blob: 3f5a7fbc586b3973da3ac9c3d8dee0914a0ed07e [file] [log] [blame]
//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the ASTContext interface.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclObjC.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Bitcode/Serialize.h"
#include "llvm/Bitcode/Deserialize.h"
using namespace clang;
enum FloatingRank {
FloatRank, DoubleRank, LongDoubleRank
};
ASTContext::~ASTContext() {
// Deallocate all the types.
while (!Types.empty()) {
if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(Types.back())) {
// Destroy the object, but don't call delete. These are malloc'd.
FT->~FunctionTypeProto();
free(FT);
} else {
delete Types.back();
}
Types.pop_back();
}
}
void ASTContext::PrintStats() const {
fprintf(stderr, "*** AST Context Stats:\n");
fprintf(stderr, " %d types total.\n", (int)Types.size());
unsigned NumBuiltin = 0, NumPointer = 0, NumArray = 0, NumFunctionP = 0;
unsigned NumVector = 0, NumComplex = 0;
unsigned NumFunctionNP = 0, NumTypeName = 0, NumTagged = 0, NumReference = 0;
unsigned NumTagStruct = 0, NumTagUnion = 0, NumTagEnum = 0, NumTagClass = 0;
unsigned NumObjcInterfaces = 0;
for (unsigned i = 0, e = Types.size(); i != e; ++i) {
Type *T = Types[i];
if (isa<BuiltinType>(T))
++NumBuiltin;
else if (isa<PointerType>(T))
++NumPointer;
else if (isa<ReferenceType>(T))
++NumReference;
else if (isa<ComplexType>(T))
++NumComplex;
else if (isa<ArrayType>(T))
++NumArray;
else if (isa<VectorType>(T))
++NumVector;
else if (isa<FunctionTypeNoProto>(T))
++NumFunctionNP;
else if (isa<FunctionTypeProto>(T))
++NumFunctionP;
else if (isa<TypedefType>(T))
++NumTypeName;
else if (TagType *TT = dyn_cast<TagType>(T)) {
++NumTagged;
switch (TT->getDecl()->getKind()) {
default: assert(0 && "Unknown tagged type!");
case Decl::Struct: ++NumTagStruct; break;
case Decl::Union: ++NumTagUnion; break;
case Decl::Class: ++NumTagClass; break;
case Decl::Enum: ++NumTagEnum; break;
}
} else if (isa<ObjcInterfaceType>(T))
++NumObjcInterfaces;
else {
assert(0 && "Unknown type!");
}
}
fprintf(stderr, " %d builtin types\n", NumBuiltin);
fprintf(stderr, " %d pointer types\n", NumPointer);
fprintf(stderr, " %d reference types\n", NumReference);
fprintf(stderr, " %d complex types\n", NumComplex);
fprintf(stderr, " %d array types\n", NumArray);
fprintf(stderr, " %d vector types\n", NumVector);
fprintf(stderr, " %d function types with proto\n", NumFunctionP);
fprintf(stderr, " %d function types with no proto\n", NumFunctionNP);
fprintf(stderr, " %d typename (typedef) types\n", NumTypeName);
fprintf(stderr, " %d tagged types\n", NumTagged);
fprintf(stderr, " %d struct types\n", NumTagStruct);
fprintf(stderr, " %d union types\n", NumTagUnion);
fprintf(stderr, " %d class types\n", NumTagClass);
fprintf(stderr, " %d enum types\n", NumTagEnum);
fprintf(stderr, " %d interface types\n", NumObjcInterfaces);
fprintf(stderr, "Total bytes = %d\n", int(NumBuiltin*sizeof(BuiltinType)+
NumPointer*sizeof(PointerType)+NumArray*sizeof(ArrayType)+
NumComplex*sizeof(ComplexType)+NumVector*sizeof(VectorType)+
NumFunctionP*sizeof(FunctionTypeProto)+
NumFunctionNP*sizeof(FunctionTypeNoProto)+
NumTypeName*sizeof(TypedefType)+NumTagged*sizeof(TagType)));
}
void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
Types.push_back((R = QualType(new BuiltinType(K),0)).getTypePtr());
}
void ASTContext::InitBuiltinTypes() {
assert(VoidTy.isNull() && "Context reinitialized?");
// C99 6.2.5p19.
InitBuiltinType(VoidTy, BuiltinType::Void);
// C99 6.2.5p2.
InitBuiltinType(BoolTy, BuiltinType::Bool);
// C99 6.2.5p3.
if (Target.isCharSigned(SourceLocation()))
InitBuiltinType(CharTy, BuiltinType::Char_S);
else
InitBuiltinType(CharTy, BuiltinType::Char_U);
// C99 6.2.5p4.
InitBuiltinType(SignedCharTy, BuiltinType::SChar);
InitBuiltinType(ShortTy, BuiltinType::Short);
InitBuiltinType(IntTy, BuiltinType::Int);
InitBuiltinType(LongTy, BuiltinType::Long);
InitBuiltinType(LongLongTy, BuiltinType::LongLong);
// C99 6.2.5p6.
InitBuiltinType(UnsignedCharTy, BuiltinType::UChar);
InitBuiltinType(UnsignedShortTy, BuiltinType::UShort);
InitBuiltinType(UnsignedIntTy, BuiltinType::UInt);
InitBuiltinType(UnsignedLongTy, BuiltinType::ULong);
InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong);
// C99 6.2.5p10.
InitBuiltinType(FloatTy, BuiltinType::Float);
InitBuiltinType(DoubleTy, BuiltinType::Double);
InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble);
// C99 6.2.5p11.
