| //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements semantic analysis for expressions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Sema.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/ExprObjC.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/Lex/LiteralSupport.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/Parse/DeclSpec.h" |
| #include "clang/Parse/Designator.h" |
| #include "clang/Parse/Scope.h" |
| using namespace clang; |
| |
| /// \brief Determine whether the use of this declaration is valid, and |
| /// emit any corresponding diagnostics. |
| /// |
| /// This routine diagnoses various problems with referencing |
| /// declarations that can occur when using a declaration. For example, |
| /// it might warn if a deprecated or unavailable declaration is being |
| /// used, or produce an error (and return true) if a C++0x deleted |
| /// function is being used. |
| /// |
| /// \returns true if there was an error (this declaration cannot be |
| /// referenced), false otherwise. |
| bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) { |
| // See if the decl is deprecated. |
| if (D->getAttr<DeprecatedAttr>()) { |
| // Implementing deprecated stuff requires referencing deprecated |
| // stuff. Don't warn if we are implementing a deprecated |
| // construct. |
| bool isSilenced = false; |
| |
| if (NamedDecl *ND = getCurFunctionOrMethodDecl()) { |
| // If this reference happens *in* a deprecated function or method, don't |
| // warn. |
| isSilenced = ND->getAttr<DeprecatedAttr>(); |
| |
| // If this is an Objective-C method implementation, check to see if the |
| // method was deprecated on the declaration, not the definition. |
| if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(ND)) { |
| // The semantic decl context of a ObjCMethodDecl is the |
| // ObjCImplementationDecl. |
| if (ObjCImplementationDecl *Impl |
| = dyn_cast<ObjCImplementationDecl>(MD->getParent())) { |
| |
| MD = Impl->getClassInterface()->getMethod(MD->getSelector(), |
| MD->isInstanceMethod()); |
| isSilenced |= MD && MD->getAttr<DeprecatedAttr>(); |
| } |
| } |
| } |
| |
| if (!isSilenced) |
| Diag(Loc, diag::warn_deprecated) << D->getDeclName(); |
| } |
| |
| // See if this is a deleted function. |
| if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) |
| if (FD->isDeleted()) { |
| Diag(Loc, diag::err_deleted_function_use); |
| Diag(D->getLocation(), diag::note_unavailable_here) << true; |
| return true; |
| } |
| |
| // See if the decl is unavailable |
| if (D->getAttr<UnavailableAttr>()) { |
| Diag(Loc, diag::warn_unavailable) << D->getDeclName(); |
| Diag(D->getLocation(), diag::note_unavailable_here) << 0; |
| } |
| |
| |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Standard Promotions and Conversions |
| //===----------------------------------------------------------------------===// |
| |
| /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4). |
| void Sema::DefaultFunctionArrayConversion(Expr *&E) { |
| QualType Ty = E->getType(); |
| assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type"); |
| |
| if (Ty->isFunctionType()) |
| ImpCastExprToType(E, Context.getPointerType(Ty)); |
| else if (Ty->isArrayType()) { |
| // In C90 mode, arrays only promote to pointers if the array expression is |
| // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has |
| // type 'array of type' is converted to an expression that has type 'pointer |
| // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression |
| // that has type 'array of type' ...". The relevant change is "an lvalue" |
| // (C90) to "an expression" (C99). |
| // |
| // C++ 4.2p1: |
| // An lvalue or rvalue of type "array of N T" or "array of unknown bound of |
| // T" can be converted to an rvalue of type "pointer to T". |
| // |
| if (getLangOptions().C99 || getLangOptions().CPlusPlus || |
| E->isLvalue(Context) == Expr::LV_Valid) |
| ImpCastExprToType(E, Context.getArrayDecayedType(Ty)); |
| } |
| } |
| |
| /// UsualUnaryConversions - Performs various conversions that are common to most |
| /// operators (C99 6.3). The conversions of array and function types are |
| /// sometimes surpressed. For example, the array->pointer conversion doesn't |
| /// apply if the array is an argument to the sizeof or address (&) operators. |
| /// In these instances, this routine should *not* be called. |
| Expr *Sema::UsualUnaryConversions(Expr *&Expr) { |
| QualType Ty = Expr->getType(); |
| assert(!Ty.isNull() && "UsualUnaryConversions - missing type"); |
| |
| if (Ty->isPromotableIntegerType()) // C99 6.3.1.1p2 |
| ImpCastExprToType(Expr, Context.IntTy); |
| else |
| DefaultFunctionArrayConversion(Expr); |
| |
| return Expr; |
| } |
| |
| /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that |
| /// do not have a prototype. Arguments that have type float are promoted to |
| /// double. All other argument types are converted by UsualUnaryConversions(). |
| void Sema::DefaultArgumentPromotion(Expr *&Expr) { |
| QualType Ty = Expr->getType(); |
| assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type"); |
| |
| // If this is a 'float' (CVR qualified or typedef) promote to double. |
| if (const BuiltinType *BT = Ty->getAsBuiltinType()) |
| if (BT->getKind() == BuiltinType::Float) |
| return ImpCastExprToType(Expr, Context.DoubleTy); |
| |
| UsualUnaryConversions(Expr); |
| } |
| |
| // DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but |
| // will warn if the resulting type is not a POD type. |
| void Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT) { |
| DefaultArgumentPromotion(Expr); |
| |
| if (!Expr->getType()->isPODType()) { |
| Diag(Expr->getLocStart(), |
| diag::warn_cannot_pass_non_pod_arg_to_vararg) << |
| Expr->getType() << CT; |
| } |
| } |
| |
| |
| /// UsualArithmeticConversions - Performs various conversions that are common to |
| /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this |
| /// routine returns the first non-arithmetic type found. The client is |
| /// responsible for emitting appropriate error diagnostics. |
| /// FIXME: verify the conversion rules for "complex int" are consistent with |
| /// GCC. |
| QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr, |
| bool isCompAssign) { |
| if (!isCompAssign) { |
| UsualUnaryConversions(lhsExpr); |
| UsualUnaryConversions(rhsExpr); |
| } |
| |
| // For conversion purposes, we ignore any qualifiers. |
| // For example, "const float" and "float" are equivalent. |
| QualType lhs = |
| Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType(); |
| QualType rhs = |
| Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType(); |
| |
| // If both types are identical, no conversion is needed. |
| if (lhs == rhs) |
| return lhs; |
| |
| // If either side is a non-arithmetic type (e.g. a pointer), we are done. |
| // The caller can deal with this (e.g. pointer + int). |
| if (!lhs->isArithmeticType() || !rhs->isArithmeticType()) |
| return lhs; |
| |
| QualType destType = UsualArithmeticConversionsType(lhs, rhs); |
| if (!isCompAssign) { |
| ImpCastExprToType(lhsExpr, destType); |
| ImpCastExprToType(rhsExpr, destType); |
| } |
| return destType; |
| } |
| |
| QualType Sema::UsualArithmeticConversionsType(QualType lhs, QualType rhs) { |
| // Perform the usual unary conversions. We do this early so that |
| // integral promotions to "int" can allow us to exit early, in the |
| // lhs == rhs check. Also, for conversion purposes, we ignore any |
| // qualifiers. For example, "const float" and "float" are |
| // equivalent. |
| if (lhs->isPromotableIntegerType()) |
| lhs = Context.IntTy; |
| else |
| lhs = lhs.getUnqualifiedType(); |
| if (rhs->isPromotableIntegerType()) |
| rhs = Context.IntTy; |
| else |
| rhs = rhs.getUnqualifiedType(); |
| |
| // If both types are identical, no conversion is needed. |
| if (lhs == rhs) |
| return lhs; |
| |
| // If either side is a non-arithmetic type (e.g. a pointer), we are done. |
| // The caller can deal with this (e.g. pointer + int). |
| if (!lhs->isArithmeticType() || !rhs->isArithmeticType()) |
| return lhs; |
| |
| // At this point, we have two different arithmetic types. |
| |
| // Handle complex types first (C99 6.3.1.8p1). |
| if (lhs->isComplexType() || rhs->isComplexType()) { |
| // if we have an integer operand, the result is the complex type. |
| if (rhs->isIntegerType() || rhs->isComplexIntegerType()) { |
| // convert the rhs to the lhs complex type. |
| return lhs; |
| } |
| if (lhs->isIntegerType() || lhs->isComplexIntegerType()) { |
| // convert the lhs to the rhs complex type. |
| return rhs; |
| } |
| // This handles complex/complex, complex/float, or float/complex. |
| // When both operands are complex, the shorter operand is converted to the |
| // type of the longer, and that is the type of the result. This corresponds |
| // to what is done when combining two real floating-point operands. |
| // The fun begins when size promotion occur across type domains. |
| // From H&S 6.3.4: When one operand is complex and the other is a real |
| // floating-point type, the less precise type is converted, within it's |
| // real or complex domain, to the precision of the other type. For example, |
| // when combining a "long double" with a "double _Complex", the |
| // "double _Complex" is promoted to "long double _Complex". |
| int result = Context.getFloatingTypeOrder(lhs, rhs); |
| |
| if (result > 0) { // The left side is bigger, convert rhs. |
| rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs); |
| } else if (result < 0) { // The right side is bigger, convert lhs. |
| lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs); |
| } |
| // At this point, lhs and rhs have the same rank/size. Now, make sure the |
| // domains match. This is a requirement for our implementation, C99 |
| // does not require this promotion. |
| if (lhs != rhs) { // Domains don't match, we have complex/float mix. |
| if (lhs->isRealFloatingType()) { // handle "double, _Complex double". |
| return rhs; |
| } else { // handle "_Complex double, double". |
| return lhs; |
| } |
| } |
| return lhs; // The domain/size match exactly. |
| } |
| // Now handle "real" floating types (i.e. float, double, long double). |
| if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) { |
| // if we have an integer operand, the result is the real floating type. |
| if (rhs->isIntegerType()) { |
| // convert rhs to the lhs floating point type. |
| return lhs; |
| } |
| if (rhs->isComplexIntegerType()) { |
| // convert rhs to the complex floating point type. |
| return Context.getComplexType(lhs); |
| } |
| if (lhs->isIntegerType()) { |
| // convert lhs to the rhs floating point type. |
| return rhs; |
| } |
| if (lhs->isComplexIntegerType()) { |
| // convert lhs to the complex floating point type. |
| return Context.getComplexType(rhs); |
| } |
| // We have two real floating types, float/complex combos were handled above. |
| // Convert the smaller operand to the bigger result. |
| int result = Context.getFloatingTypeOrder(lhs, rhs); |
| if (result > 0) // convert the rhs |
| return lhs; |
| assert(result < 0 && "illegal float comparison"); |
| return rhs; // convert the lhs |
| } |
| if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) { |
| // Handle GCC complex int extension. |
| const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType(); |
| const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType(); |
| |
| if (lhsComplexInt && rhsComplexInt) { |
| if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(), |
| rhsComplexInt->getElementType()) >= 0) |
| return lhs; // convert the rhs |
| return rhs; |
| } else if (lhsComplexInt && rhs->isIntegerType()) { |
| // convert the rhs to the lhs complex type. |
| return lhs; |
| } else if (rhsComplexInt && lhs->isIntegerType()) { |
| // convert the lhs to the rhs complex type. |
| return rhs; |
| } |
| } |
| // Finally, we have two differing integer types. |
| // The rules for this case are in C99 6.3.1.8 |
| int compare = Context.getIntegerTypeOrder(lhs, rhs); |
| bool lhsSigned = lhs->isSignedIntegerType(), |
| rhsSigned = rhs->isSignedIntegerType(); |
| QualType destType; |
| if (lhsSigned == rhsSigned) { |
| // Same signedness; use the higher-ranked type |
| destType = compare >= 0 ? lhs : rhs; |
| } else if (compare != (lhsSigned ? 1 : -1)) { |
| // The unsigned type has greater than or equal rank to the |
| // signed type, so use the unsigned type |
| destType = lhsSigned ? rhs : lhs; |
| } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) { |
| // The two types are different widths; if we are here, that |
| // means the signed type is larger than the unsigned type, so |
| // use the signed type. |
| destType = lhsSigned ? lhs : rhs; |
| } else { |
| // The signed type is higher-ranked than the unsigned type, |
| // but isn't actually any bigger (like unsigned int and long |
| // on most 32-bit systems). Use the unsigned type corresponding |
| // to the signed type. |
| destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs); |
| } |
| return destType; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Semantic Analysis for various Expression Types |
| //===----------------------------------------------------------------------===// |
| |
| |
| /// ActOnStringLiteral - The specified tokens were lexed as pasted string |
| /// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string |
| /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from |
| /// multiple tokens. However, the common case is that StringToks points to one |
| /// string. |
| /// |
| Action::OwningExprResult |
| Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) { |
| assert(NumStringToks && "Must have at least one string!"); |
| |
| StringLiteralParser Literal(StringToks, NumStringToks, PP); |
| if (Literal.hadError) |
| return ExprError(); |
| |
| llvm::SmallVector<SourceLocation, 4> StringTokLocs; |
| for (unsigned i = 0; i != NumStringToks; ++i) |
| StringTokLocs.push_back(StringToks[i].getLocation()); |
| |
| QualType StrTy = Context.CharTy; |
| if (Literal.AnyWide) StrTy = Context.getWCharType(); |
| if (Literal.Pascal) StrTy = Context.UnsignedCharTy; |
| |
| // A C++ string literal has a const-qualified element type (C++ 2.13.4p1). |
| if (getLangOptions().CPlusPlus) |
| StrTy.addConst(); |
| |
| // Get an array type for the string, according to C99 6.4.5. This includes |
| // the nul terminator character as well as the string length for pascal |
| // strings. |
| StrTy = Context.getConstantArrayType(StrTy, |
| llvm::APInt(32, Literal.GetStringLength()+1), |
| ArrayType::Normal, 0); |
| |
| // Pass &StringTokLocs[0], StringTokLocs.size() to factory! |
| return Owned(StringLiteral::Create(Context, Literal.GetString(), |
| Literal.GetStringLength(), |
| Literal.AnyWide, StrTy, |
| &StringTokLocs[0], |
| StringTokLocs.size())); |
| } |
| |
| /// ShouldSnapshotBlockValueReference - Return true if a reference inside of |
| /// CurBlock to VD should cause it to be snapshotted (as we do for auto |
| /// variables defined outside the block) or false if this is not needed (e.g. |
| /// for values inside the block or for globals). |
| /// |
| /// FIXME: This will create BlockDeclRefExprs for global variables, |
| /// function references, etc which is suboptimal :) and breaks |
| /// things like "integer constant expression" tests. |
| static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock, |
| ValueDecl *VD) { |
| // If the value is defined inside the block, we couldn't snapshot it even if |
| // we wanted to. |
| if (CurBlock->TheDecl == VD->getDeclContext()) |
| return false; |
| |
| // If this is an enum constant or function, it is constant, don't snapshot. |
| if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD)) |
| return false; |
| |
| // If this is a reference to an extern, static, or global variable, no need to |
| // snapshot it. |
| // FIXME: What about 'const' variables in C++? |
| if (const VarDecl *Var = dyn_cast<VarDecl>(VD)) |
| return Var->hasLocalStorage(); |
| |
| return true; |
| } |
| |
| |
| |
| /// ActOnIdentifierExpr - The parser read an identifier in expression context, |
| /// validate it per-C99 6.5.1. HasTrailingLParen indicates whether this |
| /// identifier is used in a function call context. |
| /// SS is only used for a C++ qualified-id (foo::bar) to indicate the |
| /// class or namespace that the identifier must be a member of. |
| Sema::OwningExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc, |
| IdentifierInfo &II, |
| bool HasTrailingLParen, |
| const CXXScopeSpec *SS, |
| bool isAddressOfOperand) { |
| return ActOnDeclarationNameExpr(S, Loc, &II, HasTrailingLParen, SS, |
| isAddressOfOperand); |
| } |
| |
| /// BuildDeclRefExpr - Build either a DeclRefExpr or a |
| /// QualifiedDeclRefExpr based on whether or not SS is a |
| /// nested-name-specifier. |
| DeclRefExpr * |
| Sema::BuildDeclRefExpr(NamedDecl *D, QualType Ty, SourceLocation Loc, |
| bool TypeDependent, bool ValueDependent, |
| const CXXScopeSpec *SS) { |
| if (SS && !SS->isEmpty()) |
| return new (Context) QualifiedDeclRefExpr(D, Ty, Loc, TypeDependent, |
| ValueDependent, SS->getRange().getBegin()); |
| else |
| return new (Context) DeclRefExpr(D, Ty, Loc, TypeDependent, ValueDependent); |
| } |
| |
| /// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or |
| /// variable corresponding to the anonymous union or struct whose type |
| /// is Record. |
| static Decl *getObjectForAnonymousRecordDecl(RecordDecl *Record) { |
| assert(Record->isAnonymousStructOrUnion() && |
| "Record must be an anonymous struct or union!"); |
| |
| // FIXME: Once Decls are directly linked together, this will |
| // be an O(1) operation rather than a slow walk through DeclContext's |
| // vector (which itself will be eliminated). DeclGroups might make |
| // this even better. |
| DeclContext *Ctx = Record->getDeclContext(); |
| for (DeclContext::decl_iterator D = Ctx->decls_begin(), |
| DEnd = Ctx->decls_end(); |
| D != DEnd; ++D) { |
| if (*D == Record) { |
| // The object for the anonymous struct/union directly |
| // follows its type in the list of declarations. |
| ++D; |
| assert(D != DEnd && "Missing object for anonymous record"); |
| assert(!cast<NamedDecl>(*D)->getDeclName() && "Decl should be unnamed"); |
| return *D; |
| } |
| } |
| |
| assert(false && "Missing object for anonymous record"); |
| return 0; |
| } |
| |
| Sema::OwningExprResult |
| Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc, |
| FieldDecl *Field, |
| Expr *BaseObjectExpr, |
| SourceLocation OpLoc) { |
| assert(Field->getDeclContext()->isRecord() && |
| cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion() |
| && "Field must be stored inside an anonymous struct or union"); |
| |
| // Construct the sequence of field member references |
| // we'll have to perform to get to the field in the anonymous |
| // union/struct. The list of members is built from the field |
| // outward, so traverse it backwards to go from an object in |
| // the current context to the field we found. |
| llvm::SmallVector<FieldDecl *, 4> AnonFields; |
| AnonFields.push_back(Field); |
| VarDecl *BaseObject = 0; |
| DeclContext *Ctx = Field->getDeclContext(); |
| do { |
| RecordDecl *Record = cast<RecordDecl>(Ctx); |
| Decl *AnonObject = getObjectForAnonymousRecordDecl(Record); |
| if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject)) |
| AnonFields.push_back(AnonField); |
| else { |
| BaseObject = cast<VarDecl>(AnonObject); |
| break; |
| } |
| Ctx = Ctx->getParent(); |
| } while (Ctx->isRecord() && |
| cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion()); |
| |
| // Build the expression that refers to the base object, from |
| // which we will build a sequence of member references to each |
| // of the anonymous union objects and, eventually, the field we |
| // found via name lookup. |
| bool BaseObjectIsPointer = false; |
| unsigned ExtraQuals = 0; |
| if (BaseObject) { |
| // BaseObject is an anonymous struct/union variable (and is, |
| // therefore, not part of another non-anonymous record). |
| if (BaseObjectExpr) BaseObjectExpr->Destroy(Context); |
| BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(), |
| SourceLocation()); |
| ExtraQuals |
| = Context.getCanonicalType(BaseObject->getType()).getCVRQualifiers(); |
| } else if (BaseObjectExpr) { |
| // The caller provided the base object expression. Determine |
| // whether its a pointer and whether it adds any qualifiers to the |
| // anonymous struct/union fields we're looking into. |
| QualType ObjectType = BaseObjectExpr->getType(); |
| if (const PointerType *ObjectPtr = ObjectType->getAsPointerType()) { |
| BaseObjectIsPointer = true; |
| ObjectType = ObjectPtr->getPointeeType(); |
| } |
| ExtraQuals = Context.getCanonicalType(ObjectType).getCVRQualifiers(); |
| } else { |
| // We've found a member of an anonymous struct/union that is |
| // inside a non-anonymous struct/union, so in a well-formed |
| // program our base object expression is "this". |
| if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) { |
| if (!MD->isStatic()) { |
| QualType AnonFieldType |
| = Context.getTagDeclType( |
| cast<RecordDecl>(AnonFields.back()->getDeclContext())); |
| QualType ThisType = Context.getTagDeclType(MD->getParent()); |
| if ((Context.getCanonicalType(AnonFieldType) |
| == Context.getCanonicalType(ThisType)) || |
| IsDerivedFrom(ThisType, AnonFieldType)) { |
| // Our base object expression is "this". |
| BaseObjectExpr = new (Context) CXXThisExpr(SourceLocation(), |
| MD->getThisType(Context)); |
| BaseObjectIsPointer = true; |
| } |
| } else { |
| return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method) |
| << Field->getDeclName()); |
| } |
| ExtraQuals = MD->getTypeQualifiers(); |
| } |
| |
| if (!BaseObjectExpr) |
| return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use) |
| << Field->getDeclName()); |
| } |
| |
| // Build the implicit member references to the field of the |
| // anonymous struct/union. |
| Expr *Result = BaseObjectExpr; |
| for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator |
| FI = AnonFields.rbegin(), FIEnd = AnonFields.rend(); |
| FI != FIEnd; ++FI) { |
| QualType MemberType = (*FI)->getType(); |
