| //===----- CGCall.h - Encapsulate calling convention details ----*- C++ -*-===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // These classes wrap the information about a call or function | 
 | // definition used to handle ABI compliancy. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "CGCall.h" | 
 | #include "CodeGenFunction.h" | 
 | #include "CodeGenModule.h" | 
 | #include "clang/Basic/TargetInfo.h" | 
 | #include "clang/AST/Decl.h" | 
 | #include "clang/AST/DeclCXX.h" | 
 | #include "clang/AST/DeclObjC.h" | 
 | #include "clang/Frontend/CompileOptions.h" | 
 | #include "llvm/Attributes.h" | 
 | #include "llvm/Support/CallSite.h" | 
 | #include "llvm/Target/TargetData.h" | 
 |  | 
 | #include "ABIInfo.h" | 
 |  | 
 | using namespace clang; | 
 | using namespace CodeGen; | 
 |  | 
 | /***/ | 
 |  | 
 | // FIXME: Use iterator and sidestep silly type array creation. | 
 |  | 
 | const  | 
 | CGFunctionInfo &CodeGenTypes::getFunctionInfo(const FunctionNoProtoType *FTNP) { | 
 |   return getFunctionInfo(FTNP->getResultType(),  | 
 |                          llvm::SmallVector<QualType, 16>()); | 
 | } | 
 |  | 
 | const  | 
 | CGFunctionInfo &CodeGenTypes::getFunctionInfo(const FunctionProtoType *FTP) { | 
 |   llvm::SmallVector<QualType, 16> ArgTys; | 
 |   // FIXME: Kill copy. | 
 |   for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i) | 
 |     ArgTys.push_back(FTP->getArgType(i)); | 
 |   return getFunctionInfo(FTP->getResultType(), ArgTys); | 
 | } | 
 |  | 
 | const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXMethodDecl *MD) { | 
 |   llvm::SmallVector<QualType, 16> ArgTys; | 
 |   // Add the 'this' pointer unless this is a static method. | 
 |   if (MD->isInstance()) | 
 |     ArgTys.push_back(MD->getThisType(Context)); | 
 |    | 
 |   const FunctionProtoType *FTP = MD->getType()->getAsFunctionProtoType(); | 
 |   for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i) | 
 |     ArgTys.push_back(FTP->getArgType(i)); | 
 |   return getFunctionInfo(FTP->getResultType(), ArgTys); | 
 | } | 
 |  | 
 | const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const FunctionDecl *FD) { | 
 |   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) | 
 |     if (MD->isInstance()) | 
 |       return getFunctionInfo(MD); | 
 |    | 
 |   const FunctionType *FTy = FD->getType()->getAsFunctionType(); | 
 |   if (const FunctionProtoType *FTP = dyn_cast<FunctionProtoType>(FTy)) | 
 |     return getFunctionInfo(FTP); | 
 |   return getFunctionInfo(cast<FunctionNoProtoType>(FTy)); | 
 | } | 
 |  | 
 | const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const ObjCMethodDecl *MD) { | 
 |   llvm::SmallVector<QualType, 16> ArgTys; | 
 |   ArgTys.push_back(MD->getSelfDecl()->getType()); | 
 |   ArgTys.push_back(Context.getObjCSelType()); | 
 |   // FIXME: Kill copy? | 
 |   for (ObjCMethodDecl::param_iterator i = MD->param_begin(), | 
 |          e = MD->param_end(); i != e; ++i) | 
 |     ArgTys.push_back((*i)->getType()); | 
 |   return getFunctionInfo(MD->getResultType(), ArgTys); | 
 | } | 
 |  | 
 | const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy,  | 
 |                                                     const CallArgList &Args) { | 
 |   // FIXME: Kill copy. | 
 |   llvm::SmallVector<QualType, 16> ArgTys; | 
 |   for (CallArgList::const_iterator i = Args.begin(), e = Args.end();  | 
 |        i != e; ++i) | 
 |     ArgTys.push_back(i->second); | 
 |   return getFunctionInfo(ResTy, ArgTys); | 
 | } | 
 |  | 
 | const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy,  | 
 |                                                   const FunctionArgList &Args) { | 
 |   // FIXME: Kill copy. | 
 |   llvm::SmallVector<QualType, 16> ArgTys; | 
 |   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();  | 
 |        i != e; ++i) | 
 |     ArgTys.push_back(i->second); | 
 |   return getFunctionInfo(ResTy, ArgTys); | 
 | } | 
 |  | 
 | const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy, | 
 |                                const llvm::SmallVector<QualType, 16> &ArgTys) { | 
 |   // Lookup or create unique function info. | 
 |   llvm::FoldingSetNodeID ID; | 
 |   CGFunctionInfo::Profile(ID, ResTy, ArgTys.begin(), ArgTys.end()); | 
 |  | 
 |   void *InsertPos = 0; | 
 |   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, InsertPos); | 
 |   if (FI) | 
 |     return *FI; | 
 |  | 
 |   // Construct the function info. | 
 |   FI = new CGFunctionInfo(ResTy, ArgTys); | 
 |   FunctionInfos.InsertNode(FI, InsertPos); | 
 |  | 
