blob: 25ddb03d48a782202ef88671533ea23521db99e5 [file] [log] [blame]
//===--- Preprocess.cpp - C Language Family Preprocessor Implementation ---===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Preprocessor interface.
//
//===----------------------------------------------------------------------===//
//
// Options to support:
// -H - Print the name of each header file used.
// -d[MDNI] - Dump various things.
// -fworking-directory - #line's with preprocessor's working dir.
// -fpreprocessed
// -dependency-file,-M,-MM,-MF,-MG,-MP,-MT,-MQ,-MD,-MMD
// -W*
// -w
//
// Messages to emit:
// "Multiple include guards may be useful for:\n"
//
//===----------------------------------------------------------------------===//
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/HeaderSearch.h"
#include "clang/Lex/MacroInfo.h"
#include "clang/Lex/PPCallbacks.h"
#include "clang/Lex/Pragma.h"
#include "clang/Lex/ScratchBuffer.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/MemoryBuffer.h"
#include <iostream>
using namespace clang;
//===----------------------------------------------------------------------===//
Preprocessor::Preprocessor(Diagnostic &diags, const LangOptions &opts,
TargetInfo &target, SourceManager &SM,
HeaderSearch &Headers)
: Diags(diags), Features(opts), Target(target), FileMgr(Headers.getFileMgr()),
SourceMgr(SM), HeaderInfo(Headers), Identifiers(opts),
CurLexer(0), CurDirLookup(0), CurMacroExpander(0), Callbacks(0) {
ScratchBuf = new ScratchBuffer(SourceMgr);
// Clear stats.
NumDirectives = NumDefined = NumUndefined = NumPragma = 0;
NumIf = NumElse = NumEndif = 0;
NumEnteredSourceFiles = 0;
NumMacroExpanded = NumFnMacroExpanded = NumBuiltinMacroExpanded = 0;
NumFastMacroExpanded = NumTokenPaste = NumFastTokenPaste = 0;
MaxIncludeStackDepth = 0;
NumSkipped = 0;
// Default to discarding comments.
KeepComments = false;
KeepMacroComments = false;
// Macro expansion is enabled.
DisableMacroExpansion = false;
InMacroArgs = false;
NumCachedMacroExpanders = 0;
// "Poison" __VA_ARGS__, which can only appear in the expansion of a macro.
// This gets unpoisoned where it is allowed.
(Ident__VA_ARGS__ = getIdentifierInfo("__VA_ARGS__"))->setIsPoisoned();
// Initialize the pragma handlers.
PragmaHandlers = new PragmaNamespace(0);
RegisterBuiltinPragmas();
// Initialize builtin macros like __LINE__ and friends.
RegisterBuiltinMacros();
}
Preprocessor::~Preprocessor() {
// Free any active lexers.
delete CurLexer;
while (!IncludeMacroStack.empty()) {
delete IncludeMacroStack.back().TheLexer;
delete IncludeMacroStack.back().TheMacroExpander;
IncludeMacroStack.pop_back();
}
// Free any cached macro expanders.
for (unsigned i = 0, e = NumCachedMacroExpanders; i != e; ++i)
delete MacroExpanderCache[i];
// Release pragma information.
delete PragmaHandlers;
// Delete the scratch buffer info.
delete ScratchBuf;
}
PPCallbacks::~PPCallbacks() {
}
/// Diag - Forwarding function for diagnostics. This emits a diagnostic at
/// the specified Token's location, translating the token's start
/// position in the current buffer into a SourcePosition object for rendering.
void Preprocessor::Diag(SourceLocation Loc, unsigned DiagID) {
Diags.Report(Loc, DiagID);
}
void Preprocessor::Diag(SourceLocation Loc, unsigned DiagID,
const std::string &Msg) {
Diags.Report(Loc, DiagID, &Msg, 1);
}
void Preprocessor::DumpToken(const Token &Tok, bool DumpFlags) const {
std::cerr << tok::getTokenName(Tok.getKind()) << " '"
<< getSpelling(Tok) << "'";
if (!DumpFlags) return;
std::cerr << "\t";
if (Tok.isAtStartOfLine())
std::cerr << " [StartOfLine]";
if (Tok.hasLeadingSpace())
std::cerr << " [LeadingSpace]";
if (Tok.isExpandDisabled())
std::cerr << " [ExpandDisabled]";
if (Tok.needsCleaning()) {
const char *Start = SourceMgr.getCharacterData(Tok.getLocation());
std::cerr << " [UnClean='" << std::string(Start, Start+Tok.getLength())
<< "']";
}
}
void Preprocessor::DumpMacro(const MacroInfo &MI) const {
std::cerr << "MACRO: ";
for (unsigned i = 0, e = MI.getNumTokens(); i != e; ++i) {
DumpToken(MI.getReplacementToken(i));
std::cerr << " ";
}
std::cerr << "\n";
}
void Preprocessor::PrintStats() {
std::cerr << "\n*** Preprocessor Stats:\n";
std::cerr << NumDirectives << " directives found:\n";
std::cerr << " " << NumDefined << " #define.\n";
std::cerr << " " << NumUndefined << " #undef.\n";
std::cerr << " #include/#include_next/#import:\n";
std::cerr << " " << NumEnteredSourceFiles << " source files entered.\n";
std::cerr << " " << MaxIncludeStackDepth << " max include stack depth\n";
std::cerr << " " << NumIf << " #if/#ifndef/#ifdef.\n";
std::cerr << " " << NumElse << " #else/#elif.\n";
std::cerr << " " << NumEndif << " #endif.\n";
std::cerr << " " << NumPragma << " #pragma.\n";
std::cerr << NumSkipped << " #if/#ifndef#ifdef regions skipped\n";
std::cerr << NumMacroExpanded << "/" << NumFnMacroExpanded << "/"
<< NumBuiltinMacroExpanded << " obj/fn/builtin macros expanded, "
<< NumFastMacroExpanded << " on the fast path.\n";
std::cerr << (NumFastTokenPaste+NumTokenPaste)
<< " token paste (##) operations performed, "
<< NumFastTokenPaste << " on the fast path.\n";
}
//===----------------------------------------------------------------------===//
// Token Spelling
//===----------------------------------------------------------------------===//
/// getSpelling() - Return the 'spelling' of this token. The spelling of a
/// token are the characters used to represent the token in the source file
/// after trigraph expansion and escaped-newline folding. In particular, this
/// wants to get the true, uncanonicalized, spelling of things like digraphs
/// UCNs, etc.
std::string Preprocessor::getSpelling(const Token &Tok) const {
assert((int)Tok.getLength() >= 0 && "Token character range is bogus!");
// If this token contains nothing interesting, return it directly.
const char *TokStart = SourceMgr.getCharacterData(Tok.getLocation());
if (!Tok.needsCleaning())
return std::string(TokStart, TokStart+Tok.getLength());
std::string Result;
Result.reserve(Tok.getLength());
// Otherwise, hard case, relex the characters into the string.
for (const char *Ptr = TokStart, *End = TokStart+Tok.getLength();
Ptr != End; ) {
unsigned CharSize;
Result.push_back(Lexer::getCharAndSizeNoWarn(Ptr, CharSize, Features));
Ptr += CharSize;
}
assert(Result.size() != unsigned(Tok.getLength()) &&
"NeedsCleaning flag set on something that didn't need cleaning!");
return Result;
}
/// getSpelling - This method is used to get the spelling of a token into a
/// preallocated buffer, instead of as an std::string. The caller is required
/// to allocate enough space for the token, which is guaranteed to be at least
/// Tok.getLength() bytes long. The actual length of the token is returned.
///
/// Note that this method may do two possible things: it may either fill in
/// the buffer specified with characters, or it may *change the input pointer*
/// to point to a constant buffer with the data already in it (avoiding a
/// copy). The caller is not allowed to modify the returned buffer pointer
/// if an internal buffer is returned.
unsigned Preprocessor::getSpelling(const Token &Tok,
const char *&Buffer) const {
assert((int)Tok.getLength() >= 0 && "Token character range is bogus!");
// If this token is an identifier, just return the string from the identifier
// table, which is very quick.
if (const IdentifierInfo *II = Tok.getIdentifierInfo()) {
Buffer = II->getName();
// Return the length of the token. If the token needed cleaning, don't
// include the size of the newlines or trigraphs in it.
if (!Tok.needsCleaning())
return Tok.getLength();
else
return strlen(Buffer);
}
// Otherwise, compute the start of the token in the input lexer buffer.
const char *TokStart = SourceMgr.getCharacterData(Tok.getLocation());
// If this token contains nothing interesting, return it directly.
if (!Tok.needsCleaning()) {
Buffer = TokStart;
return Tok.getLength();
}
// Otherwise, hard case, relex the characters into the string.
char *OutBuf = const_cast<char*>(Buffer);
for (const char *Ptr = TokStart, *End = TokStart+Tok.getLength();
Ptr != End; ) {
unsigned CharSize;
*OutBuf++ = Lexer::getCharAndSizeNoWarn(Ptr, CharSize, Features);
Ptr += CharSize;
}
assert(unsigned(OutBuf-Buffer) != Tok.getLength() &&
"NeedsCleaning flag set on something that didn't need cleaning!");
return OutBuf-Buffer;
}
/// CreateString - Plop the specified string into a scratch buffer and return a
/// location for it. If specified, the source location provides a source
/// location for the token.
SourceLocation Preprocessor::
CreateString(const char *Buf, unsigned Len, SourceLocation SLoc) {
if (SLoc.isValid())
return ScratchBuf->getToken(Buf, Len, SLoc);
return ScratchBuf->getToken(Buf, Len);
}
/// AdvanceToTokenCharacter - Given a location that specifies the start of a
/// token, return a new location that specifies a character within the token.
SourceLocation Preprocessor::AdvanceToTokenCharacter(SourceLocation TokStart,
unsigned CharNo) {
// If they request the first char of the token, we're trivially done. If this
// is a macro expansion, it doesn't make sense to point to a character within
// the instantiation point (the name). We could point to the source
// character, but without also pointing to instantiation info, this is
// confusing.
if (CharNo == 0 || TokStart.isMacroID()) return TokStart;
// Figure out how many physical characters away the specified logical
// character is. This needs to take into consideration newlines and
// trigraphs.
const char *TokPtr = SourceMgr.getCharacterData(TokStart);
unsigned PhysOffset = 0;
// The usual case is that tokens don't contain anything interesting. Skip
// over the uninteresting characters. If a token only consists of simple
// chars, this method is extremely fast.
while (CharNo && Lexer::isObviouslySimpleCharacter(*TokPtr))
++TokPtr, --CharNo, ++PhysOffset;
// If we have a character that may be a trigraph or escaped newline, create a
// lexer to parse it correctly.
if (CharNo != 0) {
// Create a lexer starting at this token position.
