
| // namespaces and classes are both empty. |
| case Type::Builtin: |
| break; |
| |
| // -- If T is a class type (including unions), its associated |
| // classes are: the class itself; the class of which it is a |
| // member, if any; and its direct and indirect base |
| // classes. Its associated namespaces are the namespaces in |
| // which its associated classes are defined. |
| case Type::Record: { |
| CXXRecordDecl *Class |
| = cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl()); |
| addAssociatedClassesAndNamespaces(Result, Class); |
| break; |
| } |
| |
| // -- If T is an enumeration type, its associated namespace is |
| // the namespace in which it is defined. If it is class |
| // member, its associated class is the member's class; else |
| // it has no associated class. |
| case Type::Enum: { |
| EnumDecl *Enum = cast<EnumType>(T)->getDecl(); |
| |
| DeclContext *Ctx = Enum->getDeclContext(); |
| if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) |
| Result.Classes.insert(EnclosingClass); |
| |
| // Add the associated namespace for this class. |
| CollectEnclosingNamespace(Result.Namespaces, Ctx); |
| |
| break; |
| } |
| |
| // -- If T is a function type, its associated namespaces and |
| // classes are those associated with the function parameter |
| // types and those associated with the return type. |
| case Type::FunctionProto: { |
| const FunctionProtoType *Proto = cast<FunctionProtoType>(T); |
| for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(), |
| ArgEnd = Proto->arg_type_end(); |
| Arg != ArgEnd; ++Arg) |
| Queue.push_back(Arg->getTypePtr()); |
| // fallthrough |
| } |
| case Type::FunctionNoProto: { |
| const FunctionType *FnType = cast<FunctionType>(T); |
| T = FnType->getResultType().getTypePtr(); |
| continue; |
| } |
| |
| // -- If T is a pointer to a member function of a class X, its |
| // associated namespaces and classes are those associated |
| // with the function parameter types and return type, |
| // together with those associated with X. |
| // |
| // -- If T is a pointer to a data member of class X, its |
| // associated namespaces and classes are those associated |
| // with the member type together with those associated with |
| // X. |
| case Type::MemberPointer: { |
| const MemberPointerType *MemberPtr = cast<MemberPointerType>(T); |
| |
| // Queue up the class type into which this points. |
| Queue.push_back(MemberPtr->getClass()); |
| |
| // And directly continue with the pointee type. |
| T = MemberPtr->getPointeeType().getTypePtr(); |
| continue; |
| } |
| |
| // As an extension, treat this like a normal pointer. |
| case Type::BlockPointer: |
| T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr(); |
| continue; |
| |
| // References aren't covered by the standard, but that's such an |
| // obvious defect that we cover them anyway. |
| case Type::LValueReference: |
| case Type::RValueReference: |
| T = cast<ReferenceType>(T)->getPointeeType().getTypePtr(); |
| continue; |
| |
| // These are fundamental types. |
| case Type::Vector: |
| case Type::ExtVector: |
| case Type::Complex: |
| break; |
| |
| // If T is an Objective-C object or interface type, or a pointer to an |
| // object or interface type, the associated namespace is the global |
| // namespace. |
| case Type::ObjCObject: |
| case Type::ObjCInterface: |
| case Type::ObjCObjectPointer: |
| Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl()); |
| break; |
| |
| // Atomic types are just wrappers; use the associations of the |
| // contained type. |
| case Type::Atomic: |
| T = cast<AtomicType>(T)->getValueType().getTypePtr(); |
| continue; |
| } |
| |
| if (Queue.empty()) break; |
| T = Queue.back(); |
| Queue.pop_back(); |
| } |
| } |
| |
| /// \brief Find the associated classes and namespaces for |
| /// argument-dependent lookup for a call with the given set of |
| /// arguments. |
| /// |
| /// This routine computes the sets of associated classes and associated |
| /// namespaces searched by argument-dependent lookup |
| /// (C++ [basic.lookup.argdep]) for a given set of arguments. |
| void |
| Sema::FindAssociatedClassesAndNamespaces(Expr **Args, unsigned NumArgs, |
| AssociatedNamespaceSet &AssociatedNamespaces, |
| AssociatedClassSet &AssociatedClasses) { |
| AssociatedNamespaces.clear(); |
| AssociatedClasses.clear(); |
| |
| AssociatedLookup Result(*this, AssociatedNamespaces, AssociatedClasses); |
| |
| // C++ [basic.lookup.koenig]p2: |
| // For each argument type T in the function call, there is a set |
| // of zero or more associated namespaces and a set of zero or more |
| // associated classes to be considered. The sets of namespaces and |
| // classes is determined entirely by the types of the function |
| // arguments (and the namespace of any template template |
| // argument). |
| for (unsigned ArgIdx = 0; ArgIdx != NumArgs; ++ArgIdx) { |
| Expr *Arg = Args[ArgIdx]; |
| |
| if (Arg->getType() != Context.OverloadTy) { |
| addAssociatedClassesAndNamespaces(Result, Arg->getType()); |
| continue; |
| } |
| |
| // [...] In addition, if the argument is the name or address of a |
| // set of overloaded functions and/or function templates, its |
| // associated classes and namespaces are the union of those |
| // associated with each of the members of the set: the namespace |
| // in which the function or function template is defined and the |
| // classes and namespaces associated with its (non-dependent) |
| // parameter types and return type. |
| Arg = Arg->IgnoreParens(); |
| if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg)) |
| if (unaryOp->getOpcode() == UO_AddrOf) |
| Arg = unaryOp->getSubExpr(); |
| |
| UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg); |
| if (!ULE) continue; |
| |
| for (UnresolvedSetIterator I = ULE->decls_begin(), E = ULE->decls_end(); |
| I != E; ++I) { |
| // Look through any using declarations to find the underlying function. |
| NamedDecl *Fn = (*I)->getUnderlyingDecl(); |
| |
| FunctionDecl *FDecl = dyn_cast<FunctionDecl>(Fn); |
| if (!FDecl) |
| FDecl = cast<FunctionTemplateDecl>(Fn)->getTemplatedDecl(); |
| |
| // Add the classes and namespaces associated with the parameter |
| // types and return type of this function. |
| addAssociatedClassesAndNamespaces(Result, FDecl->getType()); |
| } |
| } |
| } |
| |
| /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is |
| /// an acceptable non-member overloaded operator for a call whose |
| /// arguments have types T1 (and, if non-empty, T2). This routine |
| /// implements the check in C++ [over.match.oper]p3b2 concerning |
| /// enumeration types. |
| static bool |
| IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn, |
| QualType T1, QualType T2, |
| ASTContext &Context) { |
| if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType())) |
| return true; |
| |
| if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType())) |
| return true; |
| |
| const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>(); |
| if (Proto->getNumArgs() < 1) |
| return false; |
| |
| if (T1->isEnumeralType()) { |
| QualType ArgType = Proto->getArgType(0).getNonReferenceType(); |
| if (Context.hasSameUnqualifiedType(T1, ArgType)) |
| return true; |
| } |
| |
| if (Proto->getNumArgs() < 2) |
| return false; |
| |
| if (!T2.isNull() && T2->isEnumeralType()) { |
| QualType ArgType = Proto->getArgType(1).getNonReferenceType(); |
| if (Context.hasSameUnqualifiedType(T2, ArgType)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name, |
| SourceLocation Loc, |
| LookupNameKind NameKind, |
| RedeclarationKind Redecl) { |
| LookupResult R(*this, Name, Loc, NameKind, Redecl); |
| LookupName(R, S); |
| return R.getAsSingle<NamedDecl>(); |
| } |
| |
| /// \brief Find the protocol with the given name, if any. |
| ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II, |
| SourceLocation IdLoc, |
| RedeclarationKind Redecl) { |
| Decl *D = LookupSingleName(TUScope, II, IdLoc, |
| LookupObjCProtocolName, Redecl); |
| return cast_or_null<ObjCProtocolDecl>(D); |
| } |
| |
| void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S, |
| QualType T1, QualType T2, |
| UnresolvedSetImpl &Functions) { |
| // C++ [over.match.oper]p3: |
| // -- The set of non-member candidates is the result of the |
| // unqualified lookup of operator@ in the context of the |
| // expression according to the usual rules for name lookup in |
| // unqualified function calls (3.4.2) except that all member |
| // functions are ignored. However, if no operand has a class |
| // type, only those non-member functions in the lookup set |
| // that have a first parameter of type T1 or "reference to |
| // (possibly cv-qualified) T1", when T1 is an enumeration |