 |   // Compute ABI information. | 
 |   getABIInfo().computeInfo(*FI, getContext(), TheModule.getContext()); | 
 |  | 
 |   return *FI; | 
 | } | 
 |  | 
 | CGFunctionInfo::CGFunctionInfo(QualType ResTy,  | 
 |                                const llvm::SmallVector<QualType, 16> &ArgTys) { | 
 |   NumArgs = ArgTys.size(); | 
 |   Args = new ArgInfo[1 + NumArgs]; | 
 |   Args[0].type = ResTy; | 
 |   for (unsigned i = 0; i < NumArgs; ++i) | 
 |     Args[1 + i].type = ArgTys[i]; | 
 | } | 
 |  | 
 | /***/ | 
 |  | 
 | void CodeGenTypes::GetExpandedTypes(QualType Ty,  | 
 |                                     std::vector<const llvm::Type*> &ArgTys) { | 
 |   const RecordType *RT = Ty->getAsStructureType(); | 
 |   assert(RT && "Can only expand structure types."); | 
 |   const RecordDecl *RD = RT->getDecl(); | 
 |   assert(!RD->hasFlexibleArrayMember() &&  | 
 |          "Cannot expand structure with flexible array."); | 
 |    | 
 |   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); | 
 |          i != e; ++i) { | 
 |     const FieldDecl *FD = *i; | 
 |     assert(!FD->isBitField() &&  | 
 |            "Cannot expand structure with bit-field members."); | 
 |      | 
 |     QualType FT = FD->getType(); | 
 |     if (CodeGenFunction::hasAggregateLLVMType(FT)) { | 
 |       GetExpandedTypes(FT, ArgTys); | 
 |     } else { | 
 |       ArgTys.push_back(ConvertType(FT)); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | llvm::Function::arg_iterator  | 
 | CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, | 
 |                                     llvm::Function::arg_iterator AI) { | 
 |   const RecordType *RT = Ty->getAsStructureType(); | 
 |   assert(RT && "Can only expand structure types."); | 
 |  | 
 |   RecordDecl *RD = RT->getDecl(); | 
 |   assert(LV.isSimple() &&  | 
 |          "Unexpected non-simple lvalue during struct expansion.");   | 
 |   llvm::Value *Addr = LV.getAddress(); | 
 |   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); | 
 |          i != e; ++i) { | 
 |     FieldDecl *FD = *i;     | 
 |     QualType FT = FD->getType(); | 
 |  | 
 |     // FIXME: What are the right qualifiers here? | 
 |     LValue LV = EmitLValueForField(Addr, FD, false, 0); | 
 |     if (CodeGenFunction::hasAggregateLLVMType(FT)) { | 
 |       AI = ExpandTypeFromArgs(FT, LV, AI); | 
 |     } else { | 
 |       EmitStoreThroughLValue(RValue::get(AI), LV, FT); | 
 |       ++AI; | 
 |     } | 
 |   } | 
 |  | 
 |   return AI; | 
 | } | 
 |  | 
 | void  | 
 | CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,  | 
 |                                   llvm::SmallVector<llvm::Value*, 16> &Args) { | 
 |   const RecordType *RT = Ty->getAsStructureType(); | 
 |   assert(RT && "Can only expand structure types."); | 
 |  | 
 |   RecordDecl *RD = RT->getDecl(); | 
 |   assert(RV.isAggregate() && "Unexpected rvalue during struct expansion"); | 
 |   llvm::Value *Addr = RV.getAggregateAddr(); | 
 |   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); | 
 |          i != e; ++i) { | 
 |     FieldDecl *FD = *i;     | 
 |     QualType FT = FD->getType(); | 
 |      | 
 |     // FIXME: What are the right qualifiers here? | 
 |     LValue LV = EmitLValueForField(Addr, FD, false, 0); | 
 |     if (CodeGenFunction::hasAggregateLLVMType(FT)) { | 
 |       ExpandTypeToArgs(FT, RValue::getAggregate(LV.getAddress()), Args); | 
 |     } else { | 
 |       RValue RV = EmitLoadOfLValue(LV, FT); | 
 |       assert(RV.isScalar() &&  | 
 |              "Unexpected non-scalar rvalue during struct expansion."); | 
 |       Args.push_back(RV.getScalarVal()); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as | 
 | /// a pointer to an object of type \arg Ty. | 
 | /// | 
 | /// This safely handles the case when the src type is smaller than the | 
 | /// destination type; in this situation the values of bits which not | 
 | /// present in the src are undefined. | 
 | static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr, | 
 |                                       const llvm::Type *Ty, | 
 |                                       CodeGenFunction &CGF) { | 
 |   const llvm::Type *SrcTy =  | 
 |     cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); | 
 |   uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy); | 
 |   uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(Ty); | 
 |  | 
 |   // If load is legal, just bitcast the src pointer. | 
 |   if (SrcSize >= DstSize) { | 
 |     // Generally SrcSize is never greater than DstSize, since this means we are | 
