| //===------- TreeTransform.h - Semantic Tree Transformation -----*- C++ -*-===/ |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| //===----------------------------------------------------------------------===/ |
| // |
| // This file implements a semantic tree transformation that takes a given |
| // AST and rebuilds it, possibly transforming some nodes in the process. |
| // |
| //===----------------------------------------------------------------------===/ |
| #ifndef LLVM_CLANG_SEMA_TREETRANSFORM_H |
| #define LLVM_CLANG_SEMA_TREETRANSFORM_H |
| |
| #include "Sema.h" |
| #include "Lookup.h" |
| #include "clang/Sema/SemaDiagnostic.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/ExprObjC.h" |
| #include "clang/AST/Stmt.h" |
| #include "clang/AST/StmtCXX.h" |
| #include "clang/AST/StmtObjC.h" |
| #include "clang/AST/TypeLocBuilder.h" |
| #include "clang/Parse/Ownership.h" |
| #include "clang/Parse/Designator.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include <algorithm> |
| |
| namespace clang { |
| |
| /// \brief A semantic tree transformation that allows one to transform one |
| /// abstract syntax tree into another. |
| /// |
| /// A new tree transformation is defined by creating a new subclass \c X of |
| /// \c TreeTransform<X> and then overriding certain operations to provide |
| /// behavior specific to that transformation. For example, template |
| /// instantiation is implemented as a tree transformation where the |
| /// transformation of TemplateTypeParmType nodes involves substituting the |
| /// template arguments for their corresponding template parameters; a similar |
| /// transformation is performed for non-type template parameters and |
| /// template template parameters. |
| /// |
| /// This tree-transformation template uses static polymorphism to allow |
| /// subclasses to customize any of its operations. Thus, a subclass can |
| /// override any of the transformation or rebuild operators by providing an |
| /// operation with the same signature as the default implementation. The |
| /// overridding function should not be virtual. |
| /// |
| /// Semantic tree transformations are split into two stages, either of which |
| /// can be replaced by a subclass. The "transform" step transforms an AST node |
| /// or the parts of an AST node using the various transformation functions, |
| /// then passes the pieces on to the "rebuild" step, which constructs a new AST |
| /// node of the appropriate kind from the pieces. The default transformation |
| /// routines recursively transform the operands to composite AST nodes (e.g., |
| /// the pointee type of a PointerType node) and, if any of those operand nodes |
| /// were changed by the transformation, invokes the rebuild operation to create |
| /// a new AST node. |
| /// |
| /// Subclasses can customize the transformation at various levels. The |
| /// most coarse-grained transformations involve replacing TransformType(), |
| /// TransformExpr(), TransformDecl(), TransformNestedNameSpecifier(), |
| /// TransformTemplateName(), or TransformTemplateArgument() with entirely |
| /// new implementations. |
| /// |
| /// For more fine-grained transformations, subclasses can replace any of the |
| /// \c TransformXXX functions (where XXX is the name of an AST node, e.g., |
| /// PointerType, StmtExpr) to alter the transformation. As mentioned previously, |
| /// replacing TransformTemplateTypeParmType() allows template instantiation |
| /// to substitute template arguments for their corresponding template |
| /// parameters. Additionally, subclasses can override the \c RebuildXXX |
| /// functions to control how AST nodes are rebuilt when their operands change. |
| /// By default, \c TreeTransform will invoke semantic analysis to rebuild |
| /// AST nodes. However, certain other tree transformations (e.g, cloning) may |
| /// be able to use more efficient rebuild steps. |
| /// |
| /// There are a handful of other functions that can be overridden, allowing one |
| /// to avoid traversing nodes that don't need any transformation |
| /// (\c AlreadyTransformed()), force rebuilding AST nodes even when their |
