| //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the Expr constant evaluator. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/AST/APValue.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/RecordLayout.h" |
| #include "clang/AST/StmtVisitor.h" |
| #include "clang/Basic/Diagnostic.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "llvm/Support/Compiler.h" |
| using namespace clang; |
| using llvm::APSInt; |
| using llvm::APFloat; |
| |
| /// EvalInfo - This is a private struct used by the evaluator to capture |
| /// information about a subexpression as it is folded. It retains information |
| /// about the AST context, but also maintains information about the folded |
| /// expression. |
| /// |
| /// If an expression could be evaluated, it is still possible it is not a C |
| /// "integer constant expression" or constant expression. If not, this struct |
| /// captures information about how and why not. |
| /// |
| /// One bit of information passed *into* the request for constant folding |
| /// indicates whether the subexpression is "evaluated" or not according to C |
| /// rules. For example, the RHS of (0 && foo()) is not evaluated. We can |
| /// evaluate the expression regardless of what the RHS is, but C only allows |
| /// certain things in certain situations. |
| struct EvalInfo { |
| ASTContext &Ctx; |
| |
| /// EvalResult - Contains information about the evaluation. |
| Expr::EvalResult &EvalResult; |
| |
| /// ShortCircuit - will be greater than zero if the current subexpression has |
| /// will not be evaluated because it's short-circuited (according to C rules). |
| unsigned ShortCircuit; |
| |
| EvalInfo(ASTContext &ctx, Expr::EvalResult& evalresult) : Ctx(ctx), |
| EvalResult(evalresult), ShortCircuit(0) {} |
| }; |
| |
| |
| static bool EvaluateLValue(const Expr *E, APValue &Result, EvalInfo &Info); |
| static bool EvaluatePointer(const Expr *E, APValue &Result, EvalInfo &Info); |
| static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info); |
| static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info); |
| static bool EvaluateComplexFloat(const Expr *E, APValue &Result, |
| EvalInfo &Info); |
| |
| //===----------------------------------------------------------------------===// |
| // Misc utilities |
| //===----------------------------------------------------------------------===// |
| |
| static bool HandleConversionToBool(Expr* E, bool& Result, EvalInfo &Info) { |
| if (E->getType()->isIntegralType()) { |
| APSInt IntResult; |
| if (!EvaluateInteger(E, IntResult, Info)) |
| return false; |
| Result = IntResult != 0; |
| return true; |
| } else if (E->getType()->isRealFloatingType()) { |
| APFloat FloatResult(0.0); |
| if (!EvaluateFloat(E, FloatResult, Info)) |
| return false; |
| Result = !FloatResult.isZero(); |
| return true; |
| } else if (E->getType()->isPointerType()) { |
| APValue PointerResult; |
| if (!EvaluatePointer(E, PointerResult, Info)) |
| return false; |
| // FIXME: Is this accurate for all kinds of bases? If not, what would |
| // the check look like? |
| Result = PointerResult.getLValueBase() || PointerResult.getLValueOffset(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LValue Evaluation |
| //===----------------------------------------------------------------------===// |
| namespace { |
| class VISIBILITY_HIDDEN LValueExprEvaluator |
| : public StmtVisitor<LValueExprEvaluator, APValue> { |
| EvalInfo &Info; |
| public: |
| |
| LValueExprEvaluator(EvalInfo &info) : Info(info) {} |
| |
| APValue VisitStmt(Stmt *S) { |
| #if 0 |
| // FIXME: Remove this when we support more expressions. |
| printf("Unhandled pointer statement\n"); |
| S->dump(); |
| #endif |
| return APValue(); |
| } |
| |
| APValue VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); } |
| APValue VisitDeclRefExpr(DeclRefExpr *E); |
| APValue VisitPredefinedExpr(PredefinedExpr *E) { return APValue(E, 0); } |
| APValue VisitCompoundLiteralExpr(CompoundLiteralExpr *E); |
| APValue VisitMemberExpr(MemberExpr *E); |
| APValue VisitStringLiteral(StringLiteral *E) { return APValue(E, 0); } |
| APValue VisitArraySubscriptExpr(ArraySubscriptExpr *E); |
| }; |
| } // end anonymous namespace |
| |
| static bool EvaluateLValue(const Expr* E, APValue& Result, EvalInfo &Info) { |
| Result = LValueExprEvaluator(Info).Visit(const_cast<Expr*>(E)); |
| return Result.isLValue(); |
| } |
| |
| APValue LValueExprEvaluator::VisitDeclRefExpr(DeclRefExpr *E) |
| { |
| if (!E->hasGlobalStorage()) |
| return APValue(); |
| |
| return APValue(E, 0); |
| } |
| |
| APValue LValueExprEvaluator::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { |
| if (E->isFileScope()) |
| return APValue(E, 0); |
| return APValue(); |
| } |
| |
| APValue LValueExprEvaluator::VisitMemberExpr(MemberExpr *E) { |
| APValue result; |
| QualType Ty; |
| if (E->isArrow()) { |
| if (!EvaluatePointer(E->getBase(), result, Info)) |