 |     // losing bits. However, this can happen in cases where the structure has | 
 |     // additional padding, for example due to a user specified alignment. | 
 |     // | 
 |     // FIXME: Assert that we aren't truncating non-padding bits when have access | 
 |     // to that information. | 
 |     llvm::Value *Casted = | 
 |       CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty)); | 
 |     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted); | 
 |     // FIXME: Use better alignment / avoid requiring aligned load. | 
 |     Load->setAlignment(1); | 
 |     return Load; | 
 |   } else { | 
 |     // Otherwise do coercion through memory. This is stupid, but | 
 |     // simple. | 
 |     llvm::Value *Tmp = CGF.CreateTempAlloca(Ty); | 
 |     llvm::Value *Casted =  | 
 |       CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(SrcTy)); | 
 |     llvm::StoreInst *Store =  | 
 |       CGF.Builder.CreateStore(CGF.Builder.CreateLoad(SrcPtr), Casted); | 
 |     // FIXME: Use better alignment / avoid requiring aligned store. | 
 |     Store->setAlignment(1); | 
 |     return CGF.Builder.CreateLoad(Tmp); | 
 |   } | 
 | } | 
 |  | 
 | /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, | 
 | /// where the source and destination may have different types. | 
 | /// | 
 | /// This safely handles the case when the src type is larger than the | 
 | /// destination type; the upper bits of the src will be lost. | 
 | static void CreateCoercedStore(llvm::Value *Src, | 
 |                                llvm::Value *DstPtr, | 
 |                                CodeGenFunction &CGF) { | 
 |   const llvm::Type *SrcTy = Src->getType(); | 
 |   const llvm::Type *DstTy =  | 
 |     cast<llvm::PointerType>(DstPtr->getType())->getElementType(); | 
 |  | 
 |   uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy); | 
 |   uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(DstTy); | 
 |  | 
 |   // If store is legal, just bitcast the src pointer. | 
 |   if (SrcSize <= DstSize) { | 
 |     llvm::Value *Casted = | 
 |       CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy)); | 
 |     // FIXME: Use better alignment / avoid requiring aligned store. | 
 |     CGF.Builder.CreateStore(Src, Casted)->setAlignment(1); | 
 |   } else { | 
 |     // Otherwise do coercion through memory. This is stupid, but | 
 |     // simple. | 
 |  | 
 |     // Generally SrcSize is never greater than DstSize, since this means we are | 
 |     // losing bits. However, this can happen in cases where the structure has | 
 |     // additional padding, for example due to a user specified alignment. | 
 |     // | 
 |     // FIXME: Assert that we aren't truncating non-padding bits when have access | 
 |     // to that information. | 
 |     llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy); | 
 |     CGF.Builder.CreateStore(Src, Tmp); | 
 |     llvm::Value *Casted =  | 
 |       CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(DstTy)); | 
 |     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted); | 
 |     // FIXME: Use better alignment / avoid requiring aligned load. | 
 |     Load->setAlignment(1); | 
 |     CGF.Builder.CreateStore(Load, DstPtr); | 
 |   } | 
 | } | 
 |  | 
 | /***/ | 
 |  | 
 | bool CodeGenModule::ReturnTypeUsesSret(const CGFunctionInfo &FI) { | 
 |   return FI.getReturnInfo().isIndirect(); | 
 | } | 
 |  | 
 | const llvm::FunctionType * | 
 | CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI, bool IsVariadic) { | 
 |   std::vector<const llvm::Type*> ArgTys; | 
 |  | 
 |   const llvm::Type *ResultType = 0; | 
 |  | 
 |   QualType RetTy = FI.getReturnType(); | 
 |   const ABIArgInfo &RetAI = FI.getReturnInfo(); | 
 |   switch (RetAI.getKind()) { | 
 |   case ABIArgInfo::Expand: | 
 |     assert(0 && "Invalid ABI kind for return argument"); | 
 |  | 
 |   case ABIArgInfo::Extend: | 
 |   case ABIArgInfo::Direct: | 
 |     ResultType = ConvertType(RetTy); | 
 |     break; | 
 |  | 
 |   case ABIArgInfo::Indirect: { | 
 |     assert(!RetAI.getIndirectAlign() && "Align unused on indirect return."); | 
 |     ResultType = llvm::Type::VoidTy; | 
 |     const llvm::Type *STy = ConvertType(RetTy); | 
 |     ArgTys.push_back(llvm::PointerType::get(STy, RetTy.getAddressSpace())); | 
 |     break; | 
 |   } | 
 |  | 
 |   case ABIArgInfo::Ignore: | 
 |     ResultType = llvm::Type::VoidTy; | 
 |     break; | 
 |  | 
 |   case ABIArgInfo::Coerce: | 
 |     ResultType = RetAI.getCoerceToType(); | 
 |     break; | 
 |   } | 
 |    | 
 |   for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),  | 
