blob: 6ff898970af0219646d71627e2b44f0785442047 [file] [log] [blame]
//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for Objective C declarations.
//
//===----------------------------------------------------------------------===//
#include "Sema.h"
#include "Lookup.h"
#include "clang/Sema/ExternalSemaSource.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclObjC.h"
#include "clang/Parse/DeclSpec.h"
using namespace clang;
bool Sema::DiagnosePropertyAccessorMismatch(ObjCPropertyDecl *property,
ObjCMethodDecl *GetterMethod,
SourceLocation Loc) {
if (GetterMethod &&
GetterMethod->getResultType() != property->getType()) {
AssignConvertType result = Incompatible;
if (property->getType()->isObjCObjectPointerType())
result = CheckAssignmentConstraints(GetterMethod->getResultType(), property->getType());
if (result != Compatible) {
Diag(Loc, diag::warn_accessor_property_type_mismatch)
<< property->getDeclName()
<< GetterMethod->getSelector();
Diag(GetterMethod->getLocation(), diag::note_declared_at);
return true;
}
}
return false;
}
/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
/// and user declared, in the method definition's AST.
void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, DeclPtrTy D) {
assert(getCurMethodDecl() == 0 && "Method parsing confused");
ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D.getAs<Decl>());
// If we don't have a valid method decl, simply return.
if (!MDecl)
return;
CurFunctionNeedsScopeChecking = false;
// Allow the rest of sema to find private method decl implementations.
if (MDecl->isInstanceMethod())
AddInstanceMethodToGlobalPool(MDecl);
else
AddFactoryMethodToGlobalPool(MDecl);
// Allow all of Sema to see that we are entering a method definition.
PushDeclContext(FnBodyScope, MDecl);
// Create Decl objects for each parameter, entrring them in the scope for
// binding to their use.
// Insert the invisible arguments, self and _cmd!
MDecl->createImplicitParams(Context, MDecl->getClassInterface());
PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
// Introduce all of the other parameters into this scope.
for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
E = MDecl->param_end(); PI != E; ++PI)
if ((*PI)->getIdentifier())
PushOnScopeChains(*PI, FnBodyScope);
}
Sema::DeclPtrTy Sema::
ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
IdentifierInfo *ClassName, SourceLocation ClassLoc,
IdentifierInfo *SuperName, SourceLocation SuperLoc,
const DeclPtrTy *ProtoRefs, unsigned NumProtoRefs,
SourceLocation EndProtoLoc, AttributeList *AttrList) {
assert(ClassName && "Missing class identifier");
// Check for another declaration kind with the same name.
NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, LookupOrdinaryName);
if (PrevDecl && PrevDecl->isTemplateParameter()) {
// Maybe we will complain about the shadowed template parameter.
DiagnoseTemplateParameterShadow(ClassLoc, PrevDecl);
// Just pretend that we didn't see the previous declaration.
PrevDecl = 0;
}
if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
}
ObjCInterfaceDecl* IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
if (IDecl) {
// Class already seen. Is it a forward declaration?
if (!IDecl->isForwardDecl()) {
IDecl->setInvalidDecl();
Diag(AtInterfaceLoc, diag::err_duplicate_class_def)<<IDecl->getDeclName();
Diag(IDecl->getLocation(), diag::note_previous_definition);
// Return the previous class interface.
// FIXME: don't leak the objects passed in!
return DeclPtrTy::make(IDecl);
} else {
IDecl->setLocation(AtInterfaceLoc);
IDecl->setForwardDecl(false);
IDecl->setClassLoc(ClassLoc);
// Since this ObjCInterfaceDecl was created by a forward declaration,
// we now add it to the DeclContext since it wasn't added before
// (see ActOnForwardClassDeclaration).
CurContext->addDecl(IDecl);
if (AttrList)
ProcessDeclAttributeList(TUScope, IDecl, AttrList);
}
} else {
IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc,
ClassName, ClassLoc);
if (AttrList)
ProcessDeclAttributeList(TUScope, IDecl, AttrList);
PushOnScopeChains(IDecl, TUScope);
}
if (SuperName) {
// Check if a different kind of symbol declared in this scope.
PrevDecl = LookupSingleName(TUScope, SuperName, LookupOrdinaryName);
if (!PrevDecl) {
// Try to correct for a typo in the superclass name.
LookupResult R(*this, SuperName, SuperLoc, LookupOrdinaryName);
if (CorrectTypo(R, TUScope, 0) &&
(PrevDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
Diag(SuperLoc, diag::err_undef_superclass_suggest)
<< SuperName << ClassName << PrevDecl->getDeclName();
}
}
if (PrevDecl == IDecl) {
Diag(SuperLoc, diag::err_recursive_superclass)
<< SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
IDecl->setLocEnd(ClassLoc);
} else {
ObjCInterfaceDecl *SuperClassDecl =
dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
// Diagnose classes that inherit from deprecated classes.
if (SuperClassDecl)
(void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
if (PrevDecl && SuperClassDecl == 0) {
// The previous declaration was not a class decl. Check if we have a
// typedef. If we do, get the underlying class type.
if (const TypedefDecl *TDecl = dyn_cast_or_null<TypedefDecl>(PrevDecl)) {
QualType T = TDecl->getUnderlyingType();
if (T->isObjCInterfaceType()) {
if (NamedDecl *IDecl = T->getAs<ObjCInterfaceType>()->getDecl())
SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
}
}
// This handles the following case:
//
// typedef int SuperClass;
// @interface MyClass : SuperClass {} @end
//
if (!SuperClassDecl) {
Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
}
}
if (!dyn_cast_or_null<TypedefDecl>(PrevDecl)) {
if (!SuperClassDecl)
Diag(SuperLoc, diag::err_undef_superclass)
<< SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
else if (SuperClassDecl->isForwardDecl())
Diag(SuperLoc, diag::err_undef_superclass)
<< SuperClassDecl->getDeclName() << ClassName
<< SourceRange(AtInterfaceLoc, ClassLoc);
}
IDecl->setSuperClass(SuperClassDecl);
IDecl->setSuperClassLoc(SuperLoc);
IDecl->setLocEnd(SuperLoc);
}
} else { // we have a root class.
IDecl->setLocEnd(ClassLoc);
}
/// Check then save referenced protocols.
if (NumProtoRefs) {
IDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
Context);
IDecl->setLocEnd(EndProtoLoc);
}
CheckObjCDeclScope(IDecl);
return DeclPtrTy::make(IDecl);
}
/// ActOnCompatiblityAlias - this action is called after complete parsing of
/// @compatibility_alias declaration. It sets up the alias relationships.
Sema::DeclPtrTy Sema::ActOnCompatiblityAlias(SourceLocation AtLoc,
IdentifierInfo *AliasName,
SourceLocation AliasLocation,
IdentifierInfo *ClassName,
SourceLocation ClassLocation) {
// Look for previous declaration of alias name
NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
if (ADecl) {
if (isa<ObjCCompatibleAliasDecl>(ADecl))
Diag(AliasLocation, diag::warn_previous_alias_decl);
else
Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
Diag(ADecl->getLocation(), diag::note_previous_declaration);
return DeclPtrTy();
}
// Check for class declaration
NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, LookupOrdinaryName);
if (const TypedefDecl *TDecl = dyn_cast_or_null<TypedefDecl>(CDeclU)) {
QualType T = TDecl->getUnderlyingType();
if (T->isObjCInterfaceType()) {
if (NamedDecl *IDecl = T->getAs<ObjCInterfaceType>()->getDecl()) {
ClassName = IDecl->getIdentifier();
CDeclU = LookupSingleName(TUScope, ClassName, LookupOrdinaryName);
}
}
}
ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
if (CDecl == 0) {
Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
if (CDeclU)
Diag(CDeclU->getLocation(), diag::note_previous_declaration);
return DeclPtrTy();
}
// Everything checked out, instantiate a new alias declaration AST.
ObjCCompatibleAliasDecl *AliasDecl =
ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
if (!CheckObjCDeclScope(AliasDecl))
PushOnScopeChains(AliasDecl, TUScope);
return DeclPtrTy::make(AliasDecl);
}
void Sema::CheckForwardProtocolDeclarationForCircularDependency(
IdentifierInfo *PName,
SourceLocation &Ploc, SourceLocation PrevLoc,
const ObjCList<ObjCProtocolDecl> &PList) {
for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
E = PList.end(); I != E; ++I) {
if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier())) {
if (PDecl->getIdentifier() == PName) {
Diag(Ploc, diag::err_protocol_has_circular_dependency);
Diag(PrevLoc, diag::note_previous_definition);
}
CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
PDecl->getLocation(), PDecl->getReferencedProtocols());
}
}
}
Sema::DeclPtrTy
Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
IdentifierInfo *ProtocolName,
SourceLocation ProtocolLoc,
const DeclPtrTy *ProtoRefs,
unsigned NumProtoRefs,
SourceLocation EndProtoLoc,
AttributeList *AttrList) {
// FIXME: Deal with AttrList.
assert(ProtocolName && "Missing protocol identifier");
ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolName);
if (PDecl) {
// Protocol already seen. Better be a forward protocol declaration
if (!PDecl->isForwardDecl()) {
Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
Diag(PDecl->getLocation(), diag::note_previous_definition);
// Just return the protocol we already had.
// FIXME: don't leak the objects passed in!
return DeclPtrTy::make(PDecl);
}
ObjCList<ObjCProtocolDecl> PList;
PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
CheckForwardProtocolDeclarationForCircularDependency(
ProtocolName, ProtocolLoc, PDecl->getLocation(), PList);
PList.Destroy(Context);
// Make sure the cached decl gets a valid start location.
PDecl->setLocation(AtProtoInterfaceLoc);
PDecl->setForwardDecl(false);
} else {
PDecl = ObjCProtocolDecl::Create(Context, CurContext,
AtProtoInterfaceLoc,ProtocolName);
PushOnScopeChains(PDecl, TUScope);
PDecl->setForwardDecl(false);
}
if (AttrList)
ProcessDeclAttributeList(TUScope, PDecl, AttrList);
if (NumProtoRefs) {
/// Check then save referenced protocols.
PDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,Context);
PDecl->setLocEnd(EndProtoLoc);
}
CheckObjCDeclScope(PDecl);
return DeclPtrTy::make(PDecl);
}
/// FindProtocolDeclaration - This routine looks up protocols and
/// issues an error if they are not declared. It returns list of
/// protocol declarations in its 'Protocols' argument.
void
Sema::FindProtocolDeclaration(bool WarnOnDeclarations,
const IdentifierLocPair *ProtocolId,
unsigned NumProtocols,
llvm::SmallVectorImpl<DeclPtrTy> &Protocols) {
for (unsigned i = 0; i != NumProtocols; ++i) {
ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first);
if (!PDecl) {
LookupResult R(*this, ProtocolId[i].first, ProtocolId[i].second,
LookupObjCProtocolName);
if (CorrectTypo(R, TUScope, 0) &&
(PDecl = R.getAsSingle<ObjCProtocolDecl>())) {
Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest)
<< ProtocolId[i].first << R.getLookupName();
}
}
if (!PDecl) {
Diag(ProtocolId[i].second, diag::err_undeclared_protocol)
<< ProtocolId[i].first;
continue;
}
(void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second);
// If this is a forward declaration and we are supposed to warn in this
// case, do it.
if (WarnOnDeclarations && PDecl->isForwardDecl())
Diag(ProtocolId[i].second, diag::warn_undef_protocolref)
<< ProtocolId[i].first;
Protocols.push_back(DeclPtrTy::make(PDecl));
}
}
/// DiagnosePropertyMismatch - Compares two properties for their
/// attributes and types and warns on a variety of inconsistencies.