FloatComplexTy = getComplexType(FloatTy);
DoubleComplexTy = getComplexType(DoubleTy);
LongDoubleComplexTy = getComplexType(LongDoubleTy);
BuiltinVaListType = QualType();
ObjcIdType = QualType();
IdStructType = 0;
ObjcClassType = QualType();
ClassStructType = 0;
ObjcConstantStringType = QualType();
// void * type
VoidPtrTy = getPointerType(VoidTy);
}
//===----------------------------------------------------------------------===//
// Type Sizing and Analysis
//===----------------------------------------------------------------------===//
/// getTypeSize - Return the size of the specified type, in bits. This method
/// does not work on incomplete types.
std::pair<uint64_t, unsigned>
ASTContext::getTypeInfo(QualType T, SourceLocation L) {
T = T.getCanonicalType();
uint64_t Size;
unsigned Align;
switch (T->getTypeClass()) {
case Type::TypeName: assert(0 && "Not a canonical type!");
case Type::FunctionNoProto:
case Type::FunctionProto:
default:
assert(0 && "Incomplete types have no size!");
case Type::VariableArray:
assert(0 && "VLAs not implemented yet!");
case Type::ConstantArray: {
ConstantArrayType *CAT = cast<ConstantArrayType>(T);
std::pair<uint64_t, unsigned> EltInfo =
getTypeInfo(CAT->getElementType(), L);
Size = EltInfo.first*CAT->getSize().getZExtValue();
Align = EltInfo.second;
break;
}
case Type::Vector: {
std::pair<uint64_t, unsigned> EltInfo =
getTypeInfo(cast<VectorType>(T)->getElementType(), L);
Size = EltInfo.first*cast<VectorType>(T)->getNumElements();
// FIXME: Vector alignment is not the alignment of its elements.
Align = EltInfo.second;
break;
}
case Type::Builtin: {
// FIXME: need to use TargetInfo to derive the target specific sizes. This
// implementation will suffice for play with vector support.
const llvm::fltSemantics *F;
switch (cast<BuiltinType>(T)->getKind()) {
default: assert(0 && "Unknown builtin type!");
case BuiltinType::Void:
assert(0 && "Incomplete types have no size!");
case BuiltinType::Bool: Target.getBoolInfo(Size, Align, L); break;
case BuiltinType::Char_S:
case BuiltinType::Char_U:
case BuiltinType::UChar:
case BuiltinType::SChar: Target.getCharInfo(Size, Align, L); break;
case BuiltinType::UShort:
case BuiltinType::Short: Target.getShortInfo(Size, Align, L); break;
case BuiltinType::UInt:
case BuiltinType::Int: Target.getIntInfo(Size, Align, L); break;
case BuiltinType::ULong:
case BuiltinType::Long: Target.getLongInfo(Size, Align, L); break;
case BuiltinType::ULongLong:
case BuiltinType::LongLong: Target.getLongLongInfo(Size, Align, L); break;
case BuiltinType::Float: Target.getFloatInfo(Size, Align, F, L); break;
case BuiltinType::Double: Target.getDoubleInfo(Size, Align, F, L);break;
case BuiltinType::LongDouble:Target.getLongDoubleInfo(Size,Align,F,L);break;
}
break;
}
case Type::Pointer: Target.getPointerInfo(Size, Align, L); break;
case Type::Reference:
// "When applied to a reference or a reference type, the result is the size
// of the referenced type." C++98 5.3.3p2: expr.sizeof.
// FIXME: This is wrong for struct layout!
return getTypeInfo(cast<ReferenceType>(T)->getReferenceeType(), L);
case Type::Complex: {
// Complex types have the same alignment as their elements, but twice the
// size.
std::pair<uint64_t, unsigned> EltInfo =
getTypeInfo(cast<ComplexType>(T)->getElementType(), L);
Size = EltInfo.first*2;
Align = EltInfo.second;
break;
}
case Type::Tagged:
TagType *TT = cast<TagType>(T);
if (RecordType *RT = dyn_cast<RecordType>(TT)) {
const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl(), L);
Size = Layout.getSize();
Align = Layout.getAlignment();
} else if (EnumDecl *ED = dyn_cast<EnumDecl>(TT->getDecl())) {
return getTypeInfo(ED->getIntegerType(), L);
} else {
assert(0 && "Unimplemented type sizes!");
}
break;
}
assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
return std::make_pair(Size, Align);
}
/// getASTRecordLayout - Get or compute information about the layout of the
/// specified record (struct/union/class), which indicates its size and field
/// position information.
const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D,
SourceLocation L) {
assert(D->isDefinition() && "Cannot get layout of forward declarations!");
// Look up this layout, if already laid out, return what we have.
const ASTRecordLayout *&Entry = ASTRecordLayouts[D];
if (Entry) return *Entry;
// Allocate and assign into ASTRecordLayouts here. The "Entry" reference can
// be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
ASTRecordLayout *NewEntry = new ASTRecordLayout();
Entry = NewEntry;
uint64_t *FieldOffsets = new uint64_t[D->getNumMembers()];
uint64_t RecordSize = 0;
unsigned RecordAlign = 8; // Default alignment = 1 byte = 8 bits.
if (D->getKind() != Decl::Union) {
// Layout each field, for now, just sequentially, respecting alignment. In
// the future, this will need to be tweakable by targets.
for (unsigned i = 0, e = D->getNumMembers(); i != e; ++i) {
const FieldDecl *FD = D->getMember(i);
std::pair<uint64_t, unsigned> FieldInfo = getTypeInfo(FD->getType(), L);
uint64_t FieldSize = FieldInfo.first;
unsigned FieldAlign = FieldInfo.second;
// Round up the current record size to the field's alignment boundary.
RecordSize = (RecordSize+FieldAlign-1) & ~(FieldAlign-1);
// Place this field at the current location.
FieldOffsets[i] = RecordSize;
// Reserve space for this field.
RecordSize += FieldSize;
// Remember max struct/class alignment.
RecordAlign = std::max(RecordAlign, FieldAlign);
}
// Finally, round the size of the total struct up to the alignment of the
// struct itself.