 |          ie = FI.arg_end(); it != ie; ++it) { | 
 |     const ABIArgInfo &AI = it->info; | 
 |      | 
 |     switch (AI.getKind()) { | 
 |     case ABIArgInfo::Ignore: | 
 |       break; | 
 |  | 
 |     case ABIArgInfo::Coerce: | 
 |       ArgTys.push_back(AI.getCoerceToType()); | 
 |       break; | 
 |  | 
 |     case ABIArgInfo::Indirect: { | 
 |       // indirect arguments are always on the stack, which is addr space #0. | 
 |       const llvm::Type *LTy = ConvertTypeForMem(it->type); | 
 |       ArgTys.push_back(llvm::PointerType::getUnqual(LTy)); | 
 |       break; | 
 |     } | 
 |  | 
 |     case ABIArgInfo::Extend: | 
 |     case ABIArgInfo::Direct: | 
 |       ArgTys.push_back(ConvertType(it->type)); | 
 |       break; | 
 |       | 
 |     case ABIArgInfo::Expand: | 
 |       GetExpandedTypes(it->type, ArgTys); | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   return llvm::FunctionType::get(ResultType, ArgTys, IsVariadic); | 
 | } | 
 |  | 
 | void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI, | 
 |                                            const Decl *TargetDecl, | 
 |                                            AttributeListType &PAL) { | 
 |   unsigned FuncAttrs = 0; | 
 |   unsigned RetAttrs = 0; | 
 |  | 
 |   // FIXME: handle sseregparm someday... | 
 |   if (TargetDecl) { | 
 |     if (TargetDecl->hasAttr<NoThrowAttr>()) | 
 |       FuncAttrs |= llvm::Attribute::NoUnwind; | 
 |     if (TargetDecl->hasAttr<NoReturnAttr>()) | 
 |       FuncAttrs |= llvm::Attribute::NoReturn; | 
 |     if (TargetDecl->hasAttr<ConstAttr>()) | 
 |       FuncAttrs |= llvm::Attribute::ReadNone; | 
 |     else if (TargetDecl->hasAttr<PureAttr>()) | 
 |       FuncAttrs |= llvm::Attribute::ReadOnly; | 
 |     if (TargetDecl->hasAttr<MallocAttr>()) | 
 |       RetAttrs |= llvm::Attribute::NoAlias; | 
 |   } | 
 |  | 
 |   if (CompileOpts.DisableRedZone) | 
 |     FuncAttrs |= llvm::Attribute::NoRedZone; | 
 |   if (CompileOpts.NoImplicitFloat) | 
 |     FuncAttrs |= llvm::Attribute::NoImplicitFloat; | 
 |  | 
 |   if (Features.getStackProtectorMode() == LangOptions::SSPOn) | 
 |     FuncAttrs |= llvm::Attribute::StackProtect; | 
 |   else if (Features.getStackProtectorMode() == LangOptions::SSPReq) | 
 |     FuncAttrs |= llvm::Attribute::StackProtectReq; | 
 |  | 
 |   QualType RetTy = FI.getReturnType(); | 
 |   unsigned Index = 1; | 
 |   const ABIArgInfo &RetAI = FI.getReturnInfo(); | 
 |   switch (RetAI.getKind()) { | 
 |   case ABIArgInfo::Extend: | 
 |    if (RetTy->isSignedIntegerType()) { | 
 |      RetAttrs |= llvm::Attribute::SExt; | 
 |    } else if (RetTy->isUnsignedIntegerType()) { | 
 |      RetAttrs |= llvm::Attribute::ZExt; | 
 |    } | 
 |    // FALLTHROUGH | 
 |   case ABIArgInfo::Direct: | 
 |     break; | 
 |  | 
 |   case ABIArgInfo::Indirect: | 
 |     PAL.push_back(llvm::AttributeWithIndex::get(Index,  | 
 |                                                 llvm::Attribute::StructRet | | 
 |                                                 llvm::Attribute::NoAlias)); | 
 |     ++Index; | 
 |     // sret disables readnone and readonly | 
 |     FuncAttrs &= ~(llvm::Attribute::ReadOnly | | 
 |                    llvm::Attribute::ReadNone); | 
 |     break; | 
 |  | 
 |   case ABIArgInfo::Ignore: | 
 |   case ABIArgInfo::Coerce: | 
 |     break; | 
 |  | 
 |   case ABIArgInfo::Expand: | 
 |     assert(0 && "Invalid ABI kind for return argument");     | 
 |   } | 
 |  | 
 |   if (RetAttrs) | 
 |     PAL.push_back(llvm::AttributeWithIndex::get(0, RetAttrs)); | 
 |  | 
 |   // FIXME: we need to honour command line settings also... | 
 |   // FIXME: RegParm should be reduced in case of nested functions and/or global | 
 |   // register variable. | 
 |   signed RegParm = 0; | 
 |   if (TargetDecl) | 
 |     if (const RegparmAttr *RegParmAttr  | 
 |           = TargetDecl->getAttr<RegparmAttr>()) | 
 |       RegParm = RegParmAttr->getNumParams(); | 
 |  | 
 |   unsigned PointerWidth = getContext().Target.getPointerWidth(0); | 
 |   for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),  | 
 |          ie = FI.arg_end(); it != ie; ++it) { | 
 |     QualType ParamType = it->type; | 
 |     const ABIArgInfo &AI = it->info; | 
 |     unsigned Attributes = 0; | 
 |  | 
 |     switch (AI.getKind()) { | 
 |     case ABIArgInfo::Coerce: | 
 |       break; | 
 |  | 
 |     case ABIArgInfo::Indirect: | 
 |       Attributes |= llvm::Attribute::ByVal; | 
 |       Attributes |= | 
 |         llvm::Attribute::constructAlignmentFromInt(AI.getIndirectAlign()); | 