| return APValue(); |
| Ty = E->getBase()->getType()->getAsPointerType()->getPointeeType(); |
| } else { |
| result = Visit(E->getBase()); |
| if (result.isUninit()) |
| return APValue(); |
| Ty = E->getBase()->getType(); |
| } |
| |
| RecordDecl *RD = Ty->getAsRecordType()->getDecl(); |
| const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD); |
| |
| FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl()); |
| if (!FD) // FIXME: deal with other kinds of member expressions |
| return APValue(); |
| |
| // FIXME: This is linear time. |
| unsigned i = 0; |
| for (RecordDecl::field_iterator Field = RD->field_begin(), |
| FieldEnd = RD->field_end(); |
| Field != FieldEnd; (void)++Field, ++i) { |
| if (*Field == FD) |
| break; |
| } |
| |
| result.setLValue(result.getLValueBase(), |
| result.getLValueOffset() + RL.getFieldOffset(i) / 8); |
| |
| return result; |
| } |
| |
| APValue LValueExprEvaluator::VisitArraySubscriptExpr(ArraySubscriptExpr *E) |
| { |
| APValue Result; |
| |
| if (!EvaluatePointer(E->getBase(), Result, Info)) |
| return APValue(); |
| |
| APSInt Index; |
| if (!EvaluateInteger(E->getIdx(), Index, Info)) |
| return APValue(); |
| |
| uint64_t ElementSize = Info.Ctx.getTypeSize(E->getType()) / 8; |
| |
| uint64_t Offset = Index.getSExtValue() * ElementSize; |
| Result.setLValue(Result.getLValueBase(), |
| Result.getLValueOffset() + Offset); |
| return Result; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Pointer Evaluation |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class VISIBILITY_HIDDEN PointerExprEvaluator |
| : public StmtVisitor<PointerExprEvaluator, APValue> { |
| EvalInfo &Info; |
| public: |
| |
| PointerExprEvaluator(EvalInfo &info) : Info(info) {} |
| |
| APValue VisitStmt(Stmt *S) { |
| return APValue(); |
| } |
| |
| APValue VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); } |
| |
| APValue VisitBinaryOperator(const BinaryOperator *E); |
| APValue VisitCastExpr(const CastExpr* E); |
| APValue VisitUnaryOperator(const UnaryOperator *E); |
| APValue VisitObjCStringLiteral(ObjCStringLiteral *E) |
| { return APValue(E, 0); } |
| APValue VisitConditionalOperator(ConditionalOperator *E); |
| }; |
| } // end anonymous namespace |
| |
| static bool EvaluatePointer(const Expr* E, APValue& Result, EvalInfo &Info) { |
| if (!E->getType()->isPointerType()) |
| return false; |
| Result = PointerExprEvaluator(Info).Visit(const_cast<Expr*>(E)); |
| return Result.isLValue(); |
| } |
| |
| APValue PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { |
| if (E->getOpcode() != BinaryOperator::Add && |
| E->getOpcode() != BinaryOperator::Sub) |
| return APValue(); |
| |
| const Expr *PExp = E->getLHS(); |
| const Expr *IExp = E->getRHS(); |
| if (IExp->getType()->isPointerType()) |
| std::swap(PExp, IExp); |
| |
| APValue ResultLValue; |
| if (!EvaluatePointer(PExp, ResultLValue, Info)) |
| return APValue(); |
| |
| llvm::APSInt AdditionalOffset(32); |
| if (!EvaluateInteger(IExp, AdditionalOffset, Info)) |
| return APValue(); |
| |
| QualType PointeeType = PExp->getType()->getAsPointerType()->getPointeeType(); |
| uint64_t SizeOfPointee = Info.Ctx.getTypeSize(PointeeType) / 8; |
| |
| uint64_t Offset = ResultLValue.getLValueOffset(); |
| |
| if (E->getOpcode() == BinaryOperator::Add) |
| Offset += AdditionalOffset.getLimitedValue() * SizeOfPointee; |
| else |
| Offset -= AdditionalOffset.getLimitedValue() * SizeOfPointee; |
| |
| return APValue(ResultLValue.getLValueBase(), Offset); |
| } |
| |
| APValue PointerExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { |
| if (E->getOpcode() == UnaryOperator::Extension) { |
| // FIXME: Deal with warnings? |
| return Visit(E->getSubExpr()); |
| } |
| |
| if (E->getOpcode() == UnaryOperator::AddrOf) { |
| APValue result; |
| if (EvaluateLValue(E->getSubExpr(), result, Info)) |
| return result; |
| } |
| |
| return APValue(); |
| } |
| |
| |
| APValue PointerExprEvaluator::VisitCastExpr(const CastExpr* E) { |
| const Expr* SubExpr = E->getSubExpr(); |
| |
| // Check for pointer->pointer cast |
| if (SubExpr->getType()->isPointerType()) { |
| APValue Result; |
| if (EvaluatePointer(SubExpr, Result, Info)) |
| return Result; |
| return APValue(); |
| } |
| |
| if (SubExpr->getType()->isIntegralType()) { |
| llvm::APSInt Result(32); |
| if (EvaluateInteger(SubExpr, Result, Info)) { |
| Result.extOrTrunc((unsigned)Info.Ctx.getTypeSize(E->getType())); |
| return APValue(0, Result.getZExtValue()); |
| } |
| } |
| |
| if (SubExpr->getType()->isFunctionType() || |
| SubExpr->getType()->isArrayType()) { |
| APValue Result; |
| if (EvaluateLValue(SubExpr, Result, Info)) |
| return Result; |
| return APValue(); |
| } |
| |
| //assert(0 && "Unhandled cast"); |
| return APValue(); |
| } |
| |
| APValue PointerExprEvaluator::VisitConditionalOperator(ConditionalOperator *E) { |
| bool BoolResult; |
| if (!HandleConversionToBool(E->getCond(), BoolResult, Info)) |
| return APValue(); |
| |
| Expr* EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr(); |
| |
| APValue Result; |
| if (EvaluatePointer(EvalExpr, Result, Info)) |
| return Result; |
| return APValue(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Integer Evaluation |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class VISIBILITY_HIDDEN IntExprEvaluator |
| : public StmtVisitor<IntExprEvaluator, bool> { |
| EvalInfo &Info; |
| APSInt &Result; |
| public: |
| IntExprEvaluator(EvalInfo &info, APSInt &result) |
| : Info(info), Result(result) {} |
| |
| unsigned getIntTypeSizeInBits(QualType T) const { |
| return (unsigned)Info.Ctx.getIntWidth(T); |
| } |
| |
| bool Extension(SourceLocation L, diag::kind D, const Expr *E) { |
| Info.EvalResult.DiagLoc = L; |
| Info.EvalResult.Diag = D; |
| Info.EvalResult.DiagExpr = E; |
| return true; // still a constant. |
| } |
| |
| bool Error(SourceLocation L, diag::kind D, const Expr *E) { |
| // If this is in an unevaluated portion of the subexpression, ignore the |
| // error. |
| if (Info.ShortCircuit) { |
| // If error is ignored because the value isn't evaluated, get the real |
| // type at least to prevent errors downstream. |
| Result.zextOrTrunc(getIntTypeSizeInBits(E->getType())); |
| Result.setIsUnsigned(E->getType()->isUnsignedIntegerType()); |
| return true; |
| } |
| |
| // Take the first error. |
| if (Info.EvalResult.Diag == 0) { |
| Info.EvalResult.DiagLoc = L; |
| Info.EvalResult.Diag = D; |
| Info.EvalResult.DiagExpr = E; |
| } |
| return false; |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Visitor Methods |
| //===--------------------------------------------------------------------===// |
| |
| bool VisitStmt(Stmt *) { |
| assert(0 && "This should be called on integers, stmts are not integers"); |
| return false; |
| } |
| |
| bool VisitExpr(Expr *E) { |
| return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E); |
| } |
| |
| bool VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); } |
| |
| bool VisitIntegerLiteral(const IntegerLiteral *E) { |
| Result = E->getValue(); |
| Result.setIsUnsigned(E->getType()->isUnsignedIntegerType()); |
| return true; |
| } |
| bool VisitCharacterLiteral(const CharacterLiteral *E) { |
| Result.zextOrTrunc(getIntTypeSizeInBits(E->getType())); |
| Result = E->getValue(); |
| Result.setIsUnsigned(E->getType()->isUnsignedIntegerType()); |
| return true; |
| } |
| bool VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) { |
| Result.zextOrTrunc(getIntTypeSizeInBits(E->getType())); |
| // Per gcc docs "this built-in function ignores top level |
| // qualifiers". We need to use the canonical version to properly |
| // be able to strip CRV qualifiers from the type. |
| QualType T0 = Info.Ctx.getCanonicalType(E->getArgType1()); |
| QualType T1 = Info.Ctx.getCanonicalType(E->getArgType2()); |
| Result = Info.Ctx.typesAreCompatible(T0.getUnqualifiedType(), |
| T1.getUnqualifiedType()); |
| return true; |
| } |
| bool VisitDeclRefExpr(const DeclRefExpr *E); |
| bool VisitCallExpr(const CallExpr *E); |
| bool VisitBinaryOperator(const BinaryOperator *E); |
| bool VisitUnaryOperator(const UnaryOperator *E); |
| bool VisitConditionalOperator(const ConditionalOperator *E); |
| |
| bool VisitCastExpr(CastExpr* E) { |
| return HandleCast(E); |
| } |
| bool VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E); |
| |
| bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { |
| Result.zextOrTrunc(getIntTypeSizeInBits(E->getType())); |
| Result = E->getValue(); |
| Result.setIsUnsigned(E->getType()->isUnsignedIntegerType()); |
| return true; |
| } |
| |
| bool VisitGNUNullExpr(const GNUNullExpr *E) { |
| Result = APSInt::getNullValue(getIntTypeSizeInBits(E->getType())); |
| Result.setIsUnsigned(E->getType()->isUnsignedIntegerType()); |
| return true; |
| } |
| |
| bool VisitCXXZeroInitValueExpr(const CXXZeroInitValueExpr *E) { |
| Result = APSInt::getNullValue(getIntTypeSizeInBits(E->getType())); |
| Result.setIsUnsigned(E->getType()->isUnsignedIntegerType()); |
| return true; |
| } |
| |
| bool VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) { |
| Result.zextOrTrunc(getIntTypeSizeInBits(E->getType())); |
| Result = E->Evaluate(); |
| return true; |
| } |
| |
| private: |
| bool HandleCast(CastExpr* E); |
| }; |
| } // end anonymous namespace |
| |
| static bool EvaluateInteger(const Expr* E, APSInt &Result, EvalInfo &Info) { |
| return IntExprEvaluator(Info, Result).Visit(const_cast<Expr*>(E)); |
| } |
| |
| bool IntExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) { |
| // Enums are integer constant exprs. |
| if (const EnumConstantDecl *D = dyn_cast<EnumConstantDecl>(E->getDecl())) { |
| Result = D->getInitVal(); |
| // FIXME: This is an ugly hack around the fact that enums don't set their |
| // signedness consistently; see PR3173 |