Lexer TheLexer(TokStart, *this, TokPtr);
Token Tok;
// Skip over characters the remaining characters.
const char *TokStartPtr = TokPtr;
for (; CharNo; --CharNo)
TheLexer.getAndAdvanceChar(TokPtr, Tok);
PhysOffset += TokPtr-TokStartPtr;
}
return TokStart.getFileLocWithOffset(PhysOffset);
}
//===----------------------------------------------------------------------===//
// Source File Location Methods.
//===----------------------------------------------------------------------===//
/// LookupFile - Given a "foo" or <foo> reference, look up the indicated file,
/// return null on failure. isAngled indicates whether the file reference is
/// for system #include's or not (i.e. using <> instead of "").
const FileEntry *Preprocessor::LookupFile(const char *FilenameStart,
const char *FilenameEnd,
bool isAngled,
const DirectoryLookup *FromDir,
const DirectoryLookup *&CurDir) {
// If the header lookup mechanism may be relative to the current file, pass in
// info about where the current file is.
const FileEntry *CurFileEnt = 0;
if (!FromDir) {
SourceLocation FileLoc = getCurrentFileLexer()->getFileLoc();
CurFileEnt = SourceMgr.getFileEntryForLoc(FileLoc);
}
// Do a standard file entry lookup.
CurDir = CurDirLookup;
const FileEntry *FE =
HeaderInfo.LookupFile(FilenameStart, FilenameEnd,
isAngled, FromDir, CurDir, CurFileEnt);
if (FE) return FE;
// Otherwise, see if this is a subframework header. If so, this is relative
// to one of the headers on the #include stack. Walk the list of the current
// headers on the #include stack and pass them to HeaderInfo.
if (CurLexer && !CurLexer->Is_PragmaLexer) {
CurFileEnt = SourceMgr.getFileEntryForLoc(CurLexer->getFileLoc());
if ((FE = HeaderInfo.LookupSubframeworkHeader(FilenameStart, FilenameEnd,
CurFileEnt)))
return FE;
}
for (unsigned i = 0, e = IncludeMacroStack.size(); i != e; ++i) {
IncludeStackInfo &ISEntry = IncludeMacroStack[e-i-1];
if (ISEntry.TheLexer && !ISEntry.TheLexer->Is_PragmaLexer) {
CurFileEnt = SourceMgr.getFileEntryForLoc(ISEntry.TheLexer->getFileLoc());
if ((FE = HeaderInfo.LookupSubframeworkHeader(FilenameStart, FilenameEnd,
CurFileEnt)))
return FE;
}
}
// Otherwise, we really couldn't find the file.
return 0;
}
/// isInPrimaryFile - Return true if we're in the top-level file, not in a
/// #include.
bool Preprocessor::isInPrimaryFile() const {
if (CurLexer && !CurLexer->Is_PragmaLexer)
return CurLexer->isMainFile();
// If there are any stacked lexers, we're in a #include.
for (unsigned i = 0, e = IncludeMacroStack.size(); i != e; ++i)
if (IncludeMacroStack[i].TheLexer &&
!IncludeMacroStack[i].TheLexer->Is_PragmaLexer)
return IncludeMacroStack[i].TheLexer->isMainFile();
return false;
}
/// getCurrentLexer - Return the current file lexer being lexed from. Note
/// that this ignores any potentially active macro expansions and _Pragma
/// expansions going on at the time.
Lexer *Preprocessor::getCurrentFileLexer() const {
if (CurLexer && !CurLexer->Is_PragmaLexer) return CurLexer;
// Look for a stacked lexer.
for (unsigned i = IncludeMacroStack.size(); i != 0; --i) {
Lexer *L = IncludeMacroStack[i-1].TheLexer;
if (L && !L->Is_PragmaLexer) // Ignore macro & _Pragma expansions.
return L;
}
return 0;
}
/// EnterSourceFile - Add a source file to the top of the include stack and
/// start lexing tokens from it instead of the current buffer. Return true
/// on failure.
void Preprocessor::EnterSourceFile(unsigned FileID,
const DirectoryLookup *CurDir,
bool isMainFile) {
assert(CurMacroExpander == 0 && "Cannot #include a file inside a macro!");
++NumEnteredSourceFiles;
if (MaxIncludeStackDepth < IncludeMacroStack.size())
MaxIncludeStackDepth = IncludeMacroStack.size();
Lexer *TheLexer = new Lexer(SourceLocation::getFileLoc(FileID, 0), *this);
if (isMainFile) TheLexer->setIsMainFile();
EnterSourceFileWithLexer(TheLexer, CurDir);
}
/// EnterSourceFile - Add a source file to the top of the include stack and
/// start lexing tokens from it instead of the current buffer.
void Preprocessor::EnterSourceFileWithLexer(Lexer *TheLexer,
const DirectoryLookup *CurDir) {
// Add the current lexer to the include stack.
if (CurLexer || CurMacroExpander)
IncludeMacroStack.push_back(IncludeStackInfo(CurLexer, CurDirLookup,
CurMacroExpander));
CurLexer = TheLexer;
CurDirLookup = CurDir;
CurMacroExpander = 0;
// Notify the client, if desired, that we are in a new source file.
if (Callbacks && !CurLexer->Is_PragmaLexer) {
DirectoryLookup::DirType FileType = DirectoryLookup::NormalHeaderDir;
// Get the file entry for the current file.
if (const FileEntry *FE =
SourceMgr.getFileEntryForLoc(CurLexer->getFileLoc()))
FileType = HeaderInfo.getFileDirFlavor(FE);
Callbacks->FileChanged(CurLexer->getFileLoc(),
PPCallbacks::EnterFile, FileType);
}
}
/// EnterMacro - Add a Macro to the top of the include stack and start lexing
/// tokens from it instead of the current buffer.
void Preprocessor::EnterMacro(Token &Tok, MacroArgs *Args) {
IncludeMacroStack.push_back(IncludeStackInfo(CurLexer, CurDirLookup,
CurMacroExpander));
CurLexer = 0;
CurDirLookup = 0;
if (NumCachedMacroExpanders == 0) {
CurMacroExpander = new MacroExpander(Tok, Args, *this);
} else {
CurMacroExpander = MacroExpanderCache[--NumCachedMacroExpanders];
CurMacroExpander->Init(Tok, Args);
}
}
/// EnterTokenStream - Add a "macro" context to the top of the include stack,
/// which will cause the lexer to start returning the specified tokens. Note
/// that these tokens will be re-macro-expanded when/if expansion is enabled.
/// This method assumes that the specified stream of tokens has a permanent
/// owner somewhere, so they do not need to be copied.
void Preprocessor::EnterTokenStream(const Token *Toks, unsigned NumToks) {
// Save our current state.
IncludeMacroStack.push_back(IncludeStackInfo(CurLexer, CurDirLookup,
CurMacroExpander));
CurLexer = 0;
CurDirLookup = 0;
// Create a macro expander to expand from the specified token stream.
if (NumCachedMacroExpanders == 0) {
CurMacroExpander = new MacroExpander(Toks, NumToks, *this);
} else {
CurMacroExpander = MacroExpanderCache[--NumCachedMacroExpanders];
CurMacroExpander->Init(Toks, NumToks);
}
}
/// RemoveTopOfLexerStack - Pop the current lexer/macro exp off the top of the
/// lexer stack. This should only be used in situations where the current
/// state of the top-of-stack lexer is known.
void Preprocessor::RemoveTopOfLexerStack() {
assert(!IncludeMacroStack.empty() && "Ran out of stack entries to load");
if (CurMacroExpander) {
// Delete or cache the now-dead macro expander.
if (NumCachedMacroExpanders == MacroExpanderCacheSize)
delete CurMacroExpander;
else
MacroExpanderCache[NumCachedMacroExpanders++] = CurMacroExpander;
} else {
delete CurLexer;
}
CurLexer = IncludeMacroStack.back().TheLexer;
CurDirLookup = IncludeMacroStack.back().TheDirLookup;
CurMacroExpander = IncludeMacroStack.back().TheMacroExpander;
IncludeMacroStack.pop_back();
}
//===----------------------------------------------------------------------===//
// Macro Expansion Handling.
//===----------------------------------------------------------------------===//
/// RegisterBuiltinMacro - Register the specified identifier in the identifier
/// table and mark it as a builtin macro to be expanded.
IdentifierInfo *Preprocessor::RegisterBuiltinMacro(const char *Name) {
// Get the identifier.
IdentifierInfo *Id = getIdentifierInfo(Name);
// Mark it as being a macro that is builtin.
MacroInfo *MI = new MacroInfo(SourceLocation());
MI->setIsBuiltinMacro();
Id->setMacroInfo(MI);
return Id;
}
/// RegisterBuiltinMacros - Register builtin macros, such as __LINE__ with the
/// identifier table.
void Preprocessor::RegisterBuiltinMacros() {
Ident__LINE__ = RegisterBuiltinMacro("__LINE__");
Ident__FILE__ = RegisterBuiltinMacro("__FILE__");
Ident__DATE__ = RegisterBuiltinMacro("__DATE__");
Ident__TIME__ = RegisterBuiltinMacro("__TIME__");
Ident_Pragma = RegisterBuiltinMacro("_Pragma");
// GCC Extensions.
Ident__BASE_FILE__ = RegisterBuiltinMacro("__BASE_FILE__");
Ident__INCLUDE_LEVEL__ = RegisterBuiltinMacro("__INCLUDE_LEVEL__");
Ident__TIMESTAMP__ = RegisterBuiltinMacro("__TIMESTAMP__");
}
/// isTrivialSingleTokenExpansion - Return true if MI, which has a single token
/// in its expansion, currently expands to that token literally.
static bool isTrivialSingleTokenExpansion(const MacroInfo *MI,
const IdentifierInfo *MacroIdent) {
IdentifierInfo *II = MI->getReplacementToken(0).getIdentifierInfo();
// If the token isn't an identifier, it's always literally expanded.
if (II == 0) return true;
// If the identifier is a macro, and if that macro is enabled, it may be
// expanded so it's not a trivial expansion.
if (II->getMacroInfo() && II->getMacroInfo()->isEnabled() &&
// Fast expanding "#define X X" is ok, because X would be disabled.
