| //===--- ParseInit.cpp - Initializer Parsing ------------------------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements initializer parsing as specified by C99 6.7.8. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "clang/Parse/Parser.h" | 
 | #include "RAIIObjectsForParser.h" | 
 | #include "clang/Parse/ParseDiagnostic.h" | 
 | #include "clang/Sema/Designator.h" | 
 | #include "clang/Sema/Scope.h" | 
 | #include "llvm/ADT/SmallString.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | using namespace clang; | 
 |  | 
 |  | 
 | /// MayBeDesignationStart - Return true if the current token might be the start  | 
 | /// of a designator.  If we can tell it is impossible that it is a designator,  | 
 | /// return false. | 
 | bool Parser::MayBeDesignationStart() { | 
 |   switch (Tok.getKind()) { | 
 |   default:  | 
 |     return false; | 
 |        | 
 |   case tok::period:      // designator: '.' identifier | 
 |     return true; | 
 |        | 
 |   case tok::l_square: {  // designator: array-designator | 
 |     if (!PP.getLangOpts().CPlusPlus11) | 
 |       return true; | 
 |      | 
 |     // C++11 lambda expressions and C99 designators can be ambiguous all the | 
 |     // way through the closing ']' and to the next character. Handle the easy | 
 |     // cases here, and fall back to tentative parsing if those fail. | 
 |     switch (PP.LookAhead(0).getKind()) { | 
 |     case tok::equal: | 
 |     case tok::r_square: | 
 |       // Definitely starts a lambda expression. | 
 |       return false; | 
 |        | 
 |     case tok::amp: | 
 |     case tok::kw_this: | 
 |     case tok::identifier: | 
 |       // We have to do additional analysis, because these could be the | 
 |       // start of a constant expression or a lambda capture list. | 
 |       break; | 
 |          | 
 |     default: | 
 |       // Anything not mentioned above cannot occur following a '[' in a  | 
 |       // lambda expression. | 
 |       return true;         | 
 |     } | 
 |      | 
 |     // Handle the complicated case below. | 
 |     break;     | 
 |   } | 
 |   case tok::identifier:  // designation: identifier ':' | 
 |     return PP.LookAhead(0).is(tok::colon); | 
 |   } | 
 |    | 
 |   // Parse up to (at most) the token after the closing ']' to determine  | 
 |   // whether this is a C99 designator or a lambda. | 
 |   TentativeParsingAction Tentative(*this); | 
 |   ConsumeBracket(); | 
 |   while (true) { | 
 |     switch (Tok.getKind()) { | 
 |     case tok::equal: | 
 |     case tok::amp: | 
 |     case tok::identifier: | 
 |     case tok::kw_this: | 
 |       // These tokens can occur in a capture list or a constant-expression. | 
 |       // Keep looking. | 
 |       ConsumeToken(); | 
 |       continue; | 
 |        | 
 |     case tok::comma: | 
 |       // Since a comma cannot occur in a constant-expression, this must | 
 |       // be a lambda. | 
 |       Tentative.Revert(); | 
 |       return false; | 
 |        | 
 |     case tok::r_square: { | 
 |       // Once we hit the closing square bracket, we look at the next | 
 |       // token. If it's an '=', this is a designator. Otherwise, it's a | 
 |       // lambda expression. This decision favors lambdas over the older | 
 |       // GNU designator syntax, which allows one to omit the '=', but is | 
 |       // consistent with GCC. | 
 |       ConsumeBracket(); | 
 |       tok::TokenKind Kind = Tok.getKind(); | 
 |       Tentative.Revert(); | 
 |       return Kind == tok::equal; | 
 |     } | 
 |        | 
 |     default: | 
 |       // Anything else cannot occur in a lambda capture list, so it | 
 |       // must be a designator. | 
 |       Tentative.Revert(); | 
 |       return true; | 
 |     } | 
 |   } | 
 |    | 
 |   return true; | 
 | } | 
 |  | 
 | static void CheckArrayDesignatorSyntax(Parser &P, SourceLocation Loc, | 