| // type, or (if there is a right operand) a second parameter |
| // of type T2 or "reference to (possibly cv-qualified) T2", |
| // when T2 is an enumeration type, are candidate functions. |
| DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); |
| LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName); |
| LookupName(Operators, S); |
| |
| assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous"); |
| |
| if (Operators.empty()) |
| return; |
| |
| for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end(); |
| Op != OpEnd; ++Op) { |
| NamedDecl *Found = (*Op)->getUnderlyingDecl(); |
| if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Found)) { |
| if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context)) |
| Functions.addDecl(*Op, Op.getAccess()); // FIXME: canonical FD |
| } else if (FunctionTemplateDecl *FunTmpl |
| = dyn_cast<FunctionTemplateDecl>(Found)) { |
| // FIXME: friend operators? |
| // FIXME: do we need to check IsAcceptableNonMemberOperatorCandidate, |
| // later? |
| if (!FunTmpl->getDeclContext()->isRecord()) |
| Functions.addDecl(*Op, Op.getAccess()); |
| } |
| } |
| } |
| |
| Sema::SpecialMemberOverloadResult *Sema::LookupSpecialMember(CXXRecordDecl *RD, |
| CXXSpecialMember SM, |
| bool ConstArg, |
| bool VolatileArg, |
| bool RValueThis, |
| bool ConstThis, |
| bool VolatileThis) { |
| RD = RD->getDefinition(); |
| assert((RD && !RD->isBeingDefined()) && |
| "doing special member lookup into record that isn't fully complete"); |
| if (RValueThis || ConstThis || VolatileThis) |
| assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) && |
| "constructors and destructors always have unqualified lvalue this"); |
| if (ConstArg || VolatileArg) |
| assert((SM != CXXDefaultConstructor && SM != CXXDestructor) && |
| "parameter-less special members can't have qualified arguments"); |
| |
| llvm::FoldingSetNodeID ID; |
| ID.AddPointer(RD); |
| ID.AddInteger(SM); |
| ID.AddInteger(ConstArg); |
| ID.AddInteger(VolatileArg); |
| ID.AddInteger(RValueThis); |
| ID.AddInteger(ConstThis); |
| ID.AddInteger(VolatileThis); |
| |
| void *InsertPoint; |
| SpecialMemberOverloadResult *Result = |
| SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint); |
| |
| // This was already cached |
| if (Result) |
| return Result; |
| |
| Result = BumpAlloc.Allocate<SpecialMemberOverloadResult>(); |
| Result = new (Result) SpecialMemberOverloadResult(ID); |
| SpecialMemberCache.InsertNode(Result, InsertPoint); |
| |
| if (SM == CXXDestructor) { |
| if (!RD->hasDeclaredDestructor()) |
| DeclareImplicitDestructor(RD); |
| CXXDestructorDecl *DD = RD->getDestructor(); |
| assert(DD && "record without a destructor"); |
| Result->setMethod(DD); |
| Result->setSuccess(DD->isDeleted()); |
| Result->setConstParamMatch(false); |
| return Result; |
| } |
| |
| // Prepare for overload resolution. Here we construct a synthetic argument |
| // if necessary and make sure that implicit functions are declared. |
| CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD)); |
| DeclarationName Name; |
| Expr *Arg = 0; |
| unsigned NumArgs; |
| |
| if (SM == CXXDefaultConstructor) { |
| Name = Context.DeclarationNames.getCXXConstructorName(CanTy); |
| NumArgs = 0; |
| if (RD->needsImplicitDefaultConstructor()) |
| DeclareImplicitDefaultConstructor(RD); |
| } else { |
| if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) { |
| Name = Context.DeclarationNames.getCXXConstructorName(CanTy); |
| if (!RD->hasDeclaredCopyConstructor()) |
| DeclareImplicitCopyConstructor(RD); |
| if (getLangOptions().CPlusPlus0x && RD->needsImplicitMoveConstructor()) |
| DeclareImplicitMoveConstructor(RD); |
| } else { |
| Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); |
| if (!RD->hasDeclaredCopyAssignment()) |
| DeclareImplicitCopyAssignment(RD); |
| if (getLangOptions().CPlusPlus0x && RD->needsImplicitMoveAssignment()) |
| DeclareImplicitMoveAssignment(RD); |
| } |
| |
| QualType ArgType = CanTy; |
| if (ConstArg) |
| ArgType.addConst(); |
| if (VolatileArg) |
| ArgType.addVolatile(); |
| |
| // This isn't /really/ specified by the standard, but it's implied |
| // we should be working from an RValue in the case of move to ensure |
| // that we prefer to bind to rvalue references, and an LValue in the |
| // case of copy to ensure we don't bind to rvalue references. |
| // Possibly an XValue is actually correct in the case of move, but |
| // there is no semantic difference for class types in this restricted |
| // case. |
| ExprValueKind VK; |
| if (SM == CXXCopyConstructor || SM == CXXCopyAssignment) |
| VK = VK_LValue; |
| else |
| VK = VK_RValue; |
| |
| NumArgs = 1; |
| Arg = new (Context) OpaqueValueExpr(SourceLocation(), ArgType, VK); |
| } |
| |
| // Create the object argument |
| QualType ThisTy = CanTy; |
| if (ConstThis) |
| ThisTy.addConst(); |
| if (VolatileThis) |
| ThisTy.addVolatile(); |
| Expr::Classification Classification = |
| (new (Context) OpaqueValueExpr(SourceLocation(), ThisTy, |
| RValueThis ? VK_RValue : VK_LValue))-> |
| Classify(Context); |
| |
| // Now we perform lookup on the name we computed earlier and do overload |
| // resolution. Lookup is only performed directly into the class since there |
| // will always be a (possibly implicit) declaration to shadow any others. |
| OverloadCandidateSet OCS((SourceLocation())); |
| DeclContext::lookup_iterator I, E; |
| Result->setConstParamMatch(false); |
| |
| llvm::tie(I, E) = RD->lookup(Name); |
| assert((I != E) && |
| "lookup for a constructor or assignment operator was empty"); |
| for ( ; I != E; ++I) { |
| Decl *Cand = *I; |
| |
| if (Cand->isInvalidDecl()) |
| continue; |
| |
| if (UsingShadowDecl *U = dyn_cast<UsingShadowDecl>(Cand)) { |
| // FIXME: [namespace.udecl]p15 says that we should only consider a |
| // using declaration here if it does not match a declaration in the |
| // derived class. We do not implement this correctly in other cases |
| // either. |
| Cand = U->getTargetDecl(); |
| |
| if (Cand->isInvalidDecl()) |
| continue; |
| } |
| |
| if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand)) { |
| if (SM == CXXCopyAssignment || SM == CXXMoveAssignment) |
| AddMethodCandidate(M, DeclAccessPair::make(M, AS_public), RD, ThisTy, |
| Classification, &Arg, NumArgs, OCS, true); |
| else |
| AddOverloadCandidate(M, DeclAccessPair::make(M, AS_public), &Arg, |
| NumArgs, OCS, true); |
| |
| // Here we're looking for a const parameter to speed up creation of |
| // implicit copy methods. |
| if ((SM == CXXCopyAssignment && M->isCopyAssignmentOperator()) || |
| (SM == CXXCopyConstructor && |
| cast<CXXConstructorDecl>(M)->isCopyConstructor())) { |
| QualType ArgType = M->getType()->getAs<FunctionProtoType>()->getArgType(0); |
| if (!ArgType->isReferenceType() || |
| ArgType->getPointeeType().isConstQualified()) |
| Result->setConstParamMatch(true); |
| } |
| } else if (FunctionTemplateDecl *Tmpl = |
| dyn_cast<FunctionTemplateDecl>(Cand)) { |
| if (SM == CXXCopyAssignment || SM == CXXMoveAssignment) |
| AddMethodTemplateCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public), |
| RD, 0, ThisTy, Classification, &Arg, NumArgs, |
| OCS, true); |
| else |
| AddTemplateOverloadCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public), |
| 0, &Arg, NumArgs, OCS, true); |
| } else { |
| assert(isa<UsingDecl>(Cand) && "illegal Kind of operator = Decl"); |
| } |
| } |
| |
| OverloadCandidateSet::iterator Best; |
| switch (OCS.BestViableFunction(*this, SourceLocation(), Best)) { |
| case OR_Success: |
| Result->setMethod(cast<CXXMethodDecl>(Best->Function)); |
| Result->setSuccess(true); |
| break; |
| |
| case OR_Deleted: |
| Result->setMethod(cast<CXXMethodDecl>(Best->Function)); |
| Result->setSuccess(false); |
| break; |
| |
| case OR_Ambiguous: |
| case OR_No_Viable_Function: |
| Result->setMethod(0); |
| Result->setSuccess(false); |
| break; |
| } |
| |
| return Result; |
| } |
| |
| /// \brief Look up the default constructor for the given class. |
| CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) { |
| SpecialMemberOverloadResult *Result = |
| LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false, |
| false, false); |
| |
| return cast_or_null<CXXConstructorDecl>(Result->getMethod()); |
| } |
| |
| /// \brief Look up the copying constructor for the given class. |
| CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class, |
| unsigned Quals, |
| bool *ConstParamMatch) { |
| assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && |
| "non-const, non-volatile qualifiers for copy ctor arg"); |
| SpecialMemberOverloadResult *Result = |
| LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const, |