II != MacroIdent)
return false;
// If this is an object-like macro invocation, it is safe to trivially expand
// it.
if (MI->isObjectLike()) return true;
// If this is a function-like macro invocation, it's safe to trivially expand
// as long as the identifier is not a macro argument.
for (MacroInfo::arg_iterator I = MI->arg_begin(), E = MI->arg_end();
I != E; ++I)
if (*I == II)
return false; // Identifier is a macro argument.
return true;
}
/// isNextPPTokenLParen - Determine whether the next preprocessor token to be
/// lexed is a '('. If so, consume the token and return true, if not, this
/// method should have no observable side-effect on the lexed tokens.
bool Preprocessor::isNextPPTokenLParen() {
// Do some quick tests for rejection cases.
unsigned Val;
if (CurLexer)
Val = CurLexer->isNextPPTokenLParen();
else
Val = CurMacroExpander->isNextTokenLParen();
if (Val == 2) {
// We have run off the end. If it's a source file we don't
// examine enclosing ones (C99 5.1.1.2p4). Otherwise walk up the
// macro stack.
if (CurLexer)
return false;
for (unsigned i = IncludeMacroStack.size(); i != 0; --i) {
IncludeStackInfo &Entry = IncludeMacroStack[i-1];
if (Entry.TheLexer)
Val = Entry.TheLexer->isNextPPTokenLParen();
else
Val = Entry.TheMacroExpander->isNextTokenLParen();
if (Val != 2)
break;
// Ran off the end of a source file?
if (Entry.TheLexer)
return false;
}
}
// Okay, if we know that the token is a '(', lex it and return. Otherwise we
// have found something that isn't a '(' or we found the end of the
// translation unit. In either case, return false.
if (Val != 1)
return false;
Token Tok;
LexUnexpandedToken(Tok);
assert(Tok.getKind() == tok::l_paren && "Error computing l-paren-ness?");
return true;
}
/// HandleMacroExpandedIdentifier - If an identifier token is read that is to be
/// expanded as a macro, handle it and return the next token as 'Identifier'.
bool Preprocessor::HandleMacroExpandedIdentifier(Token &Identifier,
MacroInfo *MI) {
// If this is a builtin macro, like __LINE__ or _Pragma, handle it specially.
if (MI->isBuiltinMacro()) {
ExpandBuiltinMacro(Identifier);
return false;
}
// If this is the first use of a target-specific macro, warn about it.
if (MI->isTargetSpecific()) {
MI->setIsTargetSpecific(false); // Don't warn on second use.
getTargetInfo().DiagnoseNonPortability(Identifier.getLocation(),
diag::port_target_macro_use);
}
/// Args - If this is a function-like macro expansion, this contains,
/// for each macro argument, the list of tokens that were provided to the
/// invocation.
MacroArgs *Args = 0;
// If this is a function-like macro, read the arguments.
if (MI->isFunctionLike()) {
// C99 6.10.3p10: If the preprocessing token immediately after the the macro
// name isn't a '(', this macro should not be expanded. Otherwise, consume
// it.
if (!isNextPPTokenLParen())
return true;
// Remember that we are now parsing the arguments to a macro invocation.
// Preprocessor directives used inside macro arguments are not portable, and
// this enables the warning.
InMacroArgs = true;
Args = ReadFunctionLikeMacroArgs(Identifier, MI);
// Finished parsing args.
InMacroArgs = false;
// If there was an error parsing the arguments, bail out.
if (Args == 0) return false;
++NumFnMacroExpanded;
} else {
++NumMacroExpanded;
}
// Notice that this macro has been used.
MI->setIsUsed(true);
// If we started lexing a macro, enter the macro expansion body.
// If this macro expands to no tokens, don't bother to push it onto the
// expansion stack, only to take it right back off.
if (MI->getNumTokens() == 0) {
// No need for arg info.
if (Args) Args->destroy();
// Ignore this macro use, just return the next token in the current
// buffer.
bool HadLeadingSpace = Identifier.hasLeadingSpace();
bool IsAtStartOfLine = Identifier.isAtStartOfLine();
Lex(Identifier);
// If the identifier isn't on some OTHER line, inherit the leading
// whitespace/first-on-a-line property of this token. This handles
// stuff like "! XX," -> "! ," and " XX," -> " ,", when XX is
// empty.
if (!Identifier.isAtStartOfLine()) {
if (IsAtStartOfLine) Identifier.setFlag(Token::StartOfLine);
if (HadLeadingSpace) Identifier.setFlag(Token::LeadingSpace);
}
++NumFastMacroExpanded;
return false;
} else if (MI->getNumTokens() == 1 &&
isTrivialSingleTokenExpansion(MI, Identifier.getIdentifierInfo())){
// Otherwise, if this macro expands into a single trivially-expanded
// token: expand it now. This handles common cases like
// "#define VAL 42".
// Propagate the isAtStartOfLine/hasLeadingSpace markers of the macro
// identifier to the expanded token.
bool isAtStartOfLine = Identifier.isAtStartOfLine();
bool hasLeadingSpace = Identifier.hasLeadingSpace();
// Remember where the token is instantiated.
SourceLocation InstantiateLoc = Identifier.getLocation();
// Replace the result token.
Identifier = MI->getReplacementToken(0);
// Restore the StartOfLine/LeadingSpace markers.
Identifier.setFlagValue(Token::StartOfLine , isAtStartOfLine);
Identifier.setFlagValue(Token::LeadingSpace, hasLeadingSpace);
// Update the tokens location to include both its logical and physical
// locations.
SourceLocation Loc =
SourceMgr.getInstantiationLoc(Identifier.getLocation(), InstantiateLoc);
Identifier.setLocation(Loc);
// If this is #define X X, we must mark the result as unexpandible.
if (IdentifierInfo *NewII = Identifier.getIdentifierInfo())
if (NewII->getMacroInfo() == MI)
Identifier.setFlag(Token::DisableExpand);
// Since this is not an identifier token, it can't be macro expanded, so
// we're done.
++NumFastMacroExpanded;
return false;
}
// Start expanding the macro.
EnterMacro(Identifier, Args);
// Now that the macro is at the top of the include stack, ask the
// preprocessor to read the next token from it.
Lex(Identifier);
return false;
}
/// ReadFunctionLikeMacroArgs - After reading "MACRO(", this method is
/// invoked to read all of the actual arguments specified for the macro
/// invocation. This returns null on error.
MacroArgs *Preprocessor::ReadFunctionLikeMacroArgs(Token &MacroName,
MacroInfo *MI) {
// The number of fixed arguments to parse.
unsigned NumFixedArgsLeft = MI->getNumArgs();
bool isVariadic = MI->isVariadic();
// Outer loop, while there are more arguments, keep reading them.
Token Tok;
Tok.setKind(tok::comma);
--NumFixedArgsLeft; // Start reading the first arg.
// ArgTokens - Build up a list of tokens that make up each argument. Each
// argument is separated by an EOF token. Use a SmallVector so we can avoid
// heap allocations in the common case.
llvm::SmallVector<Token, 64> ArgTokens;
unsigned NumActuals = 0;
while (Tok.getKind() == tok::comma) {
// C99 6.10.3p11: Keep track of the number of l_parens we have seen. Note
// that we already consumed the first one.
unsigned NumParens = 0;
while (1) {
// Read arguments as unexpanded tokens. This avoids issues, e.g., where
// an argument value in a macro could expand to ',' or '(' or ')'.
LexUnexpandedToken(Tok);
if (Tok.getKind() == tok::eof) {
Diag(MacroName, diag::err_unterm_macro_invoc);
// Do not lose the EOF. Return it to the client.
MacroName = Tok;
return 0;
} else if (Tok.getKind() == tok::r_paren) {
// If we found the ) token, the macro arg list is done.
if (NumParens-- == 0)
break;
} else if (Tok.getKind() == tok::l_paren) {
++NumParens;
} else if (Tok.getKind() == tok::comma && NumParens == 0) {
// Comma ends this argument if there are more fixed arguments expected.
if (NumFixedArgsLeft)
break;
// If this is not a variadic macro, too many args were specified.
if (!isVariadic) {
// Emit the diagnostic at the macro name in case there is a missing ).
// Emitting it at the , could be far away from the macro name.
Diag(MacroName, diag::err_too_many_args_in_macro_invoc);
return 0;
}
// Otherwise, continue to add the tokens to this variable argument.
} else if (Tok.getKind() == tok::comment && !KeepMacroComments) {
// If this is a comment token in the argument list and we're just in
// -C mode (not -CC mode), discard the comment.
continue;
}
ArgTokens.push_back(Tok);
}
// Empty arguments are standard in C99 and supported as an extension in
// other modes.
if (ArgTokens.empty() && !Features.C99)
Diag(Tok, diag::ext_empty_fnmacro_arg);
// Add a marker EOF token to the end of the token list for this argument.
Token EOFTok;
EOFTok.startToken();
EOFTok.setKind(tok::eof);
EOFTok.setLocation(Tok.getLocation());
EOFTok.setLength(0);
ArgTokens.push_back(EOFTok);
++NumActuals;
--NumFixedArgsLeft;
};
// Okay, we either found the r_paren. Check to see if we parsed too few
// arguments.
unsigned MinArgsExpected = MI->getNumArgs();
// See MacroArgs instance var for description of this.
bool isVarargsElided = false;
if (NumActuals < MinArgsExpected) {
// There are several cases where too few arguments is ok, handle them now.
if (NumActuals+1 == MinArgsExpected && MI->isVariadic()) {
// Varargs where the named vararg parameter is missing: ok as extension.
// #define A(x, ...)
// A("blah")
Diag(Tok, diag::ext_missing_varargs_arg);
// Remember this occurred if this is a C99 macro invocation with at least
// one actual argument.
isVarargsElided = MI->isC99Varargs() && MI->getNumArgs() > 1;
} else if (MI->getNumArgs() == 1) {
// #define A(x)
// A()
// is ok because it is an empty argument.
// Empty arguments are standard in C99 and supported as an extension in
// other modes.
if (ArgTokens.empty() && !Features.C99)
Diag(Tok, diag::ext_empty_fnmacro_arg);
} else {
// Otherwise, emit the error.
Diag(Tok, diag::err_too_few_args_in_macro_invoc);
return 0;
}
// Add a marker EOF token to the end of the token list for this argument.