 |                                        Designation &Desig) { | 
 |   // If we have exactly one array designator, this used the GNU | 
 |   // 'designation: array-designator' extension, otherwise there should be no | 
 |   // designators at all! | 
 |   if (Desig.getNumDesignators() == 1 && | 
 |       (Desig.getDesignator(0).isArrayDesignator() || | 
 |        Desig.getDesignator(0).isArrayRangeDesignator())) | 
 |     P.Diag(Loc, diag::ext_gnu_missing_equal_designator); | 
 |   else if (Desig.getNumDesignators() > 0) | 
 |     P.Diag(Loc, diag::err_expected_equal_designator); | 
 | } | 
 |  | 
 | /// ParseInitializerWithPotentialDesignator - Parse the 'initializer' production | 
 | /// checking to see if the token stream starts with a designator. | 
 | /// | 
 | ///       designation: | 
 | ///         designator-list '=' | 
 | /// [GNU]   array-designator | 
 | /// [GNU]   identifier ':' | 
 | /// | 
 | ///       designator-list: | 
 | ///         designator | 
 | ///         designator-list designator | 
 | /// | 
 | ///       designator: | 
 | ///         array-designator | 
 | ///         '.' identifier | 
 | /// | 
 | ///       array-designator: | 
 | ///         '[' constant-expression ']' | 
 | /// [GNU]   '[' constant-expression '...' constant-expression ']' | 
 | /// | 
 | /// NOTE: [OBC] allows '[ objc-receiver objc-message-args ]' as an | 
 | /// initializer (because it is an expression).  We need to consider this case | 
 | /// when parsing array designators. | 
 | /// | 
 | ExprResult Parser::ParseInitializerWithPotentialDesignator() { | 
 |  | 
 |   // If this is the old-style GNU extension: | 
 |   //   designation ::= identifier ':' | 
 |   // Handle it as a field designator.  Otherwise, this must be the start of a | 
 |   // normal expression. | 
 |   if (Tok.is(tok::identifier)) { | 
 |     const IdentifierInfo *FieldName = Tok.getIdentifierInfo(); | 
 |  | 
 |     SmallString<256> NewSyntax; | 
 |     llvm::raw_svector_ostream(NewSyntax) << '.' << FieldName->getName() | 
 |                                          << " = "; | 
 |  | 
 |     SourceLocation NameLoc = ConsumeToken(); // Eat the identifier. | 
 |  | 
 |     assert(Tok.is(tok::colon) && "MayBeDesignationStart not working properly!"); | 
 |     SourceLocation ColonLoc = ConsumeToken(); | 
 |  | 
 |     Diag(NameLoc, diag::ext_gnu_old_style_field_designator) | 
 |       << FixItHint::CreateReplacement(SourceRange(NameLoc, ColonLoc), | 
 |                                       NewSyntax.str()); | 
 |  | 
 |     Designation D; | 
 |     D.AddDesignator(Designator::getField(FieldName, SourceLocation(), NameLoc)); | 
 |     return Actions.ActOnDesignatedInitializer(D, ColonLoc, true, | 
 |                                               ParseInitializer()); | 
 |   } | 
 |  | 
 |   // Desig - This is initialized when we see our first designator.  We may have | 
 |   // an objc message send with no designator, so we don't want to create this | 
 |   // eagerly. | 
 |   Designation Desig; | 
 |  | 
 |   // Parse each designator in the designator list until we find an initializer. | 
 |   while (Tok.is(tok::period) || Tok.is(tok::l_square)) { | 
 |     if (Tok.is(tok::period)) { | 
 |       // designator: '.' identifier | 
 |       SourceLocation DotLoc = ConsumeToken(); | 
 |  | 
 |       if (Tok.isNot(tok::identifier)) { | 
 |         Diag(Tok.getLocation(), diag::err_expected_field_designator); | 
 |         return ExprError(); | 
 |       } | 
 |  | 
 |       Desig.AddDesignator(Designator::getField(Tok.getIdentifierInfo(), DotLoc, | 
 |                                                Tok.getLocation())); | 
 |       ConsumeToken(); // Eat the identifier. | 
 |       continue; | 
 |     } | 
 |  | 
 |     // We must have either an array designator now or an objc message send. | 