| if (!(*FI)->isMutable()) { |
| unsigned combinedQualifiers |
| = MemberType.getCVRQualifiers() | ExtraQuals; |
| MemberType = MemberType.getQualifiedType(combinedQualifiers); |
| } |
| Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI, |
| OpLoc, MemberType); |
| BaseObjectIsPointer = false; |
| ExtraQuals = Context.getCanonicalType(MemberType).getCVRQualifiers(); |
| OpLoc = SourceLocation(); |
| } |
| |
| return Owned(Result); |
| } |
| |
| /// ActOnDeclarationNameExpr - The parser has read some kind of name |
| /// (e.g., a C++ id-expression (C++ [expr.prim]p1)). This routine |
| /// performs lookup on that name and returns an expression that refers |
| /// to that name. This routine isn't directly called from the parser, |
| /// because the parser doesn't know about DeclarationName. Rather, |
| /// this routine is called by ActOnIdentifierExpr, |
| /// ActOnOperatorFunctionIdExpr, and ActOnConversionFunctionExpr, |
| /// which form the DeclarationName from the corresponding syntactic |
| /// forms. |
| /// |
| /// HasTrailingLParen indicates whether this identifier is used in a |
| /// function call context. LookupCtx is only used for a C++ |
| /// qualified-id (foo::bar) to indicate the class or namespace that |
| /// the identifier must be a member of. |
| /// |
| /// isAddressOfOperand means that this expression is the direct operand |
| /// of an address-of operator. This matters because this is the only |
| /// situation where a qualified name referencing a non-static member may |
| /// appear outside a member function of this class. |
| Sema::OwningExprResult |
| Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc, |
| DeclarationName Name, bool HasTrailingLParen, |
| const CXXScopeSpec *SS, |
| bool isAddressOfOperand) { |
| // Could be enum-constant, value decl, instance variable, etc. |
| if (SS && SS->isInvalid()) |
| return ExprError(); |
| LookupResult Lookup = LookupParsedName(S, SS, Name, LookupOrdinaryName, |
| false, true, Loc); |
| |
| NamedDecl *D = 0; |
| if (Lookup.isAmbiguous()) { |
| DiagnoseAmbiguousLookup(Lookup, Name, Loc, |
| SS && SS->isSet() ? SS->getRange() |
| : SourceRange()); |
| return ExprError(); |
| } else |
| D = Lookup.getAsDecl(); |
| |
| // If this reference is in an Objective-C method, then ivar lookup happens as |
| // well. |
| IdentifierInfo *II = Name.getAsIdentifierInfo(); |
| if (II && getCurMethodDecl()) { |
| // There are two cases to handle here. 1) scoped lookup could have failed, |
| // in which case we should look for an ivar. 2) scoped lookup could have |
| // found a decl, but that decl is outside the current method (i.e. a global |
| // variable). In these two cases, we do a lookup for an ivar with this |
| // name, if the lookup suceeds, we replace it our current decl. |
| if (D == 0 || D->isDefinedOutsideFunctionOrMethod()) { |
| ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface(); |
| if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II)) { |
| // Check if referencing a field with __attribute__((deprecated)). |
| if (DiagnoseUseOfDecl(IV, Loc)) |
| return ExprError(); |
| |
| // FIXME: This should use a new expr for a direct reference, don't turn |
| // this into Self->ivar, just return a BareIVarExpr or something. |
| IdentifierInfo &II = Context.Idents.get("self"); |
| OwningExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false); |
| ObjCIvarRefExpr *MRef = new (Context) ObjCIvarRefExpr(IV, IV->getType(), |
| Loc, static_cast<Expr*>(SelfExpr.release()), |
| true, true); |
| Context.setFieldDecl(IFace, IV, MRef); |
| return Owned(MRef); |
| } |
| } |
| // Needed to implement property "super.method" notation. |
| if (D == 0 && II->isStr("super")) { |
| QualType T = Context.getPointerType(Context.getObjCInterfaceType( |
| getCurMethodDecl()->getClassInterface())); |
| return Owned(new (Context) ObjCSuperExpr(Loc, T)); |
| } |
| } |
| |
| // Determine whether this name might be a candidate for |
| // argument-dependent lookup. |
| bool ADL = getLangOptions().CPlusPlus && (!SS || !SS->isSet()) && |
| HasTrailingLParen; |
| |
| if (ADL && D == 0) { |
| // We've seen something of the form |
| // |
| // identifier( |
| // |
| // and we did not find any entity by the name |
| // "identifier". However, this identifier is still subject to |
| // argument-dependent lookup, so keep track of the name. |
| return Owned(new (Context) UnresolvedFunctionNameExpr(Name, |
| Context.OverloadTy, |
| Loc)); |
| } |
| |
| if (D == 0) { |
| // Otherwise, this could be an implicitly declared function reference (legal |
| // in C90, extension in C99). |
| if (HasTrailingLParen && II && |
| !getLangOptions().CPlusPlus) // Not in C++. |
| D = ImplicitlyDefineFunction(Loc, *II, S); |
| else { |
| // If this name wasn't predeclared and if this is not a function call, |
| // diagnose the problem. |
| if (SS && !SS->isEmpty()) |
| return ExprError(Diag(Loc, diag::err_typecheck_no_member) |
| << Name << SS->getRange()); |
| else if (Name.getNameKind() == DeclarationName::CXXOperatorName || |
| Name.getNameKind() == DeclarationName::CXXConversionFunctionName) |
| return ExprError(Diag(Loc, diag::err_undeclared_use) |
| << Name.getAsString()); |
| else |
| return ExprError(Diag(Loc, diag::err_undeclared_var_use) << Name); |
| } |
| } |
| |
| // If this is an expression of the form &Class::member, don't build an |
| // implicit member ref, because we want a pointer to the member in general, |
| // not any specific instance's member. |
| if (isAddressOfOperand && SS && !SS->isEmpty() && !HasTrailingLParen) { |
| DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep()); |
| if (D && isa<CXXRecordDecl>(DC)) { |
| QualType DType; |
| if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) { |
| DType = FD->getType().getNonReferenceType(); |
| } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { |
| DType = Method->getType(); |
| } else if (isa<OverloadedFunctionDecl>(D)) { |
| DType = Context.OverloadTy; |
| } |
| // Could be an inner type. That's diagnosed below, so ignore it here. |
| if (!DType.isNull()) { |
| // The pointer is type- and value-dependent if it points into something |
| // dependent. |
| bool Dependent = false; |
| for (; DC; DC = DC->getParent()) { |
| // FIXME: could stop early at namespace scope. |
| if (DC->isRecord()) { |
| CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); |
| if (Context.getTypeDeclType(Record)->isDependentType()) { |
| Dependent = true; |
| break; |
| } |
| } |
| } |
| return Owned(BuildDeclRefExpr(D, DType, Loc, Dependent, Dependent, SS)); |
| } |
| } |
| } |
| |
| // We may have found a field within an anonymous union or struct |
| // (C++ [class.union]). |
| if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) |
| if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion()) |
| return BuildAnonymousStructUnionMemberReference(Loc, FD); |
| |
| if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) { |
| if (!MD->isStatic()) { |
| // C++ [class.mfct.nonstatic]p2: |
| // [...] if name lookup (3.4.1) resolves the name in the |
| // id-expression to a nonstatic nontype member of class X or of |
| // a base class of X, the id-expression is transformed into a |
| // class member access expression (5.2.5) using (*this) (9.3.2) |
| // as the postfix-expression to the left of the '.' operator. |
| DeclContext *Ctx = 0; |
| QualType MemberType; |
| if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) { |
| Ctx = FD->getDeclContext(); |
| MemberType = FD->getType(); |
| |
| if (const ReferenceType *RefType = MemberType->getAsReferenceType()) |
| MemberType = RefType->getPointeeType(); |
| else if (!FD->isMutable()) { |
| unsigned combinedQualifiers |
| = MemberType.getCVRQualifiers() | MD->getTypeQualifiers(); |
| MemberType = MemberType.getQualifiedType(combinedQualifiers); |
| } |
| } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { |
| if (!Method->isStatic()) { |
| Ctx = Method->getParent(); |
| MemberType = Method->getType(); |
| } |
| } else if (OverloadedFunctionDecl *Ovl |
| = dyn_cast<OverloadedFunctionDecl>(D)) { |
| for (OverloadedFunctionDecl::function_iterator |
| Func = Ovl->function_begin(), |
| FuncEnd = Ovl->function_end(); |
| Func != FuncEnd; ++Func) { |
| if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(*Func)) |
| if (!DMethod->isStatic()) { |
| Ctx = Ovl->getDeclContext(); |
| MemberType = Context.OverloadTy; |
| break; |
| } |
| } |
| } |
| |
| if (Ctx && Ctx->isRecord()) { |
| QualType CtxType = Context.getTagDeclType(cast<CXXRecordDecl>(Ctx)); |
| QualType ThisType = Context.getTagDeclType(MD->getParent()); |
| if ((Context.getCanonicalType(CtxType) |
| == Context.getCanonicalType(ThisType)) || |
| IsDerivedFrom(ThisType, CtxType)) { |
| // Build the implicit member access expression. |
| Expr *This = new (Context) CXXThisExpr(SourceLocation(), |
| MD->getThisType(Context)); |
| return Owned(new (Context) MemberExpr(This, true, D, |
| SourceLocation(), MemberType)); |
| } |
| } |
| } |
| } |
| |
| if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) { |
| if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) { |
| if (MD->isStatic()) |
| // "invalid use of member 'x' in static member function" |
| return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method) |
| << FD->getDeclName()); |
| } |
| |
| // Any other ways we could have found the field in a well-formed |
| // program would have been turned into implicit member expressions |
| // above. |
| return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use) |
| << FD->getDeclName()); |
| } |
| |
| if (isa<TypedefDecl>(D)) |
| return ExprError(Diag(Loc, diag::err_unexpected_typedef) << Name); |
| if (isa<ObjCInterfaceDecl>(D)) |
| return ExprError(Diag(Loc, diag::err_unexpected_interface) << Name); |
| if (isa<NamespaceDecl>(D)) |
| return ExprError(Diag(Loc, diag::err_unexpected_namespace) << Name); |
| |
| // Make the DeclRefExpr or BlockDeclRefExpr for the decl. |
| if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D)) |
| return Owned(BuildDeclRefExpr(Ovl, Context.OverloadTy, Loc, |
| false, false, SS)); |
| else if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) |
| return Owned(BuildDeclRefExpr(Template, Context.OverloadTy, Loc, |
| false, false, SS)); |
| ValueDecl *VD = cast<ValueDecl>(D); |
| |
| // Check whether this declaration can be used. Note that we suppress |
| // this check when we're going to perform argument-dependent lookup |
| // on this function name, because this might not be the function |
| // that overload resolution actually selects. |
| if (!(ADL && isa<FunctionDecl>(VD)) && DiagnoseUseOfDecl(VD, Loc)) |
| return ExprError(); |
| |
| if (VarDecl *Var = dyn_cast<VarDecl>(VD)) { |
| // Warn about constructs like: |
| // if (void *X = foo()) { ... } else { X }. |
| // In the else block, the pointer is always false. |
| if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) { |
| Scope *CheckS = S; |
| while (CheckS) { |
| if (CheckS->isWithinElse() && |
| CheckS->getControlParent()->isDeclScope(Var)) { |
| if (Var->getType()->isBooleanType()) |
| ExprError(Diag(Loc, diag::warn_value_always_false) |
| << Var->getDeclName()); |
| else |
| ExprError(Diag(Loc, diag::warn_value_always_zero) |
| << Var->getDeclName()); |
| break; |
| } |
| |
| // Move up one more control parent to check again. |
| CheckS = CheckS->getControlParent(); |
| if (CheckS) |
| CheckS = CheckS->getParent(); |
| } |
| } |
| } |
| |
| // Only create DeclRefExpr's for valid Decl's. |
| if (VD->isInvalidDecl()) |
| return ExprError(); |
| |
| // If the identifier reference is inside a block, and it refers to a value |
| // that is outside the block, create a BlockDeclRefExpr instead of a |
| // DeclRefExpr. This ensures the value is treated as a copy-in snapshot when |
| // the block is formed. |
| // |
| // We do not do this for things like enum constants, global variables, etc, |
| // as they do not get snapshotted. |
| // |
| if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) { |
| // The BlocksAttr indicates the variable is bound by-reference. |
| if (VD->getAttr<BlocksAttr>()) |
| return Owned(new (Context) BlockDeclRefExpr(VD, |
| VD->getType().getNonReferenceType(), Loc, true)); |
| |
| // Variable will be bound by-copy, make it const within the closure. |
| VD->getType().addConst(); |
| return Owned(new (Context) BlockDeclRefExpr(VD, |
| VD->getType().getNonReferenceType(), Loc, false)); |
| } |
| // If this reference is not in a block or if the referenced variable is |
| // within the block, create a normal DeclRefExpr. |
| |
| bool TypeDependent = false; |
| bool ValueDependent = false; |
| if (getLangOptions().CPlusPlus) { |
| // C++ [temp.dep.expr]p3: |
| // An id-expression is type-dependent if it contains: |
| // - an identifier that was declared with a dependent type, |
| if (VD->getType()->isDependentType()) |
| TypeDependent = true; |
| // - FIXME: a template-id that is dependent, |
| // - a conversion-function-id that specifies a dependent type, |
| else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName && |
| Name.getCXXNameType()->isDependentType()) |
| TypeDependent = true; |
| // - a nested-name-specifier that contains a class-name that |
| // names a dependent type. |
| else if (SS && !SS->isEmpty()) { |
| for (DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep()); |
| DC; DC = DC->getParent()) { |
| // FIXME: could stop early at namespace scope. |
| if (DC->isRecord()) { |
| CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); |
| if (Context.getTypeDeclType(Record)->isDependentType()) { |
| TypeDependent = true; |
| break; |
| } |
| } |
| } |
| } |
| |
| // C++ [temp.dep.constexpr]p2: |
| // |
| // An identifier is value-dependent if it is: |
| // - a name declared with a dependent type, |
| if (TypeDependent) |
| ValueDependent = true; |
| // - the name of a non-type template parameter, |
| else if (isa<NonTypeTemplateParmDecl>(VD)) |
| ValueDependent = true; |
| // - a constant with integral or enumeration type and is |
| // initialized with an expression that is value-dependent |
| // (FIXME!). |
| } |
| |
| return Owned(BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc, |
| TypeDependent, ValueDependent, SS)); |
| } |
| |
| Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, |
| tok::TokenKind Kind) { |
| PredefinedExpr::IdentType IT; |
| |
| switch (Kind) { |
| default: assert(0 && "Unknown simple primary expr!"); |
| case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2] |
| case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break; |
| case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break; |
| } |
| |
| // Pre-defined identifiers are of type char[x], where x is the length of the |
| // string. |
| unsigned Length; |
| if (FunctionDecl *FD = getCurFunctionDecl()) |
| Length = FD->getIdentifier()->getLength(); |
| else if (ObjCMethodDecl *MD = getCurMethodDecl()) |
| Length = MD->getSynthesizedMethodSize(); |
| else { |
| Diag(Loc, diag::ext_predef_outside_function); |
| // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string. |
| Length = IT == PredefinedExpr::PrettyFunction ? strlen("top level") : 0; |
| } |
| |
| |
| llvm::APInt LengthI(32, Length + 1); |
| QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const); |
| ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0); |
| return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT)); |
| } |
| |
| Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) { |
| llvm::SmallString<16> CharBuffer; |
| CharBuffer.resize(Tok.getLength()); |
| const char *ThisTokBegin = &CharBuffer[0]; |
| unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin); |
| |
| CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength, |
| Tok.getLocation(), PP); |
| if (Literal.hadError()) |
| return ExprError(); |
| |
| QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy; |
| |
| return Owned(new (Context) CharacterLiteral(Literal.getValue(), |
| Literal.isWide(), |
| type, Tok.getLocation())); |
| } |
| |
| Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) { |
| // Fast path for a single digit (which is quite common). A single digit |
| // cannot have a trigraph, escaped newline, radix prefix, or type suffix. |
| if (Tok.getLength() == 1) { |
| const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok); |
| unsigned IntSize = Context.Target.getIntWidth(); |
| return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'), |
| Context.IntTy, Tok.getLocation())); |
| } |
| |
| llvm::SmallString<512> IntegerBuffer; |
| // Add padding so that NumericLiteralParser can overread by one character. |
| IntegerBuffer.resize(Tok.getLength()+1); |
| const char *ThisTokBegin = &IntegerBuffer[0]; |
| |
| // Get the spelling of the token, which eliminates trigraphs, etc. |
| unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin); |
| |
| NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength, |
| Tok.getLocation(), PP); |
| if (Literal.hadError) |
| return ExprError(); |
| |
| Expr *Res; |
| |
| if (Literal.isFloatingLiteral()) { |
| QualType Ty; |
| if (Literal.isFloat) |
| Ty = Context.FloatTy; |
| else if (!Literal.isLong) |
| Ty = Context.DoubleTy; |
| else |
| Ty = Context.LongDoubleTy; |
| |
| const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty); |
| |
| // isExact will be set by GetFloatValue(). |
| bool isExact = false; |
| Res = new (Context) FloatingLiteral(Literal.GetFloatValue(Format, &isExact), |
| &isExact, Ty, Tok.getLocation()); |
| |
| } else if (!Literal.isIntegerLiteral()) { |
| return ExprError(); |
| } else { |
| QualType Ty; |
| |
| // long long is a C99 feature. |
| if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x && |
| Literal.isLongLong) |
| Diag(Tok.getLocation(), diag::ext_longlong); |
| |
| // Get the value in the widest-possible width. |
| llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0); |
| |
| if (Literal.GetIntegerValue(ResultVal)) { |
| // If this value didn't fit into uintmax_t, warn and force to ull. |
| Diag(Tok.getLocation(), diag::warn_integer_too_large); |
| Ty = Context.UnsignedLongLongTy; |
| assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() && |
| "long long is not intmax_t?"); |
| } else { |
| // If this value fits into a ULL, try to figure out what else it fits into |
| // according to the rules of C99 6.4.4.1p5. |
| |
| // Octal, Hexadecimal, and integers with a U suffix are allowed to |
| // be an unsigned int. |
| bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10; |
| |
| // Check from smallest to largest, picking the smallest type we can. |
| unsigned Width = 0; |
| if (!Literal.isLong && !Literal.isLongLong) { |
| // Are int/unsigned possibilities? |
| unsigned IntSize = Context.Target.getIntWidth(); |
| |
| // Does it fit in a unsigned int? |
| if (ResultVal.isIntN(IntSize)) { |
| // Does it fit in a signed int? |
| if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0) |
| Ty = Context.IntTy; |
| else if (AllowUnsigned) |
| Ty = Context.UnsignedIntTy; |
| Width = IntSize; |
| } |
| } |
| |
| // Are long/unsigned long possibilities? |
| if (Ty.isNull() && !Literal.isLongLong) { |
| unsigned LongSize = Context.Target.getLongWidth(); |
| |
| // Does it fit in a unsigned long? |
| if (ResultVal.isIntN(LongSize)) { |
| // Does it fit in a signed long? |
| if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0) |
| Ty = Context.LongTy; |
| else if (AllowUnsigned) |
| Ty = Context.UnsignedLongTy; |
| Width = LongSize; |
| } |
| } |
| |
| // Finally, check long long if needed. |
| if (Ty.isNull()) { |
| unsigned LongLongSize = Context.Target.getLongLongWidth(); |
| |
| // Does it fit in a unsigned long long? |
| if (ResultVal.isIntN(LongLongSize)) { |
| // Does it fit in a signed long long? |
| if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0) |
| Ty = Context.LongLongTy; |
| else if (AllowUnsigned) |
| Ty = Context.UnsignedLongLongTy; |
| Width = LongLongSize; |
| } |
| } |
| |
| // If we still couldn't decide a type, we probably have something that |
| // does not fit in a signed long long, but has no U suffix. |
| if (Ty.isNull()) { |
| Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed); |
| Ty = Context.UnsignedLongLongTy; |
| Width = Context.Target.getLongLongWidth(); |
| } |
| |
| if (ResultVal.getBitWidth() != Width) |
| ResultVal.trunc(Width); |
| } |
| Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation()); |
| } |
| |
| // If this is an imaginary literal, create the ImaginaryLiteral wrapper. |
| if (Literal.isImaginary) |
| Res = new (Context) ImaginaryLiteral(Res, |
| Context.getComplexType(Res->getType())); |
| |
| return Owned(Res); |
| } |
| |
| Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L, |
| SourceLocation R, ExprArg Val) { |
| Expr *E = (Expr *)Val.release(); |
| assert((E != 0) && "ActOnParenExpr() missing expr"); |
| return Owned(new (Context) ParenExpr(L, R, E)); |
| } |
| |
| /// The UsualUnaryConversions() function is *not* called by this routine. |
| /// See C99 6.3.2.1p[2-4] for more details. |
| bool Sema::CheckSizeOfAlignOfOperand(QualType exprType, |
| SourceLocation OpLoc, |
| const SourceRange &ExprRange, |
| bool isSizeof) { |
| // C99 6.5.3.4p1: |
| if (isa<FunctionType>(exprType)) { |
| // alignof(function) is allowed. |
| if (isSizeof) |
| Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange; |
| return false; |
| } |
| |
| if (exprType->isVoidType()) { |
| Diag(OpLoc, diag::ext_sizeof_void_type) |
| << (isSizeof ? "sizeof" : "__alignof") << ExprRange; |
| return false; |
| } |
| |
| return DiagnoseIncompleteType(OpLoc, exprType, |
| isSizeof ? diag::err_sizeof_incomplete_type : |
| diag::err_alignof_incomplete_type, |
| ExprRange); |
| } |
| |
| bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc, |
| const SourceRange &ExprRange) { |
| E = E->IgnoreParens(); |
| |
| // alignof decl is always ok. |
| if (isa<DeclRefExpr>(E)) |
| return false; |
| |
| if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) { |
| if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { |
| if (FD->isBitField()) { |
| Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange; |
| return true; |
| } |
| // Other fields are ok. |
| return false; |
| } |
| } |
| return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false); |
| } |
| |
| /// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and |
| /// the same for @c alignof and @c __alignof |
| /// Note that the ArgRange is invalid if isType is false. |
| Action::OwningExprResult |
| Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType, |
| void *TyOrEx, const SourceRange &ArgRange) { |
| // If error parsing type, ignore. |
| if (TyOrEx == 0) return ExprError(); |
| |
| QualType ArgTy; |
| SourceRange Range; |
| if (isType) { |
| ArgTy = QualType::getFromOpaquePtr(TyOrEx); |
| Range = ArgRange; |
| |
| // Verify that the operand is valid. |
| if (CheckSizeOfAlignOfOperand(ArgTy, OpLoc, Range, isSizeof)) |
| return ExprError(); |
| } else { |
| // Get the end location. |
| Expr *ArgEx = (Expr *)TyOrEx; |
| Range = ArgEx->getSourceRange(); |
| ArgTy = ArgEx->getType(); |
| |
| // Verify that the operand is valid. |
| bool isInvalid; |
| if (!isSizeof) { |
| isInvalid = CheckAlignOfExpr(ArgEx, OpLoc, Range); |
| } else if (ArgEx->isBitField()) { // C99 6.5.3.4p1. |
| Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0; |
| isInvalid = true; |
| } else { |
| isInvalid = CheckSizeOfAlignOfOperand(ArgTy, OpLoc, Range, true); |
| } |
| |
| if (isInvalid) { |
| DeleteExpr(ArgEx); |
| return ExprError(); |
| } |
| } |
| |
| // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t. |
| return Owned(new (Context) SizeOfAlignOfExpr(isSizeof, isType, TyOrEx, |
| Context.getSizeType(), OpLoc, |
| Range.getEnd())); |
| } |
| |
| QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) { |
| DefaultFunctionArrayConversion(V); |
| |
| // These operators return the element type of a complex type. |
| if (const ComplexType *CT = V->getType()->getAsComplexType()) |
| return CT->getElementType(); |
| |
| // Otherwise they pass through real integer and floating point types here. |
| if (V->getType()->isArithmeticType()) |
| return V->getType(); |
| |
| // Reject anything else. |
| Diag(Loc, diag::err_realimag_invalid_type) << V->getType() |
| << (isReal ? "__real" : "__imag"); |
| return QualType(); |
| } |
| |
| |
| |
| Action::OwningExprResult |
| Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc, |
| tok::TokenKind Kind, ExprArg Input) { |
| Expr *Arg = (Expr *)Input.get(); |
| |
| UnaryOperator::Opcode Opc; |
| switch (Kind) { |
| default: assert(0 && "Unknown unary op!"); |
| case tok::plusplus: Opc = UnaryOperator::PostInc; break; |
| case tok::minusminus: Opc = UnaryOperator::PostDec; break; |
| } |
| |
| if (getLangOptions().CPlusPlus && |
| (Arg->getType()->isRecordType() || Arg->getType()->isEnumeralType())) { |
| // Which overloaded operator? |
| OverloadedOperatorKind OverOp = |
| (Opc == UnaryOperator::PostInc)? OO_PlusPlus : OO_MinusMinus; |
| |
| // C++ [over.inc]p1: |
| // |
| // [...] If the function is a member function with one |
| // parameter (which shall be of type int) or a non-member |
| // function with two parameters (the second of which shall be |
| // of type int), it defines the postfix increment operator ++ |
| // for objects of that type. When the postfix increment is |
| // called as a result of using the ++ operator, the int |
| // argument will have value zero. |
| Expr *Args[2] = { |
| Arg, |
| new (Context) IntegerLiteral(llvm::APInt(Context.Target.getIntWidth(), 0, |
| /*isSigned=*/true), Context.IntTy, SourceLocation()) |
| }; |
| |
| // Build the candidate set for overloading |
| OverloadCandidateSet CandidateSet; |
| if (AddOperatorCandidates(OverOp, S, OpLoc, Args, 2, CandidateSet)) |
| return ExprError(); |
| |
| // Perform overload resolution. |
| OverloadCandidateSet::iterator Best; |
| switch (BestViableFunction(CandidateSet, Best)) { |
| case OR_Success: { |
| // We found a built-in operator or an overloaded operator. |
| FunctionDecl *FnDecl = Best->Function; |
| |
| if (FnDecl) { |
| // We matched an overloaded operator. Build a call to that |
| // operator. |
| |
| // Convert the arguments. |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { |
| if (PerformObjectArgumentInitialization(Arg, Method)) |
| return ExprError(); |
| } else { |
| // Convert the arguments. |
| if (PerformCopyInitialization(Arg, |
| FnDecl->getParamDecl(0)->getType(), |
| "passing")) |
| return ExprError(); |
| } |
| |
| // Determine the result type |
| QualType ResultTy |
| = FnDecl->getType()->getAsFunctionType()->getResultType(); |
| ResultTy = ResultTy.getNonReferenceType(); |
| |
| // Build the actual expression node. |
| Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), |
| SourceLocation()); |
| UsualUnaryConversions(FnExpr); |
| |
| Input.release(); |
| return Owned(new (Context) CXXOperatorCallExpr(Context, FnExpr, Args, 2, |
| ResultTy, OpLoc)); |
| } else { |
| // We matched a built-in operator. Convert the arguments, then |
| // break out so that we will build the appropriate built-in |
| // operator node. |
| if (PerformCopyInitialization(Arg, Best->BuiltinTypes.ParamTypes[0], |
| "passing")) |
| return ExprError(); |
| |
| break; |
| } |
| } |
| |
| case OR_No_Viable_Function: |
| // No viable function; fall through to handling this as a |
| // built-in operator, which will produce an error message for us. |
| break; |
| |
| case OR_Ambiguous: |
| Diag(OpLoc, diag::err_ovl_ambiguous_oper) |
| << UnaryOperator::getOpcodeStr(Opc) |
| << Arg->getSourceRange(); |
| PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); |
| return ExprError(); |
| |
| case OR_Deleted: |
| Diag(OpLoc, diag::err_ovl_deleted_oper) |
| << Best->Function->isDeleted() |
| << UnaryOperator::getOpcodeStr(Opc) |
| << Arg->getSourceRange(); |
| PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); |
| return ExprError(); |
| } |
| |
| // Either we found no viable overloaded operator or we matched a |
| // built-in operator. In either case, fall through to trying to |
| // build a built-in operation. |
| } |
| |
| QualType result = CheckIncrementDecrementOperand(Arg, OpLoc, |
| Opc == UnaryOperator::PostInc); |
| if (result.isNull()) |
| return ExprError(); |
| Input.release(); |
| return Owned(new (Context) UnaryOperator(Arg, Opc, result, OpLoc)); |
| } |
| |
| Action::OwningExprResult |
| Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc, |
| ExprArg Idx, SourceLocation RLoc) { |
| Expr *LHSExp = static_cast<Expr*>(Base.get()), |
| *RHSExp = static_cast<Expr*>(Idx.get()); |
| |
| if (getLangOptions().CPlusPlus && |
| (LHSExp->getType()->isRecordType() || |
| LHSExp->getType()->isEnumeralType() || |
| RHSExp->getType()->isRecordType() || |
| RHSExp->getType()->isEnumeralType())) { |
| // Add the appropriate overloaded operators (C++ [over.match.oper]) |
| // to the candidate set. |
| OverloadCandidateSet CandidateSet; |
| Expr *Args[2] = { LHSExp, RHSExp }; |
| if (AddOperatorCandidates(OO_Subscript, S, LLoc, Args, 2, CandidateSet, |
| SourceRange(LLoc, RLoc))) |
| return ExprError(); |
| |
| // Perform overload resolution. |
| OverloadCandidateSet::iterator Best; |
| switch (BestViableFunction(CandidateSet, Best)) { |
| case OR_Success: { |
| // We found a built-in operator or an overloaded operator. |
| FunctionDecl *FnDecl = Best->Function; |
| |
| if (FnDecl) { |
| // We matched an overloaded operator. Build a call to that |
| // operator. |
| |
| // Convert the arguments. |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { |
| if (PerformObjectArgumentInitialization(LHSExp, Method) || |
| PerformCopyInitialization(RHSExp, |
| FnDecl->getParamDecl(0)->getType(), |
| "passing")) |
| return ExprError(); |
| } else { |
| // Convert the arguments. |
| if (PerformCopyInitialization(LHSExp, |
| FnDecl->getParamDecl(0)->getType(), |
| "passing") || |
| PerformCopyInitialization(RHSExp, |
| FnDecl->getParamDecl(1)->getType(), |
| "passing")) |
| return ExprError(); |
| } |
| |
| // Determine the result type |
| QualType ResultTy |
| = FnDecl->getType()->getAsFunctionType()->getResultType(); |
| ResultTy = ResultTy.getNonReferenceType(); |
| |
| // Build the actual expression node. |
| Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), |
| SourceLocation()); |
| UsualUnaryConversions(FnExpr); |
| |
| Base.release(); |
| Idx.release(); |
| return Owned(new (Context) CXXOperatorCallExpr(Context, FnExpr, Args, 2, |
| ResultTy, LLoc)); |
| } else { |
| // We matched a built-in operator. Convert the arguments, then |
| // break out so that we will build the appropriate built-in |
| // operator node. |
| if (PerformCopyInitialization(LHSExp, Best->BuiltinTypes.ParamTypes[0], |
| "passing") || |
| PerformCopyInitialization(RHSExp, Best->BuiltinTypes.ParamTypes[1], |
| "passing")) |
| return ExprError(); |
| |
| break; |
| } |
| } |
| |
| case OR_No_Viable_Function: |
| // No viable function; fall through to handling this as a |
| // built-in operator, which will produce an error message for us. |
| break; |
| |
| case OR_Ambiguous: |
| Diag(LLoc, diag::err_ovl_ambiguous_oper) |
| << "[]" |
| << LHSExp->getSourceRange() << RHSExp->getSourceRange(); |
| PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); |
| return ExprError(); |
| |
| case OR_Deleted: |
| Diag(LLoc, diag::err_ovl_deleted_oper) |
| << Best->Function->isDeleted() |
| << "[]" |
| << LHSExp->getSourceRange() << RHSExp->getSourceRange(); |
| PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); |
| return ExprError(); |
| } |
| |
| // Either we found no viable overloaded operator or we matched a |
| // built-in operator. In either case, fall through to trying to |
| // build a built-in operation. |
| } |
| |
| // Perform default conversions. |
| DefaultFunctionArrayConversion(LHSExp); |
| DefaultFunctionArrayConversion(RHSExp); |
| |
| QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType(); |
| |
| // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent |
| // to the expression *((e1)+(e2)). This means the array "Base" may actually be |
| // in the subscript position. As a result, we need to derive the array base |
| // and index from the expression types. |
| Expr *BaseExpr, *IndexExpr; |
| QualType ResultType; |
| if (const PointerType *PTy = LHSTy->getAsPointerType()) { |
| BaseExpr = LHSExp; |
| IndexExpr = RHSExp; |
| // FIXME: need to deal with const... |
| ResultType = PTy->getPointeeType(); |
| } else if (const PointerType *PTy = RHSTy->getAsPointerType()) { |
| // Handle the uncommon case of "123[Ptr]". |
| BaseExpr = RHSExp; |
| IndexExpr = LHSExp; |
| // FIXME: need to deal with const... |
| ResultType = PTy->getPointeeType(); |
| } else if (const VectorType *VTy = LHSTy->getAsVectorType()) { |
| BaseExpr = LHSExp; // vectors: V[123] |
| IndexExpr = RHSExp; |
| |
| // FIXME: need to deal with const... |
| ResultType = VTy->getElementType(); |
| } else { |
| return ExprError(Diag(LHSExp->getLocStart(), |
| diag::err_typecheck_subscript_value) << RHSExp->getSourceRange()); |
| } |
| // C99 6.5.2.1p1 |
| if (!IndexExpr->getType()->isIntegerType()) |
| return ExprError(Diag(IndexExpr->getLocStart(), |
| diag::err_typecheck_subscript) << IndexExpr->getSourceRange()); |
| |
| // C99 6.5.2.1p1: "shall have type "pointer to *object* type". In practice, |
| // the following check catches trying to index a pointer to a function (e.g. |
| // void (*)(int)) and pointers to incomplete types. Functions are not |
| // objects in C99. |
| if (!ResultType->isObjectType()) |
| return ExprError(Diag(BaseExpr->getLocStart(), |
| diag::err_typecheck_subscript_not_object) |
| << BaseExpr->getType() << BaseExpr->getSourceRange()); |
| |
| Base.release(); |
| Idx.release(); |
| return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp, |
| ResultType, RLoc)); |
| } |
| |
| QualType Sema:: |
| CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc, |
| IdentifierInfo &CompName, SourceLocation CompLoc) { |
| const ExtVectorType *vecType = baseType->getAsExtVectorType(); |
| |
| // The vector accessor can't exceed the number of elements. |
| const char *compStr = CompName.getName(); |
| |
| // This flag determines whether or not the component is one of the four |
| // special names that indicate a subset of exactly half the elements are |
| // to be selected. |
| bool HalvingSwizzle = false; |
| |
| // This flag determines whether or not CompName has an 's' char prefix, |
| // indicating that it is a string of hex values to be used as vector indices. |
| bool HexSwizzle = *compStr == 's'; |
| |
| // Check that we've found one of the special components, or that the component |
| // names must come from the same set. |
| if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") || |
| !strcmp(compStr, "even") || !strcmp(compStr, "odd")) { |
| HalvingSwizzle = true; |
| } else if (vecType->getPointAccessorIdx(*compStr) != -1) { |
| do |
| compStr++; |
| while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1); |
| } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) { |
| do |
| compStr++; |
| while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1); |
| } |
| |
| if (!HalvingSwizzle && *compStr) { |
| // We didn't get to the end of the string. This means the component names |
| // didn't come from the same set *or* we encountered an illegal name. |
| Diag(OpLoc, diag::err_ext_vector_component_name_illegal) |
| << std::string(compStr,compStr+1) << SourceRange(CompLoc); |
| return QualType(); |
| } |
| |
| // Ensure no component accessor exceeds the width of the vector type it |
| // operates on. |
| if (!HalvingSwizzle) { |
| compStr = CompName.getName(); |
| |
| if (HexSwizzle) |
| compStr++; |
| |
| while (*compStr) { |
| if (!vecType->isAccessorWithinNumElements(*compStr++)) { |
| Diag(OpLoc, diag::err_ext_vector_component_exceeds_length) |
| << baseType << SourceRange(CompLoc); |
| return QualType(); |
| } |
| } |
| } |
| |
| // If this is a halving swizzle, verify that the base type has an even |
| // number of elements. |
| if (HalvingSwizzle && (vecType->getNumElements() & 1U)) { |
| Diag(OpLoc, diag::err_ext_vector_component_requires_even) |
| << baseType << SourceRange(CompLoc); |
| return QualType(); |
| } |
| |
| // The component accessor looks fine - now we need to compute the actual type. |
| // The vector type is implied by the component accessor. For example, |
| // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc. |
| // vec4.s0 is a float, vec4.s23 is a vec3, etc. |
| // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2. |
| unsigned CompSize = HalvingSwizzle ? vecType->getNumElements() / 2 |
| : CompName.getLength(); |
| if (HexSwizzle) |
| CompSize--; |
| |
| if (CompSize == 1) |
| return vecType->getElementType(); |
| |
| QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize); |
| // Now look up the TypeDefDecl from the vector type. Without this, |
| // diagostics look bad. We want extended vector types to appear built-in. |
| for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) { |
| if (ExtVectorDecls[i]->getUnderlyingType() == VT) |
| return Context.getTypedefType(ExtVectorDecls[i]); |
| } |
| return VT; // should never get here (a typedef type should always be found). |
| } |
| |
| |
| /// constructSetterName - Return the setter name for the given |
| /// identifier, i.e. "set" + Name where the initial character of Name |
| /// has been capitalized. |
| // FIXME: Merge with same routine in Parser. But where should this |
| // live? |
| static IdentifierInfo *constructSetterName(IdentifierTable &Idents, |
| const IdentifierInfo *Name) { |
| llvm::SmallString<100> SelectorName; |
| SelectorName = "set"; |
| SelectorName.append(Name->getName(), Name->getName()+Name->getLength()); |
| SelectorName[3] = toupper(SelectorName[3]); |
| return &Idents.get(&SelectorName[0], &SelectorName[SelectorName.size()]); |
| } |
| |
| Action::OwningExprResult |
| Sema::ActOnMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc, |
| tok::TokenKind OpKind, SourceLocation MemberLoc, |
| IdentifierInfo &Member) { |
| Expr *BaseExpr = static_cast<Expr *>(Base.release()); |
| assert(BaseExpr && "no record expression"); |
| |
| // Perform default conversions. |
| DefaultFunctionArrayConversion(BaseExpr); |
| |
| QualType BaseType = BaseExpr->getType(); |
| assert(!BaseType.isNull() && "no type for member expression"); |
| |
| // Get the type being accessed in BaseType. If this is an arrow, the BaseExpr |
| // must have pointer type, and the accessed type is the pointee. |
| if (OpKind == tok::arrow) { |
| if (const PointerType *PT = BaseType->getAsPointerType()) |
| BaseType = PT->getPointeeType(); |
| else if (getLangOptions().CPlusPlus && BaseType->isRecordType()) |
| return Owned(BuildOverloadedArrowExpr(S, BaseExpr, OpLoc, |
| MemberLoc, Member)); |
| else |
| return ExprError(Diag(MemberLoc, |
| diag::err_typecheck_member_reference_arrow) |
| << BaseType << BaseExpr->getSourceRange()); |
| } |
| |
| // Handle field access to simple records. This also handles access to fields |
| // of the ObjC 'id' struct. |
| if (const RecordType *RTy = BaseType->getAsRecordType()) { |
| RecordDecl *RDecl = RTy->getDecl(); |
| if (DiagnoseIncompleteType(OpLoc, BaseType, |
| diag::err_typecheck_incomplete_tag, |
| BaseExpr->getSourceRange())) |
| return ExprError(); |
| |
| // The record definition is complete, now make sure the member is valid. |
| // FIXME: Qualified name lookup for C++ is a bit more complicated |
| // than this. |
| LookupResult Result |
| = LookupQualifiedName(RDecl, DeclarationName(&Member), |
| LookupMemberName, false); |
| |
| NamedDecl *MemberDecl = 0; |
| if (!Result) |
| return ExprError(Diag(MemberLoc, diag::err_typecheck_no_member) |
| << &Member << BaseExpr->getSourceRange()); |
| else if (Result.isAmbiguous()) { |
| DiagnoseAmbiguousLookup(Result, DeclarationName(&Member), |
| MemberLoc, BaseExpr->getSourceRange()); |
| return ExprError(); |
| } else |
| MemberDecl = Result; |
| |
| // If the decl being referenced had an error, return an error for this |
| // sub-expr without emitting another error, in order to avoid cascading |
| // error cases. |
| if (MemberDecl->isInvalidDecl()) |
| return ExprError(); |
| |
| // Check the use of this field |
| if (DiagnoseUseOfDecl(MemberDecl, MemberLoc)) |
| return ExprError(); |
| |
| if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) { |
| // We may have found a field within an anonymous union or struct |
| // (C++ [class.union]). |
| if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion()) |
| return BuildAnonymousStructUnionMemberReference(MemberLoc, FD, |
| BaseExpr, OpLoc); |
| |
| // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref] |
| // FIXME: Handle address space modifiers |
| QualType MemberType = FD->getType(); |
| if (const ReferenceType *Ref = MemberType->getAsReferenceType()) |
| MemberType = Ref->getPointeeType(); |
| else { |
| unsigned combinedQualifiers = |
| MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers(); |
| if (FD->isMutable()) |
| combinedQualifiers &= ~QualType::Const; |
| MemberType = MemberType.getQualifiedType(combinedQualifiers); |
| } |
| |
| return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, FD, |
| MemberLoc, MemberType)); |
| } else if (CXXClassVarDecl *Var = dyn_cast<CXXClassVarDecl>(MemberDecl)) |
| return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, |
| Var, MemberLoc, |
| Var->getType().getNonReferenceType())); |
| else if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl)) |
| return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, |
| MemberFn, MemberLoc, MemberFn->getType())); |
| else if (OverloadedFunctionDecl *Ovl |
| = dyn_cast<OverloadedFunctionDecl>(MemberDecl)) |
| return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, Ovl, |
| MemberLoc, Context.OverloadTy)); |
| else if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) |
| return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, Enum, |
| MemberLoc, Enum->getType())); |
| else if (isa<TypeDecl>(MemberDecl)) |
| return ExprError(Diag(MemberLoc,diag::err_typecheck_member_reference_type) |
| << DeclarationName(&Member) << int(OpKind == tok::arrow)); |
| |
| // We found a declaration kind that we didn't expect. This is a |
| // generic error message that tells the user that she can't refer |
| // to this member with '.' or '->'. |
| return ExprError(Diag(MemberLoc, |
| diag::err_typecheck_member_reference_unknown) |
| << DeclarationName(&Member) << int(OpKind == tok::arrow)); |
| } |
| |
| // Handle access to Objective-C instance variables, such as "Obj->ivar" and |
| // (*Obj).ivar. |
| if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) { |
| if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(&Member)) { |
| // If the decl being referenced had an error, return an error for this |
| // sub-expr without emitting another error, in order to avoid cascading |
| // error cases. |
| if (IV->isInvalidDecl()) |
| return ExprError(); |
| |
| // Check whether we can reference this field. |
| if (DiagnoseUseOfDecl(IV, MemberLoc)) |
| return ExprError(); |
| |
| ObjCIvarRefExpr *MRef= new (Context) ObjCIvarRefExpr(IV, IV->getType(), |
| MemberLoc, BaseExpr, |
| OpKind == tok::arrow); |
| Context.setFieldDecl(IFTy->getDecl(), IV, MRef); |
| return Owned(MRef); |
| } |
| return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar) |
| << IFTy->getDecl()->getDeclName() << &Member |
| << BaseExpr->getSourceRange()); |
| } |
| |
| // Handle Objective-C property access, which is "Obj.property" where Obj is a |
| // pointer to a (potentially qualified) interface type. |
| const PointerType *PTy; |
| const ObjCInterfaceType *IFTy; |
| if (OpKind == tok::period && (PTy = BaseType->getAsPointerType()) && |
| (IFTy = PTy->getPointeeType()->getAsObjCInterfaceType())) { |
| ObjCInterfaceDecl *IFace = IFTy->getDecl(); |
| |
| // Search for a declared property first. |
| if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(&Member)) { |
| // Check whether we can reference this property. |
| if (DiagnoseUseOfDecl(PD, MemberLoc)) |
| return ExprError(); |
| |
| return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(), |
| MemberLoc, BaseExpr)); |
| } |
| |
| // Check protocols on qualified interfaces. |
| for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(), |
| E = IFTy->qual_end(); I != E; ++I) |
| if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member)) { |
| // Check whether we can reference this property. |
| if (DiagnoseUseOfDecl(PD, MemberLoc)) |
| return ExprError(); |
| |
| return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(), |
| MemberLoc, BaseExpr)); |
| } |
| |
| // If that failed, look for an "implicit" property by seeing if the nullary |
| // selector is implemented. |
| |
| // FIXME: The logic for looking up nullary and unary selectors should be |
| // shared with the code in ActOnInstanceMessage. |
| |
| Selector Sel = PP.getSelectorTable().getNullarySelector(&Member); |
| ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel); |
| |
| // If this reference is in an @implementation, check for 'private' methods. |
| if (!Getter) |
| if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) |
| if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) |
| if (ObjCImplementationDecl *ImpDecl = |
| ObjCImplementations[ClassDecl->getIdentifier()]) |
| Getter = ImpDecl->getInstanceMethod(Sel); |
| |
| // Look through local category implementations associated with the class. |
| if (!Getter) { |
| for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Getter; i++) { |
| if (ObjCCategoryImpls[i]->getClassInterface() == IFace) |
| Getter = ObjCCategoryImpls[i]->getInstanceMethod(Sel); |
| } |
| } |
| if (Getter) { |
| // Check if we can reference this property. |
| if (DiagnoseUseOfDecl(Getter, MemberLoc)) |
| return ExprError(); |
| |
| // If we found a getter then this may be a valid dot-reference, we |
| // will look for the matching setter, in case it is needed. |
| IdentifierInfo *SetterName = constructSetterName(PP.getIdentifierTable(), |
| &Member); |
| Selector SetterSel = PP.getSelectorTable().getUnarySelector(SetterName); |
| ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel); |
| if (!Setter) { |
| // If this reference is in an @implementation, also check for 'private' |
| // methods. |
| if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) |
| if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) |
| if (ObjCImplementationDecl *ImpDecl = |
| ObjCImplementations[ClassDecl->getIdentifier()]) |
| Setter = ImpDecl->getInstanceMethod(SetterSel); |
| } |
| // Look through local category implementations associated with the class. |
| if (!Setter) { |
| for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) { |
| if (ObjCCategoryImpls[i]->getClassInterface() == IFace) |
| Setter = ObjCCategoryImpls[i]->getInstanceMethod(SetterSel); |
| } |
| } |
| |
| if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc)) |
| return ExprError(); |
| |
| // FIXME: we must check that the setter has property type. |
| return Owned(new (Context) ObjCKVCRefExpr(Getter, Getter->getResultType(), |
| Setter, MemberLoc, BaseExpr)); |
| } |
| |
| return ExprError(Diag(MemberLoc, diag::err_property_not_found) |
| << &Member << BaseType); |
| } |
| // Handle properties on qualified "id" protocols. |
| const ObjCQualifiedIdType *QIdTy; |
| if (OpKind == tok::period && (QIdTy = BaseType->getAsObjCQualifiedIdType())) { |
| // Check protocols on qualified interfaces. |
| for (ObjCQualifiedIdType::qual_iterator I = QIdTy->qual_begin(), |
| E = QIdTy->qual_end(); I != E; ++I) { |
| if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member)) { |
| // Check the use of this declaration |
| if (DiagnoseUseOfDecl(PD, MemberLoc)) |
| return ExprError(); |
| |
| return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(), |
| MemberLoc, BaseExpr)); |
| } |
| // Also must look for a getter name which uses property syntax. |
| Selector Sel = PP.getSelectorTable().getNullarySelector(&Member); |
| if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) { |
| // Check the use of this method. |
| if (DiagnoseUseOfDecl(OMD, MemberLoc)) |
| return ExprError(); |
| |
| return Owned(new (Context) ObjCMessageExpr(BaseExpr, Sel, |
| OMD->getResultType(), OMD, OpLoc, MemberLoc, NULL, 0)); |
| } |
| } |
| |
| return ExprError(Diag(MemberLoc, diag::err_property_not_found) |
| << &Member << BaseType); |
| } |
| // Handle 'field access' to vectors, such as 'V.xx'. |
| if (BaseType->isExtVectorType()) { |
| QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc); |
| if (ret.isNull()) |
| return ExprError(); |
| return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, Member, |
| MemberLoc)); |
| } |
| |
| return ExprError(Diag(MemberLoc, |
| diag::err_typecheck_member_reference_struct_union) |
| << BaseType << BaseExpr->getSourceRange()); |
| } |
| |
| /// ConvertArgumentsForCall - Converts the arguments specified in |
| /// Args/NumArgs to the parameter types of the function FDecl with |
| /// function prototype Proto. Call is the call expression itself, and |
| /// Fn is the function expression. For a C++ member function, this |
| /// routine does not attempt to convert the object argument. Returns |
| /// true if the call is ill-formed. |
| bool |
| Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn, |
| FunctionDecl *FDecl, |
| const FunctionTypeProto *Proto, |
| Expr **Args, unsigned NumArgs, |
| SourceLocation RParenLoc) { |
| // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by |
| // assignment, to the types of the corresponding parameter, ... |
| unsigned NumArgsInProto = Proto->getNumArgs(); |
| unsigned NumArgsToCheck = NumArgs; |
| bool Invalid = false; |
| |
| // If too few arguments are available (and we don't have default |
| // arguments for the remaining parameters), don't make the call. |
| if (NumArgs < NumArgsInProto) { |
| if (!FDecl || NumArgs < FDecl->getMinRequiredArguments()) |
| return Diag(RParenLoc, diag::err_typecheck_call_too_few_args) |
| << Fn->getType()->isBlockPointerType() << Fn->getSourceRange(); |
| // Use default arguments for missing arguments |
| NumArgsToCheck = NumArgsInProto; |
| Call->setNumArgs(Context, NumArgsInProto); |
| } |
| |
| // If too many are passed and not variadic, error on the extras and drop |
| // them. |
| if (NumArgs > NumArgsInProto) { |
| if (!Proto->isVariadic()) { |
| Diag(Args[NumArgsInProto]->getLocStart(), |
| diag::err_typecheck_call_too_many_args) |
| << Fn->getType()->isBlockPointerType() << Fn->getSourceRange() |
| << SourceRange(Args[NumArgsInProto]->getLocStart(), |
| Args[NumArgs-1]->getLocEnd()); |
| // This deletes the extra arguments. |
| Call->setNumArgs(Context, NumArgsInProto); |
| Invalid = true; |
| } |
| NumArgsToCheck = NumArgsInProto; |
| } |
| |
| // Continue to check argument types (even if we have too few/many args). |
| for (unsigned i = 0; i != NumArgsToCheck; i++) { |
| QualType ProtoArgType = Proto->getArgType(i); |
| |
| Expr *Arg; |
| if (i < NumArgs) { |
| Arg = Args[i]; |
| |
| // Pass the argument. |
| if (PerformCopyInitialization(Arg, ProtoArgType, "passing")) |
| return true; |
| } else |
| // We already type-checked the argument, so we know it works. |
| Arg = new (Context) CXXDefaultArgExpr(FDecl->getParamDecl(i)); |
| QualType ArgType = Arg->getType(); |
| |
| Call->setArg(i, Arg); |
| } |
| |
| // If this is a variadic call, handle args passed through "...". |
| if (Proto->isVariadic()) { |
| VariadicCallType CallType = VariadicFunction; |
| if (Fn->getType()->isBlockPointerType()) |
| CallType = VariadicBlock; // Block |
| else if (isa<MemberExpr>(Fn)) |
| CallType = VariadicMethod; |
| |
| // Promote the arguments (C99 6.5.2.2p7). |
| for (unsigned i = NumArgsInProto; i != NumArgs; i++) { |
| Expr *Arg = Args[i]; |
| DefaultVariadicArgumentPromotion(Arg, CallType); |
| Call->setArg(i, Arg); |
| } |
| } |
| |
| return Invalid; |
| } |
| |
| /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments. |
| /// This provides the location of the left/right parens and a list of comma |
| /// locations. |
| Action::OwningExprResult |
| Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc, |
| MultiExprArg args, |
| SourceLocation *CommaLocs, SourceLocation RParenLoc) { |
| unsigned NumArgs = args.size(); |
| Expr *Fn = static_cast<Expr *>(fn.release()); |
| Expr **Args = reinterpret_cast<Expr**>(args.release()); |
| assert(Fn && "no function call expression"); |
| FunctionDecl *FDecl = NULL; |
| DeclarationName UnqualifiedName; |
| |
| if (getLangOptions().CPlusPlus) { |
| // Determine whether this is a dependent call inside a C++ template, |
| // in which case we won't do any semantic analysis now. |
| // FIXME: Will need to cache the results of name lookup (including ADL) in Fn. |
| bool Dependent = false; |
| if (Fn->isTypeDependent()) |
| Dependent = true; |
| else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs)) |
| Dependent = true; |
| |
| if (Dependent) |
| return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs, |
| Context.DependentTy, RParenLoc)); |
| |
| // Determine whether this is a call to an object (C++ [over.call.object]). |
| if (Fn->getType()->isRecordType()) |
| return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs, |
| CommaLocs, RParenLoc)); |
| |
| // Determine whether this is a call to a member function. |
| if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(Fn->IgnoreParens())) |
| if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) || |
| isa<CXXMethodDecl>(MemExpr->getMemberDecl())) |
| return Owned(BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs, |
| CommaLocs, RParenLoc)); |
| } |
| |
| // If we're directly calling a function, get the appropriate declaration. |
| DeclRefExpr *DRExpr = NULL; |
| Expr *FnExpr = Fn; |
| bool ADL = true; |
| while (true) { |
| if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(FnExpr)) |
| FnExpr = IcExpr->getSubExpr(); |
| else if (ParenExpr *PExpr = dyn_cast<ParenExpr>(FnExpr)) { |
| // Parentheses around a function disable ADL |
| // (C++0x [basic.lookup.argdep]p1). |
| ADL = false; |
| FnExpr = PExpr->getSubExpr(); |
| } else if (isa<UnaryOperator>(FnExpr) && |
| cast<UnaryOperator>(FnExpr)->getOpcode() |
| == UnaryOperator::AddrOf) { |
| FnExpr = cast<UnaryOperator>(FnExpr)->getSubExpr(); |
| } else if ((DRExpr = dyn_cast<DeclRefExpr>(FnExpr))) { |
| // Qualified names disable ADL (C++0x [basic.lookup.argdep]p1). |
| ADL &= !isa<QualifiedDeclRefExpr>(DRExpr); |
| break; |
| } else if (UnresolvedFunctionNameExpr *DepName |
| = dyn_cast<UnresolvedFunctionNameExpr>(FnExpr)) { |
| UnqualifiedName = DepName->getName(); |
| break; |
| } else { |
| // Any kind of name that does not refer to a declaration (or |
| // set of declarations) disables ADL (C++0x [basic.lookup.argdep]p3). |
| ADL = false; |
| break; |
| } |
| } |
| |
| OverloadedFunctionDecl *Ovl = 0; |
| if (DRExpr) { |
| FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl()); |
| Ovl = dyn_cast<OverloadedFunctionDecl>(DRExpr->getDecl()); |
| } |
| |
| if (Ovl || (getLangOptions().CPlusPlus && (FDecl || UnqualifiedName))) { |
| // We don't perform ADL for implicit declarations of builtins. |
| if (FDecl && FDecl->getBuiltinID(Context) && FDecl->isImplicit()) |
| ADL = false; |
| |
| // We don't perform ADL in C. |
| if (!getLangOptions().CPlusPlus) |
| ADL = false; |
| |
| if (Ovl || ADL) { |
| FDecl = ResolveOverloadedCallFn(Fn, DRExpr? DRExpr->getDecl() : 0, |
| UnqualifiedName, LParenLoc, Args, |
| NumArgs, CommaLocs, RParenLoc, ADL); |
| if (!FDecl) |
| return ExprError(); |
| |
| // Update Fn to refer to the actual function selected. |
| Expr *NewFn = 0; |
| if (QualifiedDeclRefExpr *QDRExpr |
| = dyn_cast_or_null<QualifiedDeclRefExpr>(DRExpr)) |
| NewFn = new (Context) QualifiedDeclRefExpr(FDecl, FDecl->getType(), |
| QDRExpr->getLocation(), |
| false, false, |
| QDRExpr->getSourceRange().getBegin()); |
| else |
| NewFn = new (Context) DeclRefExpr(FDecl, FDecl->getType(), |
| Fn->getSourceRange().getBegin()); |
| Fn->Destroy(Context); |
| Fn = NewFn; |
| } |
| } |
| |
| // Promote the function operand. |
| UsualUnaryConversions(Fn); |
| |
| // Make the call expr early, before semantic checks. This guarantees cleanup |
| // of arguments and function on error. |
| ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn, |
| Args, NumArgs, |
| Context.BoolTy, |
| RParenLoc)); |
| |
| const FunctionType *FuncT; |
| if (!Fn->getType()->isBlockPointerType()) { |
| // C99 6.5.2.2p1 - "The expression that denotes the called function shall |
| // have type pointer to function". |
| const PointerType *PT = Fn->getType()->getAsPointerType(); |
| if (PT == 0) |
| return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function) |
| << Fn->getType() << Fn->getSourceRange()); |
| FuncT = PT->getPointeeType()->getAsFunctionType(); |
| } else { // This is a block call. |
| FuncT = Fn->getType()->getAsBlockPointerType()->getPointeeType()-> |
| getAsFunctionType(); |
| } |
| if (FuncT == 0) |
| return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function) |
| << Fn->getType() << Fn->getSourceRange()); |
| |
| // We know the result type of the call, set it. |
| TheCall->setType(FuncT->getResultType().getNonReferenceType()); |
| |
| if (const FunctionTypeProto *Proto = dyn_cast<FunctionTypeProto>(FuncT)) { |
| if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs, |
| RParenLoc)) |
| return ExprError(); |
| } else { |
| assert(isa<FunctionTypeNoProto>(FuncT) && "Unknown FunctionType!"); |
| |
| // Promote the arguments (C99 6.5.2.2p6). |
| for (unsigned i = 0; i != NumArgs; i++) { |
| Expr *Arg = Args[i]; |
| DefaultArgumentPromotion(Arg); |
| TheCall->setArg(i, Arg); |
| } |
| } |
| |
| if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl)) |
| if (!Method->isStatic()) |
| return ExprError(Diag(LParenLoc, diag::err_member_call_without_object) |
| << Fn->getSourceRange()); |
| |
| // Do special checking on direct calls to functions. |
| if (FDecl) |
| return CheckFunctionCall(FDecl, TheCall.take()); |
| |
| return Owned(TheCall.take()); |
| } |
| |
| Action::OwningExprResult |
| Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty, |
| SourceLocation RParenLoc, ExprArg InitExpr) { |
| assert((Ty != 0) && "ActOnCompoundLiteral(): missing type"); |
| QualType literalType = QualType::getFromOpaquePtr(Ty); |
| // FIXME: put back this assert when initializers are worked out. |
| //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression"); |
| Expr *literalExpr = static_cast<Expr*>(InitExpr.get()); |
| |
| if (literalType->isArrayType()) { |
| if (literalType->isVariableArrayType()) |
| return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init) |
| << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd())); |
| } else if (DiagnoseIncompleteType(LParenLoc, literalType, |
| diag::err_typecheck_decl_incomplete_type, |
| SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()))) |
| return ExprError(); |
| |
| if (CheckInitializerTypes(literalExpr, literalType, LParenLoc, |
| DeclarationName(), /*FIXME:DirectInit=*/false)) |
| return ExprError(); |
| |
| bool isFileScope = getCurFunctionOrMethodDecl() == 0; |
| if (isFileScope) { // 6.5.2.5p3 |
| if (CheckForConstantInitializer(literalExpr, literalType)) |
| return ExprError(); |
| } |
| InitExpr.release(); |
| return Owned(new (Context) CompoundLiteralExpr(LParenLoc, literalType, |
| literalExpr, isFileScope)); |
| } |
| |
| Action::OwningExprResult |
| Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist, |
| InitListDesignations &Designators, |
| SourceLocation RBraceLoc) { |
| unsigned NumInit = initlist.size(); |
| Expr **InitList = reinterpret_cast<Expr**>(initlist.release()); |
| |
| // Semantic analysis for initializers is done by ActOnDeclarator() and |
| // CheckInitializer() - it requires knowledge of the object being intialized. |
| |
| InitListExpr *E = new (Context) InitListExpr(LBraceLoc, InitList, NumInit, |
| RBraceLoc); |
| E->setType(Context.VoidTy); // FIXME: just a place holder for now. |
| return Owned(E); |
| } |
| |
| /// CheckCastTypes - Check type constraints for casting between types. |
| bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr) { |
| UsualUnaryConversions(castExpr); |
| |
| // C99 6.5.4p2: the cast type needs to be void or scalar and the expression |
| // type needs to be scalar. |
| if (castType->isVoidType()) { |
| // Cast to void allows any expr type. |
| } else if (castType->isDependentType() || castExpr->isTypeDependent()) { |
| // We can't check any more until template instantiation time. |
| } else if (!castType->isScalarType() && !castType->isVectorType()) { |
| if (Context.getCanonicalType(castType).getUnqualifiedType() == |
| Context.getCanonicalType(castExpr->getType().getUnqualifiedType()) && |
| (castType->isStructureType() || castType->isUnionType())) { |
| // GCC struct/union extension: allow cast to self. |
| Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar) |
| << castType << castExpr->getSourceRange(); |
| } else if (castType->isUnionType()) { |
| // GCC cast to union extension |
| RecordDecl *RD = castType->getAsRecordType()->getDecl(); |
| RecordDecl::field_iterator Field, FieldEnd; |
| for (Field = RD->field_begin(), FieldEnd = RD->field_end(); |
| Field != FieldEnd; ++Field) { |
| if (Context.getCanonicalType(Field->getType()).getUnqualifiedType() == |
| Context.getCanonicalType(castExpr->getType()).getUnqualifiedType()) { |
| Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union) |
| << castExpr->getSourceRange(); |
| break; |
| } |
| } |
| if (Field == FieldEnd) |
| return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type) |
| << castExpr->getType() << castExpr->getSourceRange(); |
| } else { |
| // Reject any other conversions to non-scalar types. |
| return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar) |
| << castType << castExpr->getSourceRange(); |
| } |
| } else if (!castExpr->getType()->isScalarType() && |
| !castExpr->getType()->isVectorType()) { |
| return Diag(castExpr->getLocStart(), |
| diag::err_typecheck_expect_scalar_operand) |
| << castExpr->getType() << castExpr->getSourceRange(); |
| } else if (castExpr->getType()->isVectorType()) { |
| if (CheckVectorCast(TyR, castExpr->getType(), castType)) |
| return true; |
| } else if (castType->isVectorType()) { |
| if (CheckVectorCast(TyR, castType, castExpr->getType())) |
| return true; |
| } |
| return false; |
| } |
| |
| bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) { |
| assert(VectorTy->isVectorType() && "Not a vector type!"); |
| |
| if (Ty->isVectorType() || Ty->isIntegerType()) { |
| if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty)) |
| return Diag(R.getBegin(), |
| Ty->isVectorType() ? |
| diag::err_invalid_conversion_between_vectors : |
| diag::err_invalid_conversion_between_vector_and_integer) |
| << VectorTy << Ty << R; |
| } else |
| return Diag(R.getBegin(), |
| diag::err_invalid_conversion_between_vector_and_scalar) |
| << VectorTy << Ty << R; |
| |
| return false; |
| } |
| |
| Action::OwningExprResult |
| Sema::ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty, |
| SourceLocation RParenLoc, ExprArg Op) { |
| assert((Ty != 0) && (Op.get() != 0) && |
| "ActOnCastExpr(): missing type or expr"); |
| |
| Expr *castExpr = static_cast<Expr*>(Op.release()); |
| QualType castType = QualType::getFromOpaquePtr(Ty); |
| |
| if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr)) |
| return ExprError(); |
| return Owned(new (Context) CStyleCastExpr(castType, castExpr, castType, |
| LParenLoc, RParenLoc)); |
| } |
| |
| /// Note that lex is not null here, even if this is the gnu "x ?: y" extension. |
| /// In that case, lex = cond. |
| /// C99 6.5.15 |
| QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS, |
| SourceLocation QuestionLoc) { |
| UsualUnaryConversions(Cond); |
| UsualUnaryConversions(LHS); |
| UsualUnaryConversions(RHS); |
| QualType CondTy = Cond->getType(); |
| QualType LHSTy = LHS->getType(); |
| QualType RHSTy = RHS->getType(); |
| |
| // first, check the condition. |
| if (!Cond->isTypeDependent()) { |
| if (!CondTy->isScalarType()) { // C99 6.5.15p2 |
| Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar) |
| << CondTy; |
| return QualType(); |
| } |
| } |
| |
| // Now check the two expressions. |
| if ((LHS && LHS->isTypeDependent()) || (RHS && RHS->isTypeDependent())) |
| return Context.DependentTy; |
| |
| // If both operands have arithmetic type, do the usual arithmetic conversions |
| // to find a common type: C99 6.5.15p3,5. |
| if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) { |
| UsualArithmeticConversions(LHS, RHS); |
| return LHS->getType(); |
| } |
| |
| // If both operands are the same structure or union type, the result is that |
| // type. |
| if (const RecordType *LHSRT = LHSTy->getAsRecordType()) { // C99 6.5.15p3 |
| if (const RecordType *RHSRT = RHSTy->getAsRecordType()) |
| if (LHSRT->getDecl() == RHSRT->getDecl()) |
| // "If both the operands have structure or union type, the result has |
| // that type." This implies that CV qualifiers are dropped. |
| return LHSTy.getUnqualifiedType(); |
| } |
| |
| // C99 6.5.15p5: "If both operands have void type, the result has void type." |
| // The following || allows only one side to be void (a GCC-ism). |
| if (LHSTy->isVoidType() || RHSTy->isVoidType()) { |
| if (!LHSTy->isVoidType()) |
| Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void) |
| << RHS->getSourceRange(); |
| if (!RHSTy->isVoidType()) |
| Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void) |
| << LHS->getSourceRange(); |
| ImpCastExprToType(LHS, Context.VoidTy); |
| ImpCastExprToType(RHS, Context.VoidTy); |
| return Context.VoidTy; |
| } |
| // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has |
| // the type of the other operand." |
| if ((LHSTy->isPointerType() || LHSTy->isBlockPointerType() || |
| Context.isObjCObjectPointerType(LHSTy)) && |
| RHS->isNullPointerConstant(Context)) { |
| ImpCastExprToType(RHS, LHSTy); // promote the null to a pointer. |
| return LHSTy; |
| } |
| if ((RHSTy->isPointerType() || RHSTy->isBlockPointerType() || |
| Context.isObjCObjectPointerType(RHSTy)) && |
| LHS->isNullPointerConstant(Context)) { |
| ImpCastExprToType(LHS, RHSTy); // promote the null to a pointer. |
| return RHSTy; |
| } |
| |
| // Handle the case where both operands are pointers before we handle null |
| // pointer constants in case both operands are null pointer constants. |
| if (const PointerType *LHSPT = LHSTy->getAsPointerType()) { // C99 6.5.15p3,6 |