| /// operands have not changed (\c AlwaysRebuild()), and customize the |
| /// default locations and entity names used for type-checking |
| /// (\c getBaseLocation(), \c getBaseEntity()). |
| template<typename Derived> |
| class TreeTransform { |
| protected: |
| Sema &SemaRef; |
| |
| public: |
| typedef Sema::OwningStmtResult OwningStmtResult; |
| typedef Sema::OwningExprResult OwningExprResult; |
| typedef Sema::StmtArg StmtArg; |
| typedef Sema::ExprArg ExprArg; |
| typedef Sema::MultiExprArg MultiExprArg; |
| typedef Sema::MultiStmtArg MultiStmtArg; |
| typedef Sema::DeclPtrTy DeclPtrTy; |
| |
| /// \brief Initializes a new tree transformer. |
| TreeTransform(Sema &SemaRef) : SemaRef(SemaRef) { } |
| |
| /// \brief Retrieves a reference to the derived class. |
| Derived &getDerived() { return static_cast<Derived&>(*this); } |
| |
| /// \brief Retrieves a reference to the derived class. |
| const Derived &getDerived() const { |
| return static_cast<const Derived&>(*this); |
| } |
| |
| /// \brief Retrieves a reference to the semantic analysis object used for |
| /// this tree transform. |
| Sema &getSema() const { return SemaRef; } |
| |
| /// \brief Whether the transformation should always rebuild AST nodes, even |
| /// if none of the children have changed. |
| /// |
| /// Subclasses may override this function to specify when the transformation |
| /// should rebuild all AST nodes. |
| bool AlwaysRebuild() { return false; } |
| |
| /// \brief Returns the location of the entity being transformed, if that |
| /// information was not available elsewhere in the AST. |
| /// |
| /// By default, returns no source-location information. Subclasses can |
| /// provide an alternative implementation that provides better location |
| /// information. |
| SourceLocation getBaseLocation() { return SourceLocation(); } |
| |
| /// \brief Returns the name of the entity being transformed, if that |
| /// information was not available elsewhere in the AST. |
| /// |
| /// By default, returns an empty name. Subclasses can provide an alternative |
| /// implementation with a more precise name. |
| DeclarationName getBaseEntity() { return DeclarationName(); } |
| |
| /// \brief Sets the "base" location and entity when that |
| /// information is known based on another transformation. |
| /// |
| /// By default, the source location and entity are ignored. Subclasses can |
| /// override this function to provide a customized implementation. |
| void setBase(SourceLocation Loc, DeclarationName Entity) { } |
| |
| /// \brief RAII object that temporarily sets the base location and entity |
| /// used for reporting diagnostics in types. |
| class TemporaryBase { |
| TreeTransform &Self; |
| SourceLocation OldLocation; |
| DeclarationName OldEntity; |
| |
| public: |
| TemporaryBase(TreeTransform &Self, SourceLocation Location, |
| DeclarationName Entity) : Self(Self) { |
| OldLocation = Self.getDerived().getBaseLocation(); |
| OldEntity = Self.getDerived().getBaseEntity(); |
| Self.getDerived().setBase(Location, Entity); |
| } |
| |
| ~TemporaryBase() { |
| Self.getDerived().setBase(OldLocation, OldEntity); |
| } |
| }; |
| |
| /// \brief Determine whether the given type \p T has already been |
| /// transformed. |
| /// |
| /// Subclasses can provide an alternative implementation of this routine |
| /// to short-circuit evaluation when it is known that a given type will |
| /// not change. For example, template instantiation need not traverse |
| /// non-dependent types. |
| bool AlreadyTransformed(QualType T) { |
| return T.isNull(); |
| } |
| |
| /// \brief Transforms the given type into another type. |
| /// |
| /// By default, this routine transforms a type by creating a |
| /// DeclaratorInfo for it and delegating to the appropriate |
| /// function. This is expensive, but we don't mind, because |
| /// this method is deprecated anyway; all users should be |
| /// switched to storing DeclaratorInfos. |
| /// |
| /// \returns the transformed type. |
| QualType TransformType(QualType T); |
| |
| /// \brief Transforms the given type-with-location into a new |
| /// type-with-location. |
| /// |
