blob: 99b0829593cf7a0193da48552c6a3c6b9a639d9b [file] [log] [blame]
//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for C++ expressions.
//
//===----------------------------------------------------------------------===//
#include "Sema.h"
#include "SemaInherit.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ASTContext.h"
#include "clang/Parse/DeclSpec.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Basic/Diagnostic.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Debug.h"
using namespace clang;
/// ActOnCXXNamedCast - Parse {dynamic,static,reinterpret,const}_cast's.
Action::ExprResult
Sema::ActOnCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind,
SourceLocation LAngleBracketLoc, TypeTy *Ty,
SourceLocation RAngleBracketLoc,
SourceLocation LParenLoc, ExprTy *E,
SourceLocation RParenLoc) {
Expr *Ex = (Expr*)E;
QualType DestType = QualType::getFromOpaquePtr(Ty);
SourceRange OpRange(OpLoc, RParenLoc);
SourceRange DestRange(LAngleBracketLoc, RAngleBracketLoc);
switch (Kind) {
default: assert(0 && "Unknown C++ cast!");
case tok::kw_const_cast:
CheckConstCast(Ex, DestType, OpRange, DestRange);
return new CXXConstCastExpr(DestType.getNonReferenceType(), Ex,
DestType, OpLoc);
case tok::kw_dynamic_cast:
CheckDynamicCast(Ex, DestType, OpRange, DestRange);
return new CXXDynamicCastExpr(DestType.getNonReferenceType(), Ex,
DestType, OpLoc);
case tok::kw_reinterpret_cast:
CheckReinterpretCast(Ex, DestType, OpRange, DestRange);
return new CXXReinterpretCastExpr(DestType.getNonReferenceType(), Ex,
DestType, OpLoc);
case tok::kw_static_cast:
CheckStaticCast(Ex, DestType, OpRange);
return new CXXStaticCastExpr(DestType.getNonReferenceType(), Ex,
DestType, OpLoc);
}
return true;
}
/// CheckConstCast - Check that a const_cast\<DestType\>(SrcExpr) is valid.
/// Refer to C++ 5.2.11 for details. const_cast is typically used in code
/// like this:
/// const char *str = "literal";
/// legacy_function(const_cast\<char*\>(str));
void
Sema::CheckConstCast(Expr *&SrcExpr, QualType DestType,
const SourceRange &OpRange, const SourceRange &DestRange)
{
QualType OrigDestType = DestType, OrigSrcType = SrcExpr->getType();
DestType = Context.getCanonicalType(DestType);
QualType SrcType = SrcExpr->getType();
if (const ReferenceType *DestTypeTmp = DestType->getAsReferenceType()) {
if (SrcExpr->isLvalue(Context) != Expr::LV_Valid) {
// Cannot cast non-lvalue to reference type.
Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_rvalue,
"const_cast", OrigDestType.getAsString(), SrcExpr->getSourceRange());
return;
}
// C++ 5.2.11p4: An lvalue of type T1 can be [cast] to an lvalue of type T2
// [...] if a pointer to T1 can be [cast] to the type pointer to T2.
DestType = Context.getPointerType(DestTypeTmp->getPointeeType());
SrcType = Context.getPointerType(SrcType);
} else {
// C++ 5.2.11p1: Otherwise, the result is an rvalue and the
// lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
// conversions are performed on the expression.
DefaultFunctionArrayConversion(SrcExpr);
SrcType = SrcExpr->getType();
}
if (!DestType->isPointerType()) {
// Cannot cast to non-pointer, non-reference type. Note that, if DestType
// was a reference type, we converted it to a pointer above.
// C++ 5.2.11p3: For two pointer types [...]
Diag(OpRange.getBegin(), diag::err_bad_const_cast_dest, OrigDestType.getAsString(),
DestRange);
return;
}
if (DestType->isFunctionPointerType()) {
// Cannot cast direct function pointers.
// C++ 5.2.11p2: [...] where T is any object type or the void type [...]
// T is the ultimate pointee of source and target type.
Diag(OpRange.getBegin(), diag::err_bad_const_cast_dest, OrigDestType.getAsString(),
DestRange);
return;
}
SrcType = Context.getCanonicalType(SrcType);
// Unwrap the pointers. Ignore qualifiers. Terminate early if the types are
// completely equal.
// FIXME: const_cast should probably not be able to convert between pointers
// to different address spaces.
// C++ 5.2.11p3 describes the core semantics of const_cast. All cv specifiers
// in multi-level pointers may change, but the level count must be the same,
// as must be the final pointee type.
while (SrcType != DestType && UnwrapSimilarPointerTypes(SrcType, DestType)) {
SrcType = SrcType.getUnqualifiedType();
DestType = DestType.getUnqualifiedType();
}
// Doug Gregor said to disallow this until users complain.