 |     assert(Tok.is(tok::l_square) && "Unexpected token!"); | 
 |  | 
 |     // Handle the two forms of array designator: | 
 |     //   array-designator: '[' constant-expression ']' | 
 |     //   array-designator: '[' constant-expression '...' constant-expression ']' | 
 |     // | 
 |     // Also, we have to handle the case where the expression after the | 
 |     // designator an an objc message send: '[' objc-message-expr ']'. | 
 |     // Interesting cases are: | 
 |     //   [foo bar]         -> objc message send | 
 |     //   [foo]             -> array designator | 
 |     //   [foo ... bar]     -> array designator | 
 |     //   [4][foo bar]      -> obsolete GNU designation with objc message send. | 
 |     // | 
 |     // We do not need to check for an expression starting with [[ here. If it | 
 |     // contains an Objective-C message send, then it is not an ill-formed | 
 |     // attribute. If it is a lambda-expression within an array-designator, then | 
 |     // it will be rejected because a constant-expression cannot begin with a | 
 |     // lambda-expression. | 
 |     InMessageExpressionRAIIObject InMessage(*this, true); | 
 |      | 
 |     BalancedDelimiterTracker T(*this, tok::l_square); | 
 |     T.consumeOpen(); | 
 |     SourceLocation StartLoc = T.getOpenLocation(); | 
 |  | 
 |     ExprResult Idx; | 
 |  | 
 |     // If Objective-C is enabled and this is a typename (class message | 
 |     // send) or send to 'super', parse this as a message send | 
 |     // expression.  We handle C++ and C separately, since C++ requires | 
 |     // much more complicated parsing. | 
 |     if  (getLangOpts().ObjC1 && getLangOpts().CPlusPlus) { | 
 |       // Send to 'super'. | 
 |       if (Tok.is(tok::identifier) && Tok.getIdentifierInfo() == Ident_super && | 
 |           NextToken().isNot(tok::period) &&  | 
 |           getCurScope()->isInObjcMethodScope()) { | 
 |         CheckArrayDesignatorSyntax(*this, StartLoc, Desig); | 
 |         return ParseAssignmentExprWithObjCMessageExprStart(StartLoc, | 
 |                                                            ConsumeToken(), | 
 |                                                            ParsedType(),  | 
 |                                                            0); | 
 |       } | 
 |  | 
 |       // Parse the receiver, which is either a type or an expression. | 
 |       bool IsExpr; | 
 |       void *TypeOrExpr; | 
 |       if (ParseObjCXXMessageReceiver(IsExpr, TypeOrExpr)) { | 
 |         SkipUntil(tok::r_square); | 
 |         return ExprError(); | 
 |       } | 
 |        | 
 |       // If the receiver was a type, we have a class message; parse | 
 |       // the rest of it. | 
 |       if (!IsExpr) { | 
 |         CheckArrayDesignatorSyntax(*this, StartLoc, Desig); | 
 |         return ParseAssignmentExprWithObjCMessageExprStart(StartLoc,  | 
 |                                                            SourceLocation(),  | 
 |                                    ParsedType::getFromOpaquePtr(TypeOrExpr), | 
 |                                                            0); | 
 |       } | 
 |  | 
 |       // If the receiver was an expression, we still don't know | 
 |       // whether we have a message send or an array designator; just | 
 |       // adopt the expression for further analysis below. | 
 |       // FIXME: potentially-potentially evaluated expression above? | 
 |       Idx = ExprResult(static_cast<Expr*>(TypeOrExpr)); | 
 |     } else if (getLangOpts().ObjC1 && Tok.is(tok::identifier)) { | 
 |       IdentifierInfo *II = Tok.getIdentifierInfo(); | 
 |       SourceLocation IILoc = Tok.getLocation(); | 
 |       ParsedType ReceiverType; | 
 |       // Three cases. This is a message send to a type: [type foo] | 
 |       // This is a message send to super:  [super foo] | 
 |       // This is a message sent to an expr:  [super.bar foo] | 
 |       switch (Sema::ObjCMessageKind Kind | 
 |                 = Actions.getObjCMessageKind(getCurScope(), II, IILoc,  | 
 |                                              II == Ident_super, | 
 |                                              NextToken().is(tok::period), | 
 |                                              ReceiverType)) { | 
 |       case Sema::ObjCSuperMessage: | 
 |       case Sema::ObjCClassMessage: | 
 |         CheckArrayDesignatorSyntax(*this, StartLoc, Desig); | 
 |         if (Kind == Sema::ObjCSuperMessage) | 
 |           return ParseAssignmentExprWithObjCMessageExprStart(StartLoc, | 
 |                                                              ConsumeToken(), | 
 |                                                              ParsedType(), | 
 |                                                              0); | 
 |         ConsumeToken(); // the identifier | 
 |         if (!ReceiverType) { | 
 |           SkipUntil(tok::r_square); | 
 |           return ExprError(); | 
 |         } | 
 |  | 
 |         return ParseAssignmentExprWithObjCMessageExprStart(StartLoc,  | 
 |                                                            SourceLocation(),  | 
 |                                                            ReceiverType,  | 
 |                                                            0); | 
 |  | 
 |       case Sema::ObjCInstanceMessage: | 
 |         // Fall through; we'll just parse the expression and | 
 |         // (possibly) treat this like an Objective-C message send | 
 |         // later. | 
 |         break; | 
 |       } | 
 |     } | 
 |  | 
 |     // Parse the index expression, if we haven't already gotten one | 
 |     // above (which can only happen in Objective-C++). | 
 |     // Note that we parse this as an assignment expression, not a constant | 
 |     // expression (allowing *=, =, etc) to handle the objc case.  Sema needs | 
 |     // to validate that the expression is a constant. | 
 |     // FIXME: We also need to tell Sema that we're in a | 
 |     // potentially-potentially evaluated context. | 
 |     if (!Idx.get()) { | 
 |       Idx = ParseAssignmentExpression(); | 
 |       if (Idx.isInvalid()) { | 
 |         SkipUntil(tok::r_square); | 
 |         return Idx; | 
 |       } | 
 |     } | 
 |  | 
 |     // Given an expression, we could either have a designator (if the next | 
 |     // tokens are '...' or ']' or an objc message send.  If this is an objc | 
 |     // message send, handle it now.  An objc-message send is the start of | 
 |     // an assignment-expression production. | 
 |     if (getLangOpts().ObjC1 && Tok.isNot(tok::ellipsis) && | 
 |         Tok.isNot(tok::r_square)) { | 
 |       CheckArrayDesignatorSyntax(*this, Tok.getLocation(), Desig); | 
 |       return ParseAssignmentExprWithObjCMessageExprStart(StartLoc, | 
 |                                                          SourceLocation(), | 
 |                                                          ParsedType(), | 
 |                                                          Idx.take()); | 
 |     } | 
 |  | 
 |     // If this is a normal array designator, remember it. | 
 |     if (Tok.isNot(tok::ellipsis)) { | 
 |       Desig.AddDesignator(Designator::getArray(Idx.release(), StartLoc)); | 
 |     } else { | 
 |       // Handle the gnu array range extension. | 
 |       Diag(Tok, diag::ext_gnu_array_range); | 
 |       SourceLocation EllipsisLoc = ConsumeToken(); | 
 |  | 
 |       ExprResult RHS(ParseConstantExpression()); | 
 |       if (RHS.isInvalid()) { | 
 |         SkipUntil(tok::r_square); | 
 |         return RHS; | 
 |       } | 
 |       Desig.AddDesignator(Designator::getArrayRange(Idx.release(), | 
 |                                                     RHS.release(), | 
 |                                                     StartLoc, EllipsisLoc)); | 
 |     } | 
 |  | 
 |     T.consumeClose(); | 
 |     Desig.getDesignator(Desig.getNumDesignators() - 1).setRBracketLoc( | 
 |                                                         T.getCloseLocation()); | 
 |   } | 
 |  | 
 |   // Okay, we're done with the designator sequence.  We know that there must be | 
 |   // at least one designator, because the only case we can get into this method | 
 |   // without a designator is when we have an objc message send.  That case is | 
 |   // handled and returned from above. | 
 |   assert(!Desig.empty() && "Designator is empty?"); | 
 |  | 
 |   // Handle a normal designator sequence end, which is an equal. | 
 |   if (Tok.is(tok::equal)) { | 
 |     SourceLocation EqualLoc = ConsumeToken(); | 
 |     return Actions.ActOnDesignatedInitializer(Desig, EqualLoc, false, | 
 |                                               ParseInitializer()); | 
 |   } | 
 |  | 
 |   // We read some number of designators and found something that isn't an = or | 
 |   // an initializer.  If we have exactly one array designator, this | 
 |   // is the GNU 'designation: array-designator' extension.  Otherwise, it is a | 
 |   // parse error. | 
 |   if (Desig.getNumDesignators() == 1 && | 
 |       (Desig.getDesignator(0).isArrayDesignator() || | 
 |        Desig.getDesignator(0).isArrayRangeDesignator())) { | 
 |     Diag(Tok, diag::ext_gnu_missing_equal_designator) | 
 |       << FixItHint::CreateInsertion(Tok.getLocation(), "= "); | 
 |     return Actions.ActOnDesignatedInitializer(Desig, Tok.getLocation(), | 
 |                                               true, ParseInitializer()); | 
 |   } | 
 |  | 
 |   Diag(Tok, diag::err_expected_equal_designator); | 
 |   return ExprError(); | 
 | } | 
 |  | 
 |  | 
 | /// ParseBraceInitializer - Called when parsing an initializer that has a | 
 | /// leading open brace. | 
 | /// | 
 | ///       initializer: [C99 6.7.8] | 
 | ///         '{' initializer-list '}' | 
 | ///         '{' initializer-list ',' '}' | 
 | /// [GNU]   '{' '}' | 
 | /// | 
 | ///       initializer-list: | 
 | ///         designation[opt] initializer ...[opt] | 
 | ///         initializer-list ',' designation[opt] initializer ...[opt] | 
 | /// | 
 | ExprResult Parser::ParseBraceInitializer() { | 
 |   InMessageExpressionRAIIObject InMessage(*this, false); | 
 |    | 
 |   BalancedDelimiterTracker T(*this, tok::l_brace); | 
 |   T.consumeOpen(); | 
 |   SourceLocation LBraceLoc = T.getOpenLocation(); | 
 |  | 
 |   /// InitExprs - This is the actual list of expressions contained in the | 
 |   /// initializer. | 
 |   ExprVector InitExprs; | 
 |  | 
 |   if (Tok.is(tok::r_brace)) { | 
 |     // Empty initializers are a C++ feature and a GNU extension to C. | 
 |     if (!getLangOpts().CPlusPlus) | 
 |       Diag(LBraceLoc, diag::ext_gnu_empty_initializer); | 
 |     // Match the '}'. | 
 |     return Actions.ActOnInitList(LBraceLoc, MultiExprArg(), ConsumeBrace()); | 
 |   } | 
 |  | 
 |   bool InitExprsOk = true; | 
 |  | 
 |   while (1) { | 
 |     // Handle Microsoft __if_exists/if_not_exists if necessary. | 
 |     if (getLangOpts().MicrosoftExt && (Tok.is(tok::kw___if_exists) || | 
 |         Tok.is(tok::kw___if_not_exists))) { | 
 |       if (ParseMicrosoftIfExistsBraceInitializer(InitExprs, InitExprsOk)) { | 
 |         if (Tok.isNot(tok::comma)) break; | 
 |         ConsumeToken(); | 
 |       } | 
 |       if (Tok.is(tok::r_brace)) break; | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Parse: designation[opt] initializer | 
 |  | 
 |     // If we know that this cannot be a designation, just parse the nested | 
 |     // initializer directly. | 
 |     ExprResult SubElt; | 
 |     if (MayBeDesignationStart()) | 
 |       SubElt = ParseInitializerWithPotentialDesignator(); | 
 |     else | 
 |       SubElt = ParseInitializer(); | 
 |  | 
 |     if (Tok.is(tok::ellipsis)) | 
 |       SubElt = Actions.ActOnPackExpansion(SubElt.get(), ConsumeToken()); | 
 |      | 
 |     // If we couldn't parse the subelement, bail out. | 
 |     if (!SubElt.isInvalid()) { | 
 |       InitExprs.push_back(SubElt.release()); | 
 |     } else { | 
 |       InitExprsOk = false; | 
 |  | 
 |       // We have two ways to try to recover from this error: if the code looks | 
 |       // grammatically ok (i.e. we have a comma coming up) try to continue | 
 |       // parsing the rest of the initializer.  This allows us to emit | 
 |       // diagnostics for later elements that we find.  If we don't see a comma, | 
 |       // assume there is a parse error, and just skip to recover. | 
 |       // FIXME: This comment doesn't sound right. If there is a r_brace | 
 |       // immediately, it can't be an error, since there is no other way of | 
 |       // leaving this loop except through this if. | 
 |       if (Tok.isNot(tok::comma)) { | 
 |         SkipUntil(tok::r_brace, false, true); | 
 |         break; | 
 |       } | 
 |     } | 
 |  | 
 |     // If we don't have a comma continued list, we're done. | 
 |     if (Tok.isNot(tok::comma)) break; | 
 |  | 
 |     // TODO: save comma locations if some client cares. | 
 |     ConsumeToken(); | 
 |  | 
 |     // Handle trailing comma. | 
 |     if (Tok.is(tok::r_brace)) break; | 
 |   } | 
 |  | 
 |   bool closed = !T.consumeClose(); | 
 |  | 
 |   if (InitExprsOk && closed) | 
 |     return Actions.ActOnInitList(LBraceLoc, InitExprs, | 
 |                                  T.getCloseLocation()); | 
 |  | 
 |   return ExprError(); // an error occurred. | 
 | } | 
 |  | 
 |  | 
 | // Return true if a comma (or closing brace) is necessary after the | 
 | // __if_exists/if_not_exists statement. | 
 | bool Parser::ParseMicrosoftIfExistsBraceInitializer(ExprVector &InitExprs, | 
 |                                                     bool &InitExprsOk) { | 
 |   bool trailingComma = false; | 
 |   IfExistsCondition Result; | 
 |   if (ParseMicrosoftIfExistsCondition(Result)) | 
 |     return false; | 
 |    | 
 |   BalancedDelimiterTracker Braces(*this, tok::l_brace); | 
 |   if (Braces.consumeOpen()) { | 
 |     Diag(Tok, diag::err_expected_lbrace); | 
 |     return false; | 
 |   } | 
 |  | 
 |   switch (Result.Behavior) { | 
 |   case IEB_Parse: | 
 |     // Parse the declarations below. | 
 |     break; | 
 |          | 
 |   case IEB_Dependent: | 
 |     Diag(Result.KeywordLoc, diag::warn_microsoft_dependent_exists) | 
 |       << Result.IsIfExists; | 
 |     // Fall through to skip. | 
 |        | 
 |   case IEB_Skip: | 
 |     Braces.skipToEnd(); | 
 |     return false; | 
 |   } | 
 |  | 
 |   while (Tok.isNot(tok::eof)) { | 
 |     trailingComma = false; | 
 |     // If we know that this cannot be a designation, just parse the nested | 
 |     // initializer directly. | 
 |     ExprResult SubElt; | 
 |     if (MayBeDesignationStart()) | 
 |       SubElt = ParseInitializerWithPotentialDesignator(); | 
 |     else | 
 |       SubElt = ParseInitializer(); | 
 |  | 
 |     if (Tok.is(tok::ellipsis)) | 
 |       SubElt = Actions.ActOnPackExpansion(SubElt.get(), ConsumeToken()); | 
 |      | 
 |     // If we couldn't parse the subelement, bail out. | 
 |     if (!SubElt.isInvalid()) | 
 |       InitExprs.push_back(SubElt.release()); | 
 |     else | 
 |       InitExprsOk = false; | 
 |  | 
 |     if (Tok.is(tok::comma)) { | 
 |       ConsumeToken(); | 
 |       trailingComma = true; | 
 |     } | 
 |  | 
 |     if (Tok.is(tok::r_brace)) | 
 |       break; | 
 |   } | 
 |  | 
 |   Braces.consumeClose(); | 
 |  | 
 |   return !trailingComma; | 
 | } |