///
void
Sema::DiagnosePropertyMismatch(ObjCPropertyDecl *Property,
ObjCPropertyDecl *SuperProperty,
const IdentifierInfo *inheritedName) {
ObjCPropertyDecl::PropertyAttributeKind CAttr =
Property->getPropertyAttributes();
ObjCPropertyDecl::PropertyAttributeKind SAttr =
SuperProperty->getPropertyAttributes();
if ((CAttr & ObjCPropertyDecl::OBJC_PR_readonly)
&& (SAttr & ObjCPropertyDecl::OBJC_PR_readwrite))
Diag(Property->getLocation(), diag::warn_readonly_property)
<< Property->getDeclName() << inheritedName;
if ((CAttr & ObjCPropertyDecl::OBJC_PR_copy)
!= (SAttr & ObjCPropertyDecl::OBJC_PR_copy))
Diag(Property->getLocation(), diag::warn_property_attribute)
<< Property->getDeclName() << "copy" << inheritedName;
else if ((CAttr & ObjCPropertyDecl::OBJC_PR_retain)
!= (SAttr & ObjCPropertyDecl::OBJC_PR_retain))
Diag(Property->getLocation(), diag::warn_property_attribute)
<< Property->getDeclName() << "retain" << inheritedName;
if ((CAttr & ObjCPropertyDecl::OBJC_PR_nonatomic)
!= (SAttr & ObjCPropertyDecl::OBJC_PR_nonatomic))
Diag(Property->getLocation(), diag::warn_property_attribute)
<< Property->getDeclName() << "atomic" << inheritedName;
if (Property->getSetterName() != SuperProperty->getSetterName())
Diag(Property->getLocation(), diag::warn_property_attribute)
<< Property->getDeclName() << "setter" << inheritedName;
if (Property->getGetterName() != SuperProperty->getGetterName())
Diag(Property->getLocation(), diag::warn_property_attribute)
<< Property->getDeclName() << "getter" << inheritedName;
QualType LHSType =
Context.getCanonicalType(SuperProperty->getType());
QualType RHSType =
Context.getCanonicalType(Property->getType());
if (!Context.typesAreCompatible(LHSType, RHSType)) {
// FIXME: Incorporate this test with typesAreCompatible.
if (LHSType->isObjCQualifiedIdType() && RHSType->isObjCQualifiedIdType())
if (Context.ObjCQualifiedIdTypesAreCompatible(LHSType, RHSType, false))
return;
Diag(Property->getLocation(), diag::warn_property_types_are_incompatible)
<< Property->getType() << SuperProperty->getType() << inheritedName;
}
}
/// ComparePropertiesInBaseAndSuper - This routine compares property
/// declarations in base and its super class, if any, and issues
/// diagnostics in a variety of inconsistant situations.
///
void Sema::ComparePropertiesInBaseAndSuper(ObjCInterfaceDecl *IDecl) {
ObjCInterfaceDecl *SDecl = IDecl->getSuperClass();
if (!SDecl)
return;
// FIXME: O(N^2)
for (ObjCInterfaceDecl::prop_iterator S = SDecl->prop_begin(),
E = SDecl->prop_end(); S != E; ++S) {
ObjCPropertyDecl *SuperPDecl = (*S);
// Does property in super class has declaration in current class?
for (ObjCInterfaceDecl::prop_iterator I = IDecl->prop_begin(),
E = IDecl->prop_end(); I != E; ++I) {
ObjCPropertyDecl *PDecl = (*I);
if (SuperPDecl->getIdentifier() == PDecl->getIdentifier())
DiagnosePropertyMismatch(PDecl, SuperPDecl,
SDecl->getIdentifier());
}
}
}
/// MergeOneProtocolPropertiesIntoClass - This routine goes thru the list
/// of properties declared in a protocol and adds them to the list
/// of properties for current class/category if it is not there already.
void
Sema::MergeOneProtocolPropertiesIntoClass(Decl *CDecl,
ObjCProtocolDecl *PDecl) {
ObjCInterfaceDecl *IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDecl);
if (!IDecl) {
// Category
ObjCCategoryDecl *CatDecl = static_cast<ObjCCategoryDecl*>(CDecl);
assert (CatDecl && "MergeOneProtocolPropertiesIntoClass");
for (ObjCProtocolDecl::prop_iterator P = PDecl->prop_begin(),
E = PDecl->prop_end(); P != E; ++P) {
ObjCPropertyDecl *Pr = (*P);
ObjCCategoryDecl::prop_iterator CP, CE;
// Is this property already in category's list of properties?
for (CP = CatDecl->prop_begin(), CE = CatDecl->prop_end(); CP != CE; ++CP)
if ((*CP)->getIdentifier() == Pr->getIdentifier())
break;
if (CP != CE)
// Property protocol already exist in class. Diagnose any mismatch.
DiagnosePropertyMismatch((*CP), Pr, PDecl->getIdentifier());
}
return;
}
for (ObjCProtocolDecl::prop_iterator P = PDecl->prop_begin(),
E = PDecl->prop_end(); P != E; ++P) {
ObjCPropertyDecl *Pr = (*P);
ObjCInterfaceDecl::prop_iterator CP, CE;
// Is this property already in class's list of properties?
for (CP = IDecl->prop_begin(), CE = IDecl->prop_end(); CP != CE; ++CP)
if ((*CP)->getIdentifier() == Pr->getIdentifier())
break;
if (CP != CE)
// Property protocol already exist in class. Diagnose any mismatch.
DiagnosePropertyMismatch((*CP), Pr, PDecl->getIdentifier());
}
}
/// MergeProtocolPropertiesIntoClass - This routine merges properties
/// declared in 'MergeItsProtocols' objects (which can be a class or an
/// inherited protocol into the list of properties for class/category 'CDecl'
///
void Sema::MergeProtocolPropertiesIntoClass(Decl *CDecl,
DeclPtrTy MergeItsProtocols) {
Decl *ClassDecl = MergeItsProtocols.getAs<Decl>();
ObjCInterfaceDecl *IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDecl);
if (!IDecl) {
// Category
ObjCCategoryDecl *CatDecl = static_cast<ObjCCategoryDecl*>(CDecl);
assert (CatDecl && "MergeProtocolPropertiesIntoClass");
if (ObjCCategoryDecl *MDecl = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
for (ObjCCategoryDecl::protocol_iterator P = MDecl->protocol_begin(),
E = MDecl->protocol_end(); P != E; ++P)
// Merge properties of category (*P) into IDECL's
MergeOneProtocolPropertiesIntoClass(CatDecl, *P);
// Go thru the list of protocols for this category and recursively merge
// their properties into this class as well.
for (ObjCCategoryDecl::protocol_iterator P = CatDecl->protocol_begin(),
E = CatDecl->protocol_end(); P != E; ++P)
MergeProtocolPropertiesIntoClass(CatDecl, DeclPtrTy::make(*P));
} else {
ObjCProtocolDecl *MD = cast<ObjCProtocolDecl>(ClassDecl);
for (ObjCProtocolDecl::protocol_iterator P = MD->protocol_begin(),
E = MD->protocol_end(); P != E; ++P)
MergeOneProtocolPropertiesIntoClass(CatDecl, *P);
}
return;
}
if (ObjCInterfaceDecl *MDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
for (ObjCInterfaceDecl::protocol_iterator P = MDecl->protocol_begin(),
E = MDecl->protocol_end(); P != E; ++P)
// Merge properties of class (*P) into IDECL's
MergeOneProtocolPropertiesIntoClass(IDecl, *P);
// Go thru the list of protocols for this class and recursively merge
// their properties into this class as well.
for (ObjCInterfaceDecl::protocol_iterator P = IDecl->protocol_begin(),
E = IDecl->protocol_end(); P != E; ++P)
MergeProtocolPropertiesIntoClass(IDecl, DeclPtrTy::make(*P));
} else {
ObjCProtocolDecl *MD = cast<ObjCProtocolDecl>(ClassDecl);
for (ObjCProtocolDecl::protocol_iterator P = MD->protocol_begin(),
E = MD->protocol_end(); P != E; ++P)
MergeOneProtocolPropertiesIntoClass(IDecl, *P);
}
}
/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
/// a class method in its extension.
///
void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
ObjCInterfaceDecl *ID) {
if (!ID)
return; // Possibly due to previous error
llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(),
e = ID->meth_end(); i != e; ++i) {
ObjCMethodDecl *MD = *i;
MethodMap[MD->getSelector()] = MD;
}
if (MethodMap.empty())
return;
for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(),
e = CAT->meth_end(); i != e; ++i) {
ObjCMethodDecl *Method = *i;
const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) {
Diag(Method->getLocation(), diag::err_duplicate_method_decl)
<< Method->getDeclName();
Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
}
}
}
/// ActOnForwardProtocolDeclaration - Handle @protocol foo;
Action::DeclPtrTy
Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
const IdentifierLocPair *IdentList,
unsigned NumElts,
AttributeList *attrList) {
llvm::SmallVector<ObjCProtocolDecl*, 32> Protocols;
for (unsigned i = 0; i != NumElts; ++i) {
IdentifierInfo *Ident = IdentList[i].first;
ObjCProtocolDecl *PDecl = LookupProtocol(Ident);
if (PDecl == 0) { // Not already seen?
PDecl = ObjCProtocolDecl::Create(Context, CurContext,
IdentList[i].second, Ident);
PushOnScopeChains(PDecl, TUScope);
}
if (attrList)
ProcessDeclAttributeList(TUScope, PDecl, attrList);
Protocols.push_back(PDecl);
}
ObjCForwardProtocolDecl *PDecl =
ObjCForwardProtocolDecl::Create(Context, CurContext, AtProtocolLoc,
&Protocols[0], Protocols.size());
CurContext->addDecl(PDecl);
CheckObjCDeclScope(PDecl);
return DeclPtrTy::make(PDecl);
}
Sema::DeclPtrTy Sema::
ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
IdentifierInfo *ClassName, SourceLocation ClassLoc,
IdentifierInfo *CategoryName,
SourceLocation CategoryLoc,
const DeclPtrTy *ProtoRefs,
unsigned NumProtoRefs,
SourceLocation EndProtoLoc) {
ObjCCategoryDecl *CDecl =
ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc, CategoryName);
// FIXME: PushOnScopeChains?
CurContext->addDecl(CDecl);
ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc);
/// Check that class of this category is already completely declared.
if (!IDecl || IDecl->isForwardDecl()) {
CDecl->setInvalidDecl();
Diag(ClassLoc, diag::err_undef_interface) << ClassName;
return DeclPtrTy::make(CDecl);
}
CDecl->setClassInterface(IDecl);
// If the interface is deprecated, warn about it.