SourceLocation EndLoc = Tok.getLocation();
Tok.startToken();
Tok.setKind(tok::eof);
Tok.setLocation(EndLoc);
Tok.setLength(0);
ArgTokens.push_back(Tok);
}
return MacroArgs::create(MI, &ArgTokens[0], ArgTokens.size(),isVarargsElided);
}
/// ComputeDATE_TIME - Compute the current time, enter it into the specified
/// scratch buffer, then return DATELoc/TIMELoc locations with the position of
/// the identifier tokens inserted.
static void ComputeDATE_TIME(SourceLocation &DATELoc, SourceLocation &TIMELoc,
Preprocessor &PP) {
time_t TT = time(0);
struct tm *TM = localtime(&TT);
static const char * const Months[] = {
"Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"
};
char TmpBuffer[100];
sprintf(TmpBuffer, "\"%s %2d %4d\"", Months[TM->tm_mon], TM->tm_mday,
TM->tm_year+1900);
DATELoc = PP.CreateString(TmpBuffer, strlen(TmpBuffer));
sprintf(TmpBuffer, "\"%02d:%02d:%02d\"", TM->tm_hour, TM->tm_min, TM->tm_sec);
TIMELoc = PP.CreateString(TmpBuffer, strlen(TmpBuffer));
}
/// ExpandBuiltinMacro - If an identifier token is read that is to be expanded
/// as a builtin macro, handle it and return the next token as 'Tok'.
void Preprocessor::ExpandBuiltinMacro(Token &Tok) {
// Figure out which token this is.
IdentifierInfo *II = Tok.getIdentifierInfo();
assert(II && "Can't be a macro without id info!");
// If this is an _Pragma directive, expand it, invoke the pragma handler, then
// lex the token after it.
if (II == Ident_Pragma)
return Handle_Pragma(Tok);
++NumBuiltinMacroExpanded;
char TmpBuffer[100];
// Set up the return result.
Tok.setIdentifierInfo(0);
Tok.clearFlag(Token::NeedsCleaning);
if (II == Ident__LINE__) {
// __LINE__ expands to a simple numeric value.
sprintf(TmpBuffer, "%u", SourceMgr.getLogicalLineNumber(Tok.getLocation()));
unsigned Length = strlen(TmpBuffer);
Tok.setKind(tok::numeric_constant);
Tok.setLength(Length);
Tok.setLocation(CreateString(TmpBuffer, Length, Tok.getLocation()));
} else if (II == Ident__FILE__ || II == Ident__BASE_FILE__) {
SourceLocation Loc = Tok.getLocation();
if (II == Ident__BASE_FILE__) {
Diag(Tok, diag::ext_pp_base_file);
SourceLocation NextLoc = SourceMgr.getIncludeLoc(Loc);
while (NextLoc.isValid()) {
Loc = NextLoc;
NextLoc = SourceMgr.getIncludeLoc(Loc);
}
}
// Escape this filename. Turn '\' -> '\\' '"' -> '\"'
std::string FN = SourceMgr.getSourceName(SourceMgr.getLogicalLoc(Loc));
FN = '"' + Lexer::Stringify(FN) + '"';
Tok.setKind(tok::string_literal);
Tok.setLength(FN.size());
Tok.setLocation(CreateString(&FN[0], FN.size(), Tok.getLocation()));
} else if (II == Ident__DATE__) {
if (!DATELoc.isValid())
ComputeDATE_TIME(DATELoc, TIMELoc, *this);
Tok.setKind(tok::string_literal);
Tok.setLength(strlen("\"Mmm dd yyyy\""));
Tok.setLocation(SourceMgr.getInstantiationLoc(DATELoc, Tok.getLocation()));
} else if (II == Ident__TIME__) {
if (!TIMELoc.isValid())
ComputeDATE_TIME(DATELoc, TIMELoc, *this);
Tok.setKind(tok::string_literal);
Tok.setLength(strlen("\"hh:mm:ss\""));
Tok.setLocation(SourceMgr.getInstantiationLoc(TIMELoc, Tok.getLocation()));
} else if (II == Ident__INCLUDE_LEVEL__) {
Diag(Tok, diag::ext_pp_include_level);
// Compute the include depth of this token.
unsigned Depth = 0;
SourceLocation Loc = SourceMgr.getIncludeLoc(Tok.getLocation());
for (; Loc.isValid(); ++Depth)
Loc = SourceMgr.getIncludeLoc(Loc);
// __INCLUDE_LEVEL__ expands to a simple numeric value.
sprintf(TmpBuffer, "%u", Depth);
unsigned Length = strlen(TmpBuffer);
Tok.setKind(tok::numeric_constant);
Tok.setLength(Length);
Tok.setLocation(CreateString(TmpBuffer, Length, Tok.getLocation()));
} else if (II == Ident__TIMESTAMP__) {
// MSVC, ICC, GCC, VisualAge C++ extension. The generated string should be
// of the form "Ddd Mmm dd hh::mm::ss yyyy", which is returned by asctime.
Diag(Tok, diag::ext_pp_timestamp);
// Get the file that we are lexing out of. If we're currently lexing from
// a macro, dig into the include stack.
const FileEntry *CurFile = 0;
Lexer *TheLexer = getCurrentFileLexer();
if (TheLexer)
CurFile = SourceMgr.getFileEntryForLoc(TheLexer->getFileLoc());
// If this file is older than the file it depends on, emit a diagnostic.
const char *Result;
if (CurFile) {
time_t TT = CurFile->getModificationTime();
struct tm *TM = localtime(&TT);
Result = asctime(TM);
} else {
Result = "??? ??? ?? ??:??:?? ????\n";
}
TmpBuffer[0] = '"';
strcpy(TmpBuffer+1, Result);
unsigned Len = strlen(TmpBuffer);
TmpBuffer[Len-1] = '"'; // Replace the newline with a quote.
Tok.setKind(tok::string_literal);
Tok.setLength(Len);
Tok.setLocation(CreateString(TmpBuffer, Len, Tok.getLocation()));
} else {
assert(0 && "Unknown identifier!");
}
}
//===----------------------------------------------------------------------===//
// Lexer Event Handling.
//===----------------------------------------------------------------------===//
/// LookUpIdentifierInfo - Given a tok::identifier token, look up the
/// identifier information for the token and install it into the token.
IdentifierInfo *Preprocessor::LookUpIdentifierInfo(Token &Identifier,
const char *BufPtr) {
assert(Identifier.getKind() == tok::identifier && "Not an identifier!");
assert(Identifier.getIdentifierInfo() == 0 && "Identinfo already exists!");
// Look up this token, see if it is a macro, or if it is a language keyword.
IdentifierInfo *II;
if (BufPtr && !Identifier.needsCleaning()) {
// No cleaning needed, just use the characters from the lexed buffer.
II = getIdentifierInfo(BufPtr, BufPtr+Identifier.getLength());
} else {
// Cleaning needed, alloca a buffer, clean into it, then use the buffer.
llvm::SmallVector<char, 64> IdentifierBuffer;
IdentifierBuffer.resize(Identifier.getLength());
const char *TmpBuf = &IdentifierBuffer[0];
unsigned Size = getSpelling(Identifier, TmpBuf);
II = getIdentifierInfo(TmpBuf, TmpBuf+Size);
}
Identifier.setIdentifierInfo(II);
return II;
}
/// HandleIdentifier - This callback is invoked when the lexer reads an
/// identifier. This callback looks up the identifier in the map and/or
/// potentially macro expands it or turns it into a named token (like 'for').
void Preprocessor::HandleIdentifier(Token &Identifier) {
assert(Identifier.getIdentifierInfo() &&
"Can't handle identifiers without identifier info!");
IdentifierInfo &II = *Identifier.getIdentifierInfo();
// If this identifier was poisoned, and if it was not produced from a macro
// expansion, emit an error.
if (II.isPoisoned() && CurLexer) {
if (&II != Ident__VA_ARGS__) // We warn about __VA_ARGS__ with poisoning.
Diag(Identifier, diag::err_pp_used_poisoned_id);
else
Diag(Identifier, diag::ext_pp_bad_vaargs_use);
}
// If this is a macro to be expanded, do it.
if (MacroInfo *MI = II.getMacroInfo()) {
if (!DisableMacroExpansion && !Identifier.isExpandDisabled()) {
if (MI->isEnabled()) {
if (!HandleMacroExpandedIdentifier(Identifier, MI))
return;
} else {
// C99 6.10.3.4p2 says that a disabled macro may never again be
// expanded, even if it's in a context where it could be expanded in the
// future.
Identifier.setFlag(Token::DisableExpand);
}
}
} else if (II.isOtherTargetMacro() && !DisableMacroExpansion) {
// If this identifier is a macro on some other target, emit a diagnostic.
// This diagnosic is only emitted when macro expansion is enabled, because
// the macro would not have been expanded for the other target either.
II.setIsOtherTargetMacro(false); // Don't warn on second use.
getTargetInfo().DiagnoseNonPortability(Identifier.getLocation(),
diag::port_target_macro_use);
}
// C++ 2.11p2: If this is an alternative representation of a C++ operator,
// then we act as if it is the actual operator and not the textual
// representation of it.
if (II.isCPlusPlusOperatorKeyword())
Identifier.setIdentifierInfo(0);
// Change the kind of this identifier to the appropriate token kind, e.g.
// turning "for" into a keyword.
Identifier.setKind(II.getTokenID());
// If this is an extension token, diagnose its use.
// FIXME: tried (unsuccesfully) to shut this up when compiling with gnu99
// For now, I'm just commenting it out (while I work on attributes).
if (II.isExtensionToken() && Features.C99)
Diag(Identifier, diag::ext_token_used);
}
/// HandleEndOfFile - This callback is invoked when the lexer hits the end of
/// the current file. This either returns the EOF token or pops a level off
/// the include stack and keeps going.
bool Preprocessor::HandleEndOfFile(Token &Result, bool isEndOfMacro) {
assert(!CurMacroExpander &&
"Ending a file when currently in a macro!");
// See if this file had a controlling macro.
if (CurLexer) { // Not ending a macro, ignore it.
if (const IdentifierInfo *ControllingMacro =
CurLexer->MIOpt.GetControllingMacroAtEndOfFile()) {
// Okay, this has a controlling macro, remember in PerFileInfo.
if (const FileEntry *FE =
SourceMgr.getFileEntryForLoc(CurLexer->getFileLoc()))
HeaderInfo.SetFileControllingMacro(FE, ControllingMacro);
}
}
// If this is a #include'd file, pop it off the include stack and continue
// lexing the #includer file.
if (!IncludeMacroStack.empty()) {
// We're done with the #included file.