| /// By default, this routine transforms a type by delegating to the |
| /// appropriate TransformXXXType to build a new type. Subclasses |
| /// may override this function (to take over all type |
| /// transformations) or some set of the TransformXXXType functions |
| /// to alter the transformation. |
| DeclaratorInfo *TransformType(DeclaratorInfo *DI); |
| |
| /// \brief Transform the given type-with-location into a new |
| /// type, collecting location information in the given builder |
| /// as necessary. |
| /// |
| QualType TransformType(TypeLocBuilder &TLB, TypeLoc TL); |
| |
| /// \brief Transform the given statement. |
| /// |
| /// By default, this routine transforms a statement by delegating to the |
| /// appropriate TransformXXXStmt function to transform a specific kind of |
| /// statement or the TransformExpr() function to transform an expression. |
| /// Subclasses may override this function to transform statements using some |
| /// other mechanism. |
| /// |
| /// \returns the transformed statement. |
| OwningStmtResult TransformStmt(Stmt *S); |
| |
| /// \brief Transform the given expression. |
| /// |
| /// By default, this routine transforms an expression by delegating to the |
| /// appropriate TransformXXXExpr function to build a new expression. |
| /// Subclasses may override this function to transform expressions using some |
| /// other mechanism. |
| /// |
| /// \returns the transformed expression. |
| OwningExprResult TransformExpr(Expr *E) { |
| return getDerived().TransformExpr(E, /*isAddressOfOperand=*/false); |
| } |
| |
| /// \brief Transform the given expression. |
| /// |
| /// By default, this routine transforms an expression by delegating to the |
| /// appropriate TransformXXXExpr function to build a new expression. |
| /// Subclasses may override this function to transform expressions using some |
| /// other mechanism. |
| /// |
| /// \returns the transformed expression. |
| OwningExprResult TransformExpr(Expr *E, bool isAddressOfOperand); |
| |
| /// \brief Transform the given declaration, which is referenced from a type |
| /// or expression. |
| /// |
| /// By default, acts as the identity function on declarations. Subclasses |
| /// may override this function to provide alternate behavior. |
| Decl *TransformDecl(Decl *D) { return D; } |
| |
| /// \brief Transform the definition of the given declaration. |
| /// |
| /// By default, invokes TransformDecl() to transform the declaration. |
| /// Subclasses may override this function to provide alternate behavior. |
| Decl *TransformDefinition(Decl *D) { return getDerived().TransformDecl(D); } |
| |
| /// \brief Transform the given declaration, which was the first part of a |
| /// nested-name-specifier in a member access expression. |
| /// |
| /// This specific declaration transformation only applies to the first |
| /// identifier in a nested-name-specifier of a member access expression, e.g., |
| /// the \c T in \c x->T::member |
| /// |
| /// By default, invokes TransformDecl() to transform the declaration. |
| /// Subclasses may override this function to provide alternate behavior. |
| NamedDecl *TransformFirstQualifierInScope(NamedDecl *D, SourceLocation Loc) { |
| return cast_or_null<NamedDecl>(getDerived().TransformDecl(D)); |
| } |
| |
| /// \brief Transform the given nested-name-specifier. |
| /// |
| /// By default, transforms all of the types and declarations within the |
| /// nested-name-specifier. Subclasses may override this function to provide |
| /// alternate behavior. |
| NestedNameSpecifier *TransformNestedNameSpecifier(NestedNameSpecifier *NNS, |
| SourceRange Range, |
| QualType ObjectType = QualType(), |
| NamedDecl *FirstQualifierInScope = 0); |
| |
| /// \brief Transform the given declaration name. |
| /// |
| /// By default, transforms the types of conversion function, constructor, |
| /// and destructor names and then (if needed) rebuilds the declaration name. |
| /// Identifiers and selectors are returned unmodified. Sublcasses may |
| /// override this function to provide alternate behavior. |
| DeclarationName TransformDeclarationName(DeclarationName Name, |
| SourceLocation Loc, |
| