blob: 424d95e078e50efaec836638eceae9d49a6ef0aa [file] [log] [blame]
//===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Expr constant evaluator.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/APValue.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Expr.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/Support/Compiler.h"
using namespace clang;
using llvm::APSInt;
#define USE_NEW_EVALUATOR 0
static bool CalcFakeICEVal(const Expr *Expr,
llvm::APSInt &Result,
ASTContext &Context) {
// Calculate the value of an expression that has a calculatable
// value, but isn't an ICE. Currently, this only supports
// a very narrow set of extensions, but it can be expanded if needed.
if (const ParenExpr *PE = dyn_cast<ParenExpr>(Expr))
return CalcFakeICEVal(PE->getSubExpr(), Result, Context);
if (const CastExpr *CE = dyn_cast<CastExpr>(Expr)) {
QualType CETy = CE->getType();
if ((CETy->isIntegralType() && !CETy->isBooleanType()) ||
CETy->isPointerType()) {
if (CalcFakeICEVal(CE->getSubExpr(), Result, Context)) {
Result.extOrTrunc(Context.getTypeSize(CETy));
// FIXME: This assumes pointers are signed.
Result.setIsSigned(CETy->isSignedIntegerType() ||
CETy->isPointerType());
return true;
}
}
}
if (Expr->getType()->isIntegralType())
return Expr->isIntegerConstantExpr(Result, Context);
return false;
}
static bool EvaluatePointer(const Expr *E, APValue &Result, ASTContext &Ctx);
static bool EvaluateInteger(const Expr *E, APSInt &Result, ASTContext &Ctx);
//===----------------------------------------------------------------------===//
// Pointer Evaluation
//===----------------------------------------------------------------------===//
namespace {
class VISIBILITY_HIDDEN PointerExprEvaluator
: public StmtVisitor<PointerExprEvaluator, APValue> {
ASTContext &Ctx;
public:
PointerExprEvaluator(ASTContext &ctx) : Ctx(ctx) {}
APValue VisitStmt(Stmt *S) {
// FIXME: Remove this when we support more expressions.
printf("Unhandled pointer statement\n");
S->dump();
return APValue();
}
APValue VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); }
APValue VisitBinaryOperator(const BinaryOperator *E);
APValue VisitCastExpr(const CastExpr* E);
};
} // end anonymous namespace
static bool EvaluatePointer(const Expr* E, APValue& Result, ASTContext &Ctx) {
if (!E->getType()->isPointerType())
return false;
Result = PointerExprEvaluator(Ctx).Visit(const_cast<Expr*>(E));
return Result.isLValue();
}
APValue PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
if (E->getOpcode() != BinaryOperator::Add &&
E->getOpcode() != BinaryOperator::Sub)
return APValue();
const Expr *PExp = E->getLHS();
const Expr *IExp = E->getRHS();
if (IExp->getType()->isPointerType())
std::swap(PExp, IExp);
APValue ResultLValue;
if (!EvaluatePointer(PExp, ResultLValue, Ctx))
return APValue();
llvm::APSInt AdditionalOffset(32);
if (!EvaluateInteger(IExp, AdditionalOffset, Ctx))
return APValue();
uint64_t Offset = ResultLValue.getLValueOffset();
if (E->getOpcode() == BinaryOperator::Add)
Offset += AdditionalOffset.getZExtValue();
else
Offset -= AdditionalOffset.getZExtValue();
return APValue(ResultLValue.getLValueBase(), Offset);
}
APValue PointerExprEvaluator::VisitCastExpr(const CastExpr* E) {
const Expr* SubExpr = E->getSubExpr();
// Check for pointer->pointer cast
if (SubExpr->getType()->isPointerType()) {
APValue Result;
if (EvaluatePointer(SubExpr, Result, Ctx))
return Result;
return APValue();
}
if (SubExpr->getType()->isArithmeticType()) {
llvm::APSInt Result(32);
if (EvaluateInteger(SubExpr, Result, Ctx)) {
Result.extOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(E->getType())));
return APValue(0, Result.getZExtValue());
}
}
assert(0 && "Unhandled cast");
return APValue();
}
//===----------------------------------------------------------------------===//
// Integer Evaluation
//===----------------------------------------------------------------------===//
namespace {
class VISIBILITY_HIDDEN IntExprEvaluator
: public StmtVisitor<IntExprEvaluator, bool> {
ASTContext &Ctx;
APSInt &Result;
public:
IntExprEvaluator(ASTContext &ctx, APSInt &result) : Ctx(ctx), Result(result){}
//===--------------------------------------------------------------------===//
// Visitor Methods
//===--------------------------------------------------------------------===//
bool VisitStmt(Stmt *S) {
// FIXME: Remove this when we support more expressions.