RemoveTopOfLexerStack();
// Notify the client, if desired, that we are in a new source file.
if (Callbacks && !isEndOfMacro && CurLexer) {
DirectoryLookup::DirType FileType = DirectoryLookup::NormalHeaderDir;
// Get the file entry for the current file.
if (const FileEntry *FE =
SourceMgr.getFileEntryForLoc(CurLexer->getFileLoc()))
FileType = HeaderInfo.getFileDirFlavor(FE);
Callbacks->FileChanged(CurLexer->getSourceLocation(CurLexer->BufferPtr),
PPCallbacks::ExitFile, FileType);
}
// Client should lex another token.
return false;
}
Result.startToken();
CurLexer->BufferPtr = CurLexer->BufferEnd;
CurLexer->FormTokenWithChars(Result, CurLexer->BufferEnd);
Result.setKind(tok::eof);
// We're done with the #included file.
delete CurLexer;
CurLexer = 0;
// This is the end of the top-level file. If the diag::pp_macro_not_used
// diagnostic is enabled, walk all of the identifiers, looking for macros that
// have not been used.
if (Diags.getDiagnosticLevel(diag::pp_macro_not_used) != Diagnostic::Ignored){
for (IdentifierTable::iterator I = Identifiers.begin(),
E = Identifiers.end(); I != E; ++I) {
const IdentifierInfo &II = I->getValue();
if (II.getMacroInfo() && !II.getMacroInfo()->isUsed())
Diag(II.getMacroInfo()->getDefinitionLoc(), diag::pp_macro_not_used);
}
}
return true;
}
/// HandleEndOfMacro - This callback is invoked when the lexer hits the end of
/// the current macro expansion or token stream expansion.
bool Preprocessor::HandleEndOfMacro(Token &Result) {
assert(CurMacroExpander && !CurLexer &&
"Ending a macro when currently in a #include file!");
// Delete or cache the now-dead macro expander.
if (NumCachedMacroExpanders == MacroExpanderCacheSize)
delete CurMacroExpander;
else
MacroExpanderCache[NumCachedMacroExpanders++] = CurMacroExpander;
// Handle this like a #include file being popped off the stack.
CurMacroExpander = 0;
return HandleEndOfFile(Result, true);
}
//===----------------------------------------------------------------------===//
// Utility Methods for Preprocessor Directive Handling.
//===----------------------------------------------------------------------===//
/// DiscardUntilEndOfDirective - Read and discard all tokens remaining on the
/// current line until the tok::eom token is found.
void Preprocessor::DiscardUntilEndOfDirective() {
Token Tmp;
do {
LexUnexpandedToken(Tmp);
} while (Tmp.getKind() != tok::eom);
}
/// isCXXNamedOperator - Returns "true" if the token is a named operator in C++.
static bool isCXXNamedOperator(const std::string &Spelling) {
return Spelling == "and" || Spelling == "bitand" || Spelling == "bitor" ||
Spelling == "compl" || Spelling == "not" || Spelling == "not_eq" ||
Spelling == "or" || Spelling == "xor";
}
/// ReadMacroName - Lex and validate a macro name, which occurs after a
/// #define or #undef. This sets the token kind to eom and discards the rest
/// of the macro line if the macro name is invalid. isDefineUndef is 1 if
/// this is due to a a #define, 2 if #undef directive, 0 if it is something
/// else (e.g. #ifdef).
void Preprocessor::ReadMacroName(Token &MacroNameTok, char isDefineUndef) {
// Read the token, don't allow macro expansion on it.
LexUnexpandedToken(MacroNameTok);
// Missing macro name?
if (MacroNameTok.getKind() == tok::eom)
return Diag(MacroNameTok, diag::err_pp_missing_macro_name);
IdentifierInfo *II = MacroNameTok.getIdentifierInfo();
if (II == 0) {
std::string Spelling = getSpelling(MacroNameTok);
if (isCXXNamedOperator(Spelling))
// C++ 2.5p2: Alternative tokens behave the same as its primary token
// except for their spellings.
Diag(MacroNameTok, diag::err_pp_operator_used_as_macro_name, Spelling);
else
Diag(MacroNameTok, diag::err_pp_macro_not_identifier);
// Fall through on error.
} else if (isDefineUndef && II->getPPKeywordID() == tok::pp_defined) {
// Error if defining "defined": C99 6.10.8.4.
Diag(MacroNameTok, diag::err_defined_macro_name);
} else if (isDefineUndef && II->getMacroInfo() &&
II->getMacroInfo()->isBuiltinMacro()) {
// Error if defining "__LINE__" and other builtins: C99 6.10.8.4.
if (isDefineUndef == 1)
Diag(MacroNameTok, diag::pp_redef_builtin_macro);
else
Diag(MacroNameTok, diag::pp_undef_builtin_macro);
} else {
// Okay, we got a good identifier node. Return it.
return;
}
// Invalid macro name, read and discard the rest of the line. Then set the
// token kind to tok::eom.
MacroNameTok.setKind(tok::eom);
return DiscardUntilEndOfDirective();
}
/// CheckEndOfDirective - Ensure that the next token is a tok::eom token. If
/// not, emit a diagnostic and consume up until the eom.
void Preprocessor::CheckEndOfDirective(const char *DirType) {
Token Tmp;
Lex(Tmp);
// There should be no tokens after the directive, but we allow them as an
// extension.
while (Tmp.getKind() == tok::comment) // Skip comments in -C mode.
Lex(Tmp);
if (Tmp.getKind() != tok::eom) {
Diag(Tmp, diag::ext_pp_extra_tokens_at_eol, DirType);
DiscardUntilEndOfDirective();
}
}
/// SkipExcludedConditionalBlock - We just read a #if or related directive and
/// decided that the subsequent tokens are in the #if'd out portion of the
/// file. Lex the rest of the file, until we see an #endif. If
/// FoundNonSkipPortion is true, then we have already emitted code for part of
/// this #if directive, so #else/#elif blocks should never be entered. If ElseOk
/// is true, then #else directives are ok, if not, then we have already seen one
/// so a #else directive is a duplicate. When this returns, the caller can lex
/// the first valid token.
void Preprocessor::SkipExcludedConditionalBlock(SourceLocation IfTokenLoc,
bool FoundNonSkipPortion,
bool FoundElse) {
++NumSkipped;
assert(CurMacroExpander == 0 && CurLexer &&
"Lexing a macro, not a file?");
CurLexer->pushConditionalLevel(IfTokenLoc, /*isSkipping*/false,
FoundNonSkipPortion, FoundElse);
// Enter raw mode to disable identifier lookup (and thus macro expansion),
// disabling warnings, etc.
CurLexer->LexingRawMode = true;
Token Tok;
while (1) {
CurLexer->Lex(Tok);
// If this is the end of the buffer, we have an error.
if (Tok.getKind() == tok::eof) {
// Emit errors for each unterminated conditional on the stack, including
// the current one.
while (!CurLexer->ConditionalStack.empty()) {
Diag(CurLexer->ConditionalStack.back().IfLoc,
diag::err_pp_unterminated_conditional);
CurLexer->ConditionalStack.pop_back();
}
// Just return and let the caller lex after this #include.
break;
}
// If this token is not a preprocessor directive, just skip it.
if (Tok.getKind() != tok::hash || !Tok.isAtStartOfLine())
continue;
// We just parsed a # character at the start of a line, so we're in
// directive mode. Tell the lexer this so any newlines we see will be
// converted into an EOM token (this terminates the macro).
CurLexer->ParsingPreprocessorDirective = true;
CurLexer->KeepCommentMode = false;
// Read the next token, the directive flavor.
LexUnexpandedToken(Tok);
// If this isn't an identifier directive (e.g. is "# 1\n" or "#\n", or
// something bogus), skip it.
if (Tok.getKind() != tok::identifier) {
CurLexer->ParsingPreprocessorDirective = false;
// Restore comment saving mode.
CurLexer->KeepCommentMode = KeepComments;
continue;
}
// If the first letter isn't i or e, it isn't intesting to us. We know that
// this is safe in the face of spelling differences, because there is no way
// to spell an i/e in a strange way that is another letter. Skipping this
// allows us to avoid looking up the identifier info for #define/#undef and
// other common directives.
const char *RawCharData = SourceMgr.getCharacterData(Tok.getLocation());
char FirstChar = RawCharData[0];
if (FirstChar >= 'a' && FirstChar <= 'z' &&
FirstChar != 'i' && FirstChar != 'e') {
CurLexer->ParsingPreprocessorDirective = false;
// Restore comment saving mode.
CurLexer->KeepCommentMode = KeepComments;
continue;
}
// Get the identifier name without trigraphs or embedded newlines. Note
// that we can't use Tok.getIdentifierInfo() because its lookup is disabled
// when skipping.
// TODO: could do this with zero copies in the no-clean case by using
// strncmp below.
char Directive[20];
unsigned IdLen;
if (!Tok.needsCleaning() && Tok.getLength() < 20) {
IdLen = Tok.getLength();
memcpy(Directive, RawCharData, IdLen);
Directive[IdLen] = 0;
} else {
std::string DirectiveStr = getSpelling(Tok);
IdLen = DirectiveStr.size();
if (IdLen >= 20) {
CurLexer->ParsingPreprocessorDirective = false;
// Restore comment saving mode.
CurLexer->KeepCommentMode = KeepComments;
continue;
}
memcpy(Directive, &DirectiveStr[0], IdLen);
Directive[IdLen] = 0;
}
if (FirstChar == 'i' && Directive[1] == 'f') {
if ((IdLen == 2) || // "if"
(IdLen == 5 && !strcmp(Directive+2, "def")) || // "ifdef"
(IdLen == 6 && !strcmp(Directive+2, "ndef"))) { // "ifndef"
// We know the entire #if/#ifdef/#ifndef block will be skipped, don't
// bother parsing the condition.
DiscardUntilEndOfDirective();
CurLexer->pushConditionalLevel(Tok.getLocation(), /*wasskipping*/true,
/*foundnonskip*/false,
/*fnddelse*/false);
}
} else if (FirstChar == 'e') {
if (IdLen == 5 && !strcmp(Directive+1, "ndif")) { // "endif"
CheckEndOfDirective("#endif");
PPConditionalInfo CondInfo;
CondInfo.WasSkipping = true; // Silence bogus warning.
bool InCond = CurLexer->popConditionalLevel(CondInfo);
InCond = InCond; // Silence warning in no-asserts mode.
assert(!InCond && "Can't be skipping if not in a conditional!");
// If we popped the outermost skipping block, we're done skipping!
if (!CondInfo.WasSkipping)
break;
} else if (IdLen == 4 && !strcmp(Directive+1, "lse")) { // "else".
// #else directive in a skipping conditional. If not in some other
// skipping conditional, and if #else hasn't already been seen, enter it
// as a non-skipping conditional.
CheckEndOfDirective("#else");
PPConditionalInfo &CondInfo = CurLexer->peekConditionalLevel();
// If this is a #else with a #else before it, report the error.
if (CondInfo.FoundElse) Diag(Tok, diag::pp_err_else_after_else);
// Note that we've seen a #else in this conditional.