| if (const PointerType *RHSPT = RHSTy->getAsPointerType()) { |
| // get the "pointed to" types |
| QualType lhptee = LHSPT->getPointeeType(); |
| QualType rhptee = RHSPT->getPointeeType(); |
| |
| // ignore qualifiers on void (C99 6.5.15p3, clause 6) |
| if (lhptee->isVoidType() && |
| rhptee->isIncompleteOrObjectType()) { |
| // Figure out necessary qualifiers (C99 6.5.15p6) |
| QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers()); |
| QualType destType = Context.getPointerType(destPointee); |
| ImpCastExprToType(LHS, destType); // add qualifiers if necessary |
| ImpCastExprToType(RHS, destType); // promote to void* |
| return destType; |
| } |
| if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) { |
| QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers()); |
| QualType destType = Context.getPointerType(destPointee); |
| ImpCastExprToType(LHS, destType); // add qualifiers if necessary |
| ImpCastExprToType(RHS, destType); // promote to void* |
| return destType; |
| } |
| |
| if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) { |
| // Two identical pointers types are always compatible. |
| return LHSTy; |
| } |
| |
| QualType compositeType = LHSTy; |
| |
| // If either type is an Objective-C object type then check |
| // compatibility according to Objective-C. |
| if (Context.isObjCObjectPointerType(LHSTy) || |
| Context.isObjCObjectPointerType(RHSTy)) { |
| // If both operands are interfaces and either operand can be |
| // assigned to the other, use that type as the composite |
| // type. This allows |
| // xxx ? (A*) a : (B*) b |
| // where B is a subclass of A. |
| // |
| // Additionally, as for assignment, if either type is 'id' |
| // allow silent coercion. Finally, if the types are |
| // incompatible then make sure to use 'id' as the composite |
| // type so the result is acceptable for sending messages to. |
| |
| // FIXME: Consider unifying with 'areComparableObjCPointerTypes'. |
| // It could return the composite type. |
| const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType(); |
| const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType(); |
| if (LHSIface && RHSIface && |
| Context.canAssignObjCInterfaces(LHSIface, RHSIface)) { |
| compositeType = LHSTy; |
| } else if (LHSIface && RHSIface && |
| Context.canAssignObjCInterfaces(RHSIface, LHSIface)) { |
| compositeType = RHSTy; |
| } else if (Context.isObjCIdStructType(lhptee) || |
| Context.isObjCIdStructType(rhptee)) { |
| compositeType = Context.getObjCIdType(); |
| } else { |
| Diag(QuestionLoc, diag::ext_typecheck_comparison_of_distinct_pointers) |
| << LHSTy << RHSTy |
| << LHS->getSourceRange() << RHS->getSourceRange(); |
| QualType incompatTy = Context.getObjCIdType(); |
| ImpCastExprToType(LHS, incompatTy); |
| ImpCastExprToType(RHS, incompatTy); |
| return incompatTy; |
| } |
| } else if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(), |
| rhptee.getUnqualifiedType())) { |
| Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers) |
| << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange(); |
| // In this situation, we assume void* type. No especially good |
| // reason, but this is what gcc does, and we do have to pick |
| // to get a consistent AST. |
| QualType incompatTy = Context.getPointerType(Context.VoidTy); |
| ImpCastExprToType(LHS, incompatTy); |
| ImpCastExprToType(RHS, incompatTy); |
| return incompatTy; |
| } |
| // The pointer types are compatible. |
| // C99 6.5.15p6: If both operands are pointers to compatible types *or* to |
| // differently qualified versions of compatible types, the result type is |
| // a pointer to an appropriately qualified version of the *composite* |
| // type. |
| // FIXME: Need to calculate the composite type. |
| // FIXME: Need to add qualifiers |
| ImpCastExprToType(LHS, compositeType); |
| ImpCastExprToType(RHS, compositeType); |
| return compositeType; |
| } |
| } |
| |
| // Selection between block pointer types is ok as long as they are the same. |
| if (LHSTy->isBlockPointerType() && RHSTy->isBlockPointerType() && |
| Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) |
| return LHSTy; |
| |
| // Need to handle "id<xx>" explicitly. Unlike "id", whose canonical type |
| // evaluates to "struct objc_object *" (and is handled above when comparing |
| // id with statically typed objects). |
| if (LHSTy->isObjCQualifiedIdType() || RHSTy->isObjCQualifiedIdType()) { |
| // GCC allows qualified id and any Objective-C type to devolve to |
| // id. Currently localizing to here until clear this should be |
| // part of ObjCQualifiedIdTypesAreCompatible. |
| if (ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true) || |
| (LHSTy->isObjCQualifiedIdType() && |
| Context.isObjCObjectPointerType(RHSTy)) || |
| (RHSTy->isObjCQualifiedIdType() && |
| Context.isObjCObjectPointerType(LHSTy))) { |
| // FIXME: This is not the correct composite type. This only |
| // happens to work because id can more or less be used anywhere, |
| // however this may change the type of method sends. |
| // FIXME: gcc adds some type-checking of the arguments and emits |
| // (confusing) incompatible comparison warnings in some |
| // cases. Investigate. |
| QualType compositeType = Context.getObjCIdType(); |
| ImpCastExprToType(LHS, compositeType); |
| ImpCastExprToType(RHS, compositeType); |
| return compositeType; |
| } |
| } |
| |
| // Otherwise, the operands are not compatible. |
| Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) |
| << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange(); |
| return QualType(); |
| } |
| |
| /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null |
| /// in the case of a the GNU conditional expr extension. |
| Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc, |
| SourceLocation ColonLoc, |
| ExprArg Cond, ExprArg LHS, |
| ExprArg RHS) { |
| Expr *CondExpr = (Expr *) Cond.get(); |
| Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get(); |
| |
| // If this is the gnu "x ?: y" extension, analyze the types as though the LHS |
| // was the condition. |
| bool isLHSNull = LHSExpr == 0; |
| if (isLHSNull) |
| LHSExpr = CondExpr; |
| |
| QualType result = CheckConditionalOperands(CondExpr, LHSExpr, |
| RHSExpr, QuestionLoc); |
| if (result.isNull()) |
| return ExprError(); |
| |
| Cond.release(); |
| LHS.release(); |
| RHS.release(); |
| return Owned(new (Context) ConditionalOperator(CondExpr, |
| isLHSNull ? 0 : LHSExpr, |
| RHSExpr, result)); |
| } |
| |
| |
| // CheckPointerTypesForAssignment - This is a very tricky routine (despite |
| // being closely modeled after the C99 spec:-). The odd characteristic of this |
| // routine is it effectively iqnores the qualifiers on the top level pointee. |
| // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3]. |
| // FIXME: add a couple examples in this comment. |
| Sema::AssignConvertType |
| Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) { |
| QualType lhptee, rhptee; |
| |
| // get the "pointed to" type (ignoring qualifiers at the top level) |
| lhptee = lhsType->getAsPointerType()->getPointeeType(); |
| rhptee = rhsType->getAsPointerType()->getPointeeType(); |
| |
| // make sure we operate on the canonical type |
| lhptee = Context.getCanonicalType(lhptee); |
| rhptee = Context.getCanonicalType(rhptee); |
| |
| AssignConvertType ConvTy = Compatible; |
| |
| // C99 6.5.16.1p1: This following citation is common to constraints |
| // 3 & 4 (below). ...and the type *pointed to* by the left has all the |
| // qualifiers of the type *pointed to* by the right; |
| // FIXME: Handle ExtQualType |
| if (!lhptee.isAtLeastAsQualifiedAs(rhptee)) |
| ConvTy = CompatiblePointerDiscardsQualifiers; |
| |
| // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or |
| // incomplete type and the other is a pointer to a qualified or unqualified |
| // version of void... |
| if (lhptee->isVoidType()) { |
| if (rhptee->isIncompleteOrObjectType()) |
| return ConvTy; |
| |
| // As an extension, we allow cast to/from void* to function pointer. |
| assert(rhptee->isFunctionType()); |
| return FunctionVoidPointer; |
| } |
| |
| if (rhptee->isVoidType()) { |
| if (lhptee->isIncompleteOrObjectType()) |
| return ConvTy; |
| |
| // As an extension, we allow cast to/from void* to function pointer. |
| assert(lhptee->isFunctionType()); |
| return FunctionVoidPointer; |
| } |
| |
| // Check for ObjC interfaces |
| const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType(); |
| const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType(); |
| if (LHSIface && RHSIface && |
| Context.canAssignObjCInterfaces(LHSIface, RHSIface)) |
| return ConvTy; |
| |
| // ID acts sort of like void* for ObjC interfaces |
| if (LHSIface && Context.isObjCIdStructType(rhptee)) |
| return ConvTy; |
| if (RHSIface && Context.isObjCIdStructType(lhptee)) |
| return ConvTy; |
| |
| // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or |
| // unqualified versions of compatible types, ... |
| if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(), |
| rhptee.getUnqualifiedType())) |
| return IncompatiblePointer; // this "trumps" PointerAssignDiscardsQualifiers |
| return ConvTy; |
| } |
| |
| /// CheckBlockPointerTypesForAssignment - This routine determines whether two |
| /// block pointer types are compatible or whether a block and normal pointer |
| /// are compatible. It is more restrict than comparing two function pointer |
| // types. |
| Sema::AssignConvertType |
| Sema::CheckBlockPointerTypesForAssignment(QualType lhsType, |
| QualType rhsType) { |
| QualType lhptee, rhptee; |
| |
| // get the "pointed to" type (ignoring qualifiers at the top level) |
| lhptee = lhsType->getAsBlockPointerType()->getPointeeType(); |
| rhptee = rhsType->getAsBlockPointerType()->getPointeeType(); |
| |
| // make sure we operate on the canonical type |
| lhptee = Context.getCanonicalType(lhptee); |
| rhptee = Context.getCanonicalType(rhptee); |
| |
| AssignConvertType ConvTy = Compatible; |
| |
| // For blocks we enforce that qualifiers are identical. |
| if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers()) |
| ConvTy = CompatiblePointerDiscardsQualifiers; |
| |
| if (!Context.typesAreBlockCompatible(lhptee, rhptee)) |
| return IncompatibleBlockPointer; |
| return ConvTy; |
| } |
| |
| /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently |
| /// has code to accommodate several GCC extensions when type checking |
| /// pointers. Here are some objectionable examples that GCC considers warnings: |
| /// |
| /// int a, *pint; |
| /// short *pshort; |
| /// struct foo *pfoo; |
| /// |
| /// pint = pshort; // warning: assignment from incompatible pointer type |
| /// a = pint; // warning: assignment makes integer from pointer without a cast |
| /// pint = a; // warning: assignment makes pointer from integer without a cast |
| /// pint = pfoo; // warning: assignment from incompatible pointer type |
| /// |
| /// As a result, the code for dealing with pointers is more complex than the |
| /// C99 spec dictates. |
| /// |
| Sema::AssignConvertType |
| Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) { |
| // Get canonical types. We're not formatting these types, just comparing |
| // them. |
| lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType(); |
| rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType(); |
| |
| if (lhsType == rhsType) |
| return Compatible; // Common case: fast path an exact match. |
| |
| // If the left-hand side is a reference type, then we are in a |
| // (rare!) case where we've allowed the use of references in C, |
| // e.g., as a parameter type in a built-in function. In this case, |
| // just make sure that the type referenced is compatible with the |
| // right-hand side type. The caller is responsible for adjusting |
| // lhsType so that the resulting expression does not have reference |
| // type. |
| if (const ReferenceType *lhsTypeRef = lhsType->getAsReferenceType()) { |
| if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType)) |
| return Compatible; |
| return Incompatible; |
| } |
| |
| if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) { |
| if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false)) |
| return Compatible; |
| // Relax integer conversions like we do for pointers below. |
| if (rhsType->isIntegerType()) |
| return IntToPointer; |
| if (lhsType->isIntegerType()) |
| return PointerToInt; |
| return IncompatibleObjCQualifiedId; |
| } |
| |
| if (lhsType->isVectorType() || rhsType->isVectorType()) { |
| // For ExtVector, allow vector splats; float -> <n x float> |
| if (const ExtVectorType *LV = lhsType->getAsExtVectorType()) |
| if (LV->getElementType() == rhsType) |
| return Compatible; |
| |
| // If we are allowing lax vector conversions, and LHS and RHS are both |
| // vectors, the total size only needs to be the same. This is a bitcast; |
| // no bits are changed but the result type is different. |
| if (getLangOptions().LaxVectorConversions && |
| lhsType->isVectorType() && rhsType->isVectorType()) { |
| if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType)) |
| return IncompatibleVectors; |
| } |
| return Incompatible; |
| } |
| |
| if (lhsType->isArithmeticType() && rhsType->isArithmeticType()) |
| return Compatible; |
| |
| if (isa<PointerType>(lhsType)) { |
| if (rhsType->isIntegerType()) |
| return IntToPointer; |
| |
| if (isa<PointerType>(rhsType)) |
| return CheckPointerTypesForAssignment(lhsType, rhsType); |
| |
| if (rhsType->getAsBlockPointerType()) { |
| if (lhsType->getAsPointerType()->getPointeeType()->isVoidType()) |
| return Compatible; |
| |
| // Treat block pointers as objects. |
| if (getLangOptions().ObjC1 && |
| lhsType == Context.getCanonicalType(Context.getObjCIdType())) |
| return Compatible; |
| } |
| return Incompatible; |
| } |
| |
| if (isa<BlockPointerType>(lhsType)) { |
| if (rhsType->isIntegerType()) |
| return IntToPointer; |
| |
| // Treat block pointers as objects. |
| if (getLangOptions().ObjC1 && |
| rhsType == Context.getCanonicalType(Context.getObjCIdType())) |
| return Compatible; |
| |
| if (rhsType->isBlockPointerType()) |
| return CheckBlockPointerTypesForAssignment(lhsType, rhsType); |
| |
| if (const PointerType *RHSPT = rhsType->getAsPointerType()) { |
| if (RHSPT->getPointeeType()->isVoidType()) |
| return Compatible; |
| } |
| return Incompatible; |
| } |
| |
| if (isa<PointerType>(rhsType)) { |
| // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer. |
| if (lhsType == Context.BoolTy) |
| return Compatible; |
| |
| if (lhsType->isIntegerType()) |
| return PointerToInt; |
| |
| if (isa<PointerType>(lhsType)) |
| return CheckPointerTypesForAssignment(lhsType, rhsType); |
| |
| if (isa<BlockPointerType>(lhsType) && |
| rhsType->getAsPointerType()->getPointeeType()->isVoidType()) |
| return Compatible; |
| return Incompatible; |
| } |
| |
| if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) { |
| if (Context.typesAreCompatible(lhsType, rhsType)) |
| return Compatible; |
| } |
| return Incompatible; |
| } |
| |
| Sema::AssignConvertType |
| Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) { |
| if (getLangOptions().CPlusPlus) { |
| if (!lhsType->isRecordType()) { |
| // C++ 5.17p3: If the left operand is not of class type, the |
| // expression is implicitly converted (C++ 4) to the |
| // cv-unqualified type of the left operand. |
| if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(), |
| "assigning")) |
| return Incompatible; |
| else |
| return Compatible; |
| } |
| |
| // FIXME: Currently, we fall through and treat C++ classes like C |
| // structures. |
| } |
| |
| // C99 6.5.16.1p1: the left operand is a pointer and the right is |
| // a null pointer constant. |
| if ((lhsType->isPointerType() || lhsType->isObjCQualifiedIdType() || |
| lhsType->isBlockPointerType()) |
| && rExpr->isNullPointerConstant(Context)) { |
| ImpCastExprToType(rExpr, lhsType); |
| return Compatible; |
| } |
| |
| // We don't allow conversion of non-null-pointer constants to integers. |
| if (lhsType->isBlockPointerType() && rExpr->getType()->isIntegerType()) |
| return IntToBlockPointer; |
| |
| // This check seems unnatural, however it is necessary to ensure the proper |
| // conversion of functions/arrays. If the conversion were done for all |
| // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary |
| // expressions that surpress this implicit conversion (&, sizeof). |
| // |
| // Suppress this for references: C++ 8.5.3p5. |
| if (!lhsType->isReferenceType()) |
| DefaultFunctionArrayConversion(rExpr); |
| |
| Sema::AssignConvertType result = |
| CheckAssignmentConstraints(lhsType, rExpr->getType()); |
| |
| // C99 6.5.16.1p2: The value of the right operand is converted to the |
| // type of the assignment expression. |
| // CheckAssignmentConstraints allows the left-hand side to be a reference, |
| // so that we can use references in built-in functions even in C. |
| // The getNonReferenceType() call makes sure that the resulting expression |
| // does not have reference type. |
| if (rExpr->getType() != lhsType) |
| ImpCastExprToType(rExpr, lhsType.getNonReferenceType()); |
| return result; |
| } |
| |
| Sema::AssignConvertType |
| Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) { |
| return CheckAssignmentConstraints(lhsType, rhsType); |
| } |
| |
| QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) { |
| Diag(Loc, diag::err_typecheck_invalid_operands) |
| << lex->getType() << rex->getType() |
| << lex->getSourceRange() << rex->getSourceRange(); |
| return QualType(); |
| } |
| |
| inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex, |
| Expr *&rex) { |
| // For conversion purposes, we ignore any qualifiers. |
| // For example, "const float" and "float" are equivalent. |
| QualType lhsType = |
| Context.getCanonicalType(lex->getType()).getUnqualifiedType(); |
| QualType rhsType = |
| Context.getCanonicalType(rex->getType()).getUnqualifiedType(); |
| |
| // If the vector types are identical, return. |
| if (lhsType == rhsType) |
| return lhsType; |
| |
| // Handle the case of a vector & extvector type of the same size and element |
| // type. It would be nice if we only had one vector type someday. |
| if (getLangOptions().LaxVectorConversions) { |
| // FIXME: Should we warn here? |
| if (const VectorType *LV = lhsType->getAsVectorType()) { |
| if (const VectorType *RV = rhsType->getAsVectorType()) |
| if (LV->getElementType() == RV->getElementType() && |
| LV->getNumElements() == RV->getNumElements()) { |
| return lhsType->isExtVectorType() ? lhsType : rhsType; |
| } |
| } |
| } |
| |
| // If the lhs is an extended vector and the rhs is a scalar of the same type |
| // or a literal, promote the rhs to the vector type. |
| if (const ExtVectorType *V = lhsType->getAsExtVectorType()) { |
| QualType eltType = V->getElementType(); |
| |
| if ((eltType->getAsBuiltinType() == rhsType->getAsBuiltinType()) || |
| (eltType->isIntegerType() && isa<IntegerLiteral>(rex)) || |
| (eltType->isFloatingType() && isa<FloatingLiteral>(rex))) { |
| ImpCastExprToType(rex, lhsType); |
| return lhsType; |
| } |
| } |
| |
| // If the rhs is an extended vector and the lhs is a scalar of the same type, |
| // promote the lhs to the vector type. |
| if (const ExtVectorType *V = rhsType->getAsExtVectorType()) { |
| QualType eltType = V->getElementType(); |
| |
| if ((eltType->getAsBuiltinType() == lhsType->getAsBuiltinType()) || |
| (eltType->isIntegerType() && isa<IntegerLiteral>(lex)) || |
| (eltType->isFloatingType() && isa<FloatingLiteral>(lex))) { |
| ImpCastExprToType(lex, rhsType); |
| return rhsType; |
| } |
| } |
| |
| // You cannot convert between vector values of different size. |
| Diag(Loc, diag::err_typecheck_vector_not_convertable) |
| << lex->getType() << rex->getType() |
| << lex->getSourceRange() << rex->getSourceRange(); |
| return QualType(); |
| } |
| |
| inline QualType Sema::CheckMultiplyDivideOperands( |
| Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) |
| { |
| if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) |
| return CheckVectorOperands(Loc, lex, rex); |
| |
| QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign); |
| |
| if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType()) |
| return compType; |
| return InvalidOperands(Loc, lex, rex); |
| } |
| |
| inline QualType Sema::CheckRemainderOperands( |
| Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) |
| { |
| if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) { |
| if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType()) |
| return CheckVectorOperands(Loc, lex, rex); |
| return InvalidOperands(Loc, lex, rex); |
| } |
| |
| QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign); |
| |
| if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType()) |
| return compType; |
| return InvalidOperands(Loc, lex, rex); |
| } |
| |
| inline QualType Sema::CheckAdditionOperands( // C99 6.5.6 |
| Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) |
| { |
| if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) |
| return CheckVectorOperands(Loc, lex, rex); |
| |
| QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign); |
| |
| // handle the common case first (both operands are arithmetic). |
| if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType()) |
| return compType; |
| |
| // Put any potential pointer into PExp |
| Expr* PExp = lex, *IExp = rex; |
| if (IExp->getType()->isPointerType()) |
| std::swap(PExp, IExp); |
| |
| if (const PointerType* PTy = PExp->getType()->getAsPointerType()) { |
| if (IExp->getType()->isIntegerType()) { |
| // Check for arithmetic on pointers to incomplete types |
| if (!PTy->getPointeeType()->isObjectType()) { |
| if (PTy->getPointeeType()->isVoidType()) { |
| if (getLangOptions().CPlusPlus) { |
| Diag(Loc, diag::err_typecheck_pointer_arith_void_type) |
| << lex->getSourceRange() << rex->getSourceRange(); |
| return QualType(); |
| } |
| |
| // GNU extension: arithmetic on pointer to void |
| Diag(Loc, diag::ext_gnu_void_ptr) |
| << lex->getSourceRange() << rex->getSourceRange(); |
| } else if (PTy->getPointeeType()->isFunctionType()) { |
| if (getLangOptions().CPlusPlus) { |
| Diag(Loc, diag::err_typecheck_pointer_arith_function_type) |