printf("unhandled int expression");
S->dump();
return false;
}
bool VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); }
bool VisitBinaryOperator(const BinaryOperator *E);
bool VisitUnaryOperator(const UnaryOperator *E);
bool HandleCast(const Expr* SubExpr, QualType DestType);
bool VisitCastExpr(const CastExpr* E) {
return HandleCast(E->getSubExpr(), E->getType());
}
bool VisitImplicitCastExpr(const ImplicitCastExpr* E) {
return HandleCast(E->getSubExpr(), E->getType());
}
bool VisitSizeOfAlignOfTypeExpr(const SizeOfAlignOfTypeExpr *E);
bool VisitIntegerLiteral(const IntegerLiteral *E) {
Result = E->getValue();
return true;
}
};
} // end anonymous namespace
static bool EvaluateInteger(const Expr* E, APSInt &Result, ASTContext &Ctx) {
return IntExprEvaluator(Ctx, Result).Visit(const_cast<Expr*>(E));
}
bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
// The LHS of a constant expr is always evaluated and needed.
if (!Visit(E->getLHS()))
return false;
llvm::APSInt RHS(32);
if (!EvaluateInteger(E->getRHS(), RHS, Ctx))
return false;
switch (E->getOpcode()) {
default:
return false;
case BinaryOperator::Mul:
Result *= RHS;
break;
case BinaryOperator::Div:
if (RHS == 0)
return false;
Result /= RHS;
break;
case BinaryOperator::Rem:
if (RHS == 0)
return false;
Result %= RHS;
break;
case BinaryOperator::Add: Result += RHS; break;
case BinaryOperator::Sub: Result -= RHS; break;
case BinaryOperator::Shl:
Result <<= (unsigned)RHS.getLimitedValue(Result.getBitWidth()-1);
break;
case BinaryOperator::Shr:
Result >>= (unsigned)RHS.getLimitedValue(Result.getBitWidth()-1);
break;
// FIXME: Need to set the result width?
case BinaryOperator::LT: Result = Result < RHS; break;
case BinaryOperator::GT: Result = Result > RHS; break;
case BinaryOperator::LE: Result = Result <= RHS; break;
case BinaryOperator::GE: Result = Result >= RHS; break;
case BinaryOperator::EQ: Result = Result == RHS; break;
case BinaryOperator::NE: Result = Result != RHS; break;
case BinaryOperator::And: Result &= RHS; break;
case BinaryOperator::Xor: Result ^= RHS; break;
case BinaryOperator::Or: Result |= RHS; break;
case BinaryOperator::Comma:
// C99 6.6p3: "shall not contain assignment, ..., or comma operators,
// *except* when they are contained within a subexpression that is not
// evaluated". Note that Assignment can never happen due to constraints
// on the LHS subexpr, so we don't need to check it here.
// FIXME: Need to come up with an efficient way to deal with the C99
// rules on evaluation while still evaluating this. Maybe a
// "evaluated comma" out parameter?
return false;
}
Result.setIsUnsigned(E->getType()->isUnsignedIntegerType());
return true;
}
bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
if (E->isOffsetOfOp())
Result = E->evaluateOffsetOf(Ctx);
else if (E->isSizeOfAlignOfOp()) {
// Return the result in the right width.
Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(E->getType())));
// sizeof(void) and __alignof__(void) = 1 as a gcc extension.
if (E->getSubExpr()->getType()->isVoidType())
Result = 1;
// sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
if (!E->getSubExpr()->getType()->isConstantSizeType()) {
// FIXME: Should we attempt to evaluate this?
return false;
}
// Get information about the size or align.
if (E->getSubExpr()->getType()->isFunctionType()) {
// GCC extension: sizeof(function) = 1.