 |       // byval disables readnone and readonly. | 
 |       FuncAttrs &= ~(llvm::Attribute::ReadOnly | | 
 |                      llvm::Attribute::ReadNone); | 
 |       break; | 
 |  | 
 |     case ABIArgInfo::Extend: | 
 |      if (ParamType->isSignedIntegerType()) { | 
 |        Attributes |= llvm::Attribute::SExt; | 
 |      } else if (ParamType->isUnsignedIntegerType()) { | 
 |        Attributes |= llvm::Attribute::ZExt; | 
 |      } | 
 |      // FALLS THROUGH | 
 |     case ABIArgInfo::Direct: | 
 |       if (RegParm > 0 && | 
 |           (ParamType->isIntegerType() || ParamType->isPointerType())) { | 
 |         RegParm -= | 
 |           (Context.getTypeSize(ParamType) + PointerWidth - 1) / PointerWidth; | 
 |         if (RegParm >= 0) | 
 |           Attributes |= llvm::Attribute::InReg; | 
 |       } | 
 |       // FIXME: handle sseregparm someday... | 
 |       break; | 
 |  | 
 |     case ABIArgInfo::Ignore: | 
 |       // Skip increment, no matching LLVM parameter. | 
 |       continue;  | 
 |  | 
 |     case ABIArgInfo::Expand: { | 
 |       std::vector<const llvm::Type*> Tys;   | 
 |       // FIXME: This is rather inefficient. Do we ever actually need to do | 
 |       // anything here? The result should be just reconstructed on the other | 
 |       // side, so extension should be a non-issue. | 
 |       getTypes().GetExpandedTypes(ParamType, Tys); | 
 |       Index += Tys.size(); | 
 |       continue; | 
 |     } | 
 |     } | 
 |        | 
 |     if (Attributes) | 
 |       PAL.push_back(llvm::AttributeWithIndex::get(Index, Attributes)); | 
 |     ++Index; | 
 |   } | 
 |   if (FuncAttrs) | 
 |     PAL.push_back(llvm::AttributeWithIndex::get(~0, FuncAttrs)); | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, | 
 |                                          llvm::Function *Fn, | 
 |                                          const FunctionArgList &Args) { | 
 |   // If this is an implicit-return-zero function, go ahead and | 
 |   // initialize the return value.  TODO: it might be nice to have | 
 |   // a more general mechanism for this that didn't require synthesized | 
 |   // return statements. | 
 |   if (const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { | 
 |     if (FD->hasImplicitReturnZero()) { | 
 |       QualType RetTy = FD->getResultType().getUnqualifiedType(); | 
 |       const llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); | 
 |       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); | 
 |       Builder.CreateStore(Zero, ReturnValue); | 
 |     } | 
 |   } | 
 |  | 
 |   // FIXME: We no longer need the types from FunctionArgList; lift up and | 
 |   // simplify. | 
 |  | 
 |   // Emit allocs for param decls.  Give the LLVM Argument nodes names. | 
 |   llvm::Function::arg_iterator AI = Fn->arg_begin(); | 
 |    | 
 |   // Name the struct return argument. | 
 |   if (CGM.ReturnTypeUsesSret(FI)) { | 
 |     AI->setName("agg.result"); | 
 |     ++AI; | 
 |   } | 
 |      | 
 |   assert(FI.arg_size() == Args.size() && | 
 |          "Mismatch between function signature & arguments."); | 
 |   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); | 
 |   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); | 
 |        i != e; ++i, ++info_it) { | 
 |     const VarDecl *Arg = i->first; | 
 |     QualType Ty = info_it->type; | 
 |     const ABIArgInfo &ArgI = info_it->info; | 
 |  | 
 |     switch (ArgI.getKind()) { | 
 |     case ABIArgInfo::Indirect: { | 
 |       llvm::Value* V = AI; | 
 |       if (hasAggregateLLVMType(Ty)) { | 
 |         // Do nothing, aggregates and complex variables are accessed by | 
 |         // reference. | 
 |       } else { | 
 |         // Load scalar value from indirect argument. | 
 |         V = EmitLoadOfScalar(V, false, Ty); | 
 |         if (!getContext().typesAreCompatible(Ty, Arg->getType())) { | 
 |           // This must be a promotion, for something like | 
 |           // "void a(x) short x; {..." | 
 |           V = EmitScalarConversion(V, Ty, Arg->getType()); | 
 |         } | 
 |       } | 
 |       EmitParmDecl(*Arg, V);       | 
 |       break; | 
 |     } | 
 |  | 
 |     case ABIArgInfo::Extend: | 
 |     case ABIArgInfo::Direct: { | 
 |       assert(AI != Fn->arg_end() && "Argument mismatch!"); | 
 |       llvm::Value* V = AI; | 
 |       if (hasAggregateLLVMType(Ty)) { | 
 |         // Create a temporary alloca to hold the argument; the rest of | 
 |         // codegen expects to access aggregates & complex values by | 