#if 0
// If we end up with constant arrays of equal size, unwrap those too. A cast
// from const int [N] to int (&)[N] is invalid by my reading of the
// standard, but g++ accepts it even with -ansi -pedantic.
// No more than one level, though, so don't embed this in the unwrap loop
// above.
const ConstantArrayType *SrcTypeArr, *DestTypeArr;
if ((SrcTypeArr = Context.getAsConstantArrayType(SrcType)) &&
(DestTypeArr = Context.getAsConstantArrayType(DestType)))
{
if (SrcTypeArr->getSize() != DestTypeArr->getSize()) {
// Different array sizes.
Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_generic, "const_cast",
OrigDestType.getAsString(), OrigSrcType.getAsString(), OpRange);
return;
}
SrcType = SrcTypeArr->getElementType().getUnqualifiedType();
DestType = DestTypeArr->getElementType().getUnqualifiedType();
}
#endif
// Since we're dealing in canonical types, the remainder must be the same.
if (SrcType != DestType) {
// Cast between unrelated types.
Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_generic, "const_cast",
OrigDestType.getAsString(), OrigSrcType.getAsString(), OpRange);
return;
}
}
/// CheckReinterpretCast - Check that a reinterpret_cast\<DestType\>(SrcExpr) is
/// valid.
/// Refer to C++ 5.2.10 for details. reinterpret_cast is typically used in code
/// like this:
/// char *bytes = reinterpret_cast\<char*\>(int_ptr);
void
Sema::CheckReinterpretCast(Expr *&SrcExpr, QualType DestType,
const SourceRange &OpRange,
const SourceRange &DestRange)
{
QualType OrigDestType = DestType, OrigSrcType = SrcExpr->getType();
DestType = Context.getCanonicalType(DestType);
QualType SrcType = SrcExpr->getType();
if (const ReferenceType *DestTypeTmp = DestType->getAsReferenceType()) {
if (SrcExpr->isLvalue(Context) != Expr::LV_Valid) {
// Cannot cast non-lvalue to reference type.
Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_rvalue,
"reinterpret_cast", OrigDestType.getAsString(),
SrcExpr->getSourceRange());
return;
}
// C++ 5.2.10p10: [...] a reference cast reinterpret_cast<T&>(x) has the
// same effect as the conversion *reinterpret_cast<T*>(&x) with the
// built-in & and * operators.
// This code does this transformation for the checked types.
DestType = Context.getPointerType(DestTypeTmp->getPointeeType());
SrcType = Context.getPointerType(SrcType);
} else {
// C++ 5.2.10p1: [...] the lvalue-to-rvalue, array-to-pointer, and
// function-to-pointer standard conversions are performed on the
// expression v.
DefaultFunctionArrayConversion(SrcExpr);
SrcType = SrcExpr->getType();
}
// Canonicalize source for comparison.
SrcType = Context.getCanonicalType(SrcType);
bool destIsPtr = DestType->isPointerType();
bool srcIsPtr = SrcType->isPointerType();
if (!destIsPtr && !srcIsPtr) {
// Except for std::nullptr_t->integer, which is not supported yet, and
// lvalue->reference, which is handled above, at least one of the two
// arguments must be a pointer.
Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_generic, "reinterpret_cast",
OrigDestType.getAsString(), OrigSrcType.getAsString(), OpRange);
return;
}
if (SrcType == DestType) {
// C++ 5.2.10p2 has a note that mentions that, subject to all other
// restrictions, a cast to the same type is allowed. The intent is not
// entirely clear here, since all other paragraphs explicitly forbid casts
// to the same type. However, the behavior of compilers is pretty consistent
// on this point: allow same-type conversion if the involved are pointers,
// disallow otherwise.
return;
}
// Note: Clang treats enumeration types as integral types. If this is ever
// changed for C++, the additional check here will be redundant.
if (DestType->isIntegralType() && !DestType->isEnumeralType()) {
assert(srcIsPtr);
// C++ 5.2.10p4: A pointer can be explicitly converted to any integral
// type large enough to hold it.
if (Context.getTypeSize(SrcType) > Context.getTypeSize(DestType)) {
Diag(OpRange.getBegin(), diag::err_bad_reinterpret_cast_small_int,
OrigDestType.getAsString(), DestRange);
}
return;
}
if (SrcType->isIntegralType() || SrcType->isEnumeralType()) {
assert(destIsPtr);
// C++ 5.2.10p5: A value of integral or enumeration type can be explicitly
// converted to a pointer.
return;
}
if (!destIsPtr || !srcIsPtr) {
// With the valid non-pointer conversions out of the way, we can be even
// more stringent.
Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_generic, "reinterpret_cast",
OrigDestType.getAsString(), OrigSrcType.getAsString(), OpRange);
return;
}
// C++ 5.2.10p2: The reinterpret_cast operator shall not cast away constness.
if (CastsAwayConstness(SrcType, DestType)) {
Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_const_away,
"reinterpret_cast", OrigDestType.getAsString(), OrigSrcType.getAsString(),
OpRange);
return;
}
// Not casting away constness, so the only remaining check is for compatible
// pointer categories.
if (SrcType->isFunctionPointerType()) {
if (DestType->isFunctionPointerType()) {
// C++ 5.2.10p6: A pointer to a function can be explicitly converted to
// a pointer to a function of a different type.
return;
}
// FIXME: Handle member pointers.
// C++0x 5.2.10p8: Converting a pointer to a function into a pointer to
// an object type or vice versa is conditionally-supported.
// Compilers support it in C++03 too, though, because it's necessary for
// casting the return value of dlsym() and GetProcAddress().
// FIXME: Conditionally-supported behavior should be configurable in the
// TargetInfo or similar.
if (!getLangOptions().CPlusPlus0x) {
Diag(OpRange.getBegin(), diag::ext_reinterpret_cast_fn_obj, OpRange);
}
return;
}
// FIXME: Handle member pointers.
if (DestType->isFunctionPointerType()) {
// See above.
if (!getLangOptions().CPlusPlus0x) {
Diag(OpRange.getBegin(), diag::ext_reinterpret_cast_fn_obj, OpRange);
}
return;
}
// C++ 5.2.10p7: A pointer to an object can be explicitly converted to
// a pointer to an object of different type.
// Void pointers are not specified, but supported by every compiler out there.
// So we finish by allowing everything that remains - it's got to be two
// object pointers.
}
/// CastsAwayConstness - Check if the pointer conversion from SrcType
/// to DestType casts away constness as defined in C++
/// 5.2.11p8ff. This is used by the cast checkers. Both arguments
/// must denote pointer types.
bool
Sema::CastsAwayConstness(QualType SrcType, QualType DestType)
{
// Casting away constness is defined in C++ 5.2.11p8 with reference to
// C++ 4.4.
// We piggyback on Sema::IsQualificationConversion for this, since the rules
// are non-trivial. So first we construct Tcv *...cv* as described in
// C++ 5.2.11p8.
SrcType = Context.getCanonicalType(SrcType);
DestType = Context.getCanonicalType(DestType);
QualType UnwrappedSrcType = SrcType, UnwrappedDestType = DestType;
llvm::SmallVector<unsigned, 8> cv1, cv2;
// Find the qualifications.
while (UnwrapSimilarPointerTypes(UnwrappedSrcType, UnwrappedDestType)) {
cv1.push_back(UnwrappedSrcType.getCVRQualifiers());
cv2.push_back(UnwrappedDestType.getCVRQualifiers());
}
assert(cv1.size() > 0 && "Must have at least one pointer level.");
// Construct void pointers with those qualifiers (in reverse order of
// unwrapping, of course).
QualType SrcConstruct = Context.VoidTy;
QualType DestConstruct = Context.VoidTy;
for (llvm::SmallVector<unsigned, 8>::reverse_iterator i1 = cv1.rbegin(),
i2 = cv2.rbegin();
i1 != cv1.rend(); ++i1, ++i2)
{
SrcConstruct = Context.getPointerType(SrcConstruct.getQualifiedType(*i1));
DestConstruct = Context.getPointerType(DestConstruct.getQualifiedType(*i2));
}
// Test if they're compatible.
return SrcConstruct != DestConstruct &&
!IsQualificationConversion(SrcConstruct, DestConstruct);
}
/// CheckStaticCast - Check that a static_cast\<DestType\>(SrcExpr) is valid.
/// Refer to C++ 5.2.9 for details. Static casts are mostly used for making
/// implicit conversions explicit and getting rid of data loss warnings.
void
Sema::CheckStaticCast(Expr *&SrcExpr, QualType DestType,
const SourceRange &OpRange)
{
QualType OrigDestType = DestType, OrigSrcType = SrcExpr->getType();
// Conversions are tried roughly in the order the standard specifies them.
// This is necessary because there are some conversions that can be
// interpreted in more than one way, and the order disambiguates.
// DR 427 specifies that paragraph 5 is to be applied before paragraph 2.
// This option is unambiguous and simple, so put it here.