// FIXME: AlignOf shouldn't be unconditionally 4!
Result = E->getOpcode() == UnaryOperator::AlignOf ? 4 : 1;
} else {
unsigned CharSize = Ctx.Target.getCharWidth();
if (E->getOpcode() == UnaryOperator::AlignOf)
Result = Ctx.getTypeAlign(E->getSubExpr()->getType()) / CharSize;
else
Result = Ctx.getTypeSize(E->getSubExpr()->getType()) / CharSize;
}
} else {
// Get the operand value. If this is sizeof/alignof, do not evalute the
// operand. This affects C99 6.6p3.
if (!EvaluateInteger(E->getSubExpr(), Result, Ctx))
return false;
switch (E->getOpcode()) {
// Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
// See C99 6.6p3.
default:
return false;
case UnaryOperator::Extension:
assert(0 && "Handle UnaryOperator::Extension");
return false;
case UnaryOperator::LNot: {
bool Val = Result == 0;
uint32_t typeSize = Ctx.getTypeSize(E->getType());
Result.zextOrTrunc(typeSize);
Result = Val;
break;
}
case UnaryOperator::Plus:
break;
case UnaryOperator::Minus:
Result = -Result;
break;
case UnaryOperator::Not:
Result = ~Result;
break;
}
}
Result.setIsUnsigned(E->getType()->isUnsignedIntegerType());
return true;
}
bool IntExprEvaluator::HandleCast(const Expr* SubExpr, QualType DestType) {
llvm::APSInt Result(32);
uint32_t DestWidth = static_cast<uint32_t>(Ctx.getTypeSize(DestType));
// Handle simple integer->integer casts.
if (SubExpr->getType()->isIntegerType()) {
if (!EvaluateInteger(SubExpr, Result, Ctx))
return false;
// Figure out if this is a truncate, extend or noop cast.
// If the input is signed, do a sign extend, noop, or truncate.
if (DestType->isBooleanType()) {
// Conversion to bool compares against zero.
Result = Result != 0;
Result.zextOrTrunc(DestWidth);
}
else
Result.extOrTrunc(DestWidth);
} else if (SubExpr->getType()->isPointerType()) {
APValue LV;
if (!EvaluatePointer(SubExpr, LV, Ctx))
return false;
if (LV.getLValueBase())
return false;
Result.extOrTrunc(DestWidth);
Result = LV.getLValueOffset();
} else {
assert(0 && "Unhandled cast!");
}
Result.setIsUnsigned(DestType->isUnsignedIntegerType());
return true;
}
bool IntExprEvaluator::
VisitSizeOfAlignOfTypeExpr(const SizeOfAlignOfTypeExpr *E) {
// Return the result in the right width.
Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(E->getType())));
// sizeof(void) and __alignof__(void) = 1 as a gcc extension.
if (E->getArgumentType()->isVoidType()) {
Result = 1;
Result.setIsUnsigned(E->getType()->isUnsignedIntegerType());
return true;
}
// alignof always evaluates to a constant, sizeof does if arg is not VLA.
if (E->isSizeOf() && !E->getArgumentType()->isConstantSizeType())
return false;
// Get information about the size or align.
if (E->getArgumentType()->isFunctionType()) {
// GCC extension: sizeof(function) = 1.
Result = E->isSizeOf() ? 1 : 4;
} else {
unsigned CharSize = Ctx.Target.getCharWidth();
if (E->isSizeOf())
Result = Ctx.getTypeSize(E->getArgumentType()) / CharSize;
else
Result = Ctx.getTypeAlign(E->getArgumentType()) / CharSize;
}
Result.setIsUnsigned(E->getType()->isUnsignedIntegerType());
return true;
}
//===----------------------------------------------------------------------===//
// Top level TryEvaluate.
//===----------------------------------------------------------------------===//
bool Expr::tryEvaluate(APValue &Result, ASTContext &Ctx) const {
llvm::APSInt sInt(32);
#if USE_NEW_EVALUATOR
if (getType()->isIntegerType()) {
if (EvaluateInteger(this, sInt, Ctx)) {
Result = APValue(sInt);
return true;
}
} else
return false;
#else
if (CalcFakeICEVal(this, sInt, Ctx)) {
Result = APValue(sInt);
return true;
}
#endif
return false;
}