CondInfo.FoundElse = true;
// If the conditional is at the top level, and the #if block wasn't
// entered, enter the #else block now.
if (!CondInfo.WasSkipping && !CondInfo.FoundNonSkip) {
CondInfo.FoundNonSkip = true;
break;
}
} else if (IdLen == 4 && !strcmp(Directive+1, "lif")) { // "elif".
PPConditionalInfo &CondInfo = CurLexer->peekConditionalLevel();
bool ShouldEnter;
// If this is in a skipping block or if we're already handled this #if
// block, don't bother parsing the condition.
if (CondInfo.WasSkipping || CondInfo.FoundNonSkip) {
DiscardUntilEndOfDirective();
ShouldEnter = false;
} else {
// Restore the value of LexingRawMode so that identifiers are
// looked up, etc, inside the #elif expression.
assert(CurLexer->LexingRawMode && "We have to be skipping here!");
CurLexer->LexingRawMode = false;
IdentifierInfo *IfNDefMacro = 0;
ShouldEnter = EvaluateDirectiveExpression(IfNDefMacro);
CurLexer->LexingRawMode = true;
}
// If this is a #elif with a #else before it, report the error.
if (CondInfo.FoundElse) Diag(Tok, diag::pp_err_elif_after_else);
// If this condition is true, enter it!
if (ShouldEnter) {
CondInfo.FoundNonSkip = true;
break;
}
}
}
CurLexer->ParsingPreprocessorDirective = false;
// Restore comment saving mode.
CurLexer->KeepCommentMode = KeepComments;
}
// Finally, if we are out of the conditional (saw an #endif or ran off the end
// of the file, just stop skipping and return to lexing whatever came after
// the #if block.
CurLexer->LexingRawMode = false;
}
//===----------------------------------------------------------------------===//
// Preprocessor Directive Handling.
//===----------------------------------------------------------------------===//
/// HandleDirective - This callback is invoked when the lexer sees a # token
/// at the start of a line. This consumes the directive, modifies the
/// lexer/preprocessor state, and advances the lexer(s) so that the next token
/// read is the correct one.
void Preprocessor::HandleDirective(Token &Result) {
// FIXME: Traditional: # with whitespace before it not recognized by K&R?
// We just parsed a # character at the start of a line, so we're in directive
// mode. Tell the lexer this so any newlines we see will be converted into an
// EOM token (which terminates the directive).
CurLexer->ParsingPreprocessorDirective = true;
++NumDirectives;
// We are about to read a token. For the multiple-include optimization FA to
// work, we have to remember if we had read any tokens *before* this
// pp-directive.
bool ReadAnyTokensBeforeDirective = CurLexer->MIOpt.getHasReadAnyTokensVal();
// Read the next token, the directive flavor. This isn't expanded due to
// C99 6.10.3p8.
LexUnexpandedToken(Result);
// C99 6.10.3p11: Is this preprocessor directive in macro invocation? e.g.:
// #define A(x) #x
// A(abc
// #warning blah
// def)
// If so, the user is relying on non-portable behavior, emit a diagnostic.
if (InMacroArgs)
Diag(Result, diag::ext_embedded_directive);
TryAgain:
switch (Result.getKind()) {
case tok::eom:
return; // null directive.
case tok::comment:
// Handle stuff like "# /*foo*/ define X" in -E -C mode.
LexUnexpandedToken(Result);
goto TryAgain;
case tok::numeric_constant:
// FIXME: implement # 7 line numbers!
DiscardUntilEndOfDirective();
return;
default:
IdentifierInfo *II = Result.getIdentifierInfo();
if (II == 0) break; // Not an identifier.
// Ask what the preprocessor keyword ID is.
switch (II->getPPKeywordID()) {
default: break;
// C99 6.10.1 - Conditional Inclusion.
case tok::pp_if:
return HandleIfDirective(Result, ReadAnyTokensBeforeDirective);
case tok::pp_ifdef:
return HandleIfdefDirective(Result, false, true/*not valid for miopt*/);
case tok::pp_ifndef:
return HandleIfdefDirective(Result, true, ReadAnyTokensBeforeDirective);
case tok::pp_elif:
return HandleElifDirective(Result);
case tok::pp_else:
return HandleElseDirective(Result);
case tok::pp_endif:
return HandleEndifDirective(Result);
// C99 6.10.2 - Source File Inclusion.
case tok::pp_include:
return HandleIncludeDirective(Result); // Handle #include.
// C99 6.10.3 - Macro Replacement.
case tok::pp_define:
return HandleDefineDirective(Result, false);
case tok::pp_undef:
return HandleUndefDirective(Result);
// C99 6.10.4 - Line Control.
case tok::pp_line:
// FIXME: implement #line
DiscardUntilEndOfDirective();
return;
// C99 6.10.5 - Error Directive.
case tok::pp_error:
return HandleUserDiagnosticDirective(Result, false);
// C99 6.10.6 - Pragma Directive.
case tok::pp_pragma:
return HandlePragmaDirective();
// GNU Extensions.
case tok::pp_import:
return HandleImportDirective(Result);
case tok::pp_include_next:
return HandleIncludeNextDirective(Result);
case tok::pp_warning:
Diag(Result, diag::ext_pp_warning_directive);
return HandleUserDiagnosticDirective(Result, true);
case tok::pp_ident:
return HandleIdentSCCSDirective(Result);
case tok::pp_sccs:
return HandleIdentSCCSDirective(Result);
case tok::pp_assert:
//isExtension = true; // FIXME: implement #assert
break;
case tok::pp_unassert:
//isExtension = true; // FIXME: implement #unassert
break;
// clang extensions.
case tok::pp_define_target:
return HandleDefineDirective(Result, true);
case tok::pp_define_other_target:
return HandleDefineOtherTargetDirective(Result);
}
break;
}
// If we reached here, the preprocessing token is not valid!
Diag(Result, diag::err_pp_invalid_directive);
// Read the rest of the PP line.
DiscardUntilEndOfDirective();
// Okay, we're done parsing the directive.
}
void Preprocessor::HandleUserDiagnosticDirective(Token &Tok,
bool isWarning) {
// Read the rest of the line raw. We do this because we don't want macros
// to be expanded and we don't require that the tokens be valid preprocessing
// tokens. For example, this is allowed: "#warning ` 'foo". GCC does
// collapse multiple consequtive white space between tokens, but this isn't
// specified by the standard.
std::string Message = CurLexer->ReadToEndOfLine();
unsigned DiagID = isWarning ? diag::pp_hash_warning : diag::err_pp_hash_error;
return Diag(Tok, DiagID, Message);
}
/// HandleIdentSCCSDirective - Handle a #ident/#sccs directive.
///
void Preprocessor::HandleIdentSCCSDirective(Token &Tok) {
// Yes, this directive is an extension.
Diag(Tok, diag::ext_pp_ident_directive);
// Read the string argument.
Token StrTok;
Lex(StrTok);
// If the token kind isn't a string, it's a malformed directive.
if (StrTok.getKind() != tok::string_literal &&
StrTok.getKind() != tok::wide_string_literal)
return Diag(StrTok, diag::err_pp_malformed_ident);
// Verify that there is nothing after the string, other than EOM.
CheckEndOfDirective("#ident");
if (Callbacks)
Callbacks->Ident(Tok.getLocation(), getSpelling(StrTok));
}
//===----------------------------------------------------------------------===//
// Preprocessor Include Directive Handling.
//===----------------------------------------------------------------------===//
/// GetIncludeFilenameSpelling - Turn the specified lexer token into a fully
/// checked and spelled filename, e.g. as an operand of #include. This returns
/// true if the input filename was in <>'s or false if it were in ""'s. The
/// caller is expected to provide a buffer that is large enough to hold the
/// spelling of the filename, but is also expected to handle the case when
/// this method decides to use a different buffer.
bool Preprocessor::GetIncludeFilenameSpelling(SourceLocation Loc,
const char *&BufStart,
const char *&BufEnd) {
// Get the text form of the filename.
assert(BufStart != BufEnd && "Can't have tokens with empty spellings!");
// Make sure the filename is <x> or "x".
bool isAngled;
if (BufStart[0] == '<') {
if (BufEnd[-1] != '>') {
Diag(Loc, diag::err_pp_expects_filename);
BufStart = 0;
return true;
}
isAngled = true;
} else if (BufStart[0] == '"') {
if (BufEnd[-1] != '"') {
Diag(Loc, diag::err_pp_expects_filename);
BufStart = 0;
return true;
}
isAngled = false;
} else {
Diag(Loc, diag::err_pp_expects_filename);
BufStart = 0;
return true;
}
// Diagnose #include "" as invalid.
if (BufEnd-BufStart <= 2) {
Diag(Loc, diag::err_pp_empty_filename);
BufStart = 0;
return "";
}
// Skip the brackets.
++BufStart;
--BufEnd;
return isAngled;
}
/// ConcatenateIncludeName - Handle cases where the #include name is expanded
/// from a macro as multiple tokens, which need to be glued together. This
/// occurs for code like:
/// #define FOO <a/b.h>
/// #include FOO
/// because in this case, "<a/b.h>" is returned as 7 tokens, not one.
///
/// This code concatenates and consumes tokens up to the '>' token. It returns
/// false if the > was found, otherwise it returns true if it finds and consumes
/// the EOM marker.
static bool ConcatenateIncludeName(llvm::SmallVector<char, 128> &FilenameBuffer,
Preprocessor &PP) {
Token CurTok;
PP.Lex(CurTok);
while (CurTok.getKind() != tok::eom) {
// Append the spelling of this token to the buffer. If there was a space
// before it, add it now.
if (CurTok.hasLeadingSpace())
FilenameBuffer.push_back(' ');
// Get the spelling of the token, directly into FilenameBuffer if possible.
unsigned PreAppendSize = FilenameBuffer.size();
FilenameBuffer.resize(PreAppendSize+CurTok.getLength());
const char *BufPtr = &FilenameBuffer[PreAppendSize];
unsigned ActualLen = PP.getSpelling(CurTok, BufPtr);
// If the token was spelled somewhere else, copy it into FilenameBuffer.
if (BufPtr != &FilenameBuffer[PreAppendSize])
memcpy(&FilenameBuffer[PreAppendSize], BufPtr, ActualLen);
// Resize FilenameBuffer to the correct size.
if (CurTok.getLength() != ActualLen)
FilenameBuffer.resize(PreAppendSize+ActualLen);
// If we found the '>' marker, return success.
if (CurTok.getKind() == tok::greater)
return false;
PP.Lex(CurTok);
}
// If we hit the eom marker, emit an error and return true so that the caller
// knows the EOM has been read.