// C++ 5.2.9p4: Any expression can be explicitly converted to type "cv void".
if (DestType->isVoidType()) {
return;
}
DestType = Context.getCanonicalType(DestType);
// C++ 5.2.9p5, reference downcast.
// See the function for details.
if (IsStaticReferenceDowncast(SrcExpr, DestType)) {
return;
}
// C++ 5.2.9p2: An expression e can be explicitly converted to a type T
// [...] if the declaration "T t(e);" is well-formed, [...].
ImplicitConversionSequence ICS = TryDirectInitialization(SrcExpr, DestType);
if (ICS.ConversionKind != ImplicitConversionSequence::BadConversion) {
if (ICS.ConversionKind == ImplicitConversionSequence::StandardConversion &&
ICS.Standard.First != ICK_Identity)
{
DefaultFunctionArrayConversion(SrcExpr);
}
return;
}
// FIXME: Missing the validation of the conversion, e.g. for an accessible
// base.
// C++ 5.2.9p6: May apply the reverse of any standard conversion, except
// lvalue-to-rvalue, array-to-pointer, function-to-pointer, and boolean
// conversions, subject to further restrictions.
// Also, C++ 5.2.9p1 forbids casting away constness, which makes reversal
// of qualification conversions impossible.
// The lvalue-to-rvalue, array-to-pointer and function-to-pointer conversions
// are applied to the expression.
DefaultFunctionArrayConversion(SrcExpr);
QualType SrcType = Context.getCanonicalType(SrcExpr->getType());
// Reverse integral promotion/conversion. All such conversions are themselves
// again integral promotions or conversions and are thus already handled by
// p2 (TryDirectInitialization above).
// (Note: any data loss warnings should be suppressed.)
// The exception is the reverse of enum->integer, i.e. integer->enum (and
// enum->enum). See also C++ 5.2.9p7.
// The same goes for reverse floating point promotion/conversion and
// floating-integral conversions. Again, only floating->enum is relevant.
if (DestType->isEnumeralType()) {
if (SrcType->isComplexType() || SrcType->isVectorType()) {
// Fall through - these cannot be converted.
} else if (SrcType->isArithmeticType() || SrcType->isEnumeralType()) {
return;
}
}
// Reverse pointer upcast. C++ 4.10p3 specifies pointer upcast.
// C++ 5.2.9p8 additionally disallows a cast path through virtual inheritance.
if (IsStaticPointerDowncast(SrcType, DestType)) {
return;
}
// Reverse member pointer conversion. C++ 5.11 specifies member pointer
// conversion. C++ 5.2.9p9 has additional information.
// DR54's access restrictions apply here also.
// FIXME: Don't have member pointers yet.
// Reverse pointer conversion to void*. C++ 4.10.p2 specifies conversion to
// void*. C++ 5.2.9p10 specifies additional restrictions, which really is
// just the usual constness stuff.
if (const PointerType *SrcPointer = SrcType->getAsPointerType()) {
QualType SrcPointee = SrcPointer->getPointeeType();
if (SrcPointee->isVoidType()) {
if (const PointerType *DestPointer = DestType->getAsPointerType()) {
QualType DestPointee = DestPointer->getPointeeType();
if (DestPointee->isObjectType() &&
DestPointee.isAtLeastAsQualifiedAs(SrcPointee))
{
return;
}
}
}
}
// We tried everything. Everything! Nothing works! :-(
// FIXME: Error reporting could be a lot better. Should store the reason
// why every substep failed and, at the end, select the most specific and
// report that.
Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_generic, "static_cast",
OrigDestType.getAsString(), OrigSrcType.getAsString(), OpRange);
}
/// Tests whether a conversion according to C++ 5.2.9p5 is valid.
bool
Sema::IsStaticReferenceDowncast(Expr *SrcExpr, QualType DestType)
{
// C++ 5.2.9p5: An lvalue of type "cv1 B", where B is a class type, can be
// cast to type "reference to cv2 D", where D is a class derived from B,
// if a valid standard conversion from "pointer to D" to "pointer to B"
// exists, cv2 >= cv1, and B is not a virtual base class of D.