RecordSize = (RecordSize+RecordAlign-1) & ~(RecordAlign-1);
} else {
// Union layout just puts each member at the start of the record.
for (unsigned i = 0, e = D->getNumMembers(); i != e; ++i) {
const FieldDecl *FD = D->getMember(i);
std::pair<uint64_t, unsigned> FieldInfo = getTypeInfo(FD->getType(), L);
uint64_t FieldSize = FieldInfo.first;
unsigned FieldAlign = FieldInfo.second;
// Round up the current record size to the field's alignment boundary.
RecordSize = std::max(RecordSize, FieldSize);
// Place this field at the start of the record.
FieldOffsets[i] = 0;
// Remember max struct/class alignment.
RecordAlign = std::max(RecordAlign, FieldAlign);
}
}
NewEntry->SetLayout(RecordSize, RecordAlign, FieldOffsets);
return *NewEntry;
}
//===----------------------------------------------------------------------===//
// Type creation/memoization methods
//===----------------------------------------------------------------------===//
/// getComplexType - Return the uniqued reference to the type for a complex
/// number with the specified element type.
QualType ASTContext::getComplexType(QualType T) {
// Unique pointers, to guarantee there is only one pointer of a particular
// structure.
llvm::FoldingSetNodeID ID;
ComplexType::Profile(ID, T);
void *InsertPos = 0;
if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(CT, 0);
// If the pointee type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!T->isCanonical()) {
Canonical = getComplexType(T.getCanonicalType());
// Get the new insert position for the node we care about.
ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
}
ComplexType *New = new ComplexType(T, Canonical);
Types.push_back(New);
ComplexTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getPointerType - Return the uniqued reference to the type for a pointer to
/// the specified type.
QualType ASTContext::getPointerType(QualType T) {
// Unique pointers, to guarantee there is only one pointer of a particular
// structure.
llvm::FoldingSetNodeID ID;
PointerType::Profile(ID, T);
void *InsertPos = 0;
if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(PT, 0);
// If the pointee type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!T->isCanonical()) {
Canonical = getPointerType(T.getCanonicalType());
// Get the new insert position for the node we care about.
PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
}
PointerType *New = new PointerType(T, Canonical);
Types.push_back(New);
PointerTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getReferenceType - Return the uniqued reference to the type for a reference
/// to the specified type.
QualType ASTContext::getReferenceType(QualType T) {
// Unique pointers, to guarantee there is only one pointer of a particular
// structure.
llvm::FoldingSetNodeID ID;
ReferenceType::Profile(ID, T);
void *InsertPos = 0;
if (ReferenceType *RT = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(RT, 0);
// If the referencee type isn't canonical, this won't be a canonical type
// either, so fill in the canonical type field.
QualType Canonical;
if (!T->isCanonical()) {
Canonical = getReferenceType(T.getCanonicalType());
// Get the new insert position for the node we care about.
ReferenceType *NewIP = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
}
ReferenceType *New = new ReferenceType(T, Canonical);
Types.push_back(New);
ReferenceTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getConstantArrayType - Return the unique reference to the type for an
/// array of the specified element type.
QualType ASTContext::getConstantArrayType(QualType EltTy,
const llvm::APInt &ArySize,
ArrayType::ArraySizeModifier ASM,
unsigned EltTypeQuals) {
llvm::FoldingSetNodeID ID;
ConstantArrayType::Profile(ID, EltTy, ArySize);
void *InsertPos = 0;
if (ConstantArrayType *ATP =
ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(ATP, 0);
// If the element type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!EltTy->isCanonical()) {
Canonical = getConstantArrayType(EltTy.getCanonicalType(), ArySize,
ASM, EltTypeQuals);
// Get the new insert position for the node we care about.
ConstantArrayType *NewIP =
ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
}
ConstantArrayType *New = new ConstantArrayType(EltTy, Canonical, ArySize,
ASM, EltTypeQuals);
ConstantArrayTypes.InsertNode(New, InsertPos);
Types.push_back(New);
return QualType(New, 0);
}
/// getVariableArrayType - Returns a non-unique reference to the type for a
/// variable array of the specified element type.
QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts,
ArrayType::ArraySizeModifier ASM,
unsigned EltTypeQuals) {
if (NumElts) {
// Since we don't unique expressions, it isn't possible to unique VLA's
// that have an expression provided for their size.
VariableArrayType *New = new VariableArrayType(EltTy, QualType(), NumElts,
ASM, EltTypeQuals);
CompleteVariableArrayTypes.push_back(New);
Types.push_back(New);
return QualType(New, 0);
}
else {
// No size is provided for the VLA. These we can unique.
llvm::FoldingSetNodeID ID;
VariableArrayType::Profile(ID, EltTy);
void *InsertPos = 0;
if (VariableArrayType *ATP =
IncompleteVariableArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(ATP, 0);
// If the element type isn't canonical, this won't be a canonical type
// either, so fill in the canonical type field.
QualType Canonical;
if (!EltTy->isCanonical()) {
Canonical = getVariableArrayType(EltTy.getCanonicalType(), NumElts,
ASM, EltTypeQuals);
// Get the new insert position for the node we care about.
VariableArrayType *NewIP =
IncompleteVariableArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
}
VariableArrayType *New = new VariableArrayType(EltTy, QualType(), NumElts,
ASM, EltTypeQuals);
IncompleteVariableArrayTypes.InsertNode(New, InsertPos);
Types.push_back(New);
return QualType(New, 0);
}
}
/// getVectorType - Return the unique reference to a vector type of
/// the specified element type and size. VectorType must be a built-in type.
QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
BuiltinType *baseType;
baseType = dyn_cast<BuiltinType>(vecType.getCanonicalType().getTypePtr());
assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
// Check if we've already instantiated a vector of this type.
llvm::FoldingSetNodeID ID;
VectorType::Profile(ID, vecType, NumElts, Type::Vector);
void *InsertPos = 0;
if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(VTP, 0);
// If the element type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!vecType->isCanonical()) {
Canonical = getVectorType(vecType.getCanonicalType(), NumElts);
// Get the new insert position for the node we care about.
VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
}
VectorType *New = new VectorType(vecType, NumElts, Canonical);
VectorTypes.InsertNode(New, InsertPos);
Types.push_back(New);
return QualType(New, 0);
}
/// getOCUVectorType - Return the unique reference to an OCU vector type of
/// the specified element type and size. VectorType must be a built-in type.
QualType ASTContext::getOCUVectorType(QualType vecType, unsigned NumElts) {
BuiltinType *baseType;
baseType = dyn_cast<BuiltinType>(vecType.getCanonicalType().getTypePtr());
assert(baseType != 0 && "getOCUVectorType(): Expecting a built-in type");
// Check if we've already instantiated a vector of this type.
llvm::FoldingSetNodeID ID;
VectorType::Profile(ID, vecType, NumElts, Type::OCUVector);
void *InsertPos = 0;
if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(VTP, 0);
// If the element type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!vecType->isCanonical()) {
Canonical = getOCUVectorType(vecType.getCanonicalType(), NumElts);
// Get the new insert position for the node we care about.
VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
}
OCUVectorType *New = new OCUVectorType(vecType, NumElts, Canonical);
VectorTypes.InsertNode(New, InsertPos);
Types.push_back(New);
return QualType(New, 0);
}
/// getFunctionTypeNoProto - Return a K&R style C function type like 'int()'.
///
QualType ASTContext::getFunctionTypeNoProto(QualType ResultTy) {
// Unique functions, to guarantee there is only one function of a particular
// structure.
llvm::FoldingSetNodeID ID;
FunctionTypeNoProto::Profile(ID, ResultTy);
void *InsertPos = 0;
if (FunctionTypeNoProto *FT =
FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos))
return QualType(FT, 0);
QualType Canonical;
if (!ResultTy->isCanonical()) {
Canonical = getFunctionTypeNoProto(ResultTy.getCanonicalType());
// Get the new insert position for the node we care about.
FunctionTypeNoProto *NewIP =
FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
}
FunctionTypeNoProto *New = new FunctionTypeNoProto(ResultTy, Canonical);
Types.push_back(New);
FunctionTypeProtos.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getFunctionType - Return a normal function type with a typed argument
/// list. isVariadic indicates whether the argument list includes '...'.
QualType ASTContext::getFunctionType(QualType ResultTy, QualType *ArgArray,
unsigned NumArgs, bool isVariadic) {
// Unique functions, to guarantee there is only one function of a particular
// structure.
llvm::FoldingSetNodeID ID;
FunctionTypeProto::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic);
void *InsertPos = 0;
if (FunctionTypeProto *FTP =
FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos))
return QualType(FTP, 0);
// Determine whether the type being created is already canonical or not.
bool isCanonical = ResultTy->isCanonical();
for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
if (!ArgArray[i]->isCanonical())
isCanonical = false;
// If this type isn't canonical, get the canonical version of it.
QualType Canonical;
if (!isCanonical) {
llvm::SmallVector<QualType, 16> CanonicalArgs;
CanonicalArgs.reserve(NumArgs);
for (unsigned i = 0; i != NumArgs; ++i)
CanonicalArgs.push_back(ArgArray[i].getCanonicalType());
Canonical = getFunctionType(ResultTy.getCanonicalType(),
&CanonicalArgs[0], NumArgs,
isVariadic);
// Get the new insert position for the node we care about.
FunctionTypeProto *NewIP =
FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!");
}
// FunctionTypeProto objects are not allocated with new because they have a
// variable size array (for parameter types) at the end of them.
FunctionTypeProto *FTP =
(FunctionTypeProto*)malloc(sizeof(FunctionTypeProto) +
NumArgs*sizeof(QualType));
new (FTP) FunctionTypeProto(ResultTy, ArgArray, NumArgs, isVariadic,
Canonical);
Types.push_back(FTP);
FunctionTypeProtos.InsertNode(FTP, InsertPos);
return QualType(FTP, 0);
}
/// getTypedefType - Return the unique reference to the type for the
/// specified typename decl.
QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
QualType Canonical = Decl->getUnderlyingType().getCanonicalType();
Decl->TypeForDecl = new TypedefType(Decl, Canonical);
Types.push_back(Decl->TypeForDecl);
return QualType(Decl->TypeForDecl, 0);
}
/// getObjcInterfaceType - Return the unique reference to the type for the
/// specified ObjC interface decl.
QualType ASTContext::getObjcInterfaceType(ObjcInterfaceDecl *Decl) {
if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
Decl->TypeForDecl = new ObjcInterfaceType(Decl);
Types.push_back(Decl->TypeForDecl);
return QualType(Decl->TypeForDecl, 0);
}
/// getObjcQualifiedInterfaceType - Return a
/// ObjcQualifiedInterfaceType type for the given interface decl and
/// the conforming protocol list.
QualType ASTContext::getObjcQualifiedInterfaceType(ObjcInterfaceDecl *Decl,
ObjcProtocolDecl **Protocols, unsigned NumProtocols) {
ObjcInterfaceType *IType =
cast<ObjcInterfaceType>(getObjcInterfaceType(Decl));
llvm::FoldingSetNodeID ID;
ObjcQualifiedInterfaceType::Profile(ID, IType, Protocols, NumProtocols);
void *InsertPos = 0;
if (ObjcQualifiedInterfaceType *QT =
ObjcQualifiedInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(QT, 0);
// No Match;
ObjcQualifiedInterfaceType *QType =
new ObjcQualifiedInterfaceType(IType, Protocols, NumProtocols);
Types.push_back(QType);
ObjcQualifiedInterfaceTypes.InsertNode(QType, InsertPos);
return QualType(QType, 0);
}
/// getTypeOfExpr - Unlike many "get<Type>" functions, we can't unique
/// TypeOfExpr AST's (since expression's are never shared). For example,
/// multiple declarations that refer to "typeof(x)" all contain different
/// DeclRefExpr's. This doesn't effect the type checker, since it operates
/// on canonical type's (which are always unique).