| Quals & Qualifiers::Volatile, false, false, false); |
| |
| if (ConstParamMatch) |
| *ConstParamMatch = Result->hasConstParamMatch(); |
| |
| return cast_or_null<CXXConstructorDecl>(Result->getMethod()); |
| } |
| |
| /// \brief Look up the moving constructor for the given class. |
| CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class) { |
| SpecialMemberOverloadResult *Result = |
| LookupSpecialMember(Class, CXXMoveConstructor, false, |
| false, false, false, false); |
| |
| return cast_or_null<CXXConstructorDecl>(Result->getMethod()); |
| } |
| |
| /// \brief Look up the constructors for the given class. |
| DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) { |
| // If the implicit constructors have not yet been declared, do so now. |
| if (CanDeclareSpecialMemberFunction(Context, Class)) { |
| if (Class->needsImplicitDefaultConstructor()) |
| DeclareImplicitDefaultConstructor(Class); |
| if (!Class->hasDeclaredCopyConstructor()) |
| DeclareImplicitCopyConstructor(Class); |
| if (getLangOptions().CPlusPlus0x && Class->needsImplicitMoveConstructor()) |
| DeclareImplicitMoveConstructor(Class); |
| } |
| |
| CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class)); |
| DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T); |
| return Class->lookup(Name); |
| } |
| |
| /// \brief Look up the copying assignment operator for the given class. |
| CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class, |
| unsigned Quals, bool RValueThis, |
| unsigned ThisQuals, |
| bool *ConstParamMatch) { |
| assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && |
| "non-const, non-volatile qualifiers for copy assignment arg"); |
| assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && |
| "non-const, non-volatile qualifiers for copy assignment this"); |
| SpecialMemberOverloadResult *Result = |
| LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const, |
| Quals & Qualifiers::Volatile, RValueThis, |
| ThisQuals & Qualifiers::Const, |
| ThisQuals & Qualifiers::Volatile); |
| |
| if (ConstParamMatch) |
| *ConstParamMatch = Result->hasConstParamMatch(); |
| |
| return Result->getMethod(); |
| } |
| |
| /// \brief Look up the moving assignment operator for the given class. |
| CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class, |
| bool RValueThis, |
| unsigned ThisQuals) { |
| assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && |
| "non-const, non-volatile qualifiers for copy assignment this"); |
| SpecialMemberOverloadResult *Result = |
| LookupSpecialMember(Class, CXXMoveAssignment, false, false, RValueThis, |
| ThisQuals & Qualifiers::Const, |
| ThisQuals & Qualifiers::Volatile); |
| |
| return Result->getMethod(); |
| } |
| |
| /// \brief Look for the destructor of the given class. |
| /// |
| /// During semantic analysis, this routine should be used in lieu of |
| /// CXXRecordDecl::getDestructor(). |
| /// |
| /// \returns The destructor for this class. |
| CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) { |
| return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor, |
| false, false, false, |
| false, false)->getMethod()); |
| } |
| |
| void ADLResult::insert(NamedDecl *New) { |
| NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())]; |
| |
| // If we haven't yet seen a decl for this key, or the last decl |
| // was exactly this one, we're done. |
| if (Old == 0 || Old == New) { |
| Old = New; |
| return; |
| } |
| |
| // Otherwise, decide which is a more recent redeclaration. |
| FunctionDecl *OldFD, *NewFD; |
| if (isa<FunctionTemplateDecl>(New)) { |
| OldFD = cast<FunctionTemplateDecl>(Old)->getTemplatedDecl(); |
| NewFD = cast<FunctionTemplateDecl>(New)->getTemplatedDecl(); |
| } else { |
| OldFD = cast<FunctionDecl>(Old); |
| NewFD = cast<FunctionDecl>(New); |
| } |
| |
| FunctionDecl *Cursor = NewFD; |
| while (true) { |
| Cursor = Cursor->getPreviousDecl(); |
| |
| // If we got to the end without finding OldFD, OldFD is the newer |
| // declaration; leave things as they are. |
| if (!Cursor) return; |
| |
| // If we do find OldFD, then NewFD is newer. |
| if (Cursor == OldFD) break; |
| |
| // Otherwise, keep looking. |
| } |
| |
| Old = New; |
| } |
| |
| void Sema::ArgumentDependentLookup(DeclarationName Name, bool Operator, |
| Expr **Args, unsigned NumArgs, |
| ADLResult &Result, |
| bool StdNamespaceIsAssociated) { |
| // Find all of the associated namespaces and classes based on the |
| // arguments we have. |
| AssociatedNamespaceSet AssociatedNamespaces; |
| AssociatedClassSet AssociatedClasses; |
| FindAssociatedClassesAndNamespaces(Args, NumArgs, |
| AssociatedNamespaces, |
| AssociatedClasses); |
| if (StdNamespaceIsAssociated && StdNamespace) |
| AssociatedNamespaces.insert(getStdNamespace()); |
| |
| QualType T1, T2; |
| if (Operator) { |
| T1 = Args[0]->getType(); |
| if (NumArgs >= 2) |
| T2 = Args[1]->getType(); |
| } |
| |
| // C++ [basic.lookup.argdep]p3: |
| // Let X be the lookup set produced by unqualified lookup (3.4.1) |
| // and let Y be the lookup set produced by argument dependent |
| // lookup (defined as follows). If X contains [...] then Y is |
| // empty. Otherwise Y is the set of declarations found in the |
| // namespaces associated with the argument types as described |
| // below. The set of declarations found by the lookup of the name |
| // is the union of X and Y. |
| // |
| // Here, we compute Y and add its members to the overloaded |
| // candidate set. |
| for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(), |
| NSEnd = AssociatedNamespaces.end(); |
| NS != NSEnd; ++NS) { |
| // When considering an associated namespace, the lookup is the |
| // same as the lookup performed when the associated namespace is |
| // used as a qualifier (3.4.3.2) except that: |
| // |
| // -- Any using-directives in the associated namespace are |
| // ignored. |
| // |
| // -- Any namespace-scope friend functions declared in |
| // associated classes are visible within their respective |
| // namespaces even if they are not visible during an ordinary |
| // lookup (11.4). |
| DeclContext::lookup_iterator I, E; |
| for (llvm::tie(I, E) = (*NS)->lookup(Name); I != E; ++I) { |
| NamedDecl *D = *I; |
| // If the only declaration here is an ordinary friend, consider |
| // it only if it was declared in an associated classes. |
| if (D->getIdentifierNamespace() == Decl::IDNS_OrdinaryFriend) { |
| DeclContext *LexDC = D->getLexicalDeclContext(); |
| if (!AssociatedClasses.count(cast<CXXRecordDecl>(LexDC))) |
| continue; |
| } |
| |
| if (isa<UsingShadowDecl>(D)) |
| D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
| |
| if (isa<FunctionDecl>(D)) { |
| if (Operator && |
| !IsAcceptableNonMemberOperatorCandidate(cast<FunctionDecl>(D), |
| T1, T2, Context)) |
| continue; |
| } else if (!isa<FunctionTemplateDecl>(D)) |
| continue; |
| |
| Result.insert(D); |
| } |
| } |
| } |
| |
| //---------------------------------------------------------------------------- |
| // Search for all visible declarations. |
| //---------------------------------------------------------------------------- |
| VisibleDeclConsumer::~VisibleDeclConsumer() { } |
| |
| namespace { |
| |
| class ShadowContextRAII; |
| |
| class VisibleDeclsRecord { |
| public: |
| /// \brief An entry in the shadow map, which is optimized to store a |
| /// single declaration (the common case) but can also store a list |
| /// of declarations. |
| typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry; |
| |
| private: |
| /// \brief A mapping from declaration names to the declarations that have |
| /// this name within a particular scope. |
| typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap; |
| |
| /// \brief A list of shadow maps, which is used to model name hiding. |
| std::list<ShadowMap> ShadowMaps; |
| |
| /// \brief The declaration contexts we have already visited. |
| llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts; |
| |
| friend class ShadowContextRAII; |
| |
| public: |
| /// \brief Determine whether we have already visited this context |
| /// (and, if not, note that we are going to visit that context now). |
| bool visitedContext(DeclContext *Ctx) { |
| return !VisitedContexts.insert(Ctx); |
| } |
| |
| bool alreadyVisitedContext(DeclContext *Ctx) { |
| return VisitedContexts.count(Ctx); |
| } |
| |
| /// \brief Determine whether the given declaration is hidden in the |
| /// current scope. |
| /// |
| /// \returns the declaration that hides the given declaration, or |
| /// NULL if no such declaration exists. |
| NamedDecl *checkHidden(NamedDecl *ND); |
| |
| /// \brief Add a declaration to the current shadow map. |
| void add(NamedDecl *ND) { |