| Result.setIsUnsigned(!E->getType()->isSignedIntegerType()); |
| return true; |
| } |
| |
| // Otherwise, random variable references are not constants. |
| return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E); |
| } |
| |
| /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way |
| /// as GCC. |
| static int EvaluateBuiltinClassifyType(const CallExpr *E) { |
| // The following enum mimics the values returned by GCC. |
| enum gcc_type_class { |
| no_type_class = -1, |
| void_type_class, integer_type_class, char_type_class, |
| enumeral_type_class, boolean_type_class, |
| pointer_type_class, reference_type_class, offset_type_class, |
| real_type_class, complex_type_class, |
| function_type_class, method_type_class, |
| record_type_class, union_type_class, |
| array_type_class, string_type_class, |
| lang_type_class |
| }; |
| |
| // If no argument was supplied, default to "no_type_class". This isn't |
| // ideal, however it is what gcc does. |
| if (E->getNumArgs() == 0) |
| return no_type_class; |
| |
| QualType ArgTy = E->getArg(0)->getType(); |
| if (ArgTy->isVoidType()) |
| return void_type_class; |
| else if (ArgTy->isEnumeralType()) |
| return enumeral_type_class; |
| else if (ArgTy->isBooleanType()) |
| return boolean_type_class; |
| else if (ArgTy->isCharType()) |
| return string_type_class; // gcc doesn't appear to use char_type_class |
| else if (ArgTy->isIntegerType()) |
| return integer_type_class; |
| else if (ArgTy->isPointerType()) |
| return pointer_type_class; |
| else if (ArgTy->isReferenceType()) |
| return reference_type_class; |
| else if (ArgTy->isRealType()) |
| return real_type_class; |
| else if (ArgTy->isComplexType()) |
| return complex_type_class; |
| else if (ArgTy->isFunctionType()) |
| return function_type_class; |
| else if (ArgTy->isStructureType()) |
| return record_type_class; |
| else if (ArgTy->isUnionType()) |
| return union_type_class; |
| else if (ArgTy->isArrayType()) |
| return array_type_class; |
| else if (ArgTy->isUnionType()) |
| return union_type_class; |
| else // FIXME: offset_type_class, method_type_class, & lang_type_class? |
| assert(0 && "CallExpr::isBuiltinClassifyType(): unimplemented type"); |
| return -1; |
| } |
| |
| bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) { |
| Result.zextOrTrunc(getIntTypeSizeInBits(E->getType())); |
| |
| switch (E->isBuiltinCall()) { |
| default: |
| return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E); |
| case Builtin::BI__builtin_classify_type: |
| Result.setIsSigned(true); |
| Result = EvaluateBuiltinClassifyType(E); |
| return true; |
| |
| case Builtin::BI__builtin_constant_p: |
| // __builtin_constant_p always has one operand: it returns true if that |
| // operand can be folded, false otherwise. |
| Result = E->getArg(0)->isEvaluatable(Info.Ctx); |
| return true; |
| } |
| } |
| |
| bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { |
| if (E->getOpcode() == BinaryOperator::Comma) { |
| if (!Visit(E->getRHS())) |
| return false; |
| |
| if (!Info.ShortCircuit) { |
| // If we can't evaluate the LHS, it must be because it has |
| // side effects. |
| if (!E->getLHS()->isEvaluatable(Info.Ctx)) |
| Info.EvalResult.HasSideEffects = true; |
| |
| return Extension(E->getOperatorLoc(), diag::note_comma_in_ice, E); |
| } |
| |
| return true; |
| } |
| |
| if (E->isLogicalOp()) { |
| // These need to be handled specially because the operands aren't |
| // necessarily integral |
| bool lhsResult, rhsResult; |
| |
| if (HandleConversionToBool(E->getLHS(), lhsResult, Info)) { |
| // We were able to evaluate the LHS, see if we can get away with not |
| // evaluating the RHS: 0 && X -> 0, 1 || X -> 1 |
| if (lhsResult == (E->getOpcode() == BinaryOperator::LOr) || |
| !lhsResult == (E->getOpcode() == BinaryOperator::LAnd)) { |
| Result.zextOrTrunc(getIntTypeSizeInBits(E->getType())); |
| Result.setIsUnsigned(E->getType()->isUnsignedIntegerType()); |
| Result = lhsResult; |
| |
| Info.ShortCircuit++; |
| bool rhsEvaluated = HandleConversionToBool(E->getRHS(), rhsResult, Info); |
| Info.ShortCircuit--; |
| |
| if (rhsEvaluated) |
| return true; |
| |
| // FIXME: Return an extension warning saying that the RHS could not be |
| // evaluated. |
| return true; |
| } |
| |
| if (HandleConversionToBool(E->getRHS(), rhsResult, Info)) { |
| Result.zextOrTrunc(getIntTypeSizeInBits(E->getType())); |
| Result.setIsUnsigned(E->getType()->isUnsignedIntegerType()); |
| if (E->getOpcode() == BinaryOperator::LOr) |
| Result = lhsResult || rhsResult; |
| else |
| Result = lhsResult && rhsResult; |
| return true; |
| } |
| } else { |
| if (HandleConversionToBool(E->getRHS(), rhsResult, Info)) { |
| // We can't evaluate the LHS; however, sometimes the result |
| // is determined by the RHS: X && 0 -> 0, X || 1 -> 1. |
| if (rhsResult == (E->getOpcode() == BinaryOperator::LOr) || |
| !rhsResult == (E->getOpcode() == BinaryOperator::LAnd)) { |