// In addition, DR54 clarifies that the base must be accessible in the
// current context. Although the wording of DR54 only applies to the pointer
// variant of this rule, the intent is clearly for it to apply to the this
// conversion as well.
if (SrcExpr->isLvalue(Context) != Expr::LV_Valid) {
return false;
}
DestType = Context.getCanonicalType(DestType);
const ReferenceType *DestReference = DestType->getAsReferenceType();
if (!DestReference) {
return false;
}
QualType DestPointee = DestReference->getPointeeType();
QualType SrcType = Context.getCanonicalType(SrcExpr->getType());
return IsStaticDowncast(SrcType, DestPointee);
}
/// Tests whether a conversion according to C++ 5.2.9p8 is valid.
bool
Sema::IsStaticPointerDowncast(QualType SrcType, QualType DestType)
{
// C++ 5.2.9p8: An rvalue of type "pointer to cv1 B", where B is a class
// type, can be converted to an rvalue of type "pointer to cv2 D", where D
// is a class derived from B, if a valid standard conversion from "pointer
// to D" to "pointer to B" exists, cv2 >= cv1, and B is not a virtual base
// class of D.
// In addition, DR54 clarifies that the base must be accessible in the
// current context.
SrcType = Context.getCanonicalType(SrcType);
const PointerType *SrcPointer = SrcType->getAsPointerType();
if (!SrcPointer) {
return false;
}
DestType = Context.getCanonicalType(DestType);
const PointerType *DestPointer = DestType->getAsPointerType();
if (!DestPointer) {
return false;
}
return IsStaticDowncast(SrcPointer->getPointeeType(),
DestPointer->getPointeeType());
}
/// IsStaticDowncast - Common functionality of IsStaticReferenceDowncast and
/// IsStaticPointerDowncast. Tests whether a static downcast from SrcType to
/// DestType, both of which must be canonical, is possible and allowed.
bool
Sema::IsStaticDowncast(QualType SrcType, QualType DestType)
{
assert(SrcType->isCanonical());
assert(DestType->isCanonical());
if (!DestType->isRecordType()) {
return false;
}
if (!SrcType->isRecordType()) {
return false;
}
// Comparing cv is cheaper, so do it first.
if (!DestType.isAtLeastAsQualifiedAs(SrcType)) {
return false;
}
BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
/*DetectVirtual=*/true);
if (!IsDerivedFrom(DestType, SrcType, Paths)) {
return false;
}
if (Paths.isAmbiguous(SrcType.getUnqualifiedType())) {
return false;
}
if (Paths.getDetectedVirtual() != 0) {
return false;
}
// FIXME: Test accessibility.
return true;
}
/// TryDirectInitialization - Attempt to direct-initialize a value of the
/// given type (DestType) from the given expression (SrcExpr), as one would
/// do when creating an object with new with parameters. This function returns
/// an implicit conversion sequence that can be used to perform the
/// initialization.
/// This routine is very similar to TryCopyInitialization; the differences
/// between the two (C++ 8.5p12 and C++ 8.5p14) are:
/// 1) In direct-initialization, all constructors of the target type are
/// considered, including those marked as explicit.
/// 2) In direct-initialization, overload resolution is performed over the
/// constructors of the target type. In copy-initialization, overload
/// resolution is performed over all conversion functions that result in
/// the target type. This can lead to different functions used.
ImplicitConversionSequence
Sema::TryDirectInitialization(Expr *SrcExpr, QualType DestType)
{
if (!DestType->isRecordType()) {
// For non-class types, copy and direct initialization are identical.
// C++ 8.5p11
// FIXME: Those parts should be in a common function, actually.
return TryCopyInitialization(SrcExpr, DestType);
}
// Not enough support for the rest yet, actually.
ImplicitConversionSequence ICS;
ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
return ICS;
}
/// CheckDynamicCast - Check that a dynamic_cast\<DestType\>(SrcExpr) is valid.
/// Refer to C++ 5.2.7 for details. Dynamic casts are used mostly for runtime-
/// checked downcasts in class hierarchies.
void
Sema::CheckDynamicCast(Expr *&SrcExpr, QualType DestType,
const SourceRange &OpRange,
const SourceRange &DestRange)
{
QualType OrigDestType = DestType, OrigSrcType = SrcExpr->getType();
DestType = Context.getCanonicalType(DestType);
// C++ 5.2.7p1: T shall be a pointer or reference to a complete class type,
// or "pointer to cv void".
QualType DestPointee;
const PointerType *DestPointer = DestType->getAsPointerType();
const ReferenceType *DestReference = DestType->getAsReferenceType();
if (DestPointer) {
DestPointee = DestPointer->getPointeeType();
} else if (DestReference) {
DestPointee = DestReference->getPointeeType();
} else {
Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_operand,
OrigDestType.getAsString(), "not a reference or pointer", DestRange);
return;
}
const RecordType *DestRecord = DestPointee->getAsRecordType();
if (DestPointee->isVoidType()) {
assert(DestPointer && "Reference to void is not possible");
} else if (DestRecord) {
if (!DestRecord->getDecl()->isDefinition()) {
Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_operand,
DestPointee.getUnqualifiedType().getAsString(),
"incomplete", DestRange);
return;
}
} else {
Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_operand,
DestPointee.getUnqualifiedType().getAsString(),
"not a class", DestRange);
return;
}
// C++ 5.2.7p2: If T is a pointer type, v shall be an rvalue of a pointer to
// complete class type, [...]. If T is a reference type, v shall be an
// lvalue of a complete class type, [...].