(void)DiagnoseUseOfDecl(IDecl, ClassLoc);
/// Check for duplicate interface declaration for this category
ObjCCategoryDecl *CDeclChain;
for (CDeclChain = IDecl->getCategoryList(); CDeclChain;
CDeclChain = CDeclChain->getNextClassCategory()) {
if (CategoryName && CDeclChain->getIdentifier() == CategoryName) {
Diag(CategoryLoc, diag::warn_dup_category_def)
<< ClassName << CategoryName;
Diag(CDeclChain->getLocation(), diag::note_previous_definition);
break;
}
}
if (!CDeclChain)
CDecl->insertNextClassCategory();
if (NumProtoRefs) {
CDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
Context);
CDecl->setLocEnd(EndProtoLoc);
// Protocols in the class extension belong to the class.
if (!CDecl->getIdentifier())
IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl**)ProtoRefs,
NumProtoRefs,Context);
}
CheckObjCDeclScope(CDecl);
return DeclPtrTy::make(CDecl);
}
/// ActOnStartCategoryImplementation - Perform semantic checks on the
/// category implementation declaration and build an ObjCCategoryImplDecl
/// object.
Sema::DeclPtrTy Sema::ActOnStartCategoryImplementation(
SourceLocation AtCatImplLoc,
IdentifierInfo *ClassName, SourceLocation ClassLoc,
IdentifierInfo *CatName, SourceLocation CatLoc) {
ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc);
ObjCCategoryDecl *CatIDecl = 0;
if (IDecl) {
CatIDecl = IDecl->FindCategoryDeclaration(CatName);
if (!CatIDecl) {
// Category @implementation with no corresponding @interface.
// Create and install one.
CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, SourceLocation(),
CatName);
CatIDecl->setClassInterface(IDecl);
CatIDecl->insertNextClassCategory();
}
}
ObjCCategoryImplDecl *CDecl =
ObjCCategoryImplDecl::Create(Context, CurContext, AtCatImplLoc, CatName,
IDecl);
/// Check that class of this category is already completely declared.
if (!IDecl || IDecl->isForwardDecl())
Diag(ClassLoc, diag::err_undef_interface) << ClassName;
// FIXME: PushOnScopeChains?
CurContext->addDecl(CDecl);
/// Check that CatName, category name, is not used in another implementation.
if (CatIDecl) {
if (CatIDecl->getImplementation()) {
Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
<< CatName;
Diag(CatIDecl->getImplementation()->getLocation(),
diag::note_previous_definition);
} else
CatIDecl->setImplementation(CDecl);
}
CheckObjCDeclScope(CDecl);
return DeclPtrTy::make(CDecl);
}
Sema::DeclPtrTy Sema::ActOnStartClassImplementation(
SourceLocation AtClassImplLoc,
IdentifierInfo *ClassName, SourceLocation ClassLoc,
IdentifierInfo *SuperClassname,
SourceLocation SuperClassLoc) {
ObjCInterfaceDecl* IDecl = 0;
// Check for another declaration kind with the same name.
NamedDecl *PrevDecl
= LookupSingleName(TUScope, ClassName, LookupOrdinaryName);
if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
} else {
// Is there an interface declaration of this class; if not, warn!
IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
if (!IDecl || IDecl->isForwardDecl()) {
Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
IDecl = 0;
}
}
// Check that super class name is valid class name
ObjCInterfaceDecl* SDecl = 0;
if (SuperClassname) {
// Check if a different kind of symbol declared in this scope.
PrevDecl = LookupSingleName(TUScope, SuperClassname, LookupOrdinaryName);
if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
Diag(SuperClassLoc, diag::err_redefinition_different_kind)
<< SuperClassname;
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
} else {
SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
if (!SDecl)
Diag(SuperClassLoc, diag::err_undef_superclass)
<< SuperClassname << ClassName;
else if (IDecl && IDecl->getSuperClass() != SDecl) {
// This implementation and its interface do not have the same
// super class.
Diag(SuperClassLoc, diag::err_conflicting_super_class)
<< SDecl->getDeclName();
Diag(SDecl->getLocation(), diag::note_previous_definition);
}
}
}
if (!IDecl) {
// Legacy case of @implementation with no corresponding @interface.
// Build, chain & install the interface decl into the identifier.
// FIXME: Do we support attributes on the @implementation? If so we should
// copy them over.
IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
ClassName, ClassLoc, false, true);
IDecl->setSuperClass(SDecl);
IDecl->setLocEnd(ClassLoc);
PushOnScopeChains(IDecl, TUScope);
} else {
// Mark the interface as being completed, even if it was just as
// @class ....;
// declaration; the user cannot reopen it.
IDecl->setForwardDecl(false);
}
ObjCImplementationDecl* IMPDecl =
ObjCImplementationDecl::Create(Context, CurContext, AtClassImplLoc,
IDecl, SDecl);
if (CheckObjCDeclScope(IMPDecl))
return DeclPtrTy::make(IMPDecl);
// Check that there is no duplicate implementation of this class.
if (IDecl->getImplementation()) {
// FIXME: Don't leak everything!
Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
Diag(IDecl->getImplementation()->getLocation(),
diag::note_previous_definition);
} else { // add it to the list.
IDecl->setImplementation(IMPDecl);
PushOnScopeChains(IMPDecl, TUScope);
}
return DeclPtrTy::make(IMPDecl);
}
void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
ObjCIvarDecl **ivars, unsigned numIvars,
SourceLocation RBrace) {
assert(ImpDecl && "missing implementation decl");
ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
if (!IDecl)
return;
/// Check case of non-existing @interface decl.
/// (legacy objective-c @implementation decl without an @interface decl).
/// Add implementations's ivar to the synthesize class's ivar list.
if (IDecl->isImplicitInterfaceDecl()) {
IDecl->setIVarList(ivars, numIvars, Context);
IDecl->setLocEnd(RBrace);
return;
}
// If implementation has empty ivar list, just return.
if (numIvars == 0)
return;
assert(ivars && "missing @implementation ivars");
// Check interface's Ivar list against those in the implementation.
// names and types must match.
//
unsigned j = 0;
ObjCInterfaceDecl::ivar_iterator
IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
for (; numIvars > 0 && IVI != IVE; ++IVI) {
ObjCIvarDecl* ImplIvar = ivars[j++];
ObjCIvarDecl* ClsIvar = *IVI;
assert (ImplIvar && "missing implementation ivar");
assert (ClsIvar && "missing class ivar");
// First, make sure the types match.
if (Context.getCanonicalType(ImplIvar->getType()) !=
Context.getCanonicalType(ClsIvar->getType())) {
Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
<< ImplIvar->getIdentifier()
<< ImplIvar->getType() << ClsIvar->getType();
Diag(ClsIvar->getLocation(), diag::note_previous_definition);
} else if (ImplIvar->isBitField() && ClsIvar->isBitField()) {
Expr *ImplBitWidth = ImplIvar->getBitWidth();
Expr *ClsBitWidth = ClsIvar->getBitWidth();
if (ImplBitWidth->EvaluateAsInt(Context).getZExtValue() !=
ClsBitWidth->EvaluateAsInt(Context).getZExtValue()) {
Diag(ImplBitWidth->getLocStart(), diag::err_conflicting_ivar_bitwidth)
<< ImplIvar->getIdentifier();
Diag(ClsBitWidth->getLocStart(), diag::note_previous_definition);
}
}
// Make sure the names are identical.
if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
<< ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
Diag(ClsIvar->getLocation(), diag::note_previous_definition);
}
--numIvars;
}
if (numIvars > 0)
Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count);
else if (IVI != IVE)
Diag((*IVI)->getLocation(), diag::err_inconsistant_ivar_count);
}
void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method,
bool &IncompleteImpl) {
if (!IncompleteImpl) {
Diag(ImpLoc, diag::warn_incomplete_impl);
IncompleteImpl = true;
}
Diag(ImpLoc, diag::warn_undef_method_impl) << method->getDeclName();
}
void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
ObjCMethodDecl *IntfMethodDecl) {
if (!Context.typesAreCompatible(IntfMethodDecl->getResultType(),
ImpMethodDecl->getResultType()) &&
!Context.QualifiedIdConformsQualifiedId(IntfMethodDecl->getResultType(),
ImpMethodDecl->getResultType())) {
Diag(ImpMethodDecl->getLocation(), diag::warn_conflicting_ret_types)
<< ImpMethodDecl->getDeclName() << IntfMethodDecl->getResultType()
<< ImpMethodDecl->getResultType();
Diag(IntfMethodDecl->getLocation(), diag::note_previous_definition);
}
for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
IF = IntfMethodDecl->param_begin(), EM = ImpMethodDecl->param_end();
IM != EM; ++IM, ++IF) {
QualType ParmDeclTy = (*IF)->getType().getUnqualifiedType();
QualType ParmImpTy = (*IM)->getType().getUnqualifiedType();
if (Context.typesAreCompatible(ParmDeclTy, ParmImpTy) ||
Context.QualifiedIdConformsQualifiedId(ParmDeclTy, ParmImpTy))
continue;
Diag((*IM)->getLocation(), diag::warn_conflicting_param_types)
<< ImpMethodDecl->getDeclName() << (*IF)->getType()
<< (*IM)->getType();
Diag((*IF)->getLocation(), diag::note_previous_definition);
}
}
/// isPropertyReadonly - Return true if property is readonly, by searching
/// for the property in the class and in its categories and implementations
///
bool Sema::isPropertyReadonly(ObjCPropertyDecl *PDecl,
ObjCInterfaceDecl *IDecl) {
// by far the most common case.
if (!PDecl->isReadOnly())
return false;
// Even if property is ready only, if interface has a user defined setter,
// it is not considered read only.
if (IDecl->getInstanceMethod(PDecl->getSetterName()))
return false;
// Main class has the property as 'readonly'. Must search
// through the category list to see if the property's
// attribute has been over-ridden to 'readwrite'.
for (ObjCCategoryDecl *Category = IDecl->getCategoryList();
Category; Category = Category->getNextClassCategory()) {
// Even if property is ready only, if a category has a user defined setter,
// it is not considered read only.
if (Category->getInstanceMethod(PDecl->getSetterName()))
return false;
ObjCPropertyDecl *P =
Category->FindPropertyDeclaration(PDecl->getIdentifier());
if (P && !P->isReadOnly())
return false;
}
// Also, check for definition of a setter method in the implementation if
// all else failed.
if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(CurContext)) {
if (ObjCImplementationDecl *IMD =
dyn_cast<ObjCImplementationDecl>(OMD->getDeclContext())) {
if (IMD->getInstanceMethod(PDecl->getSetterName()))
return false;
} else if (ObjCCategoryImplDecl *CIMD =
dyn_cast<ObjCCategoryImplDecl>(OMD->getDeclContext())) {
if (CIMD->getInstanceMethod(PDecl->getSetterName()))
return false;
}
}
// Lastly, look through the implementation (if one is in scope).
if (ObjCImplementationDecl *ImpDecl = IDecl->getImplementation())
if (ImpDecl->getInstanceMethod(PDecl->getSetterName()))
return false;
// If all fails, look at the super class.
if (ObjCInterfaceDecl *SIDecl = IDecl->getSuperClass())
return isPropertyReadonly(PDecl, SIDecl);
return true;
}
/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
/// improve the efficiency of selector lookups and type checking by associating
/// with each protocol / interface / category the flattened instance tables. If
/// we used an immutable set to keep the table then it wouldn't add significant
/// memory cost and it would be handy for lookups.
/// CheckProtocolMethodDefs - This routine checks unimplemented methods
/// Declared in protocol, and those referenced by it.
void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc,
ObjCProtocolDecl *PDecl,
bool& IncompleteImpl,
const llvm::DenseSet<Selector> &InsMap,
const llvm::DenseSet<Selector> &ClsMap,
ObjCInterfaceDecl *IDecl) {
ObjCInterfaceDecl *Super = IDecl->getSuperClass();
ObjCInterfaceDecl *NSIDecl = 0;
if (getLangOptions().NeXTRuntime) {
// check to see if class implements forwardInvocation method and objects
// of this class are derived from 'NSProxy' so that to forward requests
// from one object to another.
// Under such conditions, which means that every method possible is
// implemented in the class, we should not issue "Method definition not
// found" warnings.
// FIXME: Use a general GetUnarySelector method for this.
IdentifierInfo* II = &Context.Idents.get("forwardInvocation");
Selector fISelector = Context.Selectors.getSelector(1, &II);
if (InsMap.count(fISelector))
// Is IDecl derived from 'NSProxy'? If so, no instance methods
// need be implemented in the implementation.
NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy"));
}
// If a method lookup fails locally we still need to look and see if
// the method was implemented by a base class or an inherited
// protocol. This lookup is slow, but occurs rarely in correct code
// and otherwise would terminate in a warning.
// check unimplemented instance methods.
if (!NSIDecl)
for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(),
E = PDecl->instmeth_end(); I != E; ++I) {
ObjCMethodDecl *method = *I;
if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
!method->isSynthesized() && !InsMap.count(method->getSelector()) &&
(!Super ||
!Super->lookupInstanceMethod(method->getSelector()))) {
// Ugly, but necessary. Method declared in protcol might have
// have been synthesized due to a property declared in the class which
// uses the protocol.
ObjCMethodDecl *MethodInClass =
IDecl->lookupInstanceMethod(method->getSelector());
if (!MethodInClass || !MethodInClass->isSynthesized())
WarnUndefinedMethod(ImpLoc, method, IncompleteImpl);
}
}
// check unimplemented class methods
for (ObjCProtocolDecl::classmeth_iterator
I = PDecl->classmeth_begin(), E = PDecl->classmeth_end();
I != E; ++I) {
ObjCMethodDecl *method = *I;
if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
!ClsMap.count(method->getSelector()) &&
(!Super || !Super->lookupClassMethod(method->getSelector())))
WarnUndefinedMethod(ImpLoc, method, IncompleteImpl);
}
// Check on this protocols's referenced protocols, recursively.
for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(),
E = PDecl->protocol_end(); PI != E; ++PI)
CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, IDecl);
}
/// MatchAllMethodDeclarations - Check methods declaraed in interface or
/// or protocol against those declared in their implementations.
///
void Sema::MatchAllMethodDeclarations(const llvm::DenseSet<Selector> &InsMap,
const llvm::DenseSet<Selector> &ClsMap,
llvm::DenseSet<Selector> &InsMapSeen,
llvm::DenseSet<Selector> &ClsMapSeen,
ObjCImplDecl* IMPDecl,
ObjCContainerDecl* CDecl,
bool &IncompleteImpl,
bool ImmediateClass) {
// Check and see if instance methods in class interface have been
// implemented in the implementation class. If so, their types match.
for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(),
E = CDecl->instmeth_end(); I != E; ++I) {
if (InsMapSeen.count((*I)->getSelector()))
continue;
InsMapSeen.insert((*I)->getSelector());
if (!(*I)->isSynthesized() &&
!InsMap.count((*I)->getSelector())) {
if (ImmediateClass)
WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl);
continue;
} else {
ObjCMethodDecl *ImpMethodDecl =
IMPDecl->getInstanceMethod((*I)->getSelector());
ObjCMethodDecl *IntfMethodDecl =
CDecl->getInstanceMethod((*I)->getSelector());
assert(IntfMethodDecl &&
"IntfMethodDecl is null in ImplMethodsVsClassMethods");
// ImpMethodDecl may be null as in a @dynamic property.
if (ImpMethodDecl)
WarnConflictingTypedMethods(ImpMethodDecl, IntfMethodDecl);
}
}
// Check and see if class methods in class interface have been
// implemented in the implementation class. If so, their types match.
for (ObjCInterfaceDecl::classmeth_iterator
I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) {
if (ClsMapSeen.count((*I)->getSelector()))
continue;
ClsMapSeen.insert((*I)->getSelector());
if (!ClsMap.count((*I)->getSelector())) {
if (ImmediateClass)
WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl);
} else {
ObjCMethodDecl *ImpMethodDecl =
IMPDecl->getClassMethod((*I)->getSelector());
ObjCMethodDecl *IntfMethodDecl =
CDecl->getClassMethod((*I)->getSelector());
WarnConflictingTypedMethods(ImpMethodDecl, IntfMethodDecl);
}
}
if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
// Check for any implementation of a methods declared in protocol.
for (ObjCInterfaceDecl::protocol_iterator PI = I->protocol_begin(),
E = I->protocol_end(); PI != E; ++PI)
MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
IMPDecl,
(*PI), IncompleteImpl, false);
if (I->getSuperClass())
MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
IMPDecl,
I->getSuperClass(), IncompleteImpl, false);
}
}
void Sema::ImplMethodsVsClassMethods(ObjCImplDecl* IMPDecl,
ObjCContainerDecl* CDecl,
bool IncompleteImpl) {
llvm::DenseSet<Selector> InsMap;
// Check and see if instance methods in class interface have been
// implemented in the implementation class.
for (ObjCImplementationDecl::instmeth_iterator
I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I)
InsMap.insert((*I)->getSelector());
// Check and see if properties declared in the interface have either 1)
// an implementation or 2) there is a @synthesize/@dynamic implementation
// of the property in the @implementation.
if (isa<ObjCInterfaceDecl>(CDecl))
for (ObjCContainerDecl::prop_iterator P = CDecl->prop_begin(),
E = CDecl->prop_end(); P != E; ++P) {
ObjCPropertyDecl *Prop = (*P);
if (Prop->isInvalidDecl())
continue;
ObjCPropertyImplDecl *PI = 0;
// Is there a matching propery synthesize/dynamic?
for (ObjCImplDecl::propimpl_iterator
I = IMPDecl->propimpl_begin(),
EI = IMPDecl->propimpl_end(); I != EI; ++I)
if ((*I)->getPropertyDecl() == Prop) {
PI = (*I);
break;
}
if (PI)
continue;
if (!InsMap.count(Prop->getGetterName())) {
Diag(Prop->getLocation(),
diag::warn_setter_getter_impl_required)
<< Prop->getDeclName() << Prop->getGetterName();
Diag(IMPDecl->getLocation(),
diag::note_property_impl_required);
}
if (!Prop->isReadOnly() && !InsMap.count(Prop->getSetterName())) {
Diag(Prop->getLocation(),
diag::warn_setter_getter_impl_required)
<< Prop->getDeclName() << Prop->getSetterName();
Diag(IMPDecl->getLocation(),
diag::note_property_impl_required);
}
}
llvm::DenseSet<Selector> ClsMap;
for (ObjCImplementationDecl::classmeth_iterator
I = IMPDecl->classmeth_begin(),
E = IMPDecl->classmeth_end(); I != E; ++I)
ClsMap.insert((*I)->getSelector());
// Check for type conflict of methods declared in a class/protocol and
// its implementation; if any.
llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen;
MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
IMPDecl, CDecl,
IncompleteImpl, true);
// Check the protocol list for unimplemented methods in the @implementation
// class.
// Check and see if class methods in class interface have been
// implemented in the implementation class.
if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
for (ObjCInterfaceDecl::protocol_iterator PI = I->protocol_begin(),
E = I->protocol_end(); PI != E; ++PI)
CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
InsMap, ClsMap, I);
// Check class extensions (unnamed categories)
for (ObjCCategoryDecl *Categories = I->getCategoryList();
Categories; Categories = Categories->getNextClassCategory()) {
if (!Categories->getIdentifier()) {
ImplMethodsVsClassMethods(IMPDecl, Categories, IncompleteImpl);
break;
}
}
} else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
// For extended class, unimplemented methods in its protocols will
// be reported in the primary class.
if (C->getIdentifier()) {
for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(),
E = C->protocol_end(); PI != E; ++PI)
CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
InsMap, ClsMap, C->getClassInterface());
}
} else
assert(false && "invalid ObjCContainerDecl type.");
}
void
Sema::AtomicPropertySetterGetterRules (ObjCImplDecl* IMPDecl,
ObjCContainerDecl* IDecl) {
// Rules apply in non-GC mode only
if (getLangOptions().getGCMode() != LangOptions::NonGC)
return;
for (ObjCContainerDecl::prop_iterator I = IDecl->prop_begin(),
E = IDecl->prop_end();
I != E; ++I) {
ObjCPropertyDecl *Property = (*I);
unsigned Attributes = Property->getPropertyAttributes();
// We only care about readwrite atomic property.
if ((Attributes & ObjCPropertyDecl::OBJC_PR_nonatomic) ||
!(Attributes & ObjCPropertyDecl::OBJC_PR_readwrite))
continue;
if (const ObjCPropertyImplDecl *PIDecl
= IMPDecl->FindPropertyImplDecl(Property->getIdentifier())) {
if (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
continue;
ObjCMethodDecl *GetterMethod =
IMPDecl->getInstanceMethod(Property->getGetterName());
ObjCMethodDecl *SetterMethod =
IMPDecl->getInstanceMethod(Property->getSetterName());
if ((GetterMethod && !SetterMethod) || (!GetterMethod && SetterMethod)) {
SourceLocation MethodLoc =
(GetterMethod ? GetterMethod->getLocation()
: SetterMethod->getLocation());
Diag(MethodLoc, diag::warn_atomic_property_rule)
<< Property->getIdentifier();
Diag(Property->getLocation(), diag::note_property_declare);
}
}
}
}
/// ActOnForwardClassDeclaration -
Action::DeclPtrTy
Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
IdentifierInfo **IdentList,
SourceLocation *IdentLocs,
unsigned NumElts) {
llvm::SmallVector<ObjCInterfaceDecl*, 32> Interfaces;
for (unsigned i = 0; i != NumElts; ++i) {
// Check for another declaration kind with the same name.
NamedDecl *PrevDecl
= LookupSingleName(TUScope, IdentList[i], LookupOrdinaryName);
if (PrevDecl && PrevDecl->isTemplateParameter()) {
// Maybe we will complain about the shadowed template parameter.
DiagnoseTemplateParameterShadow(AtClassLoc, PrevDecl);
// Just pretend that we didn't see the previous declaration.
PrevDecl = 0;
}
if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
// GCC apparently allows the following idiom:
//
// typedef NSObject < XCElementTogglerP > XCElementToggler;
// @class XCElementToggler;
//
// FIXME: Make an extension?
TypedefDecl *TDD = dyn_cast<TypedefDecl>(PrevDecl);
if (!TDD || !isa<ObjCInterfaceType>(TDD->getUnderlyingType())) {
Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
} else if (TDD) {
// a forward class declaration matching a typedef name of a class refers
// to the underlying class.
if (ObjCInterfaceType * OI =
dyn_cast<ObjCInterfaceType>(TDD->getUnderlyingType()))
PrevDecl = OI->getDecl();
}
}
ObjCInterfaceDecl *IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
if (!IDecl) { // Not already seen? Make a forward decl.
IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
IdentList[i], IdentLocs[i], true);
// Push the ObjCInterfaceDecl on the scope chain but do *not* add it to
// the current DeclContext. This prevents clients that walk DeclContext
// from seeing the imaginary ObjCInterfaceDecl until it is actually
// declared later (if at all). We also take care to explicitly make
// sure this declaration is visible for name lookup.
PushOnScopeChains(IDecl, TUScope, false);
CurContext->makeDeclVisibleInContext(IDecl, true);
}
Interfaces.push_back(IDecl);
}
assert(Interfaces.size() == NumElts);
ObjCClassDecl *CDecl = ObjCClassDecl::Create(Context, CurContext, AtClassLoc,
Interfaces.data(), IdentLocs,
Interfaces.size());
CurContext->addDecl(CDecl);
CheckObjCDeclScope(CDecl);
return DeclPtrTy::make(CDecl);
}
/// MatchTwoMethodDeclarations - Checks that two methods have matching type and
/// returns true, or false, accordingly.
/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *Method,
const ObjCMethodDecl *PrevMethod,
bool matchBasedOnSizeAndAlignment) {
QualType T1 = Context.getCanonicalType(Method->getResultType());
QualType T2 = Context.getCanonicalType(PrevMethod->getResultType());
if (T1 != T2) {
// The result types are different.
if (!matchBasedOnSizeAndAlignment)
return false;
// Incomplete types don't have a size and alignment.
if (T1->isIncompleteType() || T2->isIncompleteType())
return false;
// Check is based on size and alignment.
if (Context.getTypeInfo(T1) != Context.getTypeInfo(T2))
return false;
}
ObjCMethodDecl::param_iterator ParamI = Method->param_begin(),
E = Method->param_end();
ObjCMethodDecl::param_iterator PrevI = PrevMethod->param_begin();
for (; ParamI != E; ++ParamI, ++PrevI) {
assert(PrevI != PrevMethod->param_end() && "Param mismatch");
T1 = Context.getCanonicalType((*ParamI)->getType());
T2 = Context.getCanonicalType((*PrevI)->getType());
if (T1 != T2) {
// The result types are different.
if (!matchBasedOnSizeAndAlignment)
return false;
// Incomplete types don't have a size and alignment.
if (T1->isIncompleteType() || T2->isIncompleteType())
return false;
// Check is based on size and alignment.
if (Context.getTypeInfo(T1) != Context.getTypeInfo(T2))
return false;
}
}
return true;
}
/// \brief Read the contents of the instance and factory method pools
/// for a given selector from external storage.
///
/// This routine should only be called once, when neither the instance
/// nor the factory method pool has an entry for this selector.
Sema::MethodPool::iterator Sema::ReadMethodPool(Selector Sel,
bool isInstance) {
assert(ExternalSource && "We need an external AST source");
assert(InstanceMethodPool.find(Sel) == InstanceMethodPool.end() &&
"Selector data already loaded into the instance method pool");
assert(FactoryMethodPool.find(Sel) == FactoryMethodPool.end() &&
"Selector data already loaded into the factory method pool");
// Read the method list from the external source.
std::pair<ObjCMethodList, ObjCMethodList> Methods
= ExternalSource->ReadMethodPool(Sel);
if (isInstance) {
if (Methods.second.Method)
FactoryMethodPool[Sel] = Methods.second;
return InstanceMethodPool.insert(std::make_pair(Sel, Methods.first)).first;
}
if (Methods.first.Method)
InstanceMethodPool[Sel] = Methods.first;
return FactoryMethodPool.insert(std::make_pair(Sel, Methods.second)).first;
}
void Sema::AddInstanceMethodToGlobalPool(ObjCMethodDecl *Method) {
llvm::DenseMap<Selector, ObjCMethodList>::iterator Pos
= InstanceMethodPool.find(Method->getSelector());
if (Pos == InstanceMethodPool.end()) {
if (ExternalSource && !FactoryMethodPool.count(Method->getSelector()))
Pos = ReadMethodPool(Method->getSelector(), /*isInstance=*/true);
else
Pos = InstanceMethodPool.insert(std::make_pair(Method->getSelector(),
ObjCMethodList())).first;
}
ObjCMethodList &Entry = Pos->second;
if (Entry.Method == 0) {
// Haven't seen a method with this selector name yet - add it.
Entry.Method = Method;
Entry.Next = 0;
return;
}
// We've seen a method with this name, see if we have already seen this type
// signature.
for (ObjCMethodList *List = &Entry; List; List = List->Next)
if (MatchTwoMethodDeclarations(Method, List->Method))
return;
// We have a new signature for an existing method - add it.
// This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
Entry.Next = new ObjCMethodList(Method, Entry.Next);
}
// FIXME: Finish implementing -Wno-strict-selector-match.
ObjCMethodDecl *Sema::LookupInstanceMethodInGlobalPool(Selector Sel,
SourceRange R,
bool warn) {
llvm::DenseMap<Selector, ObjCMethodList>::iterator Pos
= InstanceMethodPool.find(Sel);
if (Pos == InstanceMethodPool.end()) {
if (ExternalSource && !FactoryMethodPool.count(Sel))
Pos = ReadMethodPool(Sel, /*isInstance=*/true);
else
return 0;
}
ObjCMethodList &MethList = Pos->second;
bool issueWarning = false;
if (MethList.Method && MethList.Next) {
for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next)
// This checks if the methods differ by size & alignment.
if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method, true))
issueWarning = warn;
}
if (issueWarning && (MethList.Method && MethList.Next)) {
Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
Diag(MethList.Method->getLocStart(), diag::note_using)
<< MethList.Method->getSourceRange();
for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next)
Diag(Next->Method->getLocStart(), diag::note_also_found)
<< Next->Method->getSourceRange();
}
return MethList.Method;
}
void Sema::AddFactoryMethodToGlobalPool(ObjCMethodDecl *Method) {
llvm::DenseMap<Selector, ObjCMethodList>::iterator Pos
= FactoryMethodPool.find(Method->getSelector());
if (Pos == FactoryMethodPool.end()) {
if (ExternalSource && !InstanceMethodPool.count(Method->getSelector()))
Pos = ReadMethodPool(Method->getSelector(), /*isInstance=*/false);
else
Pos = FactoryMethodPool.insert(std::make_pair(Method->getSelector(),
ObjCMethodList())).first;
}
ObjCMethodList &FirstMethod = Pos->second;
if (!FirstMethod.Method) {
// Haven't seen a method with this selector name yet - add it.
FirstMethod.Method = Method;
FirstMethod.Next = 0;
} else {
// We've seen a method with this name, now check the type signature(s).
bool match = MatchTwoMethodDeclarations(Method, FirstMethod.Method);
for (ObjCMethodList *Next = FirstMethod.Next; !match && Next;
Next = Next->Next)
match = MatchTwoMethodDeclarations(Method, Next->Method);
if (!match) {
// We have a new signature for an existing method - add it.
// This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
struct ObjCMethodList *OMI = new ObjCMethodList(Method, FirstMethod.Next);
FirstMethod.Next = OMI;
}
}
}
ObjCMethodDecl *Sema::LookupFactoryMethodInGlobalPool(Selector Sel,
SourceRange R) {
llvm::DenseMap<Selector, ObjCMethodList>::iterator Pos
= FactoryMethodPool.find(Sel);
if (Pos == FactoryMethodPool.end()) {
if (ExternalSource && !InstanceMethodPool.count(Sel))
Pos = ReadMethodPool(Sel, /*isInstance=*/false);
else
return 0;
}
ObjCMethodList &MethList = Pos->second;
bool issueWarning = false;
if (MethList.Method && MethList.Next) {
for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next)
// This checks if the methods differ by size & alignment.
if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method, true))
issueWarning = true;
}
if (issueWarning && (MethList.Method && MethList.Next)) {
Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
Diag(MethList.Method->getLocStart(), diag::note_using)
<< MethList.Method->getSourceRange();
for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next)
Diag(Next->Method->getLocStart(), diag::note_also_found)
<< Next->Method->getSourceRange();
}
return MethList.Method;
}
/// ProcessPropertyDecl - Make sure that any user-defined setter/getter methods
/// have the property type and issue diagnostics if they don't.
/// Also synthesize a getter/setter method if none exist (and update the
/// appropriate lookup tables. FIXME: Should reconsider if adding synthesized
/// methods is the "right" thing to do.
void Sema::ProcessPropertyDecl(ObjCPropertyDecl *property,
ObjCContainerDecl *CD) {
ObjCMethodDecl *GetterMethod, *SetterMethod;
GetterMethod = CD->getInstanceMethod(property->getGetterName());
SetterMethod = CD->getInstanceMethod(property->getSetterName());
DiagnosePropertyAccessorMismatch(property, GetterMethod,
property->getLocation());
if (SetterMethod) {
if (Context.getCanonicalType(SetterMethod->getResultType())
!= Context.VoidTy)
Diag(SetterMethod->getLocation(), diag::err_setter_type_void);
if (SetterMethod->param_size() != 1 ||
((*SetterMethod->param_begin())->getType() != property->getType())) {
Diag(property->getLocation(),
diag::warn_accessor_property_type_mismatch)
<< property->getDeclName()
<< SetterMethod->getSelector();
Diag(SetterMethod->getLocation(), diag::note_declared_at);
}
}
// Synthesize getter/setter methods if none exist.
// Find the default getter and if one not found, add one.
// FIXME: The synthesized property we set here is misleading. We almost always
// synthesize these methods unless the user explicitly provided prototypes
// (which is odd, but allowed). Sema should be typechecking that the
// declarations jive in that situation (which it is not currently).
if (!GetterMethod) {
// No instance method of same name as property getter name was found.
// Declare a getter method and add it to the list of methods
// for this class.
GetterMethod = ObjCMethodDecl::Create(Context, property->getLocation(),
property->getLocation(), property->getGetterName(),
property->getType(), CD, true, false, true,
(property->getPropertyImplementation() ==
ObjCPropertyDecl::Optional) ?
ObjCMethodDecl::Optional :
ObjCMethodDecl::Required);
CD->addDecl(GetterMethod);
} else
// A user declared getter will be synthesize when @synthesize of
// the property with the same name is seen in the @implementation
GetterMethod->setSynthesized(true);
property->setGetterMethodDecl(GetterMethod);
// Skip setter if property is read-only.
if (!property->isReadOnly()) {
// Find the default setter and if one not found, add one.
if (!SetterMethod) {
// No instance method of same name as property setter name was found.
// Declare a setter method and add it to the list of methods
// for this class.
SetterMethod = ObjCMethodDecl::Create(Context, property->getLocation(),
property->getLocation(),
property->getSetterName(),
Context.VoidTy, CD, true, false, true,
(property->getPropertyImplementation() ==
ObjCPropertyDecl::Optional) ?
ObjCMethodDecl::Optional :
ObjCMethodDecl::Required);
// Invent the arguments for the setter. We don't bother making a
// nice name for the argument.