| Result.zextOrTrunc(getIntTypeSizeInBits(E->getType())); |
| Result.setIsUnsigned(E->getType()->isUnsignedIntegerType()); |
| Result = rhsResult; |
| |
| // Since we werent able to evaluate the left hand side, it |
| // must have had side effects. |
| Info.EvalResult.HasSideEffects = true; |
| |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| QualType LHSTy = E->getLHS()->getType(); |
| QualType RHSTy = E->getRHS()->getType(); |
| |
| if (LHSTy->isRealFloatingType() && |
| RHSTy->isRealFloatingType()) { |
| APFloat RHS(0.0), LHS(0.0); |
| |
| if (!EvaluateFloat(E->getRHS(), RHS, Info)) |
| return false; |
| |
| if (!EvaluateFloat(E->getLHS(), LHS, Info)) |
| return false; |
| |
| APFloat::cmpResult CR = LHS.compare(RHS); |
| |
| Result.zextOrTrunc(getIntTypeSizeInBits(E->getType())); |
| |
| switch (E->getOpcode()) { |
| default: |
| assert(0 && "Invalid binary operator!"); |
| case BinaryOperator::LT: |
| Result = CR == APFloat::cmpLessThan; |
| break; |
| case BinaryOperator::GT: |
| Result = CR == APFloat::cmpGreaterThan; |
| break; |
| case BinaryOperator::LE: |
| Result = CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual; |
| break; |
| case BinaryOperator::GE: |
| Result = CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual; |
| break; |
| case BinaryOperator::EQ: |
| Result = CR == APFloat::cmpEqual; |
| break; |
| case BinaryOperator::NE: |
| Result = CR == APFloat::cmpGreaterThan || CR == APFloat::cmpLessThan; |
| break; |
| } |
| |
| Result.setIsUnsigned(E->getType()->isUnsignedIntegerType()); |
| return true; |
| } |
| |
| if (E->getOpcode() == BinaryOperator::Sub) { |
| if (LHSTy->isPointerType() && RHSTy->isPointerType()) { |
| APValue LHSValue; |
| if (!EvaluatePointer(E->getLHS(), LHSValue, Info)) |
| return false; |
| |
| APValue RHSValue; |
| if (!EvaluatePointer(E->getRHS(), RHSValue, Info)) |
| return false; |
| |
| // FIXME: Is this correct? What if only one of the operands has a base? |
| if (LHSValue.getLValueBase() || RHSValue.getLValueBase()) |
| return false; |
| |
| const QualType Type = E->getLHS()->getType(); |
| const QualType ElementType = Type->getAsPointerType()->getPointeeType(); |
| |
| uint64_t D = LHSValue.getLValueOffset() - RHSValue.getLValueOffset(); |
| D /= Info.Ctx.getTypeSize(ElementType) / 8; |
| |
| Result.zextOrTrunc(getIntTypeSizeInBits(E->getType())); |
| Result = D; |
| Result.setIsUnsigned(E->getType()->isUnsignedIntegerType()); |
| |
| return true; |
| } |
| } |
| if (!LHSTy->isIntegralType() || |
| !RHSTy->isIntegralType()) { |
| // We can't continue from here for non-integral types, and they |
| // could potentially confuse the following operations. |
| // FIXME: Deal with EQ and friends. |
| return false; |
| } |
| |
| // The LHS of a constant expr is always evaluated and needed. |
| llvm::APSInt RHS(32); |
| if (!Visit(E->getLHS())) { |
| return false; // error in subexpression. |
| } |
| |
| |
| // FIXME Maybe we want to succeed even where we can't evaluate the |
| // right side of LAnd/LOr? |
| // For example, see http://llvm.org/bugs/show_bug.cgi?id=2525 |
| if (!EvaluateInteger(E->getRHS(), RHS, Info)) |
| return false; |
| |
| switch (E->getOpcode()) { |
| default: |
| return Error(E->getOperatorLoc(), diag::note_invalid_subexpr_in_ice, E); |
| case BinaryOperator::Mul: Result *= RHS; return true; |
| case BinaryOperator::Add: Result += RHS; return true; |
| case BinaryOperator::Sub: Result -= RHS; return true; |
| case BinaryOperator::And: Result &= RHS; return true; |
| case BinaryOperator::Xor: Result ^= RHS; return true; |
| case BinaryOperator::Or: Result |= RHS; return true; |
| case BinaryOperator::Div: |
| if (RHS == 0) |
| return Error(E->getOperatorLoc(), diag::note_expr_divide_by_zero, E); |
| Result /= RHS; |
| break; |
| case BinaryOperator::Rem: |
| if (RHS == 0) |
| return Error(E->getOperatorLoc(), diag::note_expr_divide_by_zero, E); |
| Result %= RHS; |
| break; |
| case BinaryOperator::Shl: |
| // FIXME: Warn about out of range shift amounts! |
| Result <<= (unsigned)RHS.getLimitedValue(Result.getBitWidth()-1); |
| break; |
| case BinaryOperator::Shr: |
| Result >>= (unsigned)RHS.getLimitedValue(Result.getBitWidth()-1); |
| break; |
| |
| case BinaryOperator::LT: |
| Result = Result < RHS; |
| Result.zextOrTrunc(getIntTypeSizeInBits(E->getType())); |
| break; |
| case BinaryOperator::GT: |
| Result = Result > RHS; |
| Result.zextOrTrunc(getIntTypeSizeInBits(E->getType())); |
| break; |
| case BinaryOperator::LE: |
| Result = Result <= RHS; |
| Result.zextOrTrunc(getIntTypeSizeInBits(E->getType())); |
| break; |
| case BinaryOperator::GE: |
| Result = Result >= RHS; |
| Result.zextOrTrunc(getIntTypeSizeInBits(E->getType())); |
| break; |
| case BinaryOperator::EQ: |
| Result = Result == RHS; |
| Result.zextOrTrunc(getIntTypeSizeInBits(E->getType())); |
| break; |
| case BinaryOperator::NE: |