QualType SrcType = Context.getCanonicalType(OrigSrcType);
QualType SrcPointee;
if (DestPointer) {
if (const PointerType *SrcPointer = SrcType->getAsPointerType()) {
SrcPointee = SrcPointer->getPointeeType();
} else {
Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_operand,
OrigSrcType.getAsString(), "not a pointer", SrcExpr->getSourceRange());
return;
}
} else {
if (SrcExpr->isLvalue(Context) != Expr::LV_Valid) {
Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_operand,
OrigDestType.getAsString(), "not an lvalue", SrcExpr->getSourceRange());
}
SrcPointee = SrcType;
}
const RecordType *SrcRecord = SrcPointee->getAsRecordType();
if (SrcRecord) {
if (!SrcRecord->getDecl()->isDefinition()) {
Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_operand,
SrcPointee.getUnqualifiedType().getAsString(), "incomplete",
SrcExpr->getSourceRange());
return;
}
} else {
Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_operand,
SrcPointee.getUnqualifiedType().getAsString(), "not a class",
SrcExpr->getSourceRange());
return;
}
// Assumptions to this point.
assert(DestPointer || DestReference);
assert(DestRecord || DestPointee->isVoidType());
assert(SrcRecord);
// C++ 5.2.7p1: The dynamic_cast operator shall not cast away constness.
if (!DestPointee.isAtLeastAsQualifiedAs(SrcPointee)) {
Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_const_away, "dynamic_cast",
OrigDestType.getAsString(), OrigSrcType.getAsString(), OpRange);
return;
}
// C++ 5.2.7p3: If the type of v is the same as the required result type,
// [except for cv].
if (DestRecord == SrcRecord) {
return;
}
// C++ 5.2.7p5
// Upcasts are resolved statically.
if (DestRecord && IsDerivedFrom(SrcPointee, DestPointee)) {
CheckDerivedToBaseConversion(SrcPointee, DestPointee, OpRange.getBegin(),
OpRange);
// Diagnostic already emitted on error.
return;
}
// C++ 5.2.7p6: Otherwise, v shall be [polymorphic].
// FIXME: Information not yet available.
// Done. Everything else is run-time checks.
}
/// ActOnCXXBoolLiteral - Parse {true,false} literals.
Action::ExprResult
Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
"Unknown C++ Boolean value!");
return new CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
}
/// ActOnCXXThrow - Parse throw expressions.
Action::ExprResult
Sema::ActOnCXXThrow(SourceLocation OpLoc, ExprTy *E) {
return new CXXThrowExpr((Expr*)E, Context.VoidTy, OpLoc);
}
Action::ExprResult Sema::ActOnCXXThis(SourceLocation ThisLoc) {
/// C++ 9.3.2: In the body of a non-static member function, the keyword this
/// is a non-lvalue expression whose value is the address of the object for
/// which the function is called.
if (!isa<FunctionDecl>(CurContext)) {
Diag(ThisLoc, diag::err_invalid_this_use);
return ExprResult(true);
}
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext))
if (MD->isInstance())
return new PredefinedExpr(ThisLoc, MD->getThisType(Context),
PredefinedExpr::CXXThis);
return Diag(ThisLoc, diag::err_invalid_this_use);
}
/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
/// Can be interpreted either as function-style casting ("int(x)")
/// or class type construction ("ClassType(x,y,z)")
/// or creation of a value-initialized type ("int()").
Action::ExprResult
Sema::ActOnCXXTypeConstructExpr(SourceRange TypeRange, TypeTy *TypeRep,
SourceLocation LParenLoc,
ExprTy **ExprTys, unsigned NumExprs,
SourceLocation *CommaLocs,
SourceLocation RParenLoc) {
assert(TypeRep && "Missing type!");
QualType Ty = QualType::getFromOpaquePtr(TypeRep);
Expr **Exprs = (Expr**)ExprTys;
SourceLocation TyBeginLoc = TypeRange.getBegin();
SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc);
if (const RecordType *RT = Ty->getAsRecordType()) {
// C++ 5.2.3p1:
// If the simple-type-specifier specifies a class type, the class type shall
// be complete.