QualType ASTContext::getTypeOfExpr(Expr *tofExpr) {
QualType Canonical = tofExpr->getType().getCanonicalType();
TypeOfExpr *toe = new TypeOfExpr(tofExpr, Canonical);
Types.push_back(toe);
return QualType(toe, 0);
}
/// getTypeOfType - Unlike many "get<Type>" functions, we don't unique
/// TypeOfType AST's. The only motivation to unique these nodes would be
/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
/// an issue. This doesn't effect the type checker, since it operates
/// on canonical type's (which are always unique).
QualType ASTContext::getTypeOfType(QualType tofType) {
QualType Canonical = tofType.getCanonicalType();
TypeOfType *tot = new TypeOfType(tofType, Canonical);
Types.push_back(tot);
return QualType(tot, 0);
}
/// getTagDeclType - Return the unique reference to the type for the
/// specified TagDecl (struct/union/class/enum) decl.
QualType ASTContext::getTagDeclType(TagDecl *Decl) {
assert (Decl);
// The decl stores the type cache.
if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
TagType* T = new TagType(Decl, QualType());
Types.push_back(T);
Decl->TypeForDecl = T;
return QualType(T, 0);
}
/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
/// needs to agree with the definition in <stddef.h>.
QualType ASTContext::getSizeType() const {
// On Darwin, size_t is defined as a "long unsigned int".
// FIXME: should derive from "Target".
return UnsignedLongTy;
}
/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
QualType ASTContext::getPointerDiffType() const {
// On Darwin, ptrdiff_t is defined as a "int". This seems like a bug...
// FIXME: should derive from "Target".
return IntTy;
}
/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
/// routine will assert if passed a built-in type that isn't an integer or enum.
static int getIntegerRank(QualType t) {
if (const TagType *TT = dyn_cast<TagType>(t.getCanonicalType())) {
assert(TT->getDecl()->getKind() == Decl::Enum && "not an int or enum");
return 4;
}
const BuiltinType *BT = cast<BuiltinType>(t.getCanonicalType());
switch (BT->getKind()) {
default:
assert(0 && "getIntegerRank(): not a built-in integer");
case BuiltinType::Bool:
return 1;
case BuiltinType::Char_S:
case BuiltinType::Char_U:
case BuiltinType::SChar:
case BuiltinType::UChar:
return 2;
case BuiltinType::Short:
case BuiltinType::UShort:
return 3;
case BuiltinType::Int:
case BuiltinType::UInt:
return 4;
case BuiltinType::Long:
case BuiltinType::ULong:
return 5;
case BuiltinType::LongLong:
case BuiltinType::ULongLong:
return 6;
}
}
/// getFloatingRank - Return a relative rank for floating point types.
/// This routine will assert if passed a built-in type that isn't a float.
static int getFloatingRank(QualType T) {
T = T.getCanonicalType();
if (ComplexType *CT = dyn_cast<ComplexType>(T))
return getFloatingRank(CT->getElementType());
switch (cast<BuiltinType>(T)->getKind()) {
default: assert(0 && "getFloatingRank(): not a floating type");
case BuiltinType::Float: return FloatRank;
case BuiltinType::Double: return DoubleRank;
case BuiltinType::LongDouble: return LongDoubleRank;
}
}
/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
/// point or a complex type (based on typeDomain/typeSize).
/// 'typeDomain' is a real floating point or complex type.
/// 'typeSize' is a real floating point or complex type.
QualType ASTContext::getFloatingTypeOfSizeWithinDomain(
QualType typeSize, QualType typeDomain) const {
if (typeDomain->isComplexType()) {
switch (getFloatingRank(typeSize)) {
default: assert(0 && "getFloatingRank(): illegal value for rank");
case FloatRank: return FloatComplexTy;
case DoubleRank: return DoubleComplexTy;
case LongDoubleRank: return LongDoubleComplexTy;
}
}
if (typeDomain->isRealFloatingType()) {
switch (getFloatingRank(typeSize)) {
default: assert(0 && "getFloatingRank(): illegal value for rank");
case FloatRank: return FloatTy;
case DoubleRank: return DoubleTy;
case LongDoubleRank: return LongDoubleTy;
}
}
assert(0 && "getFloatingTypeOfSizeWithinDomain(): illegal domain");
//an invalid return value, but the assert
//will ensure that this code is never reached.
return VoidTy;
}
/// compareFloatingType - Handles 3 different combos:
/// float/float, float/complex, complex/complex.
/// If lt > rt, return 1. If lt == rt, return 0. If lt < rt, return -1.
int ASTContext::compareFloatingType(QualType lt, QualType rt) {
if (getFloatingRank(lt) == getFloatingRank(rt))
return 0;
if (getFloatingRank(lt) > getFloatingRank(rt))
return 1;
return -1;
}
// maxIntegerType - Returns the highest ranked integer type. Handles 3 case:
// unsigned/unsigned, signed/signed, signed/unsigned. C99 6.3.1.8p1.
QualType ASTContext::maxIntegerType(QualType lhs, QualType rhs) {
if (lhs == rhs) return lhs;
bool t1Unsigned = lhs->isUnsignedIntegerType();
bool t2Unsigned = rhs->isUnsignedIntegerType();
if ((t1Unsigned && t2Unsigned) || (!t1Unsigned && !t2Unsigned))
return getIntegerRank(lhs) >= getIntegerRank(rhs) ? lhs : rhs;
// We have two integer types with differing signs
QualType unsignedType = t1Unsigned ? lhs : rhs;
QualType signedType = t1Unsigned ? rhs : lhs;
if (getIntegerRank(unsignedType) >= getIntegerRank(signedType))
return unsignedType;
else {
// FIXME: Need to check if the signed type can represent all values of the
// unsigned type. If it can, then the result is the signed type.
// If it can't, then the result is the unsigned version of the signed type.
// Should probably add a helper that returns a signed integer type from
// an unsigned (and vice versa). C99 6.3.1.8.
return signedType;
}
}
// getCFConstantStringType - Return the type used for constant CFStrings.