 |         // reference. | 
 |         V = CreateTempAlloca(ConvertTypeForMem(Ty)); | 
 |         Builder.CreateStore(AI, V); | 
 |       } else { | 
 |         if (!getContext().typesAreCompatible(Ty, Arg->getType())) { | 
 |           // This must be a promotion, for something like | 
 |           // "void a(x) short x; {..." | 
 |           V = EmitScalarConversion(V, Ty, Arg->getType()); | 
 |         } | 
 |       } | 
 |       EmitParmDecl(*Arg, V); | 
 |       break; | 
 |     } | 
 |        | 
 |     case ABIArgInfo::Expand: { | 
 |       // If this structure was expanded into multiple arguments then | 
 |       // we need to create a temporary and reconstruct it from the | 
 |       // arguments. | 
 |       std::string Name = Arg->getNameAsString(); | 
 |       llvm::Value *Temp = CreateTempAlloca(ConvertTypeForMem(Ty),  | 
 |                                            (Name + ".addr").c_str()); | 
 |       // FIXME: What are the right qualifiers here? | 
 |       llvm::Function::arg_iterator End =  | 
 |         ExpandTypeFromArgs(Ty, LValue::MakeAddr(Temp,0), AI);       | 
 |       EmitParmDecl(*Arg, Temp); | 
 |  | 
 |       // Name the arguments used in expansion and increment AI. | 
 |       unsigned Index = 0; | 
 |       for (; AI != End; ++AI, ++Index) | 
 |         AI->setName(Name + "." + llvm::Twine(Index)); | 
 |       continue; | 
 |     } | 
 |  | 
 |     case ABIArgInfo::Ignore: | 
 |       // Initialize the local variable appropriately. | 
 |       if (hasAggregateLLVMType(Ty)) {  | 
 |         EmitParmDecl(*Arg, CreateTempAlloca(ConvertTypeForMem(Ty))); | 
 |       } else { | 
 |         EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType()))); | 
 |       } | 
 |        | 
 |       // Skip increment, no matching LLVM parameter. | 
 |       continue;  | 
 |  | 
 |     case ABIArgInfo::Coerce: { | 
 |       assert(AI != Fn->arg_end() && "Argument mismatch!"); | 
 |       // FIXME: This is very wasteful; EmitParmDecl is just going to drop the | 
 |       // result in a new alloca anyway, so we could just store into that | 
 |       // directly if we broke the abstraction down more. | 
 |       llvm::Value *V = CreateTempAlloca(ConvertTypeForMem(Ty), "coerce"); | 
 |       CreateCoercedStore(AI, V, *this); | 
 |       // Match to what EmitParmDecl is expecting for this type. | 
 |       if (!CodeGenFunction::hasAggregateLLVMType(Ty)) { | 
 |         V = EmitLoadOfScalar(V, false, Ty); | 
 |         if (!getContext().typesAreCompatible(Ty, Arg->getType())) { | 
 |           // This must be a promotion, for something like | 
 |           // "void a(x) short x; {..." | 
 |           V = EmitScalarConversion(V, Ty, Arg->getType()); | 
 |         } | 
 |       } | 
 |       EmitParmDecl(*Arg, V); | 
 |       break; | 
 |     } | 
 |     } | 
 |  | 
 |     ++AI; | 
 |   } | 
 |   assert(AI == Fn->arg_end() && "Argument mismatch!"); | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, | 
 |                                          llvm::Value *ReturnValue) { | 
 |   llvm::Value *RV = 0; | 
 |  | 
 |   // Functions with no result always return void. | 
 |   if (ReturnValue) { | 
 |     QualType RetTy = FI.getReturnType(); | 
 |     const ABIArgInfo &RetAI = FI.getReturnInfo(); | 
 |  | 
 |     switch (RetAI.getKind()) { | 
 |     case ABIArgInfo::Indirect: | 
 |       if (RetTy->isAnyComplexType()) { | 
 |         ComplexPairTy RT = LoadComplexFromAddr(ReturnValue, false); | 
 |         StoreComplexToAddr(RT, CurFn->arg_begin(), false); | 
 |       } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { | 
 |         EmitAggregateCopy(CurFn->arg_begin(), ReturnValue, RetTy); | 
 |       } else { | 
 |         EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), CurFn->arg_begin(), | 
 |                           false, RetTy); | 
 |       } | 
 |       break; | 
 |  | 
 |     case ABIArgInfo::Extend: | 
 |     case ABIArgInfo::Direct: | 
 |       // The internal return value temp always will have | 
 |       // pointer-to-return-type type. | 
 |       RV = Builder.CreateLoad(ReturnValue); | 
 |       break; | 
 |  | 
 |     case ABIArgInfo::Ignore: | 
 |       break; | 
 |        | 
 |     case ABIArgInfo::Coerce: | 
 |       RV = CreateCoercedLoad(ReturnValue, RetAI.getCoerceToType(), *this); | 
 |       break; | 
 |  | 
 |     case ABIArgInfo::Expand: | 
 |       assert(0 && "Invalid ABI kind for return argument");     | 
 |     } | 
 |   } | 
 |    | 
 |   if (RV) { | 
 |     Builder.CreateRet(RV); | 
 |   } else { | 
 |     Builder.CreateRetVoid(); | 