| ShadowMaps.back()[ND->getDeclName()].push_back(ND); |
| } |
| }; |
| |
| /// \brief RAII object that records when we've entered a shadow context. |
| class ShadowContextRAII { |
| VisibleDeclsRecord &Visible; |
| |
| typedef VisibleDeclsRecord::ShadowMap ShadowMap; |
| |
| public: |
| ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) { |
| Visible.ShadowMaps.push_back(ShadowMap()); |
| } |
| |
| ~ShadowContextRAII() { |
| Visible.ShadowMaps.pop_back(); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) { |
| // Look through using declarations. |
| ND = ND->getUnderlyingDecl(); |
| |
| unsigned IDNS = ND->getIdentifierNamespace(); |
| std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin(); |
| for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend(); |
| SM != SMEnd; ++SM) { |
| ShadowMap::iterator Pos = SM->find(ND->getDeclName()); |
| if (Pos == SM->end()) |
| continue; |
| |
| for (ShadowMapEntry::iterator I = Pos->second.begin(), |
| IEnd = Pos->second.end(); |
| I != IEnd; ++I) { |
| // A tag declaration does not hide a non-tag declaration. |
| if ((*I)->hasTagIdentifierNamespace() && |
| (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary | |
| Decl::IDNS_ObjCProtocol))) |
| continue; |
| |
| // Protocols are in distinct namespaces from everything else. |
| if ((((*I)->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol) |
| || (IDNS & Decl::IDNS_ObjCProtocol)) && |
| (*I)->getIdentifierNamespace() != IDNS) |
| continue; |
| |
| // Functions and function templates in the same scope overload |
| // rather than hide. FIXME: Look for hiding based on function |
| // signatures! |
| if ((*I)->isFunctionOrFunctionTemplate() && |
| ND->isFunctionOrFunctionTemplate() && |
| SM == ShadowMaps.rbegin()) |
| continue; |
| |
| // We've found a declaration that hides this one. |
| return *I; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result, |
| bool QualifiedNameLookup, |
| bool InBaseClass, |
| VisibleDeclConsumer &Consumer, |
| VisibleDeclsRecord &Visited) { |
| if (!Ctx) |
| return; |
| |
| // Make sure we don't visit the same context twice. |
| if (Visited.visitedContext(Ctx->getPrimaryContext())) |
| return; |
| |
| if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx)) |
| Result.getSema().ForceDeclarationOfImplicitMembers(Class); |
| |
| // Enumerate all of the results in this context. |
| llvm::SmallVector<DeclContext *, 2> Contexts; |
| Ctx->collectAllContexts(Contexts); |
| for (unsigned I = 0, N = Contexts.size(); I != N; ++I) { |
| DeclContext *CurCtx = Contexts[I]; |
| for (DeclContext::decl_iterator D = CurCtx->decls_begin(), |
| DEnd = CurCtx->decls_end(); |
| D != DEnd; ++D) { |
| if (NamedDecl *ND = dyn_cast<NamedDecl>(*D)) { |
| if ((ND = Result.getAcceptableDecl(ND))) { |
| Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass); |
| Visited.add(ND); |
| } |
| } |
| |
| // Visit transparent contexts and inline namespaces inside this context. |
| if (DeclContext *InnerCtx = dyn_cast<DeclContext>(*D)) { |
| if (InnerCtx->isTransparentContext() || InnerCtx->isInlineNamespace()) |
| LookupVisibleDecls(InnerCtx, Result, QualifiedNameLookup, InBaseClass, |
| Consumer, Visited); |
| } |
| } |
| } |
| |
| // Traverse using directives for qualified name lookup. |
| if (QualifiedNameLookup) { |
| ShadowContextRAII Shadow(Visited); |
| DeclContext::udir_iterator I, E; |
| for (llvm::tie(I, E) = Ctx->getUsingDirectives(); I != E; ++I) { |
| LookupVisibleDecls((*I)->getNominatedNamespace(), Result, |
| QualifiedNameLookup, InBaseClass, Consumer, Visited); |
| } |
| } |
| |
| // Traverse the contexts of inherited C++ classes. |
| if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) { |
| if (!Record->hasDefinition()) |
| return; |
| |
| for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(), |
| BEnd = Record->bases_end(); |
| B != BEnd; ++B) { |
| QualType BaseType = B->getType(); |
| |
| // Don't look into dependent bases, because name lookup can't look |
| // there anyway. |
| if (BaseType->isDependentType()) |
| continue; |
| |
| const RecordType *Record = BaseType->getAs<RecordType>(); |
| if (!Record) |
| continue; |
| |
| // FIXME: It would be nice to be able to determine whether referencing |
| // a particular member would be ambiguous. For example, given |
| // |
| // struct A { int member; }; |
| // struct B { int member; }; |
| // struct C : A, B { }; |
| // |
| // void f(C *c) { c->### } |
| // |
| // accessing 'member' would result in an ambiguity. However, we |
| // could be smart enough to qualify the member with the base |
| // class, e.g., |
| // |
| // c->B::member |
| // |
| // or |
| // |
| // c->A::member |
| |
| // Find results in this base class (and its bases). |
| ShadowContextRAII Shadow(Visited); |
| LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup, |
| true, Consumer, Visited); |
| } |
| } |
| |
| // Traverse the contexts of Objective-C classes. |
| if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) { |
| // Traverse categories. |
| for (ObjCCategoryDecl *Category = IFace->getCategoryList(); |
| Category; Category = Category->getNextClassCategory()) { |
| ShadowContextRAII Shadow(Visited); |
| LookupVisibleDecls(Category, Result, QualifiedNameLookup, false, |
| Consumer, Visited); |
| } |
| |
| // Traverse protocols. |
| for (ObjCInterfaceDecl::all_protocol_iterator |
| I = IFace->all_referenced_protocol_begin(), |
| E = IFace->all_referenced_protocol_end(); I != E; ++I) { |
| ShadowContextRAII Shadow(Visited); |
| LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer, |
| Visited); |
| } |
| |
| // Traverse the superclass. |
| if (IFace->getSuperClass()) { |
| ShadowContextRAII Shadow(Visited); |
| LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup, |
| true, Consumer, Visited); |
| } |
| |
| // If there is an implementation, traverse it. We do this to find |
| // synthesized ivars. |
| if (IFace->getImplementation()) { |
| ShadowContextRAII Shadow(Visited); |
| LookupVisibleDecls(IFace->getImplementation(), Result, |
| QualifiedNameLookup, true, Consumer, Visited); |
| } |
| } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) { |
| for (ObjCProtocolDecl::protocol_iterator I = Protocol->protocol_begin(), |
| E = Protocol->protocol_end(); I != E; ++I) { |
| ShadowContextRAII Shadow(Visited); |
| LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer, |
| Visited); |
| } |
| } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) { |
| for (ObjCCategoryDecl::protocol_iterator I = Category->protocol_begin(), |
| E = Category->protocol_end(); I != E; ++I) { |
| ShadowContextRAII Shadow(Visited); |
| LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer, |
| Visited); |
| } |
| |
| // If there is an implementation, traverse it. |
| if (Category->getImplementation()) { |
| ShadowContextRAII Shadow(Visited); |
| LookupVisibleDecls(Category->getImplementation(), Result, |
| QualifiedNameLookup, true, Consumer, Visited); |
| } |
| } |
| } |
| |
| static void LookupVisibleDecls(Scope *S, LookupResult &Result, |
| UnqualUsingDirectiveSet &UDirs, |
| VisibleDeclConsumer &Consumer, |
| VisibleDeclsRecord &Visited) { |
| if (!S) |
| return; |
| |
| if (!S->getEntity() || |
| (!S->getParent() && |
| !Visited.alreadyVisitedContext((DeclContext *)S->getEntity())) || |
| ((DeclContext *)S->getEntity())->isFunctionOrMethod()) { |
| // Walk through the declarations in this Scope. |
| for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end(); |
| D != DEnd; ++D) { |
| if (NamedDecl *ND = dyn_cast<NamedDecl>(*D)) |
| if ((ND = Result.getAcceptableDecl(ND))) { |
| Consumer.FoundDecl(ND, Visited.checkHidden(ND), 0, false); |
| Visited.add(ND); |
| } |
| } |
| } |
| |
| // FIXME: C++ [temp.local]p8 |
| DeclContext *Entity = 0; |
| if (S->getEntity()) { |
| // Look into this scope's declaration context, along with any of its |
| // parent lookup contexts (e.g., enclosing classes), up to the point |
| // where we hit the context stored in the next outer scope. |
| Entity = (DeclContext *)S->getEntity(); |
| DeclContext *OuterCtx = findOuterContext(S).first; // FIXME |
| |
| for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx); |
| Ctx = Ctx->getLookupParent()) { |
| if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) { |
| if (Method->isInstanceMethod()) { |
| // For instance methods, look for ivars in the method's interface. |
| LookupResult IvarResult(Result.getSema(), Result.getLookupName(), |
| Result.getNameLoc(), Sema::LookupMemberName); |
| if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) { |
| LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false, |
| /*InBaseClass=*/false, Consumer, Visited); |