QualType ASTContext::getCFConstantStringType() {
if (!CFConstantStringTypeDecl) {
CFConstantStringTypeDecl = new RecordDecl(Decl::Struct, SourceLocation(),
&Idents.get("NSConstantString"),
0);
QualType FieldTypes[4];
// const int *isa;
FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const));
// int flags;
FieldTypes[1] = IntTy;
// const char *str;
FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const));
// long length;
FieldTypes[3] = LongTy;
// Create fields
FieldDecl *FieldDecls[4];
for (unsigned i = 0; i < 4; ++i)
FieldDecls[i] = new FieldDecl(SourceLocation(), 0, FieldTypes[i]);
CFConstantStringTypeDecl->defineBody(FieldDecls, 4);
}
return getTagDeclType(CFConstantStringTypeDecl);
}
// This returns true if a type has been typedefed to BOOL:
// typedef <type> BOOL;
static bool isTypeTypedefedAsBOOL(QualType T) {
if (const TypedefType *TT = dyn_cast<TypedefType>(T))
return !strcmp(TT->getDecl()->getName(), "BOOL");
return false;
}
/// getObjcEncodingTypeSize returns size of type for objective-c encoding
/// purpose.
int ASTContext::getObjcEncodingTypeSize(QualType type) {
SourceLocation Loc;
uint64_t sz = getTypeSize(type, Loc);
// Make all integer and enum types at least as large as an int
if (sz > 0 && type->isIntegralType())
sz = std::max(sz, getTypeSize(IntTy, Loc));
// Treat arrays as pointers, since that's how they're passed in.
else if (type->isArrayType())
sz = getTypeSize(VoidPtrTy, Loc);
return sz / getTypeSize(CharTy, Loc);
}
/// getObjcEncodingForMethodDecl - Return the encoded type for this method
/// declaration.
void ASTContext::getObjcEncodingForMethodDecl(ObjcMethodDecl *Decl,
std::string& S)
{
// Encode type qualifer, 'in', 'inout', etc. for the return type.
getObjcEncodingForTypeQualifier(Decl->getObjcDeclQualifier(), S);
// Encode result type.
getObjcEncodingForType(Decl->getResultType(), S);
// Compute size of all parameters.
// Start with computing size of a pointer in number of bytes.
// FIXME: There might(should) be a better way of doing this computation!
SourceLocation Loc;
int PtrSize = getTypeSize(VoidPtrTy, Loc) / getTypeSize(CharTy, Loc);
// The first two arguments (self and _cmd) are pointers; account for
// their size.
int ParmOffset = 2 * PtrSize;
int NumOfParams = Decl->getNumParams();
for (int i = 0; i < NumOfParams; i++) {
QualType PType = Decl->getParamDecl(i)->getType();
int sz = getObjcEncodingTypeSize (PType);
assert (sz > 0 && "getObjcEncodingForMethodDecl - Incomplete param type");
ParmOffset += sz;
}
S += llvm::utostr(ParmOffset);
S += "@0:";
S += llvm::utostr(PtrSize);
// Argument types.
ParmOffset = 2 * PtrSize;
for (int i = 0; i < NumOfParams; i++) {
QualType PType = Decl->getParamDecl(i)->getType();
// Process argument qualifiers for user supplied arguments; such as,
// 'in', 'inout', etc.
getObjcEncodingForTypeQualifier(
Decl->getParamDecl(i)->getObjcDeclQualifier(), S);
getObjcEncodingForType(PType, S);
S += llvm::utostr(ParmOffset);
ParmOffset += getObjcEncodingTypeSize(PType);
}
}
void ASTContext::getObjcEncodingForType(QualType T, std::string& S) const
{
// FIXME: This currently doesn't encode:
// @ An object (whether statically typed or typed id)
// # A class object (Class)
// : A method selector (SEL)
// {name=type...} A structure
// (name=type...) A union
// bnum A bit field of num bits
if (const BuiltinType *BT = T->getAsBuiltinType()) {
char encoding;
switch (BT->getKind()) {
case BuiltinType::Void:
encoding = 'v';
break;
case BuiltinType::Bool:
encoding = 'B';
break;
case BuiltinType::Char_U:
case BuiltinType::UChar:
encoding = 'C';
break;
case BuiltinType::UShort:
encoding = 'S';
break;
case BuiltinType::UInt:
encoding = 'I';
break;
case BuiltinType::ULong:
encoding = 'L';
break;
case BuiltinType::ULongLong:
encoding = 'Q';
break;
case BuiltinType::Char_S:
case BuiltinType::SChar:
encoding = 'c';
break;
case BuiltinType::Short:
encoding = 's';
break;
case BuiltinType::Int:
encoding = 'i';
break;
case BuiltinType::Long:
encoding = 'l';
break;
case BuiltinType::LongLong:
encoding = 'q';
break;
case BuiltinType::Float:
encoding = 'f';
break;
case BuiltinType::Double:
encoding = 'd';
break;
case BuiltinType::LongDouble:
encoding = 'd';
break;
default:
assert(0 && "Unhandled builtin type kind");
}
S += encoding;
} else if (const PointerType *PT = T->getAsPointerType()) {
QualType PointeeTy = PT->getPointeeType();
if (isObjcIdType(PointeeTy) || PointeeTy->isObjcInterfaceType()) {
S += '@';
return;
} else if (isObjcClassType(PointeeTy)) {
S += '#';
return;
} else if (isObjcSelType(PointeeTy)) {
S += ':';
return;
}
if (PointeeTy->isCharType()) {
// char pointer types should be encoded as '*' unless it is a
// type that has been typedef'd to 'BOOL'.