//
if (!RT->getDecl()->isDefinition())
return Diag(TyBeginLoc, diag::err_invalid_incomplete_type_use,
Ty.getAsString(), FullRange);
unsigned DiagID = PP.getDiagnostics().getCustomDiagID(Diagnostic::Error,
"class constructors are not supported yet");
return Diag(TyBeginLoc, DiagID);
}
// C++ 5.2.3p1:
// If the expression list is a single expression, the type conversion
// expression is equivalent (in definedness, and if defined in meaning) to the
// corresponding cast expression.
//
if (NumExprs == 1) {
if (CheckCastTypes(TypeRange, Ty, Exprs[0]))
return true;
return new CXXFunctionalCastExpr(Ty.getNonReferenceType(), Ty, TyBeginLoc,
Exprs[0], RParenLoc);
}
// C++ 5.2.3p1:
// If the expression list specifies more than a single value, the type shall
// be a class with a suitably declared constructor.
//
if (NumExprs > 1)
return Diag(CommaLocs[0], diag::err_builtin_func_cast_more_than_one_arg,
FullRange);
assert(NumExprs == 0 && "Expected 0 expressions");
// C++ 5.2.3p2:
// The expression T(), where T is a simple-type-specifier for a non-array
// complete object type or the (possibly cv-qualified) void type, creates an
// rvalue of the specified type, which is value-initialized.
//
if (Ty->isArrayType())
return Diag(TyBeginLoc, diag::err_value_init_for_array_type, FullRange);
if (Ty->isIncompleteType() && !Ty->isVoidType())
return Diag(TyBeginLoc, diag::err_invalid_incomplete_type_use,
Ty.getAsString(), FullRange);
return new CXXZeroInitValueExpr(Ty, TyBeginLoc, RParenLoc);
}
/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
/// C++ if/switch/while/for statement.
/// e.g: "if (int x = f()) {...}"
Action::ExprResult
Sema::ActOnCXXConditionDeclarationExpr(Scope *S, SourceLocation StartLoc,
Declarator &D,
SourceLocation EqualLoc,
ExprTy *AssignExprVal) {
assert(AssignExprVal && "Null assignment expression");
// C++ 6.4p2:
// The declarator shall not specify a function or an array.
// The type-specifier-seq shall not contain typedef and shall not declare a
// new class or enumeration.
assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
"Parser allowed 'typedef' as storage class of condition decl.");
QualType Ty = GetTypeForDeclarator(D, S);
if (Ty->isFunctionType()) { // The declarator shall not specify a function...
// We exit without creating a CXXConditionDeclExpr because a FunctionDecl
// would be created and CXXConditionDeclExpr wants a VarDecl.
return Diag(StartLoc, diag::err_invalid_use_of_function_type,
SourceRange(StartLoc, EqualLoc));
} else if (Ty->isArrayType()) { // ...or an array.
Diag(StartLoc, diag::err_invalid_use_of_array_type,
SourceRange(StartLoc, EqualLoc));
} else if (const RecordType *RT = Ty->getAsRecordType()) {
RecordDecl *RD = RT->getDecl();
// The type-specifier-seq shall not declare a new class...
if (RD->isDefinition() && (RD->getIdentifier() == 0 || S->isDeclScope(RD)))
Diag(RD->getLocation(), diag::err_type_defined_in_condition);
} else if (const EnumType *ET = Ty->getAsEnumType()) {
EnumDecl *ED = ET->getDecl();
// ...or enumeration.
if (ED->isDefinition() && (ED->getIdentifier() == 0 || S->isDeclScope(ED)))
Diag(ED->getLocation(), diag::err_type_defined_in_condition);
}
DeclTy *Dcl = ActOnDeclarator(S, D, 0);
if (!Dcl)
return true;
AddInitializerToDecl(Dcl, AssignExprVal);
return new CXXConditionDeclExpr(StartLoc, EqualLoc,
cast<VarDecl>(static_cast<Decl *>(Dcl)));
}
/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
bool Sema::CheckCXXBooleanCondition(Expr *&CondExpr) {
// C++ 6.4p4:
// The value of a condition that is an initialized declaration in a statement
// other than a switch statement is the value of the declared variable
// implicitly converted to type bool. If that conversion is ill-formed, the
// program is ill-formed.
// The value of a condition that is an expression is the value of the
// expression, implicitly converted to bool.
//
QualType Ty = CondExpr->getType(); // Save the type.