PP.Diag(CurTok.getLocation(), diag::err_pp_expects_filename);
return true;
}
/// HandleIncludeDirective - The "#include" tokens have just been read, read the
/// file to be included from the lexer, then include it! This is a common
/// routine with functionality shared between #include, #include_next and
/// #import.
void Preprocessor::HandleIncludeDirective(Token &IncludeTok,
const DirectoryLookup *LookupFrom,
bool isImport) {
Token FilenameTok;
CurLexer->LexIncludeFilename(FilenameTok);
// Reserve a buffer to get the spelling.
llvm::SmallVector<char, 128> FilenameBuffer;
const char *FilenameStart, *FilenameEnd;
switch (FilenameTok.getKind()) {
case tok::eom:
// If the token kind is EOM, the error has already been diagnosed.
return;
case tok::angle_string_literal:
case tok::string_literal: {
FilenameBuffer.resize(FilenameTok.getLength());
FilenameStart = &FilenameBuffer[0];
unsigned Len = getSpelling(FilenameTok, FilenameStart);
FilenameEnd = FilenameStart+Len;
break;
}
case tok::less:
// This could be a <foo/bar.h> file coming from a macro expansion. In this
// case, glue the tokens together into FilenameBuffer and interpret those.
FilenameBuffer.push_back('<');
if (ConcatenateIncludeName(FilenameBuffer, *this))
return; // Found <eom> but no ">"? Diagnostic already emitted.
FilenameStart = &FilenameBuffer[0];
FilenameEnd = &FilenameBuffer[FilenameBuffer.size()];
break;
default:
Diag(FilenameTok.getLocation(), diag::err_pp_expects_filename);
DiscardUntilEndOfDirective();
return;
}
bool isAngled = GetIncludeFilenameSpelling(FilenameTok.getLocation(),
FilenameStart, FilenameEnd);
// If GetIncludeFilenameSpelling set the start ptr to null, there was an
// error.
if (FilenameStart == 0) {
DiscardUntilEndOfDirective();
return;
}
// Verify that there is nothing after the filename, other than EOM. Use the
// preprocessor to lex this in case lexing the filename entered a macro.
CheckEndOfDirective("#include");
// Check that we don't have infinite #include recursion.
if (IncludeMacroStack.size() == MaxAllowedIncludeStackDepth-1)
return Diag(FilenameTok, diag::err_pp_include_too_deep);
// Search include directories.
const DirectoryLookup *CurDir;
const FileEntry *File = LookupFile(FilenameStart, FilenameEnd,
isAngled, LookupFrom, CurDir);
if (File == 0)
return Diag(FilenameTok, diag::err_pp_file_not_found,
std::string(FilenameStart, FilenameEnd));
// Ask HeaderInfo if we should enter this #include file.
if (!HeaderInfo.ShouldEnterIncludeFile(File, isImport)) {
// If it returns true, #including this file will have no effect.
return;
}
// Look up the file, create a File ID for it.
unsigned FileID = SourceMgr.createFileID(File, FilenameTok.getLocation());
if (FileID == 0)
return Diag(FilenameTok, diag::err_pp_file_not_found,
std::string(FilenameStart, FilenameEnd));
// Finally, if all is good, enter the new file!
EnterSourceFile(FileID, CurDir);
}
/// HandleIncludeNextDirective - Implements #include_next.
///
void Preprocessor::HandleIncludeNextDirective(Token &IncludeNextTok) {
Diag(IncludeNextTok, diag::ext_pp_include_next_directive);
// #include_next is like #include, except that we start searching after
// the current found directory. If we can't do this, issue a
// diagnostic.
const DirectoryLookup *Lookup = CurDirLookup;
if (isInPrimaryFile()) {
Lookup = 0;
Diag(IncludeNextTok, diag::pp_include_next_in_primary);
} else if (Lookup == 0) {
Diag(IncludeNextTok, diag::pp_include_next_absolute_path);
} else {
// Start looking up in the next directory.
++Lookup;
}
return HandleIncludeDirective(IncludeNextTok, Lookup);
}
/// HandleImportDirective - Implements #import.
///
void Preprocessor::HandleImportDirective(Token &ImportTok) {
Diag(ImportTok, diag::ext_pp_import_directive);
return HandleIncludeDirective(ImportTok, 0, true);
}
//===----------------------------------------------------------------------===//
// Preprocessor Macro Directive Handling.
//===----------------------------------------------------------------------===//
/// ReadMacroDefinitionArgList - The ( starting an argument list of a macro
/// definition has just been read. Lex the rest of the arguments and the
/// closing ), updating MI with what we learn. Return true if an error occurs
/// parsing the arg list.
bool Preprocessor::ReadMacroDefinitionArgList(MacroInfo *MI) {
llvm::SmallVector<IdentifierInfo*, 32> Arguments;
Token Tok;
while (1) {
LexUnexpandedToken(Tok);
switch (Tok.getKind()) {
case tok::r_paren:
// Found the end of the argument list.
if (Arguments.empty()) { // #define FOO()
MI->setArgumentList(Arguments.begin(), Arguments.end());
return false;
}
// Otherwise we have #define FOO(A,)
Diag(Tok, diag::err_pp_expected_ident_in_arg_list);
return true;
case tok::ellipsis: // #define X(... -> C99 varargs
// Warn if use of C99 feature in non-C99 mode.
if (!Features.C99) Diag(Tok, diag::ext_variadic_macro);
// Lex the token after the identifier.
LexUnexpandedToken(Tok);
if (Tok.getKind() != tok::r_paren) {
Diag(Tok, diag::err_pp_missing_rparen_in_macro_def);
return true;
}
// Add the __VA_ARGS__ identifier as an argument.
Arguments.push_back(Ident__VA_ARGS__);
MI->setIsC99Varargs();
MI->setArgumentList(Arguments.begin(), Arguments.end());
return false;
case tok::eom: // #define X(
Diag(Tok, diag::err_pp_missing_rparen_in_macro_def);
return true;
default:
// Handle keywords and identifiers here to accept things like
// #define Foo(for) for.
IdentifierInfo *II = Tok.getIdentifierInfo();
if (II == 0) {
// #define X(1
Diag(Tok, diag::err_pp_invalid_tok_in_arg_list);
return true;
}
// If this is already used as an argument, it is used multiple times (e.g.
// #define X(A,A.
if (std::find(Arguments.begin(), Arguments.end(), II) !=
Arguments.end()) { // C99 6.10.3p6
Diag(Tok, diag::err_pp_duplicate_name_in_arg_list, II->getName());
return true;
}
// Add the argument to the macro info.
Arguments.push_back(II);
// Lex the token after the identifier.
LexUnexpandedToken(Tok);
switch (Tok.getKind()) {
default: // #define X(A B
Diag(Tok, diag::err_pp_expected_comma_in_arg_list);
return true;
case tok::r_paren: // #define X(A)
MI->setArgumentList(Arguments.begin(), Arguments.end());
return false;
case tok::comma: // #define X(A,
break;
case tok::ellipsis: // #define X(A... -> GCC extension
// Diagnose extension.
Diag(Tok, diag::ext_named_variadic_macro);
// Lex the token after the identifier.
LexUnexpandedToken(Tok);
if (Tok.getKind() != tok::r_paren) {
Diag(Tok, diag::err_pp_missing_rparen_in_macro_def);
return true;
}
MI->setIsGNUVarargs();
MI->setArgumentList(Arguments.begin(), Arguments.end());
return false;
}
}
}
}
/// HandleDefineDirective - Implements #define. This consumes the entire macro
/// line then lets the caller lex the next real token. If 'isTargetSpecific' is
/// true, then this is a "#define_target", otherwise this is a "#define".
///
void Preprocessor::HandleDefineDirective(Token &DefineTok,
bool isTargetSpecific) {
++NumDefined;
Token MacroNameTok;
ReadMacroName(MacroNameTok, 1);
// Error reading macro name? If so, diagnostic already issued.
if (MacroNameTok.getKind() == tok::eom)
return;
// If we are supposed to keep comments in #defines, reenable comment saving
// mode.
CurLexer->KeepCommentMode = KeepMacroComments;
// Create the new macro.
MacroInfo *MI = new MacroInfo(MacroNameTok.getLocation());
if (isTargetSpecific) MI->setIsTargetSpecific();
// If the identifier is an 'other target' macro, clear this bit.
MacroNameTok.getIdentifierInfo()->setIsOtherTargetMacro(false);
Token Tok;
LexUnexpandedToken(Tok);
// If this is a function-like macro definition, parse the argument list,
// marking each of the identifiers as being used as macro arguments. Also,
// check other constraints on the first token of the macro body.
if (Tok.getKind() == tok::eom) {
// If there is no body to this macro, we have no special handling here.
} else if (Tok.getKind() == tok::l_paren && !Tok.hasLeadingSpace()) {
// This is a function-like macro definition. Read the argument list.
MI->setIsFunctionLike();
if (ReadMacroDefinitionArgList(MI)) {
// Forget about MI.
delete MI;
// Throw away the rest of the line.
if (CurLexer->ParsingPreprocessorDirective)
DiscardUntilEndOfDirective();
return;
}
// Read the first token after the arg list for down below.
LexUnexpandedToken(Tok);
} else if (!Tok.hasLeadingSpace()) {
// C99 requires whitespace between the macro definition and the body. Emit
// a diagnostic for something like "#define X+".
if (Features.C99) {
Diag(Tok, diag::ext_c99_whitespace_required_after_macro_name);
} else {
// FIXME: C90/C++ do not get this diagnostic, but it does get a similar
// one in some cases!
}
} else {
// This is a normal token with leading space. Clear the leading space
// marker on the first token to get proper expansion.
Tok.clearFlag(Token::LeadingSpace);
}
// If this is a definition of a variadic C99 function-like macro, not using
// the GNU named varargs extension, enabled __VA_ARGS__.
// "Poison" __VA_ARGS__, which can only appear in the expansion of a macro.
// This gets unpoisoned where it is allowed.
assert(Ident__VA_ARGS__->isPoisoned() && "__VA_ARGS__ should be poisoned!");
if (MI->isC99Varargs())
Ident__VA_ARGS__->setIsPoisoned(false);
// Read the rest of the macro body.
if (MI->isObjectLike()) {
// Object-like macros are very simple, just read their body.
while (Tok.getKind() != tok::eom) {
MI->AddTokenToBody(Tok);
// Get the next token of the macro.
LexUnexpandedToken(Tok);
}
} else {
// Otherwise, read the body of a function-like macro. This has to validate
// the # (stringize) operator.
while (Tok.getKind() != tok::eom) {
MI->AddTokenToBody(Tok);
// Check C99 6.10.3.2p1: ensure that # operators are followed by macro
// parameters in function-like macro expansions.
if (Tok.getKind() != tok::hash) {
// Get the next token of the macro.