| Result = Result != RHS; |
| Result.zextOrTrunc(getIntTypeSizeInBits(E->getType())); |
| break; |
| case BinaryOperator::LAnd: |
| Result = Result != 0 && RHS != 0; |
| Result.zextOrTrunc(getIntTypeSizeInBits(E->getType())); |
| break; |
| case BinaryOperator::LOr: |
| Result = Result != 0 || RHS != 0; |
| Result.zextOrTrunc(getIntTypeSizeInBits(E->getType())); |
| break; |
| } |
| |
| Result.setIsUnsigned(E->getType()->isUnsignedIntegerType()); |
| return true; |
| } |
| |
| bool IntExprEvaluator::VisitConditionalOperator(const ConditionalOperator *E) { |
| bool Cond; |
| if (!HandleConversionToBool(E->getCond(), Cond, Info)) |
| return false; |
| |
| return Visit(Cond ? E->getTrueExpr() : E->getFalseExpr()); |
| } |
| |
| /// VisitSizeAlignOfExpr - Evaluate a sizeof or alignof with a result as the |
| /// expression's type. |
| bool IntExprEvaluator::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) { |
| QualType DstTy = E->getType(); |
| // Return the result in the right width. |
| Result.zextOrTrunc(getIntTypeSizeInBits(DstTy)); |
| Result.setIsUnsigned(DstTy->isUnsignedIntegerType()); |
| |
| QualType SrcTy = E->getTypeOfArgument(); |
| |
| // sizeof(void) and __alignof__(void) = 1 as a gcc extension. |
| if (SrcTy->isVoidType()) { |
| Result = 1; |
| return true; |
| } |
| |
| // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2. |
| // FIXME: But alignof(vla) is! |
| if (!SrcTy->isConstantSizeType()) { |
| // FIXME: Should we attempt to evaluate this? |
| return false; |
| } |
| |
| bool isSizeOf = E->isSizeOf(); |
| |
| // GCC extension: sizeof(function) = 1. |
| if (SrcTy->isFunctionType()) { |
| // FIXME: AlignOf shouldn't be unconditionally 4! |
| Result = isSizeOf ? 1 : 4; |
| return true; |
| } |
| |
| // Get information about the size or align. |
| unsigned CharSize = Info.Ctx.Target.getCharWidth(); |
| if (isSizeOf) |
| Result = Info.Ctx.getTypeSize(SrcTy) / CharSize; |
| else |
| Result = Info.Ctx.getTypeAlign(SrcTy) / CharSize; |
| return true; |
| } |
| |
| bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { |
| // Special case unary operators that do not need their subexpression |
| // evaluated. offsetof/sizeof/alignof are all special. |
| if (E->isOffsetOfOp()) { |
| Result.zextOrTrunc(getIntTypeSizeInBits(E->getType())); |
| Result = E->evaluateOffsetOf(Info.Ctx); |
| Result.setIsUnsigned(E->getType()->isUnsignedIntegerType()); |
| return true; |
| } |
| |
| if (E->getOpcode() == UnaryOperator::LNot) { |
| // LNot's operand isn't necessarily an integer, so we handle it specially. |
| bool bres; |
| if (!HandleConversionToBool(E->getSubExpr(), bres, Info)) |
| return false; |
| Result.zextOrTrunc(getIntTypeSizeInBits(E->getType())); |
| Result.setIsUnsigned(E->getType()->isUnsignedIntegerType()); |
| Result = !bres; |
| return true; |
| } |
| |
| // Get the operand value into 'Result'. |
| if (!Visit(E->getSubExpr())) |
| return false; |
| |
| switch (E->getOpcode()) { |
| default: |
| // Address, indirect, pre/post inc/dec, etc are not valid constant exprs. |
| // See C99 6.6p3. |
| return Error(E->getOperatorLoc(), diag::note_invalid_subexpr_in_ice, E); |
| case UnaryOperator::Extension: |
| // FIXME: Should extension allow i-c-e extension expressions in its scope? |
| // If so, we could clear the diagnostic ID. |
| case UnaryOperator::Plus: |
| // The result is always just the subexpr. |
| break; |
| case UnaryOperator::Minus: |
| Result = -Result; |
| break; |
| case UnaryOperator::Not: |
| Result = ~Result; |
| break; |
| } |
| |
| Result.setIsUnsigned(E->getType()->isUnsignedIntegerType()); |
| return true; |
| } |
| |
| /// HandleCast - This is used to evaluate implicit or explicit casts where the |
| /// result type is integer. |
| bool IntExprEvaluator::HandleCast(CastExpr *E) { |
| Expr *SubExpr = E->getSubExpr(); |
| QualType DestType = E->getType(); |
| |
| unsigned DestWidth = getIntTypeSizeInBits(DestType); |
| |
| if (DestType->isBooleanType()) { |
| bool BoolResult; |
| if (!HandleConversionToBool(SubExpr, BoolResult, Info)) |
| return false; |
| Result.zextOrTrunc(DestWidth); |
| Result.setIsUnsigned(DestType->isUnsignedIntegerType()); |
| Result = BoolResult; |
| return true; |
| } |
| |
| // Handle simple integer->integer casts. |
| if (SubExpr->getType()->isIntegralType()) { |
| if (!Visit(SubExpr)) |
| return false; |
| |
| // Figure out if this is a truncate, extend or noop cast. |
| // If the input is signed, do a sign extend, noop, or truncate. |
| Result.extOrTrunc(DestWidth); |
| Result.setIsUnsigned(DestType->isUnsignedIntegerType()); |
| return true; |
| } |
| |
| // FIXME: Clean this up! |
| if (SubExpr->getType()->isPointerType()) { |
| APValue LV; |
| if (!EvaluatePointer(SubExpr, LV, Info)) |
| return false; |
| |
| if (LV.getLValueBase()) |
| return false; |
| |
| Result.extOrTrunc(DestWidth); |
| Result = LV.getLValueOffset(); |