ParmVarDecl *Argument = ParmVarDecl::Create(Context, SetterMethod,
property->getLocation(),
property->getIdentifier(),
property->getType(),
/*TInfo=*/0,
VarDecl::None,
0);
SetterMethod->setMethodParams(Context, &Argument, 1);
CD->addDecl(SetterMethod);
} else
// A user declared setter will be synthesize when @synthesize of
// the property with the same name is seen in the @implementation
SetterMethod->setSynthesized(true);
property->setSetterMethodDecl(SetterMethod);
}
// Add any synthesized methods to the global pool. This allows us to
// handle the following, which is supported by GCC (and part of the design).
//
// @interface Foo
// @property double bar;
// @end
//
// void thisIsUnfortunate() {
// id foo;
// double bar = [foo bar];
// }
//
if (GetterMethod)
AddInstanceMethodToGlobalPool(GetterMethod);
if (SetterMethod)
AddInstanceMethodToGlobalPool(SetterMethod);
}
/// CompareMethodParamsInBaseAndSuper - This routine compares methods with
/// identical selector names in current and its super classes and issues
/// a warning if any of their argument types are incompatible.
void Sema::CompareMethodParamsInBaseAndSuper(Decl *ClassDecl,
ObjCMethodDecl *Method,
bool IsInstance) {
ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
if (ID == 0) return;
while (ObjCInterfaceDecl *SD = ID->getSuperClass()) {
ObjCMethodDecl *SuperMethodDecl =
SD->lookupMethod(Method->getSelector(), IsInstance);
if (SuperMethodDecl == 0) {
ID = SD;
continue;
}
ObjCMethodDecl::param_iterator ParamI = Method->param_begin(),
E = Method->param_end();
ObjCMethodDecl::param_iterator PrevI = SuperMethodDecl->param_begin();
for (; ParamI != E; ++ParamI, ++PrevI) {
// Number of parameters are the same and is guaranteed by selector match.
assert(PrevI != SuperMethodDecl->param_end() && "Param mismatch");
QualType T1 = Context.getCanonicalType((*ParamI)->getType());
QualType T2 = Context.getCanonicalType((*PrevI)->getType());
// If type of arguement of method in this class does not match its
// respective argument type in the super class method, issue warning;
if (!Context.typesAreCompatible(T1, T2)) {
Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
<< T1 << T2;
Diag(SuperMethodDecl->getLocation(), diag::note_previous_declaration);
return;
}
}
ID = SD;
}
}
// Note: For class/category implemenations, allMethods/allProperties is
// always null.
void Sema::ActOnAtEnd(SourceLocation AtEndLoc, DeclPtrTy classDecl,
DeclPtrTy *allMethods, unsigned allNum,
DeclPtrTy *allProperties, unsigned pNum,
DeclGroupPtrTy *allTUVars, unsigned tuvNum) {
Decl *ClassDecl = classDecl.getAs<Decl>();
// FIXME: If we don't have a ClassDecl, we have an error. We should consider
// always passing in a decl. If the decl has an error, isInvalidDecl()
// should be true.
if (!ClassDecl)
return;
bool isInterfaceDeclKind =
isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
|| isa<ObjCProtocolDecl>(ClassDecl);
bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
if (!isInterfaceDeclKind && AtEndLoc.isInvalid()) {
AtEndLoc = ClassDecl->getLocation();
Diag(AtEndLoc, diag::warn_missing_atend);
}
DeclContext *DC = dyn_cast<DeclContext>(ClassDecl);
// FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
for (unsigned i = 0; i < allNum; i++ ) {
ObjCMethodDecl *Method =
cast_or_null<ObjCMethodDecl>(allMethods[i].getAs<Decl>());
if (!Method) continue; // Already issued a diagnostic.
if (Method->isInstanceMethod()) {
/// Check for instance method of the same name with incompatible types
const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
: false;
if ((isInterfaceDeclKind && PrevMethod && !match)
|| (checkIdenticalMethods && match)) {
Diag(Method->getLocation(), diag::err_duplicate_method_decl)
<< Method->getDeclName();
Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
} else {
DC->addDecl(Method);
InsMap[Method->getSelector()] = Method;
/// The following allows us to typecheck messages to "id".
AddInstanceMethodToGlobalPool(Method);
// verify that the instance method conforms to the same definition of
// parent methods if it shadows one.
CompareMethodParamsInBaseAndSuper(ClassDecl, Method, true);
}
} else {
/// Check for class method of the same name with incompatible types
const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
: false;
if ((isInterfaceDeclKind && PrevMethod && !match)
|| (checkIdenticalMethods && match)) {
Diag(Method->getLocation(), diag::err_duplicate_method_decl)
<< Method->getDeclName();
Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
} else {
DC->addDecl(Method);
ClsMap[Method->getSelector()] = Method;
/// The following allows us to typecheck messages to "Class".
AddFactoryMethodToGlobalPool(Method);
// verify that the class method conforms to the same definition of
// parent methods if it shadows one.
CompareMethodParamsInBaseAndSuper(ClassDecl, Method, false);
}
}
}
if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
// Compares properties declared in this class to those of its
// super class.
ComparePropertiesInBaseAndSuper(I);
MergeProtocolPropertiesIntoClass(I, DeclPtrTy::make(I));
} else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
// Categories are used to extend the class by declaring new methods.
// By the same token, they are also used to add new properties. No
// need to compare the added property to those in the class.
// Merge protocol properties into category
MergeProtocolPropertiesIntoClass(C, DeclPtrTy::make(C));
if (C->getIdentifier() == 0)
DiagnoseClassExtensionDupMethods(C, C->getClassInterface());
}
if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
// ProcessPropertyDecl is responsible for diagnosing conflicts with any
// user-defined setter/getter. It also synthesizes setter/getter methods
// and adds them to the DeclContext and global method pools.
for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(),
E = CDecl->prop_end();
I != E; ++I)
ProcessPropertyDecl(*I, CDecl);
CDecl->setAtEndLoc(AtEndLoc);
}
if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
IC->setAtEndLoc(AtEndLoc);
if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
ImplMethodsVsClassMethods(IC, IDecl);
AtomicPropertySetterGetterRules(IC, IDecl);
}
} else if (ObjCCategoryImplDecl* CatImplClass =
dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
CatImplClass->setAtEndLoc(AtEndLoc);
// Find category interface decl and then check that all methods declared
// in this interface are implemented in the category @implementation.
if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
for (ObjCCategoryDecl *Categories = IDecl->getCategoryList();
Categories; Categories = Categories->getNextClassCategory()) {
if (Categories->getIdentifier() == CatImplClass->getIdentifier()) {
ImplMethodsVsClassMethods(CatImplClass, Categories);
break;
}
}
}
}
if (isInterfaceDeclKind) {
// Reject invalid vardecls.
for (unsigned i = 0; i != tuvNum; i++) {
DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
if (!VDecl->hasExternalStorage())
Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
}
}
}
}
/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
/// objective-c's type qualifier from the parser version of the same info.
static Decl::ObjCDeclQualifier
CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
Decl::ObjCDeclQualifier ret = Decl::OBJC_TQ_None;
if (PQTVal & ObjCDeclSpec::DQ_In)
ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_In);
if (PQTVal & ObjCDeclSpec::DQ_Inout)
ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Inout);
if (PQTVal & ObjCDeclSpec::DQ_Out)
ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Out);
if (PQTVal & ObjCDeclSpec::DQ_Bycopy)
ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Bycopy);
if (PQTVal & ObjCDeclSpec::DQ_Byref)
ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Byref);
if (PQTVal & ObjCDeclSpec::DQ_Oneway)
ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Oneway);
return ret;
}
Sema::DeclPtrTy Sema::ActOnMethodDeclaration(
SourceLocation MethodLoc, SourceLocation EndLoc,
tok::TokenKind MethodType, DeclPtrTy classDecl,
ObjCDeclSpec &ReturnQT, TypeTy *ReturnType,
Selector Sel,
// optional arguments. The number of types/arguments is obtained
// from the Sel.getNumArgs().
ObjCArgInfo *ArgInfo,
llvm::SmallVectorImpl<Declarator> &Cdecls,
AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
bool isVariadic) {
Decl *ClassDecl = classDecl.getAs<Decl>();
// Make sure we can establish a context for the method.
if (!ClassDecl) {
Diag(MethodLoc, diag::error_missing_method_context);
FunctionLabelMap.clear();
return DeclPtrTy();
}
QualType resultDeclType;
if (ReturnType) {
resultDeclType = GetTypeFromParser(ReturnType);
// Methods cannot return interface types. All ObjC objects are
// passed by reference.
if (resultDeclType->isObjCInterfaceType()) {
Diag(MethodLoc, diag::err_object_cannot_be_passed_returned_by_value)
<< 0 << resultDeclType;
return DeclPtrTy();
}
} else // get the type for "id".
resultDeclType = Context.getObjCIdType();
ObjCMethodDecl* ObjCMethod =
ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel, resultDeclType,
cast<DeclContext>(ClassDecl),
MethodType == tok::minus, isVariadic,
false,
MethodDeclKind == tok::objc_optional ?
ObjCMethodDecl::Optional :
ObjCMethodDecl::Required);
llvm::SmallVector<ParmVarDecl*, 16> Params;
for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
QualType ArgType;
TypeSourceInfo *DI;
if (ArgInfo[i].Type == 0) {
ArgType = Context.getObjCIdType();
DI = 0;
} else {
ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
// Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
ArgType = adjustParameterType(ArgType);
}
ParmVarDecl* Param
= ParmVarDecl::Create(Context, ObjCMethod, ArgInfo[i].NameLoc,
ArgInfo[i].Name, ArgType, DI,
VarDecl::None, 0);
if (ArgType->isObjCInterfaceType()) {
Diag(ArgInfo[i].NameLoc,
diag::err_object_cannot_be_passed_returned_by_value)
<< 1 << ArgType;
Param->setInvalidDecl();
}
Param->setObjCDeclQualifier(
CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
// Apply the attributes to the parameter.
ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
Params.push_back(Param);
}
ObjCMethod->setMethodParams(Context, Params.data(), Sel.getNumArgs());
ObjCMethod->setObjCDeclQualifier(
CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
const ObjCMethodDecl *PrevMethod = 0;
if (AttrList)
ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
const ObjCMethodDecl *InterfaceMD = 0;
// For implementations (which can be very "coarse grain"), we add the
// method now. This allows the AST to implement lookup methods that work
// incrementally (without waiting until we parse the @end). It also allows
// us to flag multiple declaration errors as they occur.
if (ObjCImplementationDecl *ImpDecl =
dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
if (MethodType == tok::minus) {
PrevMethod = ImpDecl->getInstanceMethod(Sel);
ImpDecl->addInstanceMethod(ObjCMethod);
} else {
PrevMethod = ImpDecl->getClassMethod(Sel);
ImpDecl->addClassMethod(ObjCMethod);
}
InterfaceMD = ImpDecl->getClassInterface()->getMethod(Sel,
MethodType == tok::minus);
if (AttrList)
Diag(EndLoc, diag::warn_attribute_method_def);
} else if (ObjCCategoryImplDecl *CatImpDecl =
dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
if (MethodType == tok::minus) {
PrevMethod = CatImpDecl->getInstanceMethod(Sel);
CatImpDecl->addInstanceMethod(ObjCMethod);
} else {
PrevMethod = CatImpDecl->getClassMethod(Sel);
CatImpDecl->addClassMethod(ObjCMethod);
}
if (AttrList)
Diag(EndLoc, diag::warn_attribute_method_def);
}
if (PrevMethod) {
// You can never have two method definitions with the same name.
Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
<< ObjCMethod->getDeclName();
Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
}
// If the interface declared this method, and it was deprecated there,
// mark it deprecated here.
if (InterfaceMD && InterfaceMD->hasAttr<DeprecatedAttr>())
ObjCMethod->addAttr(::new (Context) DeprecatedAttr());
return DeclPtrTy::make(ObjCMethod);
}
void Sema::CheckObjCPropertyAttributes(QualType PropertyTy,
SourceLocation Loc,
unsigned &Attributes) {
// FIXME: Improve the reported location.
// readonly and readwrite/assign/retain/copy conflict.
if ((Attributes & ObjCDeclSpec::DQ_PR_readonly) &&
(Attributes & (ObjCDeclSpec::DQ_PR_readwrite |
ObjCDeclSpec::DQ_PR_assign |
ObjCDeclSpec::DQ_PR_copy |
ObjCDeclSpec::DQ_PR_retain))) {
const char * which = (Attributes & ObjCDeclSpec::DQ_PR_readwrite) ?
"readwrite" :
(Attributes & ObjCDeclSpec::DQ_PR_assign) ?
"assign" :
(Attributes & ObjCDeclSpec::DQ_PR_copy) ?
"copy" : "retain";
Diag(Loc, (Attributes & (ObjCDeclSpec::DQ_PR_readwrite)) ?
diag::err_objc_property_attr_mutually_exclusive :
diag::warn_objc_property_attr_mutually_exclusive)
<< "readonly" << which;
}
// Check for copy or retain on non-object types.
if ((Attributes & (ObjCDeclSpec::DQ_PR_copy | ObjCDeclSpec::DQ_PR_retain)) &&
!PropertyTy->isObjCObjectPointerType() &&
!PropertyTy->isBlockPointerType() &&
!Context.isObjCNSObjectType(PropertyTy)) {
Diag(Loc, diag::err_objc_property_requires_object)
<< (Attributes & ObjCDeclSpec::DQ_PR_copy ? "copy" : "retain");
Attributes &= ~(ObjCDeclSpec::DQ_PR_copy | ObjCDeclSpec::DQ_PR_retain);
}
// Check for more than one of { assign, copy, retain }.
if (Attributes & ObjCDeclSpec::DQ_PR_assign) {
if (Attributes & ObjCDeclSpec::DQ_PR_copy) {
Diag(Loc, diag::err_objc_property_attr_mutually_exclusive)
<< "assign" << "copy";
Attributes &= ~ObjCDeclSpec::DQ_PR_copy;
}
if (Attributes & ObjCDeclSpec::DQ_PR_retain) {
Diag(Loc, diag::err_objc_property_attr_mutually_exclusive)
<< "assign" << "retain";
Attributes &= ~ObjCDeclSpec::DQ_PR_retain;
}
} else if (Attributes & ObjCDeclSpec::DQ_PR_copy) {
if (Attributes & ObjCDeclSpec::DQ_PR_retain) {
Diag(Loc, diag::err_objc_property_attr_mutually_exclusive)
<< "copy" << "retain";
Attributes &= ~ObjCDeclSpec::DQ_PR_retain;
}
}
// Warn if user supplied no assignment attribute, property is
// readwrite, and this is an object type.
if (!(Attributes & (ObjCDeclSpec::DQ_PR_assign | ObjCDeclSpec::DQ_PR_copy |
ObjCDeclSpec::DQ_PR_retain)) &&
!(Attributes & ObjCDeclSpec::DQ_PR_readonly) &&
PropertyTy->isObjCObjectPointerType()) {
// Skip this warning in gc-only mode.
if (getLangOptions().getGCMode() != LangOptions::GCOnly)
Diag(Loc, diag::warn_objc_property_no_assignment_attribute);
// If non-gc code warn that this is likely inappropriate.
if (getLangOptions().getGCMode() == LangOptions::NonGC)
Diag(Loc, diag::warn_objc_property_default_assign_on_object);
// FIXME: Implement warning dependent on NSCopying being
// implemented. See also:
// <rdar://5168496&4855821&5607453&5096644&4947311&5698469&4947014&5168496>
// (please trim this list while you are at it).
}
if (!(Attributes & ObjCDeclSpec::DQ_PR_copy)
&& getLangOptions().getGCMode() == LangOptions::GCOnly
&& PropertyTy->isBlockPointerType())
Diag(Loc, diag::warn_objc_property_copy_missing_on_block);
}
Sema::DeclPtrTy Sema::ActOnProperty(Scope *S, SourceLocation AtLoc,
FieldDeclarator &FD,
ObjCDeclSpec &ODS,
Selector GetterSel,
Selector SetterSel,
DeclPtrTy ClassCategory,
bool *isOverridingProperty,
tok::ObjCKeywordKind MethodImplKind) {
unsigned Attributes = ODS.getPropertyAttributes();
bool isReadWrite = ((Attributes & ObjCDeclSpec::DQ_PR_readwrite) ||
// default is readwrite!
!(Attributes & ObjCDeclSpec::DQ_PR_readonly));
// property is defaulted to 'assign' if it is readwrite and is
// not retain or copy
bool isAssign = ((Attributes & ObjCDeclSpec::DQ_PR_assign) ||
(isReadWrite &&
!(Attributes & ObjCDeclSpec::DQ_PR_retain) &&
!(Attributes & ObjCDeclSpec::DQ_PR_copy)));
QualType T = GetTypeForDeclarator(FD.D, S);
if (T->isReferenceType()) {
Diag(AtLoc, diag::error_reference_property);
return DeclPtrTy();
}
Decl *ClassDecl = ClassCategory.getAs<Decl>();
ObjCInterfaceDecl *CCPrimary = 0; // continuation class's primary class
// May modify Attributes.
CheckObjCPropertyAttributes(T, AtLoc, Attributes);
if (ObjCCategoryDecl *CDecl = dyn_cast<ObjCCategoryDecl>(ClassDecl))
if (!CDecl->getIdentifier()) {
// This is a continuation class. property requires special
// handling.
if ((CCPrimary = CDecl->getClassInterface())) {
// Find the property in continuation class's primary class only.
IdentifierInfo *PropertyId = FD.D.getIdentifier();
if (ObjCPropertyDecl *PIDecl =
CCPrimary->FindPropertyVisibleInPrimaryClass(PropertyId)) {
// property 'PIDecl's readonly attribute will be over-ridden
// with continuation class's readwrite property attribute!
unsigned PIkind = PIDecl->getPropertyAttributes();
if (isReadWrite && (PIkind & ObjCPropertyDecl::OBJC_PR_readonly)) {
unsigned retainCopyNonatomic =
(ObjCPropertyDecl::OBJC_PR_retain |
ObjCPropertyDecl::OBJC_PR_copy |
ObjCPropertyDecl::OBJC_PR_nonatomic);
if ((Attributes & retainCopyNonatomic) !=
(PIkind & retainCopyNonatomic)) {
Diag(AtLoc, diag::warn_property_attr_mismatch);
Diag(PIDecl->getLocation(), diag::note_property_declare);
}
PIDecl->makeitReadWriteAttribute();
if (Attributes & ObjCDeclSpec::DQ_PR_retain)
PIDecl->setPropertyAttributes(ObjCPropertyDecl::OBJC_PR_retain);
if (Attributes & ObjCDeclSpec::DQ_PR_copy)
PIDecl->setPropertyAttributes(ObjCPropertyDecl::OBJC_PR_copy);
PIDecl->setSetterName(SetterSel);
} else {
Diag(AtLoc, diag::err_use_continuation_class)
<< CCPrimary->getDeclName();
Diag(PIDecl->getLocation(), diag::note_property_declare);
}
*isOverridingProperty = true;
// Make sure setter decl is synthesized, and added to primary
// class's list.
ProcessPropertyDecl(PIDecl, CCPrimary);
return DeclPtrTy();
}
// No matching property found in the primary class. Just fall thru
// and add property to continuation class's primary class.
ClassDecl = CCPrimary;
} else {
Diag(CDecl->getLocation(), diag::err_continuation_class);
*isOverridingProperty = true;
return DeclPtrTy();
}
}
// Issue a warning if property is 'assign' as default and its object, which is
// gc'able conforms to NSCopying protocol
if (getLangOptions().getGCMode() != LangOptions::NonGC &&
isAssign && !(Attributes & ObjCDeclSpec::DQ_PR_assign))
if (T->isObjCObjectPointerType()) {
QualType InterfaceTy = T->getPointeeType();
if (const ObjCInterfaceType *OIT =
InterfaceTy->getAs<ObjCInterfaceType>()) {
ObjCInterfaceDecl *IDecl = OIT->getDecl();
if (IDecl)
if (ObjCProtocolDecl* PNSCopying =
LookupProtocol(&Context.Idents.get("NSCopying")))
if (IDecl->ClassImplementsProtocol(PNSCopying, true))
Diag(AtLoc, diag::warn_implements_nscopying)
<< FD.D.getIdentifier();
}
}
if (T->isObjCInterfaceType())
Diag(FD.D.getIdentifierLoc(), diag::err_statically_allocated_object);
DeclContext *DC = dyn_cast<DeclContext>(ClassDecl);
assert(DC && "ClassDecl is not a DeclContext");
ObjCPropertyDecl *PDecl = ObjCPropertyDecl::Create(Context, DC,
FD.D.getIdentifierLoc(),
FD.D.getIdentifier(), T);
DeclContext::lookup_result Found = DC->lookup(PDecl->getDeclName());
if (Found.first != Found.second && isa<ObjCPropertyDecl>(*Found.first)) {
Diag(PDecl->getLocation(), diag::err_duplicate_property);
Diag((*Found.first)->getLocation(), diag::note_property_declare);
PDecl->setInvalidDecl();
}
else
DC->addDecl(PDecl);
if (T->isArrayType() || T->isFunctionType()) {
Diag(AtLoc, diag::err_property_type) << T;
PDecl->setInvalidDecl();
}
ProcessDeclAttributes(S, PDecl, FD.D);
// Regardless of setter/getter attribute, we save the default getter/setter
// selector names in anticipation of declaration of setter/getter methods.
PDecl->setGetterName(GetterSel);
PDecl->setSetterName(SetterSel);
if (Attributes & ObjCDeclSpec::DQ_PR_readonly)
PDecl->setPropertyAttributes(ObjCPropertyDecl::OBJC_PR_readonly);
if (Attributes & ObjCDeclSpec::DQ_PR_getter)
PDecl->setPropertyAttributes(ObjCPropertyDecl::OBJC_PR_getter);
if (Attributes & ObjCDeclSpec::DQ_PR_setter)
PDecl->setPropertyAttributes(ObjCPropertyDecl::OBJC_PR_setter);
if (isReadWrite)
PDecl->setPropertyAttributes(ObjCPropertyDecl::OBJC_PR_readwrite);
if (Attributes & ObjCDeclSpec::DQ_PR_retain)
PDecl->setPropertyAttributes(ObjCPropertyDecl::OBJC_PR_retain);
if (Attributes & ObjCDeclSpec::DQ_PR_copy)
PDecl->setPropertyAttributes(ObjCPropertyDecl::OBJC_PR_copy);
if (isAssign)
PDecl->setPropertyAttributes(ObjCPropertyDecl::OBJC_PR_assign);
if (Attributes & ObjCDeclSpec::DQ_PR_nonatomic)
PDecl->setPropertyAttributes(ObjCPropertyDecl::OBJC_PR_nonatomic);
if (MethodImplKind == tok::objc_required)
PDecl->setPropertyImplementation(ObjCPropertyDecl::Required);
else if (MethodImplKind == tok::objc_optional)
PDecl->setPropertyImplementation(ObjCPropertyDecl::Optional);
// A case of continuation class adding a new property in the class. This
// is not what it was meant for. However, gcc supports it and so should we.