LexUnexpandedToken(Tok);
continue;
}
// Get the next token of the macro.
LexUnexpandedToken(Tok);
// Not a macro arg identifier?
if (!Tok.getIdentifierInfo() ||
MI->getArgumentNum(Tok.getIdentifierInfo()) == -1) {
Diag(Tok, diag::err_pp_stringize_not_parameter);
delete MI;
// Disable __VA_ARGS__ again.
Ident__VA_ARGS__->setIsPoisoned(true);
return;
}
// Things look ok, add the param name token to the macro.
MI->AddTokenToBody(Tok);
// Get the next token of the macro.
LexUnexpandedToken(Tok);
}
}
// Disable __VA_ARGS__ again.
Ident__VA_ARGS__->setIsPoisoned(true);
// Check that there is no paste (##) operator at the begining or end of the
// replacement list.
unsigned NumTokens = MI->getNumTokens();
if (NumTokens != 0) {
if (MI->getReplacementToken(0).getKind() == tok::hashhash) {
Diag(MI->getReplacementToken(0), diag::err_paste_at_start);
delete MI;
return;
}
if (MI->getReplacementToken(NumTokens-1).getKind() == tok::hashhash) {
Diag(MI->getReplacementToken(NumTokens-1), diag::err_paste_at_end);
delete MI;
return;
}
}
// If this is the primary source file, remember that this macro hasn't been
// used yet.
if (isInPrimaryFile())
MI->setIsUsed(false);
// Finally, if this identifier already had a macro defined for it, verify that
// the macro bodies are identical and free the old definition.
if (MacroInfo *OtherMI = MacroNameTok.getIdentifierInfo()->getMacroInfo()) {
if (!OtherMI->isUsed())
Diag(OtherMI->getDefinitionLoc(), diag::pp_macro_not_used);
// Macros must be identical. This means all tokes and whitespace separation
// must be the same. C99 6.10.3.2.
if (!MI->isIdenticalTo(*OtherMI, *this)) {
Diag(MI->getDefinitionLoc(), diag::ext_pp_macro_redef,
MacroNameTok.getIdentifierInfo()->getName());
Diag(OtherMI->getDefinitionLoc(), diag::ext_pp_macro_redef2);
}
delete OtherMI;
}
MacroNameTok.getIdentifierInfo()->setMacroInfo(MI);
}
/// HandleDefineOtherTargetDirective - Implements #define_other_target.
void Preprocessor::HandleDefineOtherTargetDirective(Token &Tok) {
Token MacroNameTok;
ReadMacroName(MacroNameTok, 1);
// Error reading macro name? If so, diagnostic already issued.
if (MacroNameTok.getKind() == tok::eom)
return;
// Check to see if this is the last token on the #undef line.
CheckEndOfDirective("#define_other_target");
// If there is already a macro defined by this name, turn it into a
// target-specific define.
if (MacroInfo *MI = MacroNameTok.getIdentifierInfo()->getMacroInfo()) {
MI->setIsTargetSpecific(true);
return;
}
// Mark the identifier as being a macro on some other target.
MacroNameTok.getIdentifierInfo()->setIsOtherTargetMacro();
}
/// HandleUndefDirective - Implements #undef.
///
void Preprocessor::HandleUndefDirective(Token &UndefTok) {
++NumUndefined;
Token MacroNameTok;
ReadMacroName(MacroNameTok, 2);
// Error reading macro name? If so, diagnostic already issued.
if (MacroNameTok.getKind() == tok::eom)
return;
// Check to see if this is the last token on the #undef line.
CheckEndOfDirective("#undef");
// Okay, we finally have a valid identifier to undef.
MacroInfo *MI = MacroNameTok.getIdentifierInfo()->getMacroInfo();
// #undef untaints an identifier if it were marked by define_other_target.
MacroNameTok.getIdentifierInfo()->setIsOtherTargetMacro(false);
// If the macro is not defined, this is a noop undef, just return.
if (MI == 0) return;
if (!MI->isUsed())
Diag(MI->getDefinitionLoc(), diag::pp_macro_not_used);
// Free macro definition.
delete MI;
MacroNameTok.getIdentifierInfo()->setMacroInfo(0);
}
//===----------------------------------------------------------------------===//
// Preprocessor Conditional Directive Handling.
//===----------------------------------------------------------------------===//
/// HandleIfdefDirective - Implements the #ifdef/#ifndef directive. isIfndef is
/// true when this is a #ifndef directive. ReadAnyTokensBeforeDirective is true
/// if any tokens have been returned or pp-directives activated before this
/// #ifndef has been lexed.
///
void Preprocessor::HandleIfdefDirective(Token &Result, bool isIfndef,
bool ReadAnyTokensBeforeDirective) {
++NumIf;
Token DirectiveTok = Result;
Token MacroNameTok;
ReadMacroName(MacroNameTok);
// Error reading macro name? If so, diagnostic already issued.
if (MacroNameTok.getKind() == tok::eom)
return;
// Check to see if this is the last token on the #if[n]def line.
CheckEndOfDirective(isIfndef ? "#ifndef" : "#ifdef");
// If the start of a top-level #ifdef, inform MIOpt.
if (!ReadAnyTokensBeforeDirective &&
CurLexer->getConditionalStackDepth() == 0) {
assert(isIfndef && "#ifdef shouldn't reach here");
CurLexer->MIOpt.EnterTopLevelIFNDEF(MacroNameTok.getIdentifierInfo());
}
IdentifierInfo *MII = MacroNameTok.getIdentifierInfo();
MacroInfo *MI = MII->getMacroInfo();
// If there is a macro, process it.
if (MI) {
// Mark it used.
MI->setIsUsed(true);
// If this is the first use of a target-specific macro, warn about it.
if (MI->isTargetSpecific()) {
MI->setIsTargetSpecific(false); // Don't warn on second use.
getTargetInfo().DiagnoseNonPortability(MacroNameTok.getLocation(),
diag::port_target_macro_use);
}
} else {
// Use of a target-specific macro for some other target? If so, warn.
if (MII->isOtherTargetMacro()) {
MII->setIsOtherTargetMacro(false); // Don't warn on second use.
getTargetInfo().DiagnoseNonPortability(MacroNameTok.getLocation(),
diag::port_target_macro_use);
}
}
// Should we include the stuff contained by this directive?
if (!MI == isIfndef) {
// Yes, remember that we are inside a conditional, then lex the next token.
CurLexer->pushConditionalLevel(DirectiveTok.getLocation(), /*wasskip*/false,
/*foundnonskip*/true, /*foundelse*/false);
} else {
// No, skip the contents of this block and return the first token after it.
SkipExcludedConditionalBlock(DirectiveTok.getLocation(),
/*Foundnonskip*/false,
/*FoundElse*/false);
}
}
/// HandleIfDirective - Implements the #if directive.
///
void Preprocessor::HandleIfDirective(Token &IfToken,
bool ReadAnyTokensBeforeDirective) {
++NumIf;
// Parse and evaluation the conditional expression.
IdentifierInfo *IfNDefMacro = 0;
bool ConditionalTrue = EvaluateDirectiveExpression(IfNDefMacro);
// Should we include the stuff contained by this directive?
if (ConditionalTrue) {
// If this condition is equivalent to #ifndef X, and if this is the first
// directive seen, handle it for the multiple-include optimization.
if (!ReadAnyTokensBeforeDirective &&
CurLexer->getConditionalStackDepth() == 0 && IfNDefMacro)
CurLexer->MIOpt.EnterTopLevelIFNDEF(IfNDefMacro);
// Yes, remember that we are inside a conditional, then lex the next token.
CurLexer->pushConditionalLevel(IfToken.getLocation(), /*wasskip*/false,
/*foundnonskip*/true, /*foundelse*/false);
} else {
// No, skip the contents of this block and return the first token after it.
SkipExcludedConditionalBlock(IfToken.getLocation(), /*Foundnonskip*/false,
/*FoundElse*/false);
}
}
/// HandleEndifDirective - Implements the #endif directive.
///
void Preprocessor::HandleEndifDirective(Token &EndifToken) {
++NumEndif;
// Check that this is the whole directive.
CheckEndOfDirective("#endif");
PPConditionalInfo CondInfo;
if (CurLexer->popConditionalLevel(CondInfo)) {
// No conditionals on the stack: this is an #endif without an #if.
return Diag(EndifToken, diag::err_pp_endif_without_if);
}
// If this the end of a top-level #endif, inform MIOpt.
if (CurLexer->getConditionalStackDepth() == 0)
CurLexer->MIOpt.ExitTopLevelConditional();
assert(!CondInfo.WasSkipping && !CurLexer->LexingRawMode &&
"This code should only be reachable in the non-skipping case!");
}
void Preprocessor::HandleElseDirective(Token &Result) {
++NumElse;
// #else directive in a non-skipping conditional... start skipping.
CheckEndOfDirective("#else");
PPConditionalInfo CI;
if (CurLexer->popConditionalLevel(CI))
return Diag(Result, diag::pp_err_else_without_if);
// If this is a top-level #else, inform the MIOpt.
if (CurLexer->getConditionalStackDepth() == 0)
CurLexer->MIOpt.FoundTopLevelElse();
// If this is a #else with a #else before it, report the error.
if (CI.FoundElse) Diag(Result, diag::pp_err_else_after_else);
// Finally, skip the rest of the contents of this block and return the first
// token after it.
return SkipExcludedConditionalBlock(CI.IfLoc, /*Foundnonskip*/true,
/*FoundElse*/true);
}
void Preprocessor::HandleElifDirective(Token &ElifToken) {
++NumElse;
// #elif directive in a non-skipping conditional... start skipping.
// We don't care what the condition is, because we will always skip it (since
// the block immediately before it was included).
DiscardUntilEndOfDirective();
PPConditionalInfo CI;
if (CurLexer->popConditionalLevel(CI))
return Diag(ElifToken, diag::pp_err_elif_without_if);
// If this is a top-level #elif, inform the MIOpt.
if (CurLexer->getConditionalStackDepth() == 0)
CurLexer->MIOpt.FoundTopLevelElse();
// If this is a #elif with a #else before it, report the error.
if (CI.FoundElse) Diag(ElifToken, diag::pp_err_elif_after_else);
// Finally, skip the rest of the contents of this block and return the first
// token after it.
return SkipExcludedConditionalBlock(CI.IfLoc, /*Foundnonskip*/true,
/*FoundElse*/CI.FoundElse);
}