| Result.setIsUnsigned(DestType->isUnsignedIntegerType()); |
| return true; |
| } |
| |
| if (!SubExpr->getType()->isRealFloatingType()) |
| return Error(E->getExprLoc(), diag::note_invalid_subexpr_in_ice, E); |
| |
| APFloat F(0.0); |
| if (!EvaluateFloat(SubExpr, F, Info)) |
| return Error(E->getExprLoc(), diag::note_invalid_subexpr_in_ice, E); |
| |
| // Determine whether we are converting to unsigned or signed. |
| bool DestSigned = DestType->isSignedIntegerType(); |
| |
| // FIXME: Warning for overflow. |
| uint64_t Space[4]; |
| bool ignored; |
| (void)F.convertToInteger(Space, DestWidth, DestSigned, |
| llvm::APFloat::rmTowardZero, &ignored); |
| Result = llvm::APInt(DestWidth, 4, Space); |
| Result.setIsUnsigned(!DestSigned); |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Float Evaluation |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class VISIBILITY_HIDDEN FloatExprEvaluator |
| : public StmtVisitor<FloatExprEvaluator, bool> { |
| EvalInfo &Info; |
| APFloat &Result; |
| public: |
| FloatExprEvaluator(EvalInfo &info, APFloat &result) |
| : Info(info), Result(result) {} |
| |
| bool VisitStmt(Stmt *S) { |
| return false; |
| } |
| |
| bool VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); } |
| bool VisitCallExpr(const CallExpr *E); |
| |
| bool VisitUnaryOperator(const UnaryOperator *E); |
| bool VisitBinaryOperator(const BinaryOperator *E); |
| bool VisitFloatingLiteral(const FloatingLiteral *E); |
| bool VisitCastExpr(CastExpr *E); |
| bool VisitCXXZeroInitValueExpr(CXXZeroInitValueExpr *E); |
| }; |
| } // end anonymous namespace |
| |
| static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) { |
| return FloatExprEvaluator(Info, Result).Visit(const_cast<Expr*>(E)); |
| } |
| |
| bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) { |
| switch (E->isBuiltinCall()) { |
| default: return false; |
| case Builtin::BI__builtin_huge_val: |
| case Builtin::BI__builtin_huge_valf: |
| case Builtin::BI__builtin_huge_vall: |
| case Builtin::BI__builtin_inf: |
| case Builtin::BI__builtin_inff: |
| case Builtin::BI__builtin_infl: { |
| const llvm::fltSemantics &Sem = |
| Info.Ctx.getFloatTypeSemantics(E->getType()); |
| Result = llvm::APFloat::getInf(Sem); |
| return true; |
| } |
| |
| case Builtin::BI__builtin_nan: |
| case Builtin::BI__builtin_nanf: |
| case Builtin::BI__builtin_nanl: |
| // If this is __builtin_nan("") turn this into a simple nan, otherwise we |
| // can't constant fold it. |
| if (const StringLiteral *S = |
| dyn_cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts())) { |
| if (!S->isWide() && S->getByteLength() == 0) { // empty string. |
| const llvm::fltSemantics &Sem = |
| Info.Ctx.getFloatTypeSemantics(E->getType()); |
| Result = llvm::APFloat::getNaN(Sem); |
| return true; |
| } |
| } |
| return false; |
| |
| case Builtin::BI__builtin_fabs: |
| case Builtin::BI__builtin_fabsf: |
| case Builtin::BI__builtin_fabsl: |
| if (!EvaluateFloat(E->getArg(0), Result, Info)) |
| return false; |
| |
| if (Result.isNegative()) |
| Result.changeSign(); |
| return true; |
| |
| case Builtin::BI__builtin_copysign: |
| case Builtin::BI__builtin_copysignf: |
| case Builtin::BI__builtin_copysignl: { |
| APFloat RHS(0.); |
| if (!EvaluateFloat(E->getArg(0), Result, Info) || |
| !EvaluateFloat(E->getArg(1), RHS, Info)) |
| return false; |
| Result.copySign(RHS); |
| return true; |
| } |
| } |
| } |
| |
| bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { |
| if (E->getOpcode() == UnaryOperator::Deref) |
| return false; |
| |
| if (!EvaluateFloat(E->getSubExpr(), Result, Info)) |
| return false; |
| |
| switch (E->getOpcode()) { |
| default: return false; |
| case UnaryOperator::Plus: |
| return true; |
| case UnaryOperator::Minus: |
| Result.changeSign(); |
| return true; |
| } |
| } |
| |
| bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { |
| // FIXME: Diagnostics? I really don't understand how the warnings |
| // and errors are supposed to work. |
| APFloat RHS(0.0); |
| if (!EvaluateFloat(E->getLHS(), Result, Info)) |
| return false; |
| if (!EvaluateFloat(E->getRHS(), RHS, Info)) |
| return false; |
| |
| switch (E->getOpcode()) { |
| default: return false; |
| case BinaryOperator::Mul: |
| Result.multiply(RHS, APFloat::rmNearestTiesToEven); |
| return true; |
| case BinaryOperator::Add: |
| Result.add(RHS, APFloat::rmNearestTiesToEven); |
| return true; |
| case BinaryOperator::Sub: |
| Result.subtract(RHS, APFloat::rmNearestTiesToEven); |
| return true; |
| case BinaryOperator::Div: |
| Result.divide(RHS, APFloat::rmNearestTiesToEven); |
| return true; |
| case BinaryOperator::Rem: |
| Result.mod(RHS, APFloat::rmNearestTiesToEven); |
| return true; |
| } |
| } |
| |
| bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) { |
| Result = E->getValue(); |
| return true; |
| } |
| |
| bool FloatExprEvaluator::VisitCastExpr(CastExpr *E) { |
| Expr* SubExpr = E->getSubExpr(); |