if (!isTypeTypedefedAsBOOL(PointeeTy)) {
S += '*';
return;
}
}
S += '^';
getObjcEncodingForType(PT->getPointeeType(), S);
} else if (const ArrayType *AT = T->getAsArrayType()) {
S += '[';
if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
S += llvm::utostr(CAT->getSize().getZExtValue());
else
assert(0 && "Unhandled array type!");
getObjcEncodingForType(AT->getElementType(), S);
S += ']';
} else if (T->getAsFunctionType()) {
S += '?';
} else if (const RecordType *RTy = T->getAsRecordType()) {
RecordDecl *RDecl= RTy->getDecl();
S += '{';
S += RDecl->getName();
S += '=';
for (int i = 0; i < RDecl->getNumMembers(); i++) {
FieldDecl *field = RDecl->getMember(i);
getObjcEncodingForType(field->getType(), S);
}
S += '}';
} else
assert(0 && "@encode for type not implemented!");
}
void ASTContext::getObjcEncodingForTypeQualifier(Decl::ObjcDeclQualifier QT,
std::string& S) const {
if (QT & Decl::OBJC_TQ_In)
S += 'n';
if (QT & Decl::OBJC_TQ_Inout)
S += 'N';
if (QT & Decl::OBJC_TQ_Out)
S += 'o';
if (QT & Decl::OBJC_TQ_Bycopy)
S += 'O';
if (QT & Decl::OBJC_TQ_Byref)
S += 'R';
if (QT & Decl::OBJC_TQ_Oneway)
S += 'V';
}
void ASTContext::setBuiltinVaListType(QualType T)
{
assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
BuiltinVaListType = T;
}
void ASTContext::setObjcIdType(TypedefDecl *TD)
{
assert(ObjcIdType.isNull() && "'id' type already set!");
ObjcIdType = getTypedefType(TD);
// typedef struct objc_object *id;
const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
assert(ptr && "'id' incorrectly typed");
const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
assert(rec && "'id' incorrectly typed");
IdStructType = rec;
}
void ASTContext::setObjcSelType(TypedefDecl *TD)
{
assert(ObjcSelType.isNull() && "'SEL' type already set!");
ObjcSelType = getTypedefType(TD);
// typedef struct objc_selector *SEL;
const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
assert(ptr && "'SEL' incorrectly typed");
const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
assert(rec && "'SEL' incorrectly typed");
SelStructType = rec;
}
void ASTContext::setObjcProtoType(TypedefDecl *TD)
{
assert(ObjcProtoType.isNull() && "'Protocol' type already set!");
// typedef struct Protocol Protocol;
ObjcProtoType = TD->getUnderlyingType();
// Protocol * type
ObjcProtoType = getPointerType(ObjcProtoType);
ProtoStructType = TD->getUnderlyingType()->getAsStructureType();
}
void ASTContext::setObjcClassType(TypedefDecl *TD)
{
assert(ObjcClassType.isNull() && "'Class' type already set!");
ObjcClassType = getTypedefType(TD);
// typedef struct objc_class *Class;
const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
assert(ptr && "'Class' incorrectly typed");
const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
assert(rec && "'Class' incorrectly typed");
ClassStructType = rec;
}
void ASTContext::setObjcConstantStringInterface(ObjcInterfaceDecl *Decl) {
assert(ObjcConstantStringType.isNull() &&
"'NSConstantString' type already set!");
ObjcConstantStringType = getObjcInterfaceType(Decl);
}
bool ASTContext::builtinTypesAreCompatible(QualType lhs, QualType rhs) {
const BuiltinType *lBuiltin = lhs->getAsBuiltinType();
const BuiltinType *rBuiltin = rhs->getAsBuiltinType();
return lBuiltin->getKind() == rBuiltin->getKind();
}
bool ASTContext::objcTypesAreCompatible(QualType lhs, QualType rhs) {
if (lhs->isObjcInterfaceType() && isObjcIdType(rhs))
return true;
else if (isObjcIdType(lhs) && rhs->isObjcInterfaceType())
return true;
return false;
}
bool ASTContext::interfaceTypesAreCompatible(QualType lhs, QualType rhs) {
return true; // FIXME: IMPLEMENT.
}
bool ASTContext::vectorTypesAreCompatible(QualType lhs, QualType rhs) {
const VectorType *lVector = lhs->getAsVectorType();
const VectorType *rVector = rhs->getAsVectorType();
if ((lVector->getElementType().getCanonicalType() ==
rVector->getElementType().getCanonicalType()) &&
(lVector->getNumElements() == rVector->getNumElements()))
return true;
return false;
}
// C99 6.2.7p1: If both are complete types, then the following additional
// requirements apply...FIXME (handle compatibility across source files).
bool ASTContext::tagTypesAreCompatible(QualType lhs, QualType rhs) {
TagDecl *ldecl = cast<TagType>(lhs.getCanonicalType())->getDecl();
TagDecl *rdecl = cast<TagType>(rhs.getCanonicalType())->getDecl();
if (ldecl->getKind() == Decl::Struct && rdecl->getKind() == Decl::Struct) {
if (ldecl->getIdentifier() == rdecl->getIdentifier())
return true;
}
if (ldecl->getKind() == Decl::Union && rdecl->getKind() == Decl::Union) {
if (ldecl->getIdentifier() == rdecl->getIdentifier())
return true;
}
// "Class" and "id" are compatible built-in structure types.
if (isObjcIdType(lhs) && isObjcClassType(rhs) ||
isObjcClassType(lhs) && isObjcIdType(rhs))
return true;
return false;
}
bool ASTContext::pointerTypesAreCompatible(QualType lhs, QualType rhs) {
// C99 6.7.5.1p2: For two pointer types to be compatible, both shall be
// identically qualified and both shall be pointers to compatible types.
if (lhs.getQualifiers() != rhs.getQualifiers())
return false;
QualType ltype = cast<PointerType>(lhs.getCanonicalType())->getPointeeType();
QualType rtype = cast<PointerType>(rhs.getCanonicalType())->getPointeeType();
return typesAreCompatible(ltype, rtype);
}
// C++ 5.17p6: When the left operand of an assignment operator denotes a
// reference to T, the operation assigns to the object of type T denoted by the
// reference.