| << lex->getType() << lex->getSourceRange(); |
| return QualType(); |
| } |
| |
| // GNU extension: arithmetic on pointer to function |
| Diag(Loc, diag::ext_gnu_ptr_func_arith) |
| << lex->getType() << lex->getSourceRange(); |
| } else { |
| DiagnoseIncompleteType(Loc, PTy->getPointeeType(), |
| diag::err_typecheck_arithmetic_incomplete_type, |
| lex->getSourceRange(), SourceRange(), |
| lex->getType()); |
| return QualType(); |
| } |
| } |
| return PExp->getType(); |
| } |
| } |
| |
| return InvalidOperands(Loc, lex, rex); |
| } |
| |
| // C99 6.5.6 |
| QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex, |
| SourceLocation Loc, bool isCompAssign) { |
| if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) |
| return CheckVectorOperands(Loc, lex, rex); |
| |
| QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign); |
| |
| // Enforce type constraints: C99 6.5.6p3. |
| |
| // Handle the common case first (both operands are arithmetic). |
| if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType()) |
| return compType; |
| |
| // Either ptr - int or ptr - ptr. |
| if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) { |
| QualType lpointee = LHSPTy->getPointeeType(); |
| |
| // The LHS must be an object type, not incomplete, function, etc. |
| if (!lpointee->isObjectType()) { |
| // Handle the GNU void* extension. |
| if (lpointee->isVoidType()) { |
| Diag(Loc, diag::ext_gnu_void_ptr) |
| << lex->getSourceRange() << rex->getSourceRange(); |
| } else if (lpointee->isFunctionType()) { |
| if (getLangOptions().CPlusPlus) { |
| Diag(Loc, diag::err_typecheck_pointer_arith_function_type) |
| << lex->getType() << lex->getSourceRange(); |
| return QualType(); |
| } |
| |
| // GNU extension: arithmetic on pointer to function |
| Diag(Loc, diag::ext_gnu_ptr_func_arith) |
| << lex->getType() << lex->getSourceRange(); |
| } else { |
| Diag(Loc, diag::err_typecheck_sub_ptr_object) |
| << lex->getType() << lex->getSourceRange(); |
| return QualType(); |
| } |
| } |
| |
| // The result type of a pointer-int computation is the pointer type. |
| if (rex->getType()->isIntegerType()) |
| return lex->getType(); |
| |
| // Handle pointer-pointer subtractions. |
| if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) { |
| QualType rpointee = RHSPTy->getPointeeType(); |
| |
| // RHS must be an object type, unless void (GNU). |
| if (!rpointee->isObjectType()) { |
| // Handle the GNU void* extension. |
| if (rpointee->isVoidType()) { |
| if (!lpointee->isVoidType()) |
| Diag(Loc, diag::ext_gnu_void_ptr) |
| << lex->getSourceRange() << rex->getSourceRange(); |
| } else if (rpointee->isFunctionType()) { |
| if (getLangOptions().CPlusPlus) { |
| Diag(Loc, diag::err_typecheck_pointer_arith_function_type) |
| << rex->getType() << rex->getSourceRange(); |
| return QualType(); |
| } |
| |
| // GNU extension: arithmetic on pointer to function |
| if (!lpointee->isFunctionType()) |
| Diag(Loc, diag::ext_gnu_ptr_func_arith) |
| << lex->getType() << lex->getSourceRange(); |
| } else { |
| Diag(Loc, diag::err_typecheck_sub_ptr_object) |
| << rex->getType() << rex->getSourceRange(); |
| return QualType(); |
| } |
| } |
| |
| // Pointee types must be compatible. |
| if (!Context.typesAreCompatible( |
| Context.getCanonicalType(lpointee).getUnqualifiedType(), |
| Context.getCanonicalType(rpointee).getUnqualifiedType())) { |
| Diag(Loc, diag::err_typecheck_sub_ptr_compatible) |
| << lex->getType() << rex->getType() |
| << lex->getSourceRange() << rex->getSourceRange(); |
| return QualType(); |
| } |
| |
| return Context.getPointerDiffType(); |
| } |
| } |
| |
| return InvalidOperands(Loc, lex, rex); |
| } |
| |
| // C99 6.5.7 |
| QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc, |
| bool isCompAssign) { |
| // C99 6.5.7p2: Each of the operands shall have integer type. |
| if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType()) |
| return InvalidOperands(Loc, lex, rex); |
| |
| // Shifts don't perform usual arithmetic conversions, they just do integer |
| // promotions on each operand. C99 6.5.7p3 |
| if (!isCompAssign) |
| UsualUnaryConversions(lex); |
| UsualUnaryConversions(rex); |
| |
| // "The type of the result is that of the promoted left operand." |
| return lex->getType(); |
| } |
| |
| // C99 6.5.8 |
| QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc, |
| bool isRelational) { |
| if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) |
| return CheckVectorCompareOperands(lex, rex, Loc, isRelational); |
| |
| // C99 6.5.8p3 / C99 6.5.9p4 |
| if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType()) |
| UsualArithmeticConversions(lex, rex); |
| else { |
| UsualUnaryConversions(lex); |
| UsualUnaryConversions(rex); |
| } |
| QualType lType = lex->getType(); |
| QualType rType = rex->getType(); |
| |
| // For non-floating point types, check for self-comparisons of the form |
| // x == x, x != x, x < x, etc. These always evaluate to a constant, and |
| // often indicate logic errors in the program. |
| if (!lType->isFloatingType()) { |
| if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens())) |
| if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens())) |
| if (DRL->getDecl() == DRR->getDecl()) |
| Diag(Loc, diag::warn_selfcomparison); |
| } |
| |
| // The result of comparisons is 'bool' in C++, 'int' in C. |
| QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy : Context.IntTy; |
| |
| if (isRelational) { |
| if (lType->isRealType() && rType->isRealType()) |
| return ResultTy; |
| } else { |
| // Check for comparisons of floating point operands using != and ==. |
| if (lType->isFloatingType()) { |
| assert (rType->isFloatingType()); |
| CheckFloatComparison(Loc,lex,rex); |
| } |
| |
| if (lType->isArithmeticType() && rType->isArithmeticType()) |
| return ResultTy; |
| } |
| |
| bool LHSIsNull = lex->isNullPointerConstant(Context); |
| bool RHSIsNull = rex->isNullPointerConstant(Context); |
| |
| // All of the following pointer related warnings are GCC extensions, except |
| // when handling null pointer constants. One day, we can consider making them |
| // errors (when -pedantic-errors is enabled). |
| if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2 |
| QualType LCanPointeeTy = |
| Context.getCanonicalType(lType->getAsPointerType()->getPointeeType()); |
| QualType RCanPointeeTy = |
| Context.getCanonicalType(rType->getAsPointerType()->getPointeeType()); |
| |
| if (!LHSIsNull && !RHSIsNull && // C99 6.5.9p2 |
| !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() && |
| !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(), |
| RCanPointeeTy.getUnqualifiedType()) && |
| !Context.areComparableObjCPointerTypes(lType, rType)) { |
| Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers) |
| << lType << rType << lex->getSourceRange() << rex->getSourceRange(); |
| } |
| ImpCastExprToType(rex, lType); // promote the pointer to pointer |
| return ResultTy; |
| } |
| // Handle block pointer types. |
| if (lType->isBlockPointerType() && rType->isBlockPointerType()) { |
| QualType lpointee = lType->getAsBlockPointerType()->getPointeeType(); |
| QualType rpointee = rType->getAsBlockPointerType()->getPointeeType(); |
| |
| if (!LHSIsNull && !RHSIsNull && |
| !Context.typesAreBlockCompatible(lpointee, rpointee)) { |
| Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks) |
| << lType << rType << lex->getSourceRange() << rex->getSourceRange(); |
| } |
| ImpCastExprToType(rex, lType); // promote the pointer to pointer |
| return ResultTy; |
| } |
| // Allow block pointers to be compared with null pointer constants. |
| if ((lType->isBlockPointerType() && rType->isPointerType()) || |
| (lType->isPointerType() && rType->isBlockPointerType())) { |
| if (!LHSIsNull && !RHSIsNull) { |
| Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks) |
| << lType << rType << lex->getSourceRange() << rex->getSourceRange(); |
| } |
| ImpCastExprToType(rex, lType); // promote the pointer to pointer |
| return ResultTy; |
| } |
| |
| if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())) { |
| if (lType->isPointerType() || rType->isPointerType()) { |
| const PointerType *LPT = lType->getAsPointerType(); |
| const PointerType *RPT = rType->getAsPointerType(); |
| bool LPtrToVoid = LPT ? |
| Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false; |
| bool RPtrToVoid = RPT ? |
| Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false; |
| |
| if (!LPtrToVoid && !RPtrToVoid && |
| !Context.typesAreCompatible(lType, rType)) { |
| Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers) |
| << lType << rType << lex->getSourceRange() << rex->getSourceRange(); |
| ImpCastExprToType(rex, lType); |
| return ResultTy; |
| } |
| ImpCastExprToType(rex, lType); |
| return ResultTy; |
| } |
| if (ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) { |
| ImpCastExprToType(rex, lType); |
| return ResultTy; |
| } else { |
| if ((lType->isObjCQualifiedIdType() && rType->isObjCQualifiedIdType())) { |
| Diag(Loc, diag::warn_incompatible_qualified_id_operands) |
| << lType << rType << lex->getSourceRange() << rex->getSourceRange(); |
| ImpCastExprToType(rex, lType); |
| return ResultTy; |
| } |
| } |
| } |
| if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) && |
| rType->isIntegerType()) { |
| if (!RHSIsNull) |
| Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer) |
| << lType << rType << lex->getSourceRange() << rex->getSourceRange(); |
| ImpCastExprToType(rex, lType); // promote the integer to pointer |
| return ResultTy; |
| } |
| if (lType->isIntegerType() && |
| (rType->isPointerType() || rType->isObjCQualifiedIdType())) { |
| if (!LHSIsNull) |
| Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer) |
| << lType << rType << lex->getSourceRange() << rex->getSourceRange(); |
| ImpCastExprToType(lex, rType); // promote the integer to pointer |
| return ResultTy; |
| } |
| // Handle block pointers. |
| if (lType->isBlockPointerType() && rType->isIntegerType()) { |
| if (!RHSIsNull) |
| Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer) |
| << lType << rType << lex->getSourceRange() << rex->getSourceRange(); |
| ImpCastExprToType(rex, lType); // promote the integer to pointer |
| return ResultTy; |
| } |
| if (lType->isIntegerType() && rType->isBlockPointerType()) { |
| if (!LHSIsNull) |
| Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer) |
| << lType << rType << lex->getSourceRange() << rex->getSourceRange(); |
| ImpCastExprToType(lex, rType); // promote the integer to pointer |
| return ResultTy; |
| } |
| return InvalidOperands(Loc, lex, rex); |
| } |
| |
| /// CheckVectorCompareOperands - vector comparisons are a clang extension that |
| /// operates on extended vector types. Instead of producing an IntTy result, |
| /// like a scalar comparison, a vector comparison produces a vector of integer |
| /// types. |
| QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex, |
| SourceLocation Loc, |
| bool isRelational) { |
| // Check to make sure we're operating on vectors of the same type and width, |
| // Allowing one side to be a scalar of element type. |
| QualType vType = CheckVectorOperands(Loc, lex, rex); |
| if (vType.isNull()) |
| return vType; |
| |
| QualType lType = lex->getType(); |
| QualType rType = rex->getType(); |
| |
| // For non-floating point types, check for self-comparisons of the form |
| // x == x, x != x, x < x, etc. These always evaluate to a constant, and |
| // often indicate logic errors in the program. |
| if (!lType->isFloatingType()) { |
| if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens())) |
| if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens())) |
| if (DRL->getDecl() == DRR->getDecl()) |
| Diag(Loc, diag::warn_selfcomparison); |
| } |
| |
| // Check for comparisons of floating point operands using != and ==. |
| if (!isRelational && lType->isFloatingType()) { |
| assert (rType->isFloatingType()); |
| CheckFloatComparison(Loc,lex,rex); |
| } |
| |
| // Return the type for the comparison, which is the same as vector type for |
| // integer vectors, or an integer type of identical size and number of |
| // elements for floating point vectors. |
| if (lType->isIntegerType()) |
| return lType; |
| |
| const VectorType *VTy = lType->getAsVectorType(); |
| unsigned TypeSize = Context.getTypeSize(VTy->getElementType()); |
| if (TypeSize == Context.getTypeSize(Context.IntTy)) |
| return Context.getExtVectorType(Context.IntTy, VTy->getNumElements()); |
| else if (TypeSize == Context.getTypeSize(Context.LongTy)) |
| return Context.getExtVectorType(Context.LongTy, VTy->getNumElements()); |
| |
| assert(TypeSize == Context.getTypeSize(Context.LongLongTy) && |
| "Unhandled vector element size in vector compare"); |
| return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements()); |
| } |
| |
| inline QualType Sema::CheckBitwiseOperands( |
| Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) |
| { |
| if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) |
| return CheckVectorOperands(Loc, lex, rex); |
| |
| QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign); |
| |
| if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType()) |
| return compType; |
| return InvalidOperands(Loc, lex, rex); |
| } |
| |
| inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14] |
| Expr *&lex, Expr *&rex, SourceLocation Loc) |
| { |
| UsualUnaryConversions(lex); |
| UsualUnaryConversions(rex); |
| |
| if (lex->getType()->isScalarType() && rex->getType()->isScalarType()) |
| return Context.IntTy; |
| return InvalidOperands(Loc, lex, rex); |
| } |
| |
| /// IsReadonlyProperty - Verify that otherwise a valid l-value expression |
| /// is a read-only property; return true if so. A readonly property expression |
| /// depends on various declarations and thus must be treated specially. |
| /// |
| static bool IsReadonlyProperty(Expr *E, Sema &S) |
| { |
| if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) { |
| const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E); |
| if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) { |
| QualType BaseType = PropExpr->getBase()->getType(); |
| if (const PointerType *PTy = BaseType->getAsPointerType()) |
| if (const ObjCInterfaceType *IFTy = |
| PTy->getPointeeType()->getAsObjCInterfaceType()) |
| if (ObjCInterfaceDecl *IFace = IFTy->getDecl()) |
| if (S.isPropertyReadonly(PDecl, IFace)) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not, |
| /// emit an error and return true. If so, return false. |
| static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) { |
| Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context); |
| if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S)) |
| IsLV = Expr::MLV_ReadonlyProperty; |
| if (IsLV == Expr::MLV_Valid) |
| return false; |
| |
| unsigned Diag = 0; |
| bool NeedType = false; |
| switch (IsLV) { // C99 6.5.16p2 |
| default: assert(0 && "Unknown result from isModifiableLvalue!"); |
| case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break; |
| case Expr::MLV_ArrayType: |
| Diag = diag::err_typecheck_array_not_modifiable_lvalue; |
| NeedType = true; |
| break; |
| case Expr::MLV_NotObjectType: |
| Diag = diag::err_typecheck_non_object_not_modifiable_lvalue; |
| NeedType = true; |
| break; |
| case Expr::MLV_LValueCast: |
| Diag = diag::err_typecheck_lvalue_casts_not_supported; |
| break; |
| case Expr::MLV_InvalidExpression: |
| Diag = diag::err_typecheck_expression_not_modifiable_lvalue; |
| break; |
| case Expr::MLV_IncompleteType: |
| case Expr::MLV_IncompleteVoidType: |
| return S.DiagnoseIncompleteType(Loc, E->getType(), |
| diag::err_typecheck_incomplete_type_not_modifiable_lvalue, |
| E->getSourceRange()); |
| case Expr::MLV_DuplicateVectorComponents: |
| Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue; |
| break; |
| case Expr::MLV_NotBlockQualified: |
| Diag = diag::err_block_decl_ref_not_modifiable_lvalue; |
| break; |
| case Expr::MLV_ReadonlyProperty: |
| Diag = diag::error_readonly_property_assignment; |
| break; |
| case Expr::MLV_NoSetterProperty: |
| Diag = diag::error_nosetter_property_assignment; |
| break; |
| } |
| |
| if (NeedType) |
| S.Diag(Loc, Diag) << E->getType() << E->getSourceRange(); |
| else |
| S.Diag(Loc, Diag) << E->getSourceRange(); |
| return true; |
| } |
| |
| |
| |
| // C99 6.5.16.1 |
| QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS, |
| SourceLocation Loc, |
| QualType CompoundType) { |
| // Verify that LHS is a modifiable lvalue, and emit error if not. |
| if (CheckForModifiableLvalue(LHS, Loc, *this)) |
| return QualType(); |
| |
| QualType LHSType = LHS->getType(); |
| QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType; |
| |
| AssignConvertType ConvTy; |
| if (CompoundType.isNull()) { |
| // Simple assignment "x = y". |
| ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS); |
| // Special case of NSObject attributes on c-style pointer types. |
| if (ConvTy == IncompatiblePointer && |
| ((Context.isObjCNSObjectType(LHSType) && |
| Context.isObjCObjectPointerType(RHSType)) || |
| (Context.isObjCNSObjectType(RHSType) && |
| Context.isObjCObjectPointerType(LHSType)))) |
| ConvTy = Compatible; |
| |
| // If the RHS is a unary plus or minus, check to see if they = and + are |
| // right next to each other. If so, the user may have typo'd "x =+ 4" |
| // instead of "x += 4". |
| Expr *RHSCheck = RHS; |
| if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck)) |
| RHSCheck = ICE->getSubExpr(); |
| if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) { |
| if ((UO->getOpcode() == UnaryOperator::Plus || |
| UO->getOpcode() == UnaryOperator::Minus) && |
| Loc.isFileID() && UO->getOperatorLoc().isFileID() && |
| // Only if the two operators are exactly adjacent. |
| Loc.getFileLocWithOffset(1) == UO->getOperatorLoc()) |
| Diag(Loc, diag::warn_not_compound_assign) |
| << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-") |
| << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc()); |
| } |
| } else { |
| // Compound assignment "x += y" |
| ConvTy = CheckCompoundAssignmentConstraints(LHSType, RHSType); |
| } |
| |
| if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType, |
| RHS, "assigning")) |
| return QualType(); |
| |
| // C99 6.5.16p3: The type of an assignment expression is the type of the |
| // left operand unless the left operand has qualified type, in which case |
| // it is the unqualified version of the type of the left operand. |
| // C99 6.5.16.1p2: In simple assignment, the value of the right operand |
| // is converted to the type of the assignment expression (above). |
| // C++ 5.17p1: the type of the assignment expression is that of its left |
| // oprdu. |
| return LHSType.getUnqualifiedType(); |
| } |
| |
| // C99 6.5.17 |
| QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) { |
| // FIXME: what is required for LHS? |
| |
| // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions. |
| DefaultFunctionArrayConversion(RHS); |
| return RHS->getType(); |
| } |
| |
| /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine |
| /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions. |
| QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc, |
| bool isInc) { |
| QualType ResType = Op->getType(); |
| assert(!ResType.isNull() && "no type for increment/decrement expression"); |
| |
| if (getLangOptions().CPlusPlus && ResType->isBooleanType()) { |
| // Decrement of bool is not allowed. |
| if (!isInc) { |
| Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange(); |
| return QualType(); |
| } |
| // Increment of bool sets it to true, but is deprecated. |
| Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange(); |
| } else if (ResType->isRealType()) { |
| // OK! |
| } else if (const PointerType *PT = ResType->getAsPointerType()) { |
| // C99 6.5.2.4p2, 6.5.6p2 |
| if (PT->getPointeeType()->isObjectType()) { |
| // Pointer to object is ok! |
| } else if (PT->getPointeeType()->isVoidType()) { |
| if (getLangOptions().CPlusPlus) { |
| Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type) |
| << Op->getSourceRange(); |
| return QualType(); |
| } |
| |
| // Pointer to void is a GNU extension in C. |
| Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange(); |
| } else if (PT->getPointeeType()->isFunctionType()) { |
| if (getLangOptions().CPlusPlus) { |
| Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type) |
| << Op->getType() << Op->getSourceRange(); |
| return QualType(); |
| } |
| |
| Diag(OpLoc, diag::ext_gnu_ptr_func_arith) |
| << ResType << Op->getSourceRange(); |
| return QualType(); |
| } else { |
| DiagnoseIncompleteType(OpLoc, PT->getPointeeType(), |
| diag::err_typecheck_arithmetic_incomplete_type, |
| Op->getSourceRange(), SourceRange(), |
| ResType); |
| return QualType(); |
| } |
| } else if (ResType->isComplexType()) { |
| // C99 does not support ++/-- on complex types, we allow as an extension. |
| Diag(OpLoc, diag::ext_integer_increment_complex) |
| << ResType << Op->getSourceRange(); |
| } else { |
| Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement) |
| << ResType << Op->getSourceRange(); |
| return QualType(); |
| } |
| // At this point, we know we have a real, complex or pointer type. |
| // Now make sure the operand is a modifiable lvalue. |
| if (CheckForModifiableLvalue(Op, OpLoc, *this)) |
| return QualType(); |
| return ResType; |
| } |
| |
| /// getPrimaryDecl - Helper function for CheckAddressOfOperand(). |
| /// This routine allows us to typecheck complex/recursive expressions |
| /// where the declaration is needed for type checking. We only need to |
| /// handle cases when the expression references a function designator |
| /// or is an lvalue. Here are some examples: |
| /// - &(x) => x |
| /// - &*****f => f for f a function designator. |
| /// - &s.xx => s |
| /// - &s.zz[1].yy -> s, if zz is an array |
| /// - *(x + 1) -> x, if x is an array |
| /// - &"123"[2] -> 0 |
| /// - & __real__ x -> x |
| static NamedDecl *getPrimaryDecl(Expr *E) { |
| switch (E->getStmtClass()) { |
| case Stmt::DeclRefExprClass: |
| case Stmt::QualifiedDeclRefExprClass: |
| return cast<DeclRefExpr>(E)->getDecl(); |
| case Stmt::MemberExprClass: |