AssignConvertType
ConvTy = CheckSingleAssignmentConstraints(Context.BoolTy, CondExpr);
if (ConvTy == Incompatible)
return Diag(CondExpr->getLocStart(), diag::err_typecheck_bool_condition,
Ty.getAsString(), CondExpr->getSourceRange());
return false;
}
/// Helper function to determine whether this is the (deprecated) C++
/// conversion from a string literal to a pointer to non-const char or
/// non-const wchar_t (for narrow and wide string literals,
/// respectively).
bool
Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
// Look inside the implicit cast, if it exists.
if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
From = Cast->getSubExpr();
// A string literal (2.13.4) that is not a wide string literal can
// be converted to an rvalue of type "pointer to char"; a wide
// string literal can be converted to an rvalue of type "pointer
// to wchar_t" (C++ 4.2p2).
if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From))
if (const PointerType *ToPtrType = ToType->getAsPointerType())
if (const BuiltinType *ToPointeeType
= ToPtrType->getPointeeType()->getAsBuiltinType()) {
// This conversion is considered only when there is an
// explicit appropriate pointer target type (C++ 4.2p2).
if (ToPtrType->getPointeeType().getCVRQualifiers() == 0 &&
((StrLit->isWide() && ToPointeeType->isWideCharType()) ||
(!StrLit->isWide() &&
(ToPointeeType->getKind() == BuiltinType::Char_U ||
ToPointeeType->getKind() == BuiltinType::Char_S))))
return true;
}
return false;
}
/// PerformImplicitConversion - Perform an implicit conversion of the
/// expression From to the type ToType. Returns true if there was an
/// error, false otherwise. The expression From is replaced with the
/// converted expression.
bool
Sema::PerformImplicitConversion(Expr *&From, QualType ToType)
{
ImplicitConversionSequence ICS = TryImplicitConversion(From, ToType);
switch (ICS.ConversionKind) {
case ImplicitConversionSequence::StandardConversion:
if (PerformImplicitConversion(From, ToType, ICS.Standard))
return true;
break;
case ImplicitConversionSequence::UserDefinedConversion:
// FIXME: This is, of course, wrong. We'll need to actually call
// the constructor or conversion operator, and then cope with the
// standard conversions.
ImpCastExprToType(From, ToType);
return false;
case ImplicitConversionSequence::EllipsisConversion:
assert(false && "Cannot perform an ellipsis conversion");
return false;
case ImplicitConversionSequence::BadConversion:
return true;
}
// Everything went well.
return false;
}
/// PerformImplicitConversion - Perform an implicit conversion of the
/// expression From to the type ToType by following the standard
/// conversion sequence SCS. Returns true if there was an error, false
/// otherwise. The expression From is replaced with the converted
/// expression.
bool
Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
const StandardConversionSequence& SCS)
{
// Overall FIXME: we are recomputing too many types here and doing
// far too much extra work. What this means is that we need to keep
// track of more information that is computed when we try the
// implicit conversion initially, so that we don't need to recompute
// anything here.
QualType FromType = From->getType();
// Perform the first implicit conversion.
switch (SCS.First) {
case ICK_Identity:
case ICK_Lvalue_To_Rvalue:
// Nothing to do.
break;
case ICK_Array_To_Pointer:
FromType = Context.getArrayDecayedType(FromType);
ImpCastExprToType(From, FromType);
break;
case ICK_Function_To_Pointer:
FromType = Context.getPointerType(FromType);
ImpCastExprToType(From, FromType);
break;
default:
assert(false && "Improper first standard conversion");
break;
}
// Perform the second implicit conversion
switch (SCS.Second) {
case ICK_Identity:
// Nothing to do.
break;
case ICK_Integral_Promotion:
case ICK_Floating_Promotion:
case ICK_Integral_Conversion:
case ICK_Floating_Conversion:
case ICK_Floating_Integral:
FromType = ToType.getUnqualifiedType();
ImpCastExprToType(From, FromType);
break;
case ICK_Pointer_Conversion:
if (CheckPointerConversion(From, ToType))
return true;
ImpCastExprToType(From, ToType);
break;
case ICK_Pointer_Member:
// FIXME: Implement pointer-to-member conversions.
assert(false && "Pointer-to-member conversions are unsupported");
break;
case ICK_Boolean_Conversion:
FromType = Context.BoolTy;
ImpCastExprToType(From, FromType);
break;
case ICK_Derived_To_Base:
// FIXME: This should never happen. It's a consequence of
// pretending that a user-defined conversion via copy constructor
// is actually a standard conversion.
ImpCastExprToType(From, ToType);
break;
default:
assert(false && "Improper second standard conversion");
break;
}
switch (SCS.Third) {
case ICK_Identity:
// Nothing to do.
break;
case ICK_Qualification:
ImpCastExprToType(From, ToType);
break;
default:
assert(false && "Improper second standard conversion");
break;
}
return false;
}