| } |
| } |
| |
| // We've already performed all of the name lookup that we need |
| // to for Objective-C methods; the next context will be the |
| // outer scope. |
| break; |
| } |
| |
| if (Ctx->isFunctionOrMethod()) |
| continue; |
| |
| LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false, |
| /*InBaseClass=*/false, Consumer, Visited); |
| } |
| } else if (!S->getParent()) { |
| // Look into the translation unit scope. We walk through the translation |
| // unit's declaration context, because the Scope itself won't have all of |
| // the declarations if we loaded a precompiled header. |
| // FIXME: We would like the translation unit's Scope object to point to the |
| // translation unit, so we don't need this special "if" branch. However, |
| // doing so would force the normal C++ name-lookup code to look into the |
| // translation unit decl when the IdentifierInfo chains would suffice. |
| // Once we fix that problem (which is part of a more general "don't look |
| // in DeclContexts unless we have to" optimization), we can eliminate this. |
| Entity = Result.getSema().Context.getTranslationUnitDecl(); |
| LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false, |
| /*InBaseClass=*/false, Consumer, Visited); |
| } |
| |
| if (Entity) { |
| // Lookup visible declarations in any namespaces found by using |
| // directives. |
| UnqualUsingDirectiveSet::const_iterator UI, UEnd; |
| llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(Entity); |
| for (; UI != UEnd; ++UI) |
| LookupVisibleDecls(const_cast<DeclContext *>(UI->getNominatedNamespace()), |
| Result, /*QualifiedNameLookup=*/false, |
| /*InBaseClass=*/false, Consumer, Visited); |
| } |
| |
| // Lookup names in the parent scope. |
| ShadowContextRAII Shadow(Visited); |
| LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited); |
| } |
| |
| void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind, |
| VisibleDeclConsumer &Consumer, |
| bool IncludeGlobalScope) { |
| // Determine the set of using directives available during |
| // unqualified name lookup. |
| Scope *Initial = S; |
| UnqualUsingDirectiveSet UDirs; |
| if (getLangOptions().CPlusPlus) { |
| // Find the first namespace or translation-unit scope. |
| while (S && !isNamespaceOrTranslationUnitScope(S)) |
| S = S->getParent(); |
| |
| UDirs.visitScopeChain(Initial, S); |
| } |
| UDirs.done(); |
| |
| // Look for visible declarations. |
| LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind); |
| VisibleDeclsRecord Visited; |
| if (!IncludeGlobalScope) |
| Visited.visitedContext(Context.getTranslationUnitDecl()); |
| ShadowContextRAII Shadow(Visited); |
| ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited); |
| } |
| |
| void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind, |
| VisibleDeclConsumer &Consumer, |
| bool IncludeGlobalScope) { |
| LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind); |
| VisibleDeclsRecord Visited; |
| if (!IncludeGlobalScope) |
| Visited.visitedContext(Context.getTranslationUnitDecl()); |
| ShadowContextRAII Shadow(Visited); |
| ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true, |
| /*InBaseClass=*/false, Consumer, Visited); |
| } |
| |
| /// LookupOrCreateLabel - Do a name lookup of a label with the specified name. |
| /// If GnuLabelLoc is a valid source location, then this is a definition |
| /// of an __label__ label name, otherwise it is a normal label definition |
| /// or use. |
| LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc, |
| SourceLocation GnuLabelLoc) { |
| // Do a lookup to see if we have a label with this name already. |
| NamedDecl *Res = 0; |
| |
| if (GnuLabelLoc.isValid()) { |
| // Local label definitions always shadow existing labels. |
| Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc); |
| Scope *S = CurScope; |
| PushOnScopeChains(Res, S, true); |
| return cast<LabelDecl>(Res); |
| } |
| |
| // Not a GNU local label. |
| Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration); |
| // If we found a label, check to see if it is in the same context as us. |
| // When in a Block, we don't want to reuse a label in an enclosing function. |
| if (Res && Res->getDeclContext() != CurContext) |
| Res = 0; |
| if (Res == 0) { |
| // If not forward referenced or defined already, create the backing decl. |
| Res = LabelDecl::Create(Context, CurContext, Loc, II); |
| Scope *S = CurScope->getFnParent(); |
| assert(S && "Not in a function?"); |
| PushOnScopeChains(Res, S, true); |
| } |
| return cast<LabelDecl>(Res); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Typo correction |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| typedef llvm::StringMap<TypoCorrection, llvm::BumpPtrAllocator> TypoResultsMap; |
| typedef std::map<unsigned, TypoResultsMap *> TypoEditDistanceMap; |
| |
| static const unsigned MaxTypoDistanceResultSets = 5; |
| |
| class TypoCorrectionConsumer : public VisibleDeclConsumer { |
| /// \brief The name written that is a typo in the source. |
| StringRef Typo; |
| |
| /// \brief The results found that have the smallest edit distance |
| /// found (so far) with the typo name. |
| /// |
| /// The pointer value being set to the current DeclContext indicates |
| /// whether there is a keyword with this name. |
| TypoEditDistanceMap BestResults; |
| |
| /// \brief The worst of the best N edit distances found so far. |
| unsigned MaxEditDistance; |
| |
| Sema &SemaRef; |
| |
| public: |
| explicit TypoCorrectionConsumer(Sema &SemaRef, IdentifierInfo *Typo) |
| : Typo(Typo->getName()), |
| MaxEditDistance((std::numeric_limits<unsigned>::max)()), |
| SemaRef(SemaRef) { } |
| |
| ~TypoCorrectionConsumer() { |
| for (TypoEditDistanceMap::iterator I = BestResults.begin(), |
| IEnd = BestResults.end(); |
| I != IEnd; |
| ++I) |
| delete I->second; |
| } |
| |
| virtual void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, DeclContext *Ctx, |
| bool InBaseClass); |
| void FoundName(StringRef Name); |
| void addKeywordResult(StringRef Keyword); |
| void addName(StringRef Name, NamedDecl *ND, unsigned Distance, |
| NestedNameSpecifier *NNS=NULL, bool isKeyword=false); |
| void addCorrection(TypoCorrection Correction); |
| |
| typedef TypoResultsMap::iterator result_iterator; |
| typedef TypoEditDistanceMap::iterator distance_iterator; |
| distance_iterator begin() { return BestResults.begin(); } |
| distance_iterator end() { return BestResults.end(); } |
| void erase(distance_iterator I) { BestResults.erase(I); } |
| unsigned size() const { return BestResults.size(); } |
| bool empty() const { return BestResults.empty(); } |
| |
| TypoCorrection &operator[](StringRef Name) { |
| return (*BestResults.begin()->second)[Name]; |
| } |
| |
| unsigned getMaxEditDistance() const { |
| return MaxEditDistance; |
| } |
| |
| unsigned getBestEditDistance() { |
| return (BestResults.empty()) ? MaxEditDistance : BestResults.begin()->first; |
| } |
| }; |
| |
| } |
| |
| void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding, |
| DeclContext *Ctx, bool InBaseClass) { |
| // Don't consider hidden names for typo correction. |
| if (Hiding) |
| return; |
| |
| // Only consider entities with identifiers for names, ignoring |
| // special names (constructors, overloaded operators, selectors, |
| // etc.). |
| IdentifierInfo *Name = ND->getIdentifier(); |
| if (!Name) |
| return; |
| |
| FoundName(Name->getName()); |
| } |
| |
| void TypoCorrectionConsumer::FoundName(StringRef Name) { |
| // Use a simple length-based heuristic to determine the minimum possible |
| // edit distance. If the minimum isn't good enough, bail out early. |
| unsigned MinED = abs((int)Name.size() - (int)Typo.size()); |
| if (MinED > MaxEditDistance || (MinED && Typo.size() / MinED < 3)) |
| return; |
| |
| // Compute an upper bound on the allowable edit distance, so that the |
| // edit-distance algorithm can short-circuit. |
| unsigned UpperBound = |
| std::min(unsigned((Typo.size() + 2) / 3), MaxEditDistance); |
| |
| // Compute the edit distance between the typo and the name of this |
| // entity. If this edit distance is not worse than the best edit |
| // distance we've seen so far, add it to the list of results. |
| unsigned ED = Typo.edit_distance(Name, true, UpperBound); |
| |
| if (ED > MaxEditDistance) { |
| // This result is worse than the best results we've seen so far; |
| // ignore it. |
| return; |
| } |
| |
| addName(Name, NULL, ED); |
| } |
| |
| void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) { |
| // Compute the edit distance between the typo and this keyword. |
| // If this edit distance is not worse than the best edit |
| // distance we've seen so far, add it to the list of results. |