bool ASTContext::referenceTypesAreCompatible(QualType lhs, QualType rhs) {
QualType ltype = lhs;
if (lhs->isReferenceType())
ltype = cast<ReferenceType>(lhs.getCanonicalType())->getReferenceeType();
QualType rtype = rhs;
if (rhs->isReferenceType())
rtype = cast<ReferenceType>(rhs.getCanonicalType())->getReferenceeType();
return typesAreCompatible(ltype, rtype);
}
bool ASTContext::functionTypesAreCompatible(QualType lhs, QualType rhs) {
const FunctionType *lbase = cast<FunctionType>(lhs.getCanonicalType());
const FunctionType *rbase = cast<FunctionType>(rhs.getCanonicalType());
const FunctionTypeProto *lproto = dyn_cast<FunctionTypeProto>(lbase);
const FunctionTypeProto *rproto = dyn_cast<FunctionTypeProto>(rbase);
// first check the return types (common between C99 and K&R).
if (!typesAreCompatible(lbase->getResultType(), rbase->getResultType()))
return false;
if (lproto && rproto) { // two C99 style function prototypes
unsigned lproto_nargs = lproto->getNumArgs();
unsigned rproto_nargs = rproto->getNumArgs();
if (lproto_nargs != rproto_nargs)
return false;
// both prototypes have the same number of arguments.
if ((lproto->isVariadic() && !rproto->isVariadic()) ||
(rproto->isVariadic() && !lproto->isVariadic()))
return false;
// The use of ellipsis agree...now check the argument types.
for (unsigned i = 0; i < lproto_nargs; i++)
if (!typesAreCompatible(lproto->getArgType(i), rproto->getArgType(i)))
return false;
return true;
}
if (!lproto && !rproto) // two K&R style function decls, nothing to do.
return true;
// we have a mixture of K&R style with C99 prototypes
const FunctionTypeProto *proto = lproto ? lproto : rproto;
if (proto->isVariadic())
return false;
// FIXME: Each parameter type T in the prototype must be compatible with the
// type resulting from applying the usual argument conversions to T.
return true;
}
bool ASTContext::arrayTypesAreCompatible(QualType lhs, QualType rhs) {
QualType ltype = cast<ArrayType>(lhs.getCanonicalType())->getElementType();
QualType rtype = cast<ArrayType>(rhs.getCanonicalType())->getElementType();
if (!typesAreCompatible(ltype, rtype))
return false;
// FIXME: If both types specify constant sizes, then the sizes must also be
// the same. Even if the sizes are the same, GCC produces an error.
return true;
}
/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
/// both shall have the identically qualified version of a compatible type.
/// C99 6.2.7p1: Two types have compatible types if their types are the
/// same. See 6.7.[2,3,5] for additional rules.
bool ASTContext::typesAreCompatible(QualType lhs, QualType rhs) {
QualType lcanon = lhs.getCanonicalType();
QualType rcanon = rhs.getCanonicalType();
// If two types are identical, they are are compatible
if (lcanon == rcanon)
return true;
// C++ [expr]: If an expression initially has the type "reference to T", the
// type is adjusted to "T" prior to any further analysis, the expression
// designates the object or function denoted by the reference, and the
// expression is an lvalue.
if (lcanon->getTypeClass() == Type::Reference)
lcanon = cast<ReferenceType>(lcanon)->getReferenceeType();
if (rcanon->getTypeClass() == Type::Reference)
rcanon = cast<ReferenceType>(rcanon)->getReferenceeType();
// If the canonical type classes don't match, they can't be compatible
if (lcanon->getTypeClass() != rcanon->getTypeClass()) {
// For Objective-C, it is possible for two types to be compatible
// when their classes don't match (when dealing with "id"). If either type
// is an interface, we defer to objcTypesAreCompatible().
if (lcanon->isObjcInterfaceType() || rcanon->isObjcInterfaceType())
return objcTypesAreCompatible(lcanon, rcanon);
return false;
}
switch (lcanon->getTypeClass()) {
case Type::Pointer:
return pointerTypesAreCompatible(lcanon, rcanon);
case Type::ConstantArray:
case Type::VariableArray:
return arrayTypesAreCompatible(lcanon, rcanon);
case Type::FunctionNoProto:
case Type::FunctionProto:
return functionTypesAreCompatible(lcanon, rcanon);
case Type::Tagged: // handle structures, unions
return tagTypesAreCompatible(lcanon, rcanon);
case Type::Builtin:
return builtinTypesAreCompatible(lcanon, rcanon);
case Type::ObjcInterface:
return interfaceTypesAreCompatible(lcanon, rcanon);
case Type::Vector:
case Type::OCUVector:
return vectorTypesAreCompatible(lcanon, rcanon);
default:
assert(0 && "unexpected type");
}
return true; // should never get here...
}
/// Emit - Serialize an ASTContext object to Bitcode.
void ASTContext::Emit(llvm::Serializer& S) const {
S.EmitRef(SourceMgr);
S.EmitRef(Target);
S.EmitRef(Idents);
S.EmitRef(Selectors);
// Emit the size of the type vector so that we can reserve that size
// when we reconstitute the ASTContext object.
S.EmitInt(Types.size());
for (std::vector<Type*>::const_iterator I=Types.begin(), E=Types.end();
I!=E;++I)
(*I)->Emit(S);
// FIXME: S.EmitOwnedPtr(CFConstantStringTypeDecl);
}
ASTContext* ASTContext::Create(llvm::Deserializer& D) {
SourceManager &SM = D.ReadRef<SourceManager>();
TargetInfo &t = D.ReadRef<TargetInfo>();
IdentifierTable &idents = D.ReadRef<IdentifierTable>();
SelectorTable &sels = D.ReadRef<SelectorTable>();
unsigned size_reserve = D.ReadInt();
ASTContext* A = new ASTContext(SM,t,idents,sels,size_reserve);
for (unsigned i = 0; i < size_reserve; ++i)
Type::Create(*A,i,D);
// FIXME: A->CFConstantStringTypeDecl = D.ReadOwnedPtr<RecordDecl>();
return A;
}