| const llvm::fltSemantics& destSemantics = |
| Info.Ctx.getFloatTypeSemantics(E->getType()); |
| if (SubExpr->getType()->isIntegralType()) { |
| APSInt IntResult; |
| if (!EvaluateInteger(E, IntResult, Info)) |
| return false; |
| Result = APFloat(destSemantics, 1); |
| Result.convertFromAPInt(IntResult, IntResult.isSigned(), |
| APFloat::rmNearestTiesToEven); |
| return true; |
| } |
| if (SubExpr->getType()->isRealFloatingType()) { |
| if (!Visit(SubExpr)) |
| return false; |
| bool ignored; |
| Result.convert(destSemantics, APFloat::rmNearestTiesToEven, &ignored); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool FloatExprEvaluator::VisitCXXZeroInitValueExpr(CXXZeroInitValueExpr *E) { |
| Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType())); |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Complex Float Evaluation |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class VISIBILITY_HIDDEN ComplexFloatExprEvaluator |
| : public StmtVisitor<ComplexFloatExprEvaluator, APValue> { |
| EvalInfo &Info; |
| |
| public: |
| ComplexFloatExprEvaluator(EvalInfo &info) : Info(info) {} |
| |
| //===--------------------------------------------------------------------===// |
| // Visitor Methods |
| //===--------------------------------------------------------------------===// |
| |
| APValue VisitStmt(Stmt *S) { |
| return APValue(); |
| } |
| |
| APValue VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); } |
| |
| APValue VisitImaginaryLiteral(ImaginaryLiteral *E) { |
| APFloat Result(0.0); |
| if (!EvaluateFloat(E->getSubExpr(), Result, Info)) |
| return APValue(); |
| |
| return APValue(APFloat(0.0), Result); |
| } |
| |
| APValue VisitCastExpr(CastExpr *E) { |
| Expr* SubExpr = E->getSubExpr(); |
| |
| if (SubExpr->getType()->isRealFloatingType()) { |
| APFloat Result(0.0); |
| |
| if (!EvaluateFloat(SubExpr, Result, Info)) |
| return APValue(); |
| |
| return APValue(Result, APFloat(0.0)); |
| } |
| |
| // FIXME: Handle more casts. |
| return APValue(); |
| } |
| |
| APValue VisitBinaryOperator(const BinaryOperator *E); |
| |
| }; |
| } // end anonymous namespace |
| |
| static bool EvaluateComplexFloat(const Expr *E, APValue &Result, EvalInfo &Info) |
| { |
| Result = ComplexFloatExprEvaluator(Info).Visit(const_cast<Expr*>(E)); |
| return Result.isComplexFloat(); |
| } |
| |
| APValue ComplexFloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) |
| { |
| APValue Result, RHS; |
| |
| if (!EvaluateComplexFloat(E->getLHS(), Result, Info)) |
| return APValue(); |
| |
| if (!EvaluateComplexFloat(E->getRHS(), RHS, Info)) |
| return APValue(); |
| |
| switch (E->getOpcode()) { |
| default: return APValue(); |
| case BinaryOperator::Add: |
| Result.getComplexFloatReal().add(RHS.getComplexFloatReal(), |
| APFloat::rmNearestTiesToEven); |
| Result.getComplexFloatImag().add(RHS.getComplexFloatImag(), |
| APFloat::rmNearestTiesToEven); |
| case BinaryOperator::Sub: |
| Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(), |
| APFloat::rmNearestTiesToEven); |
| Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(), |
| APFloat::rmNearestTiesToEven); |
| } |
| |
| return Result; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Top level Expr::Evaluate method. |
| //===----------------------------------------------------------------------===// |
| |
| /// Evaluate - Return true if this is a constant which we can fold using |
| /// any crazy technique (that has nothing to do with language standards) that |
| /// we want to. If this function returns true, it returns the folded constant |
| /// in Result. |
| bool Expr::Evaluate(EvalResult &Result, ASTContext &Ctx) const { |
| EvalInfo Info(Ctx, Result); |
| |
| if (getType()->isIntegerType()) { |
| llvm::APSInt sInt(32); |
| if (!EvaluateInteger(this, sInt, Info)) |
| return false; |
| |
| Result.Val = APValue(sInt); |
| } else if (getType()->isPointerType()) { |
| if (!EvaluatePointer(this, Result.Val, Info)) |
| return false; |
| } else if (getType()->isRealFloatingType()) { |
| llvm::APFloat f(0.0); |
| if (!EvaluateFloat(this, f, Info)) |
| return false; |
| |
| Result.Val = APValue(f); |
| } else if (getType()->isComplexType()) { |
| if (!EvaluateComplexFloat(this, Result.Val, Info)) |
| return false; |
| } else |
| return false; |
| |
| return true; |
| } |
| |
| /// isEvaluatable - Call Evaluate to see if this expression can be constant |
| /// folded, but discard the result. |
| bool Expr::isEvaluatable(ASTContext &Ctx) const { |
| EvalResult Result; |
| return Evaluate(Result, Ctx) && !Result.HasSideEffects; |
| } |
| |
| APSInt Expr::EvaluateAsInt(ASTContext &Ctx) const { |
| EvalResult EvalResult; |
| bool Result = Evaluate(EvalResult, Ctx); |
| Result = Result; |
| assert(Result && "Could not evaluate expression"); |
| assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer"); |
| |
| return EvalResult.Val.getInt(); |
| } |