| // Fields cannot be declared with a 'register' storage class. |
| // &X->f is always ok, even if X is declared register. |
| if (cast<MemberExpr>(E)->isArrow()) |
| return 0; |
| return getPrimaryDecl(cast<MemberExpr>(E)->getBase()); |
| case Stmt::ArraySubscriptExprClass: { |
| // &X[4] and &4[X] refers to X if X is not a pointer. |
| |
| NamedDecl *D = getPrimaryDecl(cast<ArraySubscriptExpr>(E)->getBase()); |
| ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D); |
| if (!VD || VD->getType()->isPointerType()) |
| return 0; |
| else |
| return VD; |
| } |
| case Stmt::UnaryOperatorClass: { |
| UnaryOperator *UO = cast<UnaryOperator>(E); |
| |
| switch(UO->getOpcode()) { |
| case UnaryOperator::Deref: { |
| // *(X + 1) refers to X if X is not a pointer. |
| if (NamedDecl *D = getPrimaryDecl(UO->getSubExpr())) { |
| ValueDecl *VD = dyn_cast<ValueDecl>(D); |
| if (!VD || VD->getType()->isPointerType()) |
| return 0; |
| return VD; |
| } |
| return 0; |
| } |
| case UnaryOperator::Real: |
| case UnaryOperator::Imag: |
| case UnaryOperator::Extension: |
| return getPrimaryDecl(UO->getSubExpr()); |
| default: |
| return 0; |
| } |
| } |
| case Stmt::BinaryOperatorClass: { |
| BinaryOperator *BO = cast<BinaryOperator>(E); |
| |
| // Handle cases involving pointer arithmetic. The result of an |
| // Assign or AddAssign is not an lvalue so they can be ignored. |
| |
| // (x + n) or (n + x) => x |
| if (BO->getOpcode() == BinaryOperator::Add) { |
| if (BO->getLHS()->getType()->isPointerType()) { |
| return getPrimaryDecl(BO->getLHS()); |
| } else if (BO->getRHS()->getType()->isPointerType()) { |
| return getPrimaryDecl(BO->getRHS()); |
| } |
| } |
| |
| return 0; |
| } |
| case Stmt::ParenExprClass: |
| return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr()); |
| case Stmt::ImplicitCastExprClass: |
| // &X[4] when X is an array, has an implicit cast from array to pointer. |
| return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr()); |
| default: |
| return 0; |
| } |
| } |
| |
| /// CheckAddressOfOperand - The operand of & must be either a function |
| /// designator or an lvalue designating an object. If it is an lvalue, the |
| /// object cannot be declared with storage class register or be a bit field. |
| /// Note: The usual conversions are *not* applied to the operand of the & |
| /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue. |
| /// In C++, the operand might be an overloaded function name, in which case |
| /// we allow the '&' but retain the overloaded-function type. |
| QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) { |
| if (op->isTypeDependent()) |
| return Context.DependentTy; |
| |
| if (getLangOptions().C99) { |
| // Implement C99-only parts of addressof rules. |
| if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) { |
| if (uOp->getOpcode() == UnaryOperator::Deref) |
| // Per C99 6.5.3.2, the address of a deref always returns a valid result |
| // (assuming the deref expression is valid). |
| return uOp->getSubExpr()->getType(); |
| } |
| // Technically, there should be a check for array subscript |
| // expressions here, but the result of one is always an lvalue anyway. |
| } |
| NamedDecl *dcl = getPrimaryDecl(op); |
| Expr::isLvalueResult lval = op->isLvalue(Context); |
| |
| if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1 |
| if (!dcl || !isa<FunctionDecl>(dcl)) {// allow function designators |
| // FIXME: emit more specific diag... |
| Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof) |
| << op->getSourceRange(); |
| return QualType(); |
| } |
| } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(op)) { // C99 6.5.3.2p1 |
| if (FieldDecl *Field = dyn_cast<FieldDecl>(MemExpr->getMemberDecl())) { |
| if (Field->isBitField()) { |
| Diag(OpLoc, diag::err_typecheck_address_of) |
| << "bit-field" << op->getSourceRange(); |
| return QualType(); |
| } |
| } |
| // Check for Apple extension for accessing vector components. |
| } else if (isa<ExtVectorElementExpr>(op) || (isa<ArraySubscriptExpr>(op) && |
| cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType())){ |
| Diag(OpLoc, diag::err_typecheck_address_of) |
| << "vector element" << op->getSourceRange(); |
| return QualType(); |
| } else if (dcl) { // C99 6.5.3.2p1 |
| // We have an lvalue with a decl. Make sure the decl is not declared |
| // with the register storage-class specifier. |
| if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) { |
| if (vd->getStorageClass() == VarDecl::Register) { |
| Diag(OpLoc, diag::err_typecheck_address_of) |
| << "register variable" << op->getSourceRange(); |
| return QualType(); |
| } |
| } else if (isa<OverloadedFunctionDecl>(dcl)) { |
| return Context.OverloadTy; |
| } else if (isa<FieldDecl>(dcl)) { |
| // Okay: we can take the address of a field. |
| // Could be a pointer to member, though, if there is an explicit |
| // scope qualifier for the class. |
| if (isa<QualifiedDeclRefExpr>(op)) { |
| DeclContext *Ctx = dcl->getDeclContext(); |
| if (Ctx && Ctx->isRecord()) |
| return Context.getMemberPointerType(op->getType(), |
| Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr()); |
| } |
| } else if (isa<FunctionDecl>(dcl)) { |
| // Okay: we can take the address of a function. |
| // As above. |
| if (isa<QualifiedDeclRefExpr>(op)) { |
| DeclContext *Ctx = dcl->getDeclContext(); |
| if (Ctx && Ctx->isRecord()) |
| return Context.getMemberPointerType(op->getType(), |
| Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr()); |
| } |
| } |
| else |
| assert(0 && "Unknown/unexpected decl type"); |
| } |
| |
| // If the operand has type "type", the result has type "pointer to type". |
| return Context.getPointerType(op->getType()); |
| } |
| |
| QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) { |
| UsualUnaryConversions(Op); |
| QualType Ty = Op->getType(); |
| |
| // Note that per both C89 and C99, this is always legal, even if ptype is an |
| // incomplete type or void. It would be possible to warn about dereferencing |
| // a void pointer, but it's completely well-defined, and such a warning is |
| // unlikely to catch any mistakes. |
| if (const PointerType *PT = Ty->getAsPointerType()) |
| return PT->getPointeeType(); |
| |
| Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer) |
| << Ty << Op->getSourceRange(); |
| return QualType(); |
| } |
| |
| static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode( |
| tok::TokenKind Kind) { |
| BinaryOperator::Opcode Opc; |
| switch (Kind) { |
| default: assert(0 && "Unknown binop!"); |
| case tok::periodstar: Opc = BinaryOperator::PtrMemD; break; |
| case tok::arrowstar: Opc = BinaryOperator::PtrMemI; break; |
| case tok::star: Opc = BinaryOperator::Mul; break; |
| case tok::slash: Opc = BinaryOperator::Div; break; |
| case tok::percent: Opc = BinaryOperator::Rem; break; |
| case tok::plus: Opc = BinaryOperator::Add; break; |
| case tok::minus: Opc = BinaryOperator::Sub; break; |
| case tok::lessless: Opc = BinaryOperator::Shl; break; |
| case tok::greatergreater: Opc = BinaryOperator::Shr; break; |
| case tok::lessequal: Opc = BinaryOperator::LE; break; |
| case tok::less: Opc = BinaryOperator::LT; break; |
| case tok::greaterequal: Opc = BinaryOperator::GE; break; |
| case tok::greater: Opc = BinaryOperator::GT; break; |
| case tok::exclaimequal: Opc = BinaryOperator::NE; break; |
| case tok::equalequal: Opc = BinaryOperator::EQ; break; |
| case tok::amp: Opc = BinaryOperator::And; break; |
| case tok::caret: Opc = BinaryOperator::Xor; break; |
| case tok::pipe: Opc = BinaryOperator::Or; break; |
| case tok::ampamp: Opc = BinaryOperator::LAnd; break; |
| case tok::pipepipe: Opc = BinaryOperator::LOr; break; |
| case tok::equal: Opc = BinaryOperator::Assign; break; |
| case tok::starequal: Opc = BinaryOperator::MulAssign; break; |
| case tok::slashequal: Opc = BinaryOperator::DivAssign; break; |
| case tok::percentequal: Opc = BinaryOperator::RemAssign; break; |
| case tok::plusequal: Opc = BinaryOperator::AddAssign; break; |
| case tok::minusequal: Opc = BinaryOperator::SubAssign; break; |
| case tok::lesslessequal: Opc = BinaryOperator::ShlAssign; break; |
| case tok::greatergreaterequal: Opc = BinaryOperator::ShrAssign; break; |
| case tok::ampequal: Opc = BinaryOperator::AndAssign; break; |
| case tok::caretequal: Opc = BinaryOperator::XorAssign; break; |
| case tok::pipeequal: Opc = BinaryOperator::OrAssign; break; |
| case tok::comma: Opc = BinaryOperator::Comma; break; |
| } |
| return Opc; |
| } |
| |
| static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode( |
| tok::TokenKind Kind) { |
| UnaryOperator::Opcode Opc; |
| switch (Kind) { |
| default: assert(0 && "Unknown unary op!"); |
| case tok::plusplus: Opc = UnaryOperator::PreInc; break; |
| case tok::minusminus: Opc = UnaryOperator::PreDec; break; |
| case tok::amp: Opc = UnaryOperator::AddrOf; break; |
| case tok::star: Opc = UnaryOperator::Deref; break; |
| case tok::plus: Opc = UnaryOperator::Plus; break; |
| case tok::minus: Opc = UnaryOperator::Minus; break; |
| case tok::tilde: Opc = UnaryOperator::Not; break; |
| case tok::exclaim: Opc = UnaryOperator::LNot; break; |
| case tok::kw___real: Opc = UnaryOperator::Real; break; |
| case tok::kw___imag: Opc = UnaryOperator::Imag; break; |
| case tok::kw___extension__: Opc = UnaryOperator::Extension; break; |
| } |
| return Opc; |
| } |
| |
| /// CreateBuiltinBinOp - Creates a new built-in binary operation with |
| /// operator @p Opc at location @c TokLoc. This routine only supports |
| /// built-in operations; ActOnBinOp handles overloaded operators. |
| Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc, |
| unsigned Op, |
| Expr *lhs, Expr *rhs) { |
| QualType ResultTy; // Result type of the binary operator. |
| QualType CompTy; // Computation type for compound assignments (e.g. '+=') |
| BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op; |
| |
| switch (Opc) { |
| default: |
| assert(0 && "Unknown binary expr!"); |
| case BinaryOperator::Assign: |
| ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType()); |
| break; |
| case BinaryOperator::PtrMemD: |
| case BinaryOperator::PtrMemI: |
| ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc, |
| Opc == BinaryOperator::PtrMemI); |
| break; |
| case BinaryOperator::Mul: |
| case BinaryOperator::Div: |
| ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc); |
| break; |
| case BinaryOperator::Rem: |
| ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc); |
| break; |
| case BinaryOperator::Add: |
| ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc); |
| break; |
| case BinaryOperator::Sub: |
| ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc); |
| break; |
| case BinaryOperator::Shl: |
| case BinaryOperator::Shr: |
| ResultTy = CheckShiftOperands(lhs, rhs, OpLoc); |
| break; |
| case BinaryOperator::LE: |
| case BinaryOperator::LT: |
| case BinaryOperator::GE: |
| case BinaryOperator::GT: |
| ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, true); |
| break; |
| case BinaryOperator::EQ: |
| case BinaryOperator::NE: |
| ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, false); |
| break; |
| case BinaryOperator::And: |
| case BinaryOperator::Xor: |
| case BinaryOperator::Or: |
| ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc); |
| break; |
| case BinaryOperator::LAnd: |
| case BinaryOperator::LOr: |
| ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc); |
| break; |
| case BinaryOperator::MulAssign: |
| case BinaryOperator::DivAssign: |
| CompTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true); |
| if (!CompTy.isNull()) |
| ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy); |
| break; |
| case BinaryOperator::RemAssign: |
| CompTy = CheckRemainderOperands(lhs, rhs, OpLoc, true); |
| if (!CompTy.isNull()) |
| ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy); |
| break; |
| case BinaryOperator::AddAssign: |
| CompTy = CheckAdditionOperands(lhs, rhs, OpLoc, true); |
| if (!CompTy.isNull()) |
| ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy); |
| break; |
| case BinaryOperator::SubAssign: |
| CompTy = CheckSubtractionOperands(lhs, rhs, OpLoc, true); |
| if (!CompTy.isNull()) |
| ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy); |
| break; |
| case BinaryOperator::ShlAssign: |
| case BinaryOperator::ShrAssign: |
| CompTy = CheckShiftOperands(lhs, rhs, OpLoc, true); |
| if (!CompTy.isNull()) |
| ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy); |
| break; |
| case BinaryOperator::AndAssign: |
| case BinaryOperator::XorAssign: |
| case BinaryOperator::OrAssign: |
| CompTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true); |
| if (!CompTy.isNull()) |
| ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy); |
| break; |
| case BinaryOperator::Comma: |
| ResultTy = CheckCommaOperands(lhs, rhs, OpLoc); |
| break; |
| } |
| if (ResultTy.isNull()) |
| return ExprError(); |
| if (CompTy.isNull()) |
| return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc)); |
| else |
| return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy, |
| CompTy, OpLoc)); |
| } |
| |
| // Binary Operators. 'Tok' is the token for the operator. |
| Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc, |
| tok::TokenKind Kind, |
| ExprArg LHS, ExprArg RHS) { |
| BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind); |
| Expr *lhs = (Expr *)LHS.release(), *rhs = (Expr*)RHS.release(); |
| |
| assert((lhs != 0) && "ActOnBinOp(): missing left expression"); |
| assert((rhs != 0) && "ActOnBinOp(): missing right expression"); |
| |
| // If either expression is type-dependent, just build the AST. |
| // FIXME: We'll need to perform some caching of the result of name |
| // lookup for operator+. |
| if (lhs->isTypeDependent() || rhs->isTypeDependent()) { |
| if (Opc > BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) |
| return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, |
| Context.DependentTy, |
| Context.DependentTy, TokLoc)); |
| else |
| return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, |
| Context.DependentTy, TokLoc)); |
| } |
| |
| if (getLangOptions().CPlusPlus && Opc != BinaryOperator::PtrMemD && |
| (lhs->getType()->isRecordType() || lhs->getType()->isEnumeralType() || |
| rhs->getType()->isRecordType() || rhs->getType()->isEnumeralType())) { |
| // If this is one of the assignment operators, we only perform |
| // overload resolution if the left-hand side is a class or |
| // enumeration type (C++ [expr.ass]p3). |
| if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign && |
| !(lhs->getType()->isRecordType() || lhs->getType()->isEnumeralType())) { |
| return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs); |
| } |
| |
| // Determine which overloaded operator we're dealing with. |
| static const OverloadedOperatorKind OverOps[] = { |
| // Overloading .* is not possible. |
| static_cast<OverloadedOperatorKind>(0), OO_ArrowStar, |
| OO_Star, OO_Slash, OO_Percent, |
| OO_Plus, OO_Minus, |
| OO_LessLess, OO_GreaterGreater, |
| OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual, |
| OO_EqualEqual, OO_ExclaimEqual, |
| OO_Amp, |
| OO_Caret, |
| OO_Pipe, |
| OO_AmpAmp, |
| OO_PipePipe, |
| OO_Equal, OO_StarEqual, |
| OO_SlashEqual, OO_PercentEqual, |
| OO_PlusEqual, OO_MinusEqual, |
| OO_LessLessEqual, OO_GreaterGreaterEqual, |
| OO_AmpEqual, OO_CaretEqual, |
| OO_PipeEqual, |
| OO_Comma |
| }; |
| OverloadedOperatorKind OverOp = OverOps[Opc]; |
| |
| // Add the appropriate overloaded operators (C++ [over.match.oper]) |
| // to the candidate set. |
| OverloadCandidateSet CandidateSet; |
| Expr *Args[2] = { lhs, rhs }; |
| if (AddOperatorCandidates(OverOp, S, TokLoc, Args, 2, CandidateSet)) |
| return ExprError(); |
| |
| // Perform overload resolution. |
| OverloadCandidateSet::iterator Best; |
| switch (BestViableFunction(CandidateSet, Best)) { |
| case OR_Success: { |
| // We found a built-in operator or an overloaded operator. |
| FunctionDecl *FnDecl = Best->Function; |
| |
| if (FnDecl) { |
| // We matched an overloaded operator. Build a call to that |
| // operator. |
| |
| // Convert the arguments. |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { |
| if (PerformObjectArgumentInitialization(lhs, Method) || |
| PerformCopyInitialization(rhs, FnDecl->getParamDecl(0)->getType(), |
| "passing")) |
| return ExprError(); |
| } else { |
| // Convert the arguments. |
| if (PerformCopyInitialization(lhs, FnDecl->getParamDecl(0)->getType(), |
| "passing") || |
| PerformCopyInitialization(rhs, FnDecl->getParamDecl(1)->getType(), |
| "passing")) |
| return ExprError(); |
| } |
| |
| // Determine the result type |
| QualType ResultTy |
| = FnDecl->getType()->getAsFunctionType()->getResultType(); |
| ResultTy = ResultTy.getNonReferenceType(); |
| |
| // Build the actual expression node. |
| Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), |
| SourceLocation()); |
| UsualUnaryConversions(FnExpr); |
| |
| return Owned(new (Context) CXXOperatorCallExpr(Context, FnExpr, Args, 2, |
| ResultTy, TokLoc)); |
| } else { |
| // We matched a built-in operator. Convert the arguments, then |
| // break out so that we will build the appropriate built-in |
| // operator node. |
| if (PerformImplicitConversion(lhs, Best->BuiltinTypes.ParamTypes[0], |
| Best->Conversions[0], "passing") || |
| PerformImplicitConversion(rhs, Best->BuiltinTypes.ParamTypes[1], |
| Best->Conversions[1], "passing")) |
| return ExprError(); |
| |
| break; |
| } |
| } |
| |
| case OR_No_Viable_Function: |
| // No viable function; fall through to handling this as a |
| // built-in operator, which will produce an error message for us. |
| break; |
| |
| case OR_Ambiguous: |
| Diag(TokLoc, diag::err_ovl_ambiguous_oper) |
| << BinaryOperator::getOpcodeStr(Opc) |
| << lhs->getSourceRange() << rhs->getSourceRange(); |
| PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); |
| return ExprError(); |
| |
| case OR_Deleted: |
| Diag(TokLoc, diag::err_ovl_deleted_oper) |
| << Best->Function->isDeleted() |
| << BinaryOperator::getOpcodeStr(Opc) |
| << lhs->getSourceRange() << rhs->getSourceRange(); |
| PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); |
| return ExprError(); |
| } |
| |
| // Either we found no viable overloaded operator or we matched a |
| // built-in operator. In either case, fall through to trying to |
| // build a built-in operation. |
| } |
| |
| // Build a built-in binary operation. |
| return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs); |
| } |
| |
| // Unary Operators. 'Tok' is the token for the operator. |
| Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc, |
| tok::TokenKind Op, ExprArg input) { |
| // FIXME: Input is modified later, but smart pointer not reassigned. |
| Expr *Input = (Expr*)input.get(); |
| UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op); |
| |
| if (getLangOptions().CPlusPlus && |
| (Input->getType()->isRecordType() |
| || Input->getType()->isEnumeralType())) { |
| // Determine which overloaded operator we're dealing with. |
| static const OverloadedOperatorKind OverOps[] = { |
| OO_None, OO_None, |
| OO_PlusPlus, OO_MinusMinus, |
| OO_Amp, OO_Star, |
| OO_Plus, OO_Minus, |
| OO_Tilde, OO_Exclaim, |
| OO_None, OO_None, |
| OO_None, |
| OO_None |
| }; |
| OverloadedOperatorKind OverOp = OverOps[Opc]; |
| |
| // Add the appropriate overloaded operators (C++ [over.match.oper]) |
| // to the candidate set. |
| OverloadCandidateSet CandidateSet; |
| if (OverOp != OO_None && |
| AddOperatorCandidates(OverOp, S, OpLoc, &Input, 1, CandidateSet)) |
| return ExprError(); |
| |
| // Perform overload resolution. |
| OverloadCandidateSet::iterator Best; |
| switch (BestViableFunction(CandidateSet, Best)) { |
| case OR_Success: { |
| // We found a built-in operator or an overloaded operator. |
| FunctionDecl *FnDecl = Best->Function; |
| |
| if (FnDecl) { |
| // We matched an overloaded operator. Build a call to that |
| // operator. |
| |
| // Convert the arguments. |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { |
| if (PerformObjectArgumentInitialization(Input, Method)) |
| return ExprError(); |
| } else { |
| // Convert the arguments. |
| if (PerformCopyInitialization(Input, |
| FnDecl->getParamDecl(0)->getType(), |
| "passing")) |
| return ExprError(); |
| } |
| |
| // Determine the result type |
| QualType ResultTy |
| = FnDecl->getType()->getAsFunctionType()->getResultType(); |
| ResultTy = ResultTy.getNonReferenceType(); |
| |
| // Build the actual expression node. |
| Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), |
| SourceLocation()); |
| UsualUnaryConversions(FnExpr); |
| |
| input.release(); |
| return Owned(new (Context) CXXOperatorCallExpr(Context, FnExpr, &Input, 1, |
| ResultTy, OpLoc)); |
| } else { |
| // We matched a built-in operator. Convert the arguments, then |
| // break out so that we will build the appropriate built-in |
| // operator node. |
| if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0], |
| Best->Conversions[0], "passing")) |
| return ExprError(); |
| |
| break; |
| } |
| } |
| |
| case OR_No_Viable_Function: |
| // No viable function; fall through to handling this as a |
| // built-in operator, which will produce an error message for us. |
| break; |
| |
| case OR_Ambiguous: |
| Diag(OpLoc, diag::err_ovl_ambiguous_oper) |
| << UnaryOperator::getOpcodeStr(Opc) |
| << Input->getSourceRange(); |
| PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); |
| return ExprError(); |
| |
| case OR_Deleted: |
| Diag(OpLoc, diag::err_ovl_deleted_oper) |
| << Best->Function->isDeleted() |
| << UnaryOperator::getOpcodeStr(Opc) |
| << Input->getSourceRange(); |
| PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); |
| return ExprError(); |
| } |
| |
| // Either we found no viable overloaded operator or we matched a |
| // built-in operator. In either case, fall through to trying to |
| // build a built-in operation. |
| } |
| |
| QualType resultType; |
| switch (Opc) { |
| default: |
| assert(0 && "Unimplemented unary expr!"); |
| case UnaryOperator::PreInc: |
| case UnaryOperator::PreDec: |
| resultType = CheckIncrementDecrementOperand(Input, OpLoc, |
| Opc == UnaryOperator::PreInc); |
| break; |
| case UnaryOperator::AddrOf: |
| resultType = CheckAddressOfOperand(Input, OpLoc); |