| unsigned ED = Typo.edit_distance(Keyword); |
| if (ED > MaxEditDistance) { |
| // This result is worse than the best results we've seen so far; |
| // ignore it. |
| return; |
| } |
| |
| addName(Keyword, NULL, ED, NULL, true); |
| } |
| |
| void TypoCorrectionConsumer::addName(StringRef Name, |
| NamedDecl *ND, |
| unsigned Distance, |
| NestedNameSpecifier *NNS, |
| bool isKeyword) { |
| TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, Distance); |
| if (isKeyword) TC.makeKeyword(); |
| addCorrection(TC); |
| } |
| |
| void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) { |
| StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName(); |
| TypoResultsMap *& Map = BestResults[Correction.getEditDistance()]; |
| if (!Map) |
| Map = new TypoResultsMap; |
| |
| TypoCorrection &CurrentCorrection = (*Map)[Name]; |
| if (!CurrentCorrection || |
| // FIXME: The following should be rolled up into an operator< on |
| // TypoCorrection with a more principled definition. |
| CurrentCorrection.isKeyword() < Correction.isKeyword() || |
| Correction.getAsString(SemaRef.getLangOptions()) < |
| CurrentCorrection.getAsString(SemaRef.getLangOptions())) |
| CurrentCorrection = Correction; |
| |
| while (BestResults.size() > MaxTypoDistanceResultSets) { |
| TypoEditDistanceMap::iterator Last = BestResults.end(); |
| --Last; |
| delete Last->second; |
| BestResults.erase(Last); |
| } |
| } |
| |
| namespace { |
| |
| class SpecifierInfo { |
| public: |
| DeclContext* DeclCtx; |
| NestedNameSpecifier* NameSpecifier; |
| unsigned EditDistance; |
| |
| SpecifierInfo(DeclContext *Ctx, NestedNameSpecifier *NNS, unsigned ED) |
| : DeclCtx(Ctx), NameSpecifier(NNS), EditDistance(ED) {} |
| }; |
| |
| typedef SmallVector<DeclContext*, 4> DeclContextList; |
| typedef SmallVector<SpecifierInfo, 16> SpecifierInfoList; |
| |
| class NamespaceSpecifierSet { |
| ASTContext &Context; |
| DeclContextList CurContextChain; |
| bool isSorted; |
| |
| SpecifierInfoList Specifiers; |
| llvm::SmallSetVector<unsigned, 4> Distances; |
| llvm::DenseMap<unsigned, SpecifierInfoList> DistanceMap; |
| |
| /// \brief Helper for building the list of DeclContexts between the current |
| /// context and the top of the translation unit |
| static DeclContextList BuildContextChain(DeclContext *Start); |
| |
| void SortNamespaces(); |
| |
| public: |
| explicit NamespaceSpecifierSet(ASTContext &Context, DeclContext *CurContext) |
| : Context(Context), CurContextChain(BuildContextChain(CurContext)), |
| isSorted(true) {} |
| |
| /// \brief Add the namespace to the set, computing the corresponding |
| /// NestedNameSpecifier and its distance in the process. |
| void AddNamespace(NamespaceDecl *ND); |
| |
| typedef SpecifierInfoList::iterator iterator; |
| iterator begin() { |
| if (!isSorted) SortNamespaces(); |
| return Specifiers.begin(); |
| } |
| iterator end() { return Specifiers.end(); } |
| }; |
| |
| } |
| |
| DeclContextList NamespaceSpecifierSet::BuildContextChain(DeclContext *Start) { |
| assert(Start && "Bulding a context chain from a null context"); |
| DeclContextList Chain; |
| for (DeclContext *DC = Start->getPrimaryContext(); DC != NULL; |
| DC = DC->getLookupParent()) { |
| NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC); |
| if (!DC->isInlineNamespace() && !DC->isTransparentContext() && |
| !(ND && ND->isAnonymousNamespace())) |
| Chain.push_back(DC->getPrimaryContext()); |
| } |
| return Chain; |
| } |
| |
| void NamespaceSpecifierSet::SortNamespaces() { |
| SmallVector<unsigned, 4> sortedDistances; |
| sortedDistances.append(Distances.begin(), Distances.end()); |
| |
| if (sortedDistances.size() > 1) |
| std::sort(sortedDistances.begin(), sortedDistances.end()); |
| |
| Specifiers.clear(); |
| for (SmallVector<unsigned, 4>::iterator DI = sortedDistances.begin(), |
| DIEnd = sortedDistances.end(); |
| DI != DIEnd; ++DI) { |
| SpecifierInfoList &SpecList = DistanceMap[*DI]; |
| Specifiers.append(SpecList.begin(), SpecList.end()); |
| } |
| |
| isSorted = true; |
| } |
| |
| void NamespaceSpecifierSet::AddNamespace(NamespaceDecl *ND) { |
| DeclContext *Ctx = cast<DeclContext>(ND); |
| NestedNameSpecifier *NNS = NULL; |
| unsigned NumSpecifiers = 0; |
| DeclContextList NamespaceDeclChain(BuildContextChain(Ctx)); |
| |
| // Eliminate common elements from the two DeclContext chains |
| for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(), |
| CEnd = CurContextChain.rend(); |
| C != CEnd && !NamespaceDeclChain.empty() && |
| NamespaceDeclChain.back() == *C; ++C) { |
| NamespaceDeclChain.pop_back(); |
| } |
| |
| // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain |
| for (DeclContextList::reverse_iterator C = NamespaceDeclChain.rbegin(), |
| CEnd = NamespaceDeclChain.rend(); |
| C != CEnd; ++C) { |
| NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C); |
| if (ND) { |
| NNS = NestedNameSpecifier::Create(Context, NNS, ND); |
| ++NumSpecifiers; |
| } |
| } |
| |
| isSorted = false; |
| Distances.insert(NumSpecifiers); |
| DistanceMap[NumSpecifiers].push_back(SpecifierInfo(Ctx, NNS, NumSpecifiers)); |
| } |
| |
| /// \brief Perform name lookup for a possible result for typo correction. |
| static void LookupPotentialTypoResult(Sema &SemaRef, |
| LookupResult &Res, |
| IdentifierInfo *Name, |
| Scope *S, CXXScopeSpec *SS, |
| DeclContext *MemberContext, |
| bool EnteringContext, |
| bool isObjCIvarLookup) { |
| Res.suppressDiagnostics(); |
| Res.clear(); |
| Res.setLookupName(Name); |
| if (MemberContext) { |
| if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) { |
| if (isObjCIvarLookup) { |
| if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) { |
| Res.addDecl(Ivar); |
| Res.resolveKind(); |
| return; |
| } |
| } |
| |
| if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(Name)) { |
| Res.addDecl(Prop); |
| Res.resolveKind(); |
| return; |
| } |
| } |
| |
| SemaRef.LookupQualifiedName(Res, MemberContext); |
| return; |
| } |
| |
| SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false, |
| EnteringContext); |
| |
| // Fake ivar lookup; this should really be part of |
| // LookupParsedName. |
| if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) { |
| if (Method->isInstanceMethod() && Method->getClassInterface() && |
| (Res.empty() || |
| (Res.isSingleResult() && |
| Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) { |
| if (ObjCIvarDecl *IV |
| = Method->getClassInterface()->lookupInstanceVariable(Name)) { |
| Res.addDecl(IV); |
| Res.resolveKind(); |
| } |
| } |
| } |
| } |
| |
| /// \brief Add keywords to the consumer as possible typo corrections. |
| static void AddKeywordsToConsumer(Sema &SemaRef, |
| TypoCorrectionConsumer &Consumer, |
| Scope *S, CorrectionCandidateCallback &CCC) { |
| if (CCC.WantObjCSuper) |
| Consumer.addKeywordResult("super"); |
| |
| if (CCC.WantTypeSpecifiers) { |
| // Add type-specifier keywords to the set of results. |
| const char *CTypeSpecs[] = { |
| "char", "const", "double", "enum", "float", "int", "long", "short", |
| "signed", "struct", "union", "unsigned", "void", "volatile", |
| "_Complex", "_Imaginary", |
| // storage-specifiers as well |
| "extern", "inline", "static", "typedef" |
| }; |
| |
| const unsigned NumCTypeSpecs = sizeof(CTypeSpecs) / sizeof(CTypeSpecs[0]); |
| for (unsigned I = 0; I != NumCTypeSpecs; ++I) |
| Consumer.addKeywordResult(CTypeSpecs[I]); |
| |
| if (SemaRef.getLangOptions().C99) |
| Consumer.addKeywordResult("restrict"); |
| if (SemaRef.getLangOptions().Bool || SemaRef.getLangOptions().CPlusPlus) |
| Consumer.addKeywordResult("bool"); |
| else if (SemaRef.getLangOptions().C99) |
| Consumer.addKeywordResult("_Bool"); |
| |
| if (SemaRef.getLangOptions().CPlusPlus) { |
| Consumer.addKeywordResult("class"); |
| Consumer.addKeywordResult("typename"); |
| Consumer.addKeywordResult("wchar_t"); |
| |
| if (SemaRef.getLangOptions().CPlusPlus0x) { |
| Consumer.addKeywordResult("char16_t"); |
| Consumer.addKeywordResult("char32_t"); |
| Consumer.addKeywordResult("constexpr"); |
| Consumer.addKeywordResult("decltype"); |
| Consumer.addKeywordResult("thread_local"); |
| } |
| } |
| |
| if (SemaRef.getLangOptions().GNUMode) |
| Consumer.addKeywordResult("typeof"); |
| } |
| |
| if (CCC.WantCXXNamedCasts && SemaRef.getLangOptions().CPlusPlus) { |
| Consumer.addKeywordResult("const_cast"); |
| Consumer.addKeywordResult("dynamic_cast"); |
| Consumer.addKeywordResult("reinterpret_cast"); |
| Consumer.addKeywordResult("static_cast"); |
| } |
| |
| if (CCC.WantExpressionKeywords) { |
| Consumer.addKeywordResult("sizeof"); |
| if (SemaRef.getLangOptions().Bool || SemaRef.getLangOptions().CPlusPlus) { |
| Consumer.addKeywordResult("false"); |