 |   } | 
 | } | 
 |  | 
 | RValue CodeGenFunction::EmitCallArg(const Expr *E, QualType ArgType) { | 
 |   if (ArgType->isReferenceType()) | 
 |     return EmitReferenceBindingToExpr(E, ArgType); | 
 |    | 
 |   return EmitAnyExprToTemp(E); | 
 | } | 
 |  | 
 | RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, | 
 |                                  llvm::Value *Callee,  | 
 |                                  const CallArgList &CallArgs, | 
 |                                  const Decl *TargetDecl) { | 
 |   // FIXME: We no longer need the types from CallArgs; lift up and simplify. | 
 |   llvm::SmallVector<llvm::Value*, 16> Args; | 
 |  | 
 |   // Handle struct-return functions by passing a pointer to the | 
 |   // location that we would like to return into. | 
 |   QualType RetTy = CallInfo.getReturnType(); | 
 |   const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); | 
 |    | 
 |    | 
 |   // If the call returns a temporary with struct return, create a temporary | 
 |   // alloca to hold the result. | 
 |   if (CGM.ReturnTypeUsesSret(CallInfo)) | 
 |     Args.push_back(CreateTempAlloca(ConvertTypeForMem(RetTy))); | 
 |    | 
 |   assert(CallInfo.arg_size() == CallArgs.size() && | 
 |          "Mismatch between function signature & arguments."); | 
 |   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); | 
 |   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();  | 
 |        I != E; ++I, ++info_it) { | 
 |     const ABIArgInfo &ArgInfo = info_it->info; | 
 |     RValue RV = I->first; | 
 |  | 
 |     switch (ArgInfo.getKind()) { | 
 |     case ABIArgInfo::Indirect: | 
 |       if (RV.isScalar() || RV.isComplex()) { | 
 |         // Make a temporary alloca to pass the argument. | 
 |         Args.push_back(CreateTempAlloca(ConvertTypeForMem(I->second))); | 
 |         if (RV.isScalar()) | 
 |           EmitStoreOfScalar(RV.getScalarVal(), Args.back(), false, I->second); | 
 |         else | 
 |           StoreComplexToAddr(RV.getComplexVal(), Args.back(), false);  | 
 |       } else { | 
 |         Args.push_back(RV.getAggregateAddr()); | 
 |       } | 
 |       break; | 
 |  | 
 |     case ABIArgInfo::Extend: | 
 |     case ABIArgInfo::Direct: | 
 |       if (RV.isScalar()) { | 
 |         Args.push_back(RV.getScalarVal()); | 
 |       } else if (RV.isComplex()) { | 
 |         llvm::Value *Tmp = llvm::UndefValue::get(ConvertType(I->second)); | 
 |         Tmp = Builder.CreateInsertValue(Tmp, RV.getComplexVal().first, 0); | 
 |         Tmp = Builder.CreateInsertValue(Tmp, RV.getComplexVal().second, 1); | 
 |         Args.push_back(Tmp); | 
 |       } else { | 
 |         Args.push_back(Builder.CreateLoad(RV.getAggregateAddr())); | 
 |       } | 
 |       break; | 
 |       | 
 |     case ABIArgInfo::Ignore: | 
 |       break; | 
 |  | 
 |     case ABIArgInfo::Coerce: { | 
 |       // FIXME: Avoid the conversion through memory if possible. | 
 |       llvm::Value *SrcPtr; | 
 |       if (RV.isScalar()) { | 
 |         SrcPtr = CreateTempAlloca(ConvertTypeForMem(I->second), "coerce"); | 
 |         EmitStoreOfScalar(RV.getScalarVal(), SrcPtr, false, I->second); | 
 |       } else if (RV.isComplex()) { | 
 |         SrcPtr = CreateTempAlloca(ConvertTypeForMem(I->second), "coerce"); | 
 |         StoreComplexToAddr(RV.getComplexVal(), SrcPtr, false); | 
 |       } else  | 
 |         SrcPtr = RV.getAggregateAddr(); | 
 |       Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),  | 
 |                                        *this)); | 
 |       break; | 
 |     } | 
 |  | 
 |     case ABIArgInfo::Expand: | 
 |       ExpandTypeToArgs(I->second, RV, Args); | 
 |       break; | 
 |     } | 
 |   } | 
 |    | 
 |   // If the callee is a bitcast of a function to a varargs pointer to function | 
 |   // type, check to see if we can remove the bitcast.  This handles some cases | 
 |   // with unprototyped functions. | 
 |   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee)) | 
 |     if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) { | 
 |       const llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType()); | 
 |       const llvm::FunctionType *CurFT = | 
 |         cast<llvm::FunctionType>(CurPT->getElementType()); | 
 |       const llvm::FunctionType *ActualFT = CalleeF->getFunctionType(); | 
 |        | 
 |       if (CE->getOpcode() == llvm::Instruction::BitCast && | 
 |           ActualFT->getReturnType() == CurFT->getReturnType() && | 
 |           ActualFT->getNumParams() == CurFT->getNumParams() && | 