// Make sure setter/getters are declared here.
if (CCPrimary)
ProcessPropertyDecl(PDecl, CCPrimary);
return DeclPtrTy::make(PDecl);
}
/// ActOnPropertyImplDecl - This routine performs semantic checks and
/// builds the AST node for a property implementation declaration; declared
/// as @synthesize or @dynamic.
///
Sema::DeclPtrTy Sema::ActOnPropertyImplDecl(SourceLocation AtLoc,
SourceLocation PropertyLoc,
bool Synthesize,
DeclPtrTy ClassCatImpDecl,
IdentifierInfo *PropertyId,
IdentifierInfo *PropertyIvar) {
Decl *ClassImpDecl = ClassCatImpDecl.getAs<Decl>();
// Make sure we have a context for the property implementation declaration.
if (!ClassImpDecl) {
Diag(AtLoc, diag::error_missing_property_context);
return DeclPtrTy();
}
ObjCPropertyDecl *property = 0;
ObjCInterfaceDecl* IDecl = 0;
// Find the class or category class where this property must have
// a declaration.
ObjCImplementationDecl *IC = 0;
ObjCCategoryImplDecl* CatImplClass = 0;
if ((IC = dyn_cast<ObjCImplementationDecl>(ClassImpDecl))) {
IDecl = IC->getClassInterface();
// We always synthesize an interface for an implementation
// without an interface decl. So, IDecl is always non-zero.
assert(IDecl &&
"ActOnPropertyImplDecl - @implementation without @interface");
// Look for this property declaration in the @implementation's @interface
property = IDecl->FindPropertyDeclaration(PropertyId);
if (!property) {
Diag(PropertyLoc, diag::error_bad_property_decl) << IDecl->getDeclName();
return DeclPtrTy();
}
if (const ObjCCategoryDecl *CD =
dyn_cast<ObjCCategoryDecl>(property->getDeclContext())) {
if (CD->getIdentifier()) {
Diag(PropertyLoc, diag::error_category_property) << CD->getDeclName();
Diag(property->getLocation(), diag::note_property_declare);
return DeclPtrTy();
}
}
} else if ((CatImplClass = dyn_cast<ObjCCategoryImplDecl>(ClassImpDecl))) {
if (Synthesize) {
Diag(AtLoc, diag::error_synthesize_category_decl);
return DeclPtrTy();
}
IDecl = CatImplClass->getClassInterface();
if (!IDecl) {
Diag(AtLoc, diag::error_missing_property_interface);
return DeclPtrTy();
}
ObjCCategoryDecl *Category =
IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier());
// If category for this implementation not found, it is an error which
// has already been reported eralier.
if (!Category)
return DeclPtrTy();
// Look for this property declaration in @implementation's category
property = Category->FindPropertyDeclaration(PropertyId);
if (!property) {
Diag(PropertyLoc, diag::error_bad_category_property_decl)
<< Category->getDeclName();
return DeclPtrTy();
}
} else {
Diag(AtLoc, diag::error_bad_property_context);
return DeclPtrTy();
}
ObjCIvarDecl *Ivar = 0;
// Check that we have a valid, previously declared ivar for @synthesize
if (Synthesize) {
// @synthesize
if (!PropertyIvar)
PropertyIvar = PropertyId;
QualType PropType = Context.getCanonicalType(property->getType());
// Check that this is a previously declared 'ivar' in 'IDecl' interface
ObjCInterfaceDecl *ClassDeclared;
Ivar = IDecl->lookupInstanceVariable(PropertyIvar, ClassDeclared);
if (!Ivar) {
DeclContext *EnclosingContext = cast_or_null<DeclContext>(IDecl);
assert(EnclosingContext &&
"null DeclContext for synthesized ivar - ActOnPropertyImplDecl");
Ivar = ObjCIvarDecl::Create(Context, EnclosingContext, PropertyLoc,
PropertyIvar, PropType, /*Dinfo=*/0,
ObjCIvarDecl::Public,
(Expr *)0);
Ivar->setLexicalDeclContext(IDecl);
IDecl->addDecl(Ivar);
property->setPropertyIvarDecl(Ivar);
if (!getLangOptions().ObjCNonFragileABI)
Diag(PropertyLoc, diag::error_missing_property_ivar_decl) << PropertyId;
// Note! I deliberately want it to fall thru so, we have a
// a property implementation and to avoid future warnings.
} else if (getLangOptions().ObjCNonFragileABI &&
ClassDeclared != IDecl) {
Diag(PropertyLoc, diag::error_ivar_in_superclass_use)
<< property->getDeclName() << Ivar->getDeclName()
<< ClassDeclared->getDeclName();
Diag(Ivar->getLocation(), diag::note_previous_access_declaration)
<< Ivar << Ivar->getNameAsCString();
// Note! I deliberately want it to fall thru so more errors are caught.
}
QualType IvarType = Context.getCanonicalType(Ivar->getType());
// Check that type of property and its ivar are type compatible.
if (PropType != IvarType) {
if (CheckAssignmentConstraints(PropType, IvarType) != Compatible) {
Diag(PropertyLoc, diag::error_property_ivar_type)
<< property->getDeclName() << Ivar->getDeclName();
// Note! I deliberately want it to fall thru so, we have a
// a property implementation and to avoid future warnings.
}
// FIXME! Rules for properties are somewhat different that those
// for assignments. Use a new routine to consolidate all cases;
// specifically for property redeclarations as well as for ivars.
QualType lhsType =Context.getCanonicalType(PropType).getUnqualifiedType();
QualType rhsType =Context.getCanonicalType(IvarType).getUnqualifiedType();
if (lhsType != rhsType &&
lhsType->isArithmeticType()) {
Diag(PropertyLoc, diag::error_property_ivar_type)
<< property->getDeclName() << Ivar->getDeclName();
// Fall thru - see previous comment
}
// __weak is explicit. So it works on Canonical type.
if (PropType.isObjCGCWeak() && !IvarType.isObjCGCWeak() &&
getLangOptions().getGCMode() != LangOptions::NonGC) {
Diag(PropertyLoc, diag::error_weak_property)
<< property->getDeclName() << Ivar->getDeclName();
// Fall thru - see previous comment
}
if ((property->getType()->isObjCObjectPointerType() ||
PropType.isObjCGCStrong()) && IvarType.isObjCGCWeak() &&
getLangOptions().getGCMode() != LangOptions::NonGC) {
Diag(PropertyLoc, diag::error_strong_property)
<< property->getDeclName() << Ivar->getDeclName();
// Fall thru - see previous comment
}
}
} else if (PropertyIvar)
// @dynamic
Diag(PropertyLoc, diag::error_dynamic_property_ivar_decl);
assert (property && "ActOnPropertyImplDecl - property declaration missing");
ObjCPropertyImplDecl *PIDecl =
ObjCPropertyImplDecl::Create(Context, CurContext, AtLoc, PropertyLoc,
property,
(Synthesize ?
ObjCPropertyImplDecl::Synthesize
: ObjCPropertyImplDecl::Dynamic),
Ivar);
if (IC) {
if (Synthesize)
if (ObjCPropertyImplDecl *PPIDecl =
IC->FindPropertyImplIvarDecl(PropertyIvar)) {
Diag(PropertyLoc, diag::error_duplicate_ivar_use)
<< PropertyId << PPIDecl->getPropertyDecl()->getIdentifier()
<< PropertyIvar;
Diag(PPIDecl->getLocation(), diag::note_previous_use);
}
if (ObjCPropertyImplDecl *PPIDecl
= IC->FindPropertyImplDecl(PropertyId)) {
Diag(PropertyLoc, diag::error_property_implemented) << PropertyId;
Diag(PPIDecl->getLocation(), diag::note_previous_declaration);
return DeclPtrTy();
}
IC->addPropertyImplementation(PIDecl);
} else {
if (Synthesize)
if (ObjCPropertyImplDecl *PPIDecl =
CatImplClass->FindPropertyImplIvarDecl(PropertyIvar)) {
Diag(PropertyLoc, diag::error_duplicate_ivar_use)
<< PropertyId << PPIDecl->getPropertyDecl()->getIdentifier()
<< PropertyIvar;
Diag(PPIDecl->getLocation(), diag::note_previous_use);
}
if (ObjCPropertyImplDecl *PPIDecl =
CatImplClass->FindPropertyImplDecl(PropertyId)) {
Diag(PropertyLoc, diag::error_property_implemented) << PropertyId;
Diag(PPIDecl->getLocation(), diag::note_previous_declaration);
return DeclPtrTy();
}
CatImplClass->addPropertyImplementation(PIDecl);
}
return DeclPtrTy::make(PIDecl);
}
bool Sema::CheckObjCDeclScope(Decl *D) {
if (isa<TranslationUnitDecl>(CurContext->getLookupContext()))
return false;
Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
D->setInvalidDecl();
return true;
}
/// Called whenever @defs(ClassName) is encountered in the source. Inserts the
/// instance variables of ClassName into Decls.
void Sema::ActOnDefs(Scope *S, DeclPtrTy TagD, SourceLocation DeclStart,
IdentifierInfo *ClassName,
llvm::SmallVectorImpl<DeclPtrTy> &Decls) {
// Check that ClassName is a valid class
ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName);
if (!Class) {
Diag(DeclStart, diag::err_undef_interface) << ClassName;
return;
}
if (LangOpts.ObjCNonFragileABI) {
Diag(DeclStart, diag::err_atdef_nonfragile_interface);
return;
}
// Collect the instance variables
llvm::SmallVector<FieldDecl*, 32> RecFields;
Context.CollectObjCIvars(Class, RecFields);
// For each ivar, create a fresh ObjCAtDefsFieldDecl.
for (unsigned i = 0; i < RecFields.size(); i++) {
FieldDecl* ID = RecFields[i];
RecordDecl *Record = dyn_cast<RecordDecl>(TagD.getAs<Decl>());
Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record, ID->getLocation(),
ID->getIdentifier(), ID->getType(),
ID->getBitWidth());
Decls.push_back(Sema::DeclPtrTy::make(FD));
}
// Introduce all of these fields into the appropriate scope.
for (llvm::SmallVectorImpl<DeclPtrTy>::iterator D = Decls.begin();
D != Decls.end(); ++D) {
FieldDecl *FD = cast<FieldDecl>(D->getAs<Decl>());
if (getLangOptions().CPlusPlus)
PushOnScopeChains(cast<FieldDecl>(FD), S);
else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD.getAs<Decl>()))
Record->addDecl(FD);
}
}