| break; |
| case UnaryOperator::Deref: |
| DefaultFunctionArrayConversion(Input); |
| resultType = CheckIndirectionOperand(Input, OpLoc); |
| break; |
| case UnaryOperator::Plus: |
| case UnaryOperator::Minus: |
| UsualUnaryConversions(Input); |
| resultType = Input->getType(); |
| if (resultType->isArithmeticType()) // C99 6.5.3.3p1 |
| break; |
| else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7 |
| resultType->isEnumeralType()) |
| break; |
| else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6 |
| Opc == UnaryOperator::Plus && |
| resultType->isPointerType()) |
| break; |
| |
| return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) |
| << resultType << Input->getSourceRange()); |
| case UnaryOperator::Not: // bitwise complement |
| UsualUnaryConversions(Input); |
| resultType = Input->getType(); |
| // C99 6.5.3.3p1. We allow complex int and float as a GCC extension. |
| if (resultType->isComplexType() || resultType->isComplexIntegerType()) |
| // C99 does not support '~' for complex conjugation. |
| Diag(OpLoc, diag::ext_integer_complement_complex) |
| << resultType << Input->getSourceRange(); |
| else if (!resultType->isIntegerType()) |
| return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) |
| << resultType << Input->getSourceRange()); |
| break; |
| case UnaryOperator::LNot: // logical negation |
| // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5). |
| DefaultFunctionArrayConversion(Input); |
| resultType = Input->getType(); |
| if (!resultType->isScalarType()) // C99 6.5.3.3p1 |
| return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) |
| << resultType << Input->getSourceRange()); |
| // LNot always has type int. C99 6.5.3.3p5. |
| // In C++, it's bool. C++ 5.3.1p8 |
| resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy; |
| break; |
| case UnaryOperator::Real: |
| case UnaryOperator::Imag: |
| resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real); |
| break; |
| case UnaryOperator::Extension: |
| resultType = Input->getType(); |
| break; |
| } |
| if (resultType.isNull()) |
| return ExprError(); |
| input.release(); |
| return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc)); |
| } |
| |
| /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo". |
| Sema::ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, |
| SourceLocation LabLoc, |
| IdentifierInfo *LabelII) { |
| // Look up the record for this label identifier. |
| LabelStmt *&LabelDecl = LabelMap[LabelII]; |
| |
| // If we haven't seen this label yet, create a forward reference. It |
| // will be validated and/or cleaned up in ActOnFinishFunctionBody. |
| if (LabelDecl == 0) |
| LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0); |
| |
| // Create the AST node. The address of a label always has type 'void*'. |
| return new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl, |
| Context.getPointerType(Context.VoidTy)); |
| } |
| |
| Sema::ExprResult Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtTy *substmt, |
| SourceLocation RPLoc) { // "({..})" |
| Stmt *SubStmt = static_cast<Stmt*>(substmt); |
| assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!"); |
| CompoundStmt *Compound = cast<CompoundStmt>(SubStmt); |
| |
| bool isFileScope = getCurFunctionOrMethodDecl() == 0; |
| if (isFileScope) { |
| return Diag(LPLoc, diag::err_stmtexpr_file_scope); |
| } |
| |
| // FIXME: there are a variety of strange constraints to enforce here, for |
| // example, it is not possible to goto into a stmt expression apparently. |
| // More semantic analysis is needed. |
| |
| // FIXME: the last statement in the compount stmt has its value used. We |
| // should not warn about it being unused. |
| |
| // If there are sub stmts in the compound stmt, take the type of the last one |
| // as the type of the stmtexpr. |
| QualType Ty = Context.VoidTy; |
| |
| if (!Compound->body_empty()) { |
| Stmt *LastStmt = Compound->body_back(); |
| // If LastStmt is a label, skip down through into the body. |
| while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) |
| LastStmt = Label->getSubStmt(); |
| |
| if (Expr *LastExpr = dyn_cast<Expr>(LastStmt)) |
| Ty = LastExpr->getType(); |
| } |
| |
| return new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc); |
| } |
| |
| Sema::ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S, |
| SourceLocation BuiltinLoc, |
| SourceLocation TypeLoc, |
| TypeTy *argty, |
| OffsetOfComponent *CompPtr, |
| unsigned NumComponents, |
| SourceLocation RPLoc) { |
| QualType ArgTy = QualType::getFromOpaquePtr(argty); |
| assert(!ArgTy.isNull() && "Missing type argument!"); |
| |
| // We must have at least one component that refers to the type, and the first |
| // one is known to be a field designator. Verify that the ArgTy represents |
| // a struct/union/class. |
| if (!ArgTy->isRecordType()) |
| return Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy; |
| |
| // Otherwise, create a compound literal expression as the base, and |
| // iteratively process the offsetof designators. |
| InitListExpr *IList = |
| new (Context) InitListExpr(SourceLocation(), 0, 0, SourceLocation()); |
| IList->setType(ArgTy); |
| Expr *Res = |
| new (Context) CompoundLiteralExpr(SourceLocation(), ArgTy, IList, false); |
| |
| // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a |
| // GCC extension, diagnose them. |
| if (NumComponents != 1) |
| Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator) |
| << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd); |
| |
| for (unsigned i = 0; i != NumComponents; ++i) { |
| const OffsetOfComponent &OC = CompPtr[i]; |
| if (OC.isBrackets) { |
| // Offset of an array sub-field. TODO: Should we allow vector elements? |
| const ArrayType *AT = Context.getAsArrayType(Res->getType()); |
| if (!AT) { |
| Res->Destroy(Context); |
| return Diag(OC.LocEnd, diag::err_offsetof_array_type) << Res->getType(); |
| } |
| |
| // FIXME: C++: Verify that operator[] isn't overloaded. |
| |
| // C99 6.5.2.1p1 |
| Expr *Idx = static_cast<Expr*>(OC.U.E); |
| if (!Idx->getType()->isIntegerType()) |
| return Diag(Idx->getLocStart(), diag::err_typecheck_subscript) |
| << Idx->getSourceRange(); |
| |
| Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(), |
| OC.LocEnd); |
| continue; |
| } |
| |
| const RecordType *RC = Res->getType()->getAsRecordType(); |
| if (!RC) { |
| Res->Destroy(Context); |
| return Diag(OC.LocEnd, diag::err_offsetof_record_type) << Res->getType(); |
| } |
| |
| // Get the decl corresponding to this. |
| RecordDecl *RD = RC->getDecl(); |
| FieldDecl *MemberDecl |
| = dyn_cast_or_null<FieldDecl>(LookupQualifiedName(RD, OC.U.IdentInfo, |
| LookupMemberName) |
| .getAsDecl()); |
| if (!MemberDecl) |
| return Diag(BuiltinLoc, diag::err_typecheck_no_member) |
| << OC.U.IdentInfo << SourceRange(OC.LocStart, OC.LocEnd); |
| |
| // FIXME: C++: Verify that MemberDecl isn't a static field. |
| // FIXME: Verify that MemberDecl isn't a bitfield. |
| // MemberDecl->getType() doesn't get the right qualifiers, but it doesn't |
| // matter here. |
| Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd, |
| MemberDecl->getType().getNonReferenceType()); |
| } |
| |
| return new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf, |
| Context.getSizeType(), BuiltinLoc); |
| } |
| |
| |
| Sema::ExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc, |
| TypeTy *arg1, TypeTy *arg2, |
| SourceLocation RPLoc) { |
| QualType argT1 = QualType::getFromOpaquePtr(arg1); |
| QualType argT2 = QualType::getFromOpaquePtr(arg2); |
| |
| assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)"); |
| |
| return new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc, argT1, |
| argT2, RPLoc); |
| } |
| |
| Sema::ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, ExprTy *cond, |
| ExprTy *expr1, ExprTy *expr2, |
| SourceLocation RPLoc) { |
| Expr *CondExpr = static_cast<Expr*>(cond); |
| Expr *LHSExpr = static_cast<Expr*>(expr1); |
| Expr *RHSExpr = static_cast<Expr*>(expr2); |
| |
| assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)"); |
| |
| // The conditional expression is required to be a constant expression. |
| llvm::APSInt condEval(32); |
| SourceLocation ExpLoc; |
| if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc)) |
| return Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant) |
| << CondExpr->getSourceRange(); |
| |
| // If the condition is > zero, then the AST type is the same as the LSHExpr. |
| QualType resType = condEval.getZExtValue() ? LHSExpr->getType() : |
| RHSExpr->getType(); |
| return new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, |
| resType, RPLoc); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Clang Extensions. |
| //===----------------------------------------------------------------------===// |
| |
| /// ActOnBlockStart - This callback is invoked when a block literal is started. |
| void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) { |
| // Analyze block parameters. |
| BlockSemaInfo *BSI = new BlockSemaInfo(); |
| |
| // Add BSI to CurBlock. |
| BSI->PrevBlockInfo = CurBlock; |
| CurBlock = BSI; |
| |
| BSI->ReturnType = 0; |
| BSI->TheScope = BlockScope; |
| |
| BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc); |
| PushDeclContext(BlockScope, BSI->TheDecl); |
| } |
| |
| void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) { |
| assert(ParamInfo.getIdentifier() == 0 && "block-id should have no identifier!"); |
| |
| if (ParamInfo.getNumTypeObjects() == 0 |
| || ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) { |
| QualType T = GetTypeForDeclarator(ParamInfo, CurScope); |
| |
| // The type is entirely optional as well, if none, use DependentTy. |
| if (T.isNull()) |
| T = Context.DependentTy; |
| |
| // The parameter list is optional, if there was none, assume (). |
| if (!T->isFunctionType()) |
| T = Context.getFunctionType(T, NULL, 0, 0, 0); |
| |
| CurBlock->hasPrototype = true; |
| CurBlock->isVariadic = false; |
| Type *RetTy = T.getTypePtr()->getAsFunctionType()->getResultType() |
| .getTypePtr(); |
| |
| if (!RetTy->isDependentType()) |
| CurBlock->ReturnType = RetTy; |
| return; |
| } |
| |
| // Analyze arguments to block. |
| assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function && |
| "Not a function declarator!"); |
| DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun; |
| |
| CurBlock->hasPrototype = FTI.hasPrototype; |
| CurBlock->isVariadic = true; |
| |
| // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes |
| // no arguments, not a function that takes a single void argument. |
| if (FTI.hasPrototype && |
| FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 && |
| (!((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType().getCVRQualifiers() && |
| ((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType()->isVoidType())) { |
| // empty arg list, don't push any params. |
| CurBlock->isVariadic = false; |
| } else if (FTI.hasPrototype) { |
| for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) |
| CurBlock->Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param); |
| CurBlock->isVariadic = FTI.isVariadic; |
| QualType T = GetTypeForDeclarator (ParamInfo, CurScope); |
| |
| Type* RetTy = T.getTypePtr()->getAsFunctionType()->getResultType() |
| .getTypePtr(); |
| |
| if (!RetTy->isDependentType()) |
| CurBlock->ReturnType = RetTy; |
| } |
| CurBlock->TheDecl->setArgs(&CurBlock->Params[0], CurBlock->Params.size()); |
| |
| for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(), |
| E = CurBlock->TheDecl->param_end(); AI != E; ++AI) |
| // If this has an identifier, add it to the scope stack. |
| if ((*AI)->getIdentifier()) |
| PushOnScopeChains(*AI, CurBlock->TheScope); |
| } |
| |
| /// ActOnBlockError - If there is an error parsing a block, this callback |
| /// is invoked to pop the information about the block from the action impl. |
| void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) { |
| // Ensure that CurBlock is deleted. |
| llvm::OwningPtr<BlockSemaInfo> CC(CurBlock); |
| |
| // Pop off CurBlock, handle nested blocks. |
| CurBlock = CurBlock->PrevBlockInfo; |
| |
| // FIXME: Delete the ParmVarDecl objects as well??? |
| |
| } |
| |
| /// ActOnBlockStmtExpr - This is called when the body of a block statement |
| /// literal was successfully completed. ^(int x){...} |
| Sema::ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc, StmtTy *body, |
| Scope *CurScope) { |
| // Ensure that CurBlock is deleted. |
| llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock); |
| ExprOwningPtr<CompoundStmt> Body(this, static_cast<CompoundStmt*>(body)); |
| |
| PopDeclContext(); |
| |
| // Pop off CurBlock, handle nested blocks. |
| CurBlock = CurBlock->PrevBlockInfo; |
| |
| QualType RetTy = Context.VoidTy; |
| if (BSI->ReturnType) |
| RetTy = QualType(BSI->ReturnType, 0); |
| |
| llvm::SmallVector<QualType, 8> ArgTypes; |
| for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i) |
| ArgTypes.push_back(BSI->Params[i]->getType()); |
| |
| QualType BlockTy; |
| if (!BSI->hasPrototype) |
| BlockTy = Context.getFunctionTypeNoProto(RetTy); |
| else |
| BlockTy = Context.getFunctionType(RetTy, &ArgTypes[0], ArgTypes.size(), |
| BSI->isVariadic, 0); |
| |
| BlockTy = Context.getBlockPointerType(BlockTy); |
| |
| BSI->TheDecl->setBody(Body.take()); |
| return new (Context) BlockExpr(BSI->TheDecl, BlockTy); |
| } |
| |
| /// ExprsMatchFnType - return true if the Exprs in array Args have |
| /// QualTypes that match the QualTypes of the arguments of the FnType. |
| /// The number of arguments has already been validated to match the number of |
| /// arguments in FnType. |
| static bool ExprsMatchFnType(Expr **Args, const FunctionTypeProto *FnType, |
| ASTContext &Context) { |
| unsigned NumParams = FnType->getNumArgs(); |
| for (unsigned i = 0; i != NumParams; ++i) { |
| QualType ExprTy = Context.getCanonicalType(Args[i]->getType()); |
| QualType ParmTy = Context.getCanonicalType(FnType->getArgType(i)); |
| |
| if (ExprTy.getUnqualifiedType() != ParmTy.getUnqualifiedType()) |
| return false; |
| } |
| return true; |
| } |
| |
| Sema::ExprResult Sema::ActOnOverloadExpr(ExprTy **args, unsigned NumArgs, |
| SourceLocation *CommaLocs, |
| SourceLocation BuiltinLoc, |
| SourceLocation RParenLoc) { |
| // __builtin_overload requires at least 2 arguments |
| if (NumArgs < 2) |
| return Diag(RParenLoc, diag::err_typecheck_call_too_few_args) |
| << SourceRange(BuiltinLoc, RParenLoc); |
| |
| // The first argument is required to be a constant expression. It tells us |
| // the number of arguments to pass to each of the functions to be overloaded. |
| Expr **Args = reinterpret_cast<Expr**>(args); |
| Expr *NParamsExpr = Args[0]; |
| llvm::APSInt constEval(32); |
| SourceLocation ExpLoc; |
| if (!NParamsExpr->isIntegerConstantExpr(constEval, Context, &ExpLoc)) |
| return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant) |
| << NParamsExpr->getSourceRange(); |
| |
| // Verify that the number of parameters is > 0 |
| unsigned NumParams = constEval.getZExtValue(); |
| if (NumParams == 0) |
| return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant) |
| << NParamsExpr->getSourceRange(); |
| // Verify that we have at least 1 + NumParams arguments to the builtin. |
| if ((NumParams + 1) > NumArgs) |
| return Diag(RParenLoc, diag::err_typecheck_call_too_few_args) |
| << SourceRange(BuiltinLoc, RParenLoc); |
| |
| // Figure out the return type, by matching the args to one of the functions |
| // listed after the parameters. |
| OverloadExpr *OE = 0; |
| for (unsigned i = NumParams + 1; i < NumArgs; ++i) { |
| // UsualUnaryConversions will convert the function DeclRefExpr into a |
| // pointer to function. |
| Expr *Fn = UsualUnaryConversions(Args[i]); |
| const FunctionTypeProto *FnType = 0; |
| if (const PointerType *PT = Fn->getType()->getAsPointerType()) |
| FnType = PT->getPointeeType()->getAsFunctionTypeProto(); |
| |
| // The Expr type must be FunctionTypeProto, since FunctionTypeProto has no |
| // parameters, and the number of parameters must match the value passed to |
| // the builtin. |
| if (!FnType || (FnType->getNumArgs() != NumParams)) |
| return Diag(Fn->getExprLoc(), diag::err_overload_incorrect_fntype) |
| << Fn->getSourceRange(); |
| |
| // Scan the parameter list for the FunctionType, checking the QualType of |
| // each parameter against the QualTypes of the arguments to the builtin. |
| // If they match, return a new OverloadExpr. |
| if (ExprsMatchFnType(Args+1, FnType, Context)) { |
| if (OE) |
| return Diag(Fn->getExprLoc(), diag::err_overload_multiple_match) |
| << OE->getFn()->getSourceRange(); |
| // Remember our match, and continue processing the remaining arguments |
| // to catch any errors. |
| OE = new (Context) OverloadExpr(Context, Args, NumArgs, i, |
| FnType->getResultType().getNonReferenceType(), |
| BuiltinLoc, RParenLoc); |
| } |
| } |
| // Return the newly created OverloadExpr node, if we succeded in matching |
| // exactly one of the candidate functions. |
| if (OE) |
| return OE; |
| |
| // If we didn't find a matching function Expr in the __builtin_overload list |
| // the return an error. |
| std::string typeNames; |
| for (unsigned i = 0; i != NumParams; ++i) { |
| if (i != 0) typeNames += ", "; |
| typeNames += Args[i+1]->getType().getAsString(); |
| } |
| |
| return Diag(BuiltinLoc, diag::err_overload_no_match) |
| << typeNames << SourceRange(BuiltinLoc, RParenLoc); |
| } |
| |
| Sema::ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, |
| ExprTy *expr, TypeTy *type, |
| SourceLocation RPLoc) { |
| Expr *E = static_cast<Expr*>(expr); |
| QualType T = QualType::getFromOpaquePtr(type); |
| |
| InitBuiltinVaListType(); |
| |
| // Get the va_list type |
| QualType VaListType = Context.getBuiltinVaListType(); |
| // Deal with implicit array decay; for example, on x86-64, |
| // va_list is an array, but it's supposed to decay to |
| // a pointer for va_arg. |
| if (VaListType->isArrayType()) |
| VaListType = Context.getArrayDecayedType(VaListType); |
| // Make sure the input expression also decays appropriately. |
| UsualUnaryConversions(E); |
| |
| if (CheckAssignmentConstraints(VaListType, E->getType()) != Compatible) |
| return Diag(E->getLocStart(), |
| diag::err_first_argument_to_va_arg_not_of_type_va_list) |
| << E->getType() << E->getSourceRange(); |
| |
| // FIXME: Warn if a non-POD type is passed in. |
| |
| return new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(), RPLoc); |
| } |
| |
| Sema::ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) { |
| // The type of __null will be int or long, depending on the size of |
| // pointers on the target. |
| QualType Ty; |
| if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth()) |
| Ty = Context.IntTy; |
| else |
| Ty = Context.LongTy; |
| |
| return new (Context) GNUNullExpr(Ty, TokenLoc); |
| } |
| |
| bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy, |
| SourceLocation Loc, |
| QualType DstType, QualType SrcType, |
| Expr *SrcExpr, const char *Flavor) { |
| // Decode the result (notice that AST's are still created for extensions). |
| bool isInvalid = false; |
| unsigned DiagKind; |
| switch (ConvTy) { |
| default: assert(0 && "Unknown conversion type"); |
| case Compatible: return false; |
| case PointerToInt: |
| DiagKind = diag::ext_typecheck_convert_pointer_int; |
| break; |
| case IntToPointer: |
| DiagKind = diag::ext_typecheck_convert_int_pointer; |
| break; |
| case IncompatiblePointer: |
| DiagKind = diag::ext_typecheck_convert_incompatible_pointer; |
| break; |
| case FunctionVoidPointer: |
| DiagKind = diag::ext_typecheck_convert_pointer_void_func; |
| break; |
| case CompatiblePointerDiscardsQualifiers: |
| // If the qualifiers lost were because we were applying the |
| // (deprecated) C++ conversion from a string literal to a char* |
| // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME: |
| // Ideally, this check would be performed in |
| // CheckPointerTypesForAssignment. However, that would require a |
| // bit of refactoring (so that the second argument is an |
| // expression, rather than a type), which should be done as part |
| // of a larger effort to fix CheckPointerTypesForAssignment for |
| // C++ semantics. |
| if (getLangOptions().CPlusPlus && |
| IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType)) |
| return false; |
| DiagKind = diag::ext_typecheck_convert_discards_qualifiers; |
| break; |
| case IntToBlockPointer: |
| DiagKind = diag::err_int_to_block_pointer; |
| break; |
| case IncompatibleBlockPointer: |
| DiagKind = diag::ext_typecheck_convert_incompatible_block_pointer; |
| break; |
| case IncompatibleObjCQualifiedId: |
| // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since |
| // it can give a more specific diagnostic. |
| DiagKind = diag::warn_incompatible_qualified_id; |
| break; |
| case IncompatibleVectors: |
| DiagKind = diag::warn_incompatible_vectors; |
| break; |
| case Incompatible: |
| DiagKind = diag::err_typecheck_convert_incompatible; |
| isInvalid = true; |
| break; |
| } |
| |
| Diag(Loc, DiagKind) << DstType << SrcType << Flavor |
| << SrcExpr->getSourceRange(); |
| return isInvalid; |
| } |
| |
| bool Sema::VerifyIntegerConstantExpression(const Expr* E, llvm::APSInt *Result) |
| { |
| Expr::EvalResult EvalResult; |
| |
| if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() || |
| EvalResult.HasSideEffects) { |
| Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange(); |
| |
| if (EvalResult.Diag) { |
| // We only show the note if it's not the usual "invalid subexpression" |
| // or if it's actually in a subexpression. |
| if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice || |
| E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens()) |
| Diag(EvalResult.DiagLoc, EvalResult.Diag); |
| } |
| |
| return true; |
| } |
| |
| if (EvalResult.Diag) { |
| Diag(E->getExprLoc(), diag::ext_expr_not_ice) << |
| E->getSourceRange(); |
| |
| // Print the reason it's not a constant. |
| if (Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored) |
| Diag(EvalResult.DiagLoc, EvalResult.Diag); |
| } |
| |
| if (Result) |
| *Result = EvalResult.Val.getInt(); |
| return false; |
| } |