| Consumer.addKeywordResult("true"); |
| } |
| |
| if (SemaRef.getLangOptions().CPlusPlus) { |
| const char *CXXExprs[] = { |
| "delete", "new", "operator", "throw", "typeid" |
| }; |
| const unsigned NumCXXExprs = sizeof(CXXExprs) / sizeof(CXXExprs[0]); |
| for (unsigned I = 0; I != NumCXXExprs; ++I) |
| Consumer.addKeywordResult(CXXExprs[I]); |
| |
| if (isa<CXXMethodDecl>(SemaRef.CurContext) && |
| cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance()) |
| Consumer.addKeywordResult("this"); |
| |
| if (SemaRef.getLangOptions().CPlusPlus0x) { |
| Consumer.addKeywordResult("alignof"); |
| Consumer.addKeywordResult("nullptr"); |
| } |
| } |
| } |
| |
| if (CCC.WantRemainingKeywords) { |
| if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) { |
| // Statements. |
| const char *CStmts[] = { |
| "do", "else", "for", "goto", "if", "return", "switch", "while" }; |
| const unsigned NumCStmts = sizeof(CStmts) / sizeof(CStmts[0]); |
| for (unsigned I = 0; I != NumCStmts; ++I) |
| Consumer.addKeywordResult(CStmts[I]); |
| |
| if (SemaRef.getLangOptions().CPlusPlus) { |
| Consumer.addKeywordResult("catch"); |
| Consumer.addKeywordResult("try"); |
| } |
| |
| if (S && S->getBreakParent()) |
| Consumer.addKeywordResult("break"); |
| |
| if (S && S->getContinueParent()) |
| Consumer.addKeywordResult("continue"); |
| |
| if (!SemaRef.getCurFunction()->SwitchStack.empty()) { |
| Consumer.addKeywordResult("case"); |
| Consumer.addKeywordResult("default"); |
| } |
| } else { |
| if (SemaRef.getLangOptions().CPlusPlus) { |
| Consumer.addKeywordResult("namespace"); |
| Consumer.addKeywordResult("template"); |
| } |
| |
| if (S && S->isClassScope()) { |
| Consumer.addKeywordResult("explicit"); |
| Consumer.addKeywordResult("friend"); |
| Consumer.addKeywordResult("mutable"); |
| Consumer.addKeywordResult("private"); |
| Consumer.addKeywordResult("protected"); |
| Consumer.addKeywordResult("public"); |
| Consumer.addKeywordResult("virtual"); |
| } |
| } |
| |
| if (SemaRef.getLangOptions().CPlusPlus) { |
| Consumer.addKeywordResult("using"); |
| |
| if (SemaRef.getLangOptions().CPlusPlus0x) |
| Consumer.addKeywordResult("static_assert"); |
| } |
| } |
| } |
| |
| /// \brief Try to "correct" a typo in the source code by finding |
| /// visible declarations whose names are similar to the name that was |
| /// present in the source code. |
| /// |
| /// \param TypoName the \c DeclarationNameInfo structure that contains |
| /// the name that was present in the source code along with its location. |
| /// |
| /// \param LookupKind the name-lookup criteria used to search for the name. |
| /// |
| /// \param S the scope in which name lookup occurs. |
| /// |
| /// \param SS the nested-name-specifier that precedes the name we're |
| /// looking for, if present. |
| /// |
| /// \param CCC A CorrectionCandidateCallback object that provides further |
| /// validation of typo correction candidates. It also provides flags for |
| /// determining the set of keywords permitted. |
| /// |
| /// \param MemberContext if non-NULL, the context in which to look for |
| /// a member access expression. |
| /// |
| /// \param EnteringContext whether we're entering the context described by |
| /// the nested-name-specifier SS. |
| /// |
| /// \param OPT when non-NULL, the search for visible declarations will |
| /// also walk the protocols in the qualified interfaces of \p OPT. |
| /// |
| /// \returns a \c TypoCorrection containing the corrected name if the typo |
| /// along with information such as the \c NamedDecl where the corrected name |
| /// was declared, and any additional \c NestedNameSpecifier needed to access |
| /// it (C++ only). The \c TypoCorrection is empty if there is no correction. |
| TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName, |
| Sema::LookupNameKind LookupKind, |
| Scope *S, CXXScopeSpec *SS, |
| CorrectionCandidateCallback &CCC, |
| DeclContext *MemberContext, |
| bool EnteringContext, |
| const ObjCObjectPointerType *OPT) { |
| if (Diags.hasFatalErrorOccurred() || !getLangOptions().SpellChecking) |
| return TypoCorrection(); |
| |
| // In Microsoft mode, don't perform typo correction in a template member |
| // function dependent context because it interferes with the "lookup into |
| // dependent bases of class templates" feature. |
| if (getLangOptions().MicrosoftMode && CurContext->isDependentContext() && |
| isa<CXXMethodDecl>(CurContext)) |
| return TypoCorrection(); |
| |
| // We only attempt to correct typos for identifiers. |
| IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); |
| if (!Typo) |
| return TypoCorrection(); |
| |
| // If the scope specifier itself was invalid, don't try to correct |
| // typos. |
| if (SS && SS->isInvalid()) |
| return TypoCorrection(); |
| |
| // Never try to correct typos during template deduction or |
| // instantiation. |
| if (!ActiveTemplateInstantiations.empty()) |
| return TypoCorrection(); |
| |
| NamespaceSpecifierSet Namespaces(Context, CurContext); |
| |
| TypoCorrectionConsumer Consumer(*this, Typo); |
| |
| // If a callback object returns true for an empty typo correction candidate, |
| // assume it does not do any actual validation of the candidates. |
| TypoCorrection EmptyCorrection; |
| bool ValidatingCallback = !CCC.ValidateCandidate(EmptyCorrection); |
| |
| // Perform name lookup to find visible, similarly-named entities. |
| bool IsUnqualifiedLookup = false; |
| if (MemberContext) { |
| LookupVisibleDecls(MemberContext, LookupKind, Consumer); |
| |
| // Look in qualified interfaces. |
| if (OPT) { |
| for (ObjCObjectPointerType::qual_iterator |
| I = OPT->qual_begin(), E = OPT->qual_end(); |
| I != E; ++I) |
| LookupVisibleDecls(*I, LookupKind, Consumer); |
| } |
| } else if (SS && SS->isSet()) { |
| DeclContext *DC = computeDeclContext(*SS, EnteringContext); |
| if (!DC) |
| return TypoCorrection(); |
| |
| // Provide a stop gap for files that are just seriously broken. Trying |
| // to correct all typos can turn into a HUGE performance penalty, causing |
| // some files to take minutes to get rejected by the parser. |
| if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20) |
| return TypoCorrection(); |
| ++TyposCorrected; |
| |
| LookupVisibleDecls(DC, LookupKind, Consumer); |
| } else { |
| IsUnqualifiedLookup = true; |
| UnqualifiedTyposCorrectedMap::iterator Cached |
| = UnqualifiedTyposCorrected.find(Typo); |
| if (Cached != UnqualifiedTyposCorrected.end()) { |
| // Add the cached value, unless it's a keyword or fails validation. In the |
| // keyword case, we'll end up adding the keyword below. |
| if (Cached->second) { |
| if (!Cached->second.isKeyword() && |
| CCC.ValidateCandidate(Cached->second)) |
| Consumer.addCorrection(Cached->second); |
| } else { |
| // Only honor no-correction cache hits when a callback that will validate |
| // correction candidates is not being used. |
| if (!ValidatingCallback) |
| return TypoCorrection(); |
| } |
| } |
| if (Cached == UnqualifiedTyposCorrected.end()) { |
| // Provide a stop gap for files that are just seriously broken. Trying |
| // to correct all typos can turn into a HUGE performance penalty, causing |
| // some files to take minutes to get rejected by the parser. |
| if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20) |
| return TypoCorrection(); |
| } |
| |
| // For unqualified lookup, look through all of the names that we have |
| // seen in this translation unit. |
| for (IdentifierTable::iterator I = Context.Idents.begin(), |
| IEnd = Context.Idents.end(); |
| I != IEnd; ++I) |
| Consumer.FoundName(I->getKey()); |
| |
| // Walk through identifiers in external identifier sources. |
| if (IdentifierInfoLookup *External |
| = Context.Idents.getExternalIdentifierLookup()) { |
| OwningPtr<IdentifierIterator> Iter(External->getIdentifiers()); |
| do { |
| StringRef Name = Iter->Next(); |
| if (Name.empty()) |
| break; |
| |
| Consumer.FoundName(Name); |
| } while (true); |
| } |
| } |
| |
| AddKeywordsToConsumer(*this, Consumer, S, CCC); |
| |
| // If we haven't found anything, we're done. |
| if (Consumer.empty()) { |
| // If this was an unqualified lookup, note that no correction was found. |
| if (IsUnqualifiedLookup) |
| (void)UnqualifiedTyposCorrected[Typo]; |
| |
| return TypoCorrection(); |
| } |
| |
| // Make sure that the user typed at least 3 characters for each correction |
| // made. Otherwise, we don't even both looking at the results. |
| unsigned ED = Consumer.getBestEditDistance(); |
| if (ED > 0 && Typo->getName().size() / ED < 3) { |
| // If this was an unqualified lookup, note that no correction was found. |
| if (IsUnqualifiedLookup) |
| (void)UnqualifiedTyposCorrected[Typo]; |
| |
| return TypoCorrection(); |
| } |
| |
| // Build the NestedNameSpecifiers for the KnownNamespaces |
| if (getLangOptions().CPlusPlus) { |
| // Load any externally-known namespaces. |
| if (ExternalSource && !LoadedExternalKnownNamespaces) { |
| SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces; |
| LoadedExternalKnownNamespaces = true; |
| ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces); |
| for (unsigned I = 0, N = ExternalKnownNamespaces.size(); I != N; ++I) |
| KnownNamespaces[ExternalKnownNamespaces[I]] = true; |
| } |
| |
| for (llvm::DenseMap<NamespaceDecl*, bool>::iterator |
| KNI = KnownNamespaces.begin(), |
| KNIEnd = KnownNamespaces.end(); |
| KNI != KNIEnd; ++KNI) |
| Namespaces.AddNamespace(KNI->first); |
| } |
| |
| // Weed out any names that could not be found by name lookup or, if a |
| // CorrectionCandidateCallback object was provided, failed validation. |
| llvm::SmallPtrSet<IdentifierInfo*, 16> QualifiedResults; |
| LookupResult TmpRes(*this, TypoName, LookupKind); |
| TmpRes.suppressDiagnostics(); |
| while (!Consumer.empty()) { |
| TypoCorrectionConsumer::distance_iterator DI = Consumer.begin(); |
| unsigned ED = DI->first; |
| for (TypoCorrectionConsumer::result_iterator I = DI->second->begin(), |
| IEnd = DI->second->end(); |
| I != IEnd; /* Increment in loop. */) { |
| // If the item already has been looked up or is a keyword, keep it. |
| // If a validator callback object was given, drop the correction |
| // unless it passes validation. |
| if (I->second.isResolved()) { |
| TypoCorrectionConsumer::result_iterator Prev = I; |
| ++I; |
| if (!CCC.ValidateCandidate(Prev->second)) |
| DI->second->erase(Prev); |
| continue; |
| } |
| |
| // Perform name lookup on this name. |
| IdentifierInfo *Name = I->second.getCorrectionAsIdentifierInfo(); |
| LookupPotentialTypoResult(*this, TmpRes, Name, S, SS, MemberContext, |
| EnteringContext, CCC.IsObjCIvarLookup); |
| |
| switch (TmpRes.getResultKind()) { |
| case LookupResult::NotFound: |
| case LookupResult::NotFoundInCurrentInstantiation: |
| case LookupResult::FoundUnresolvedValue: |
| QualifiedResults.insert(Name); |
| // We didn't find this name in our scope, or didn't like what we found; |
| // ignore it. |
| { |
| TypoCorrectionConsumer::result_iterator Next = I; |
| ++Next; |
| DI->second->erase(I); |
| I = Next; |
| } |
| break; |
| |
| case LookupResult::Ambiguous: |
| // We don't deal with ambiguities. |
| return TypoCorrection(); |
| |
| case LookupResult::FoundOverloaded: { |
| TypoCorrectionConsumer::result_iterator Prev = I; |
| // Store all of the Decls for overloaded symbols |
| for (LookupResult::iterator TRD = TmpRes.begin(), |
| TRDEnd = TmpRes.end(); |
| TRD != TRDEnd; ++TRD) |
| I->second.addCorrectionDecl(*TRD); |
| ++I; |
| if (!CCC.ValidateCandidate(Prev->second)) |
| DI->second->erase(Prev); |
| break; |
| } |
| |
| case LookupResult::Found: { |
| TypoCorrectionConsumer::result_iterator Prev = I; |
| I->second.setCorrectionDecl(TmpRes.getAsSingle<NamedDecl>()); |
| ++I; |
| if (!CCC.ValidateCandidate(Prev->second)) |
| DI->second->erase(Prev); |
| break; |
| } |
| |
| } |
| } |
| |
| if (DI->second->empty()) |
| Consumer.erase(DI); |
| else if (!getLangOptions().CPlusPlus || QualifiedResults.empty() || !ED) |
| // If there are results in the closest possible bucket, stop |
| break; |
| |
| // Only perform the qualified lookups for C++ |
| if (getLangOptions().CPlusPlus) { |
| TmpRes.suppressDiagnostics(); |
| for (llvm::SmallPtrSet<IdentifierInfo*, |
| 16>::iterator QRI = QualifiedResults.begin(), |
| QRIEnd = QualifiedResults.end(); |
| QRI != QRIEnd; ++QRI) { |
| for (NamespaceSpecifierSet::iterator NI = Namespaces.begin(), |
| NIEnd = Namespaces.end(); |
| NI != NIEnd; ++NI) { |
| DeclContext *Ctx = NI->DeclCtx; |
| unsigned QualifiedED = ED + NI->EditDistance; |
| |
| // Stop searching once the namespaces are too far away to create |
| // acceptable corrections for this identifier (since the namespaces |
| // are sorted in ascending order by edit distance) |
| if (QualifiedED > Consumer.getMaxEditDistance()) break; |
| |
| TmpRes.clear(); |
| TmpRes.setLookupName(*QRI); |
| if (!LookupQualifiedName(TmpRes, Ctx)) continue; |
| |
| // Any corrections added below will be validated in subsequent |
| // iterations of the main while() loop over the Consumer's contents. |
| switch (TmpRes.getResultKind()) { |
| case LookupResult::Found: |
| Consumer.addName((*QRI)->getName(), TmpRes.getAsSingle<NamedDecl>(), |
| QualifiedED, NI->NameSpecifier); |
| break; |
| case LookupResult::FoundOverloaded: { |
| TypoCorrection corr(&Context.Idents.get((*QRI)->getName()), NULL, |
| NI->NameSpecifier, QualifiedED); |
| for (LookupResult::iterator TRD = TmpRes.begin(), |
| TRDEnd = TmpRes.end(); |
| TRD != TRDEnd; ++TRD) |
| corr.addCorrectionDecl(*TRD); |
| Consumer.addCorrection(corr); |
| break; |
| } |
| case LookupResult::NotFound: |
| case LookupResult::NotFoundInCurrentInstantiation: |
| case LookupResult::Ambiguous: |
| case LookupResult::FoundUnresolvedValue: |
| break; |
| } |
| } |
| } |
| } |
| |
| QualifiedResults.clear(); |
| } |
| |
| // No corrections remain... |
| if (Consumer.empty()) return TypoCorrection(); |
| |
| TypoResultsMap &BestResults = *Consumer.begin()->second; |
| ED = Consumer.begin()->first; |
| |
| if (ED > 0 && Typo->getName().size() / ED < 3) { |
| // If this was an unqualified lookup and we believe the callback |
| // object wouldn't have filtered out possible corrections, note |
| // that no correction was found. |
| if (IsUnqualifiedLookup && !ValidatingCallback) |
| (void)UnqualifiedTyposCorrected[Typo]; |
| |
| return TypoCorrection(); |
| } |
| |
| // If we have multiple possible corrections, eliminate the ones where we |
| // added namespace qualifiers to try to resolve the ambiguity (and to favor |
| // corrections without additional namespace qualifiers) |
| if (getLangOptions().CPlusPlus && BestResults.size() > 1) { |
| TypoCorrectionConsumer::distance_iterator DI = Consumer.begin(); |
| for (TypoCorrectionConsumer::result_iterator I = DI->second->begin(), |
| IEnd = DI->second->end(); |
| I != IEnd; /* Increment in loop. */) { |
| if (I->second.getCorrectionSpecifier() != NULL) { |
| TypoCorrectionConsumer::result_iterator Cur = I; |
| ++I; |
| DI->second->erase(Cur); |
| } else ++I; |
| } |
| } |
| |
| // If only a single name remains, return that result. |
| if (BestResults.size() == 1) { |
| const llvm::StringMapEntry<TypoCorrection> &Correction = *(BestResults.begin()); |
| const TypoCorrection &Result = Correction.second; |
| |
| // Don't correct to a keyword that's the same as the typo; the keyword |
| // wasn't actually in scope. |
| if (ED == 0 && Result.isKeyword()) return TypoCorrection(); |
| |
| // Record the correction for unqualified lookup. |
| if (IsUnqualifiedLookup) |
| UnqualifiedTyposCorrected[Typo] = Result; |
| |
| return Result; |
| } |
| else if (BestResults.size() > 1 |
| // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver; |
| // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for |
| // some instances of CTC_Unknown, while WantRemainingKeywords is true |
| // for CTC_Unknown but not for CTC_ObjCMessageReceiver. |
| && CCC.WantObjCSuper && !CCC.WantRemainingKeywords |
| && BestResults["super"].isKeyword()) { |
| // Prefer 'super' when we're completing in a message-receiver |
| // context. |
| |
| // Don't correct to a keyword that's the same as the typo; the keyword |
| // wasn't actually in scope. |
| if (ED == 0) return TypoCorrection(); |
| |
| // Record the correction for unqualified lookup. |
| if (IsUnqualifiedLookup) |
| UnqualifiedTyposCorrected[Typo] = BestResults["super"]; |
| |
| return BestResults["super"]; |
| } |
| |
| // If this was an unqualified lookup and we believe the callback object did |
| // not filter out possible corrections, note that no correction was found. |
| if (IsUnqualifiedLookup && !ValidatingCallback) |
| (void)UnqualifiedTyposCorrected[Typo]; |
| |
| return TypoCorrection(); |
| } |
| |
| void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) { |
| if (!CDecl) return; |
| |
| if (isKeyword()) |
| CorrectionDecls.clear(); |
| |
| CorrectionDecls.push_back(CDecl); |
| |
| if (!CorrectionName) |
| CorrectionName = CDecl->getDeclName(); |
| } |
| |
| std::string TypoCorrection::getAsString(const LangOptions &LO) const { |
| if (CorrectionNameSpec) { |
| std::string tmpBuffer; |
| llvm::raw_string_ostream PrefixOStream(tmpBuffer); |
| CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO)); |
| return PrefixOStream.str() + CorrectionName.getAsString(); |
| } |
| |
| return CorrectionName.getAsString(); |
| } |