 |           ActualFT->getNumParams() == Args.size()) { | 
 |         bool ArgsMatch = true; | 
 |         for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i) | 
 |           if (ActualFT->getParamType(i) != CurFT->getParamType(i)) { | 
 |             ArgsMatch = false; | 
 |             break; | 
 |           } | 
 |         | 
 |         // Strip the cast if we can get away with it.  This is a nice cleanup, | 
 |         // but also allows us to inline the function at -O0 if it is marked | 
 |         // always_inline. | 
 |         if (ArgsMatch) | 
 |           Callee = CalleeF; | 
 |       } | 
 |     } | 
 |    | 
 |  | 
 |   llvm::BasicBlock *InvokeDest = getInvokeDest(); | 
 |   CodeGen::AttributeListType AttributeList; | 
 |   CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList); | 
 |   llvm::AttrListPtr Attrs = llvm::AttrListPtr::get(AttributeList.begin(), | 
 |                                                    AttributeList.end()); | 
 |    | 
 |   llvm::CallSite CS; | 
 |   if (!InvokeDest || (Attrs.getFnAttributes() & llvm::Attribute::NoUnwind)) { | 
 |     CS = Builder.CreateCall(Callee, Args.data(), Args.data()+Args.size()); | 
 |   } else { | 
 |     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); | 
 |     CS = Builder.CreateInvoke(Callee, Cont, InvokeDest,  | 
 |                               Args.data(), Args.data()+Args.size()); | 
 |     EmitBlock(Cont); | 
 |   } | 
 |  | 
 |   CS.setAttributes(Attrs); | 
 |   if (const llvm::Function *F = | 
 |         dyn_cast<llvm::Function>(Callee->stripPointerCasts())) | 
 |     CS.setCallingConv(F->getCallingConv()); | 
 |  | 
 |   // If the call doesn't return, finish the basic block and clear the | 
 |   // insertion point; this allows the rest of IRgen to discard | 
 |   // unreachable code. | 
 |   if (CS.doesNotReturn()) { | 
 |     Builder.CreateUnreachable(); | 
 |     Builder.ClearInsertionPoint(); | 
 |      | 
 |     // FIXME: For now, emit a dummy basic block because expr emitters in | 
 |     // generally are not ready to handle emitting expressions at unreachable | 
 |     // points. | 
 |     EnsureInsertPoint(); | 
 |      | 
 |     // Return a reasonable RValue. | 
 |     return GetUndefRValue(RetTy); | 
 |   }     | 
 |  | 
 |   llvm::Instruction *CI = CS.getInstruction(); | 
 |   if (Builder.isNamePreserving() && CI->getType() != llvm::Type::VoidTy) | 
 |     CI->setName("call"); | 
 |  | 
 |   switch (RetAI.getKind()) { | 
 |   case ABIArgInfo::Indirect: | 
 |     if (RetTy->isAnyComplexType()) | 
 |       return RValue::getComplex(LoadComplexFromAddr(Args[0], false)); | 
 |     if (CodeGenFunction::hasAggregateLLVMType(RetTy)) | 
 |       return RValue::getAggregate(Args[0]); | 
 |     return RValue::get(EmitLoadOfScalar(Args[0], false, RetTy)); | 
 |  | 
 |   case ABIArgInfo::Extend: | 
 |   case ABIArgInfo::Direct: | 
 |     if (RetTy->isAnyComplexType()) { | 
 |       llvm::Value *Real = Builder.CreateExtractValue(CI, 0); | 
 |       llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); | 
 |       return RValue::getComplex(std::make_pair(Real, Imag)); | 
 |     } | 
 |     if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { | 
 |       llvm::Value *V = CreateTempAlloca(ConvertTypeForMem(RetTy), "agg.tmp"); | 
 |       Builder.CreateStore(CI, V); | 
 |       return RValue::getAggregate(V); | 
 |     } | 
 |     return RValue::get(CI); | 
 |  | 
 |   case ABIArgInfo::Ignore: | 
 |     // If we are ignoring an argument that had a result, make sure to | 
 |     // construct the appropriate return value for our caller. | 
 |     return GetUndefRValue(RetTy); | 
 |  | 
 |   case ABIArgInfo::Coerce: { | 
 |     // FIXME: Avoid the conversion through memory if possible. | 
 |     llvm::Value *V = CreateTempAlloca(ConvertTypeForMem(RetTy), "coerce"); | 
 |     CreateCoercedStore(CI, V, *this); | 
 |     if (RetTy->isAnyComplexType()) | 
 |       return RValue::getComplex(LoadComplexFromAddr(V, false)); | 
 |     if (CodeGenFunction::hasAggregateLLVMType(RetTy)) | 
 |       return RValue::getAggregate(V); | 
 |     return RValue::get(EmitLoadOfScalar(V, false, RetTy)); | 
 |   } | 
 |  | 
 |   case ABIArgInfo::Expand: | 
 |     assert(0 && "Invalid ABI kind for return argument");     | 
 |   } | 
 |  | 
 |   assert(0 && "Unhandled ABIArgInfo::Kind"); | 
 |   return RValue::get(0); | 
 | } | 
 |  | 
 | /* VarArg handling */ | 
 |  | 
 | llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) { | 
 |   return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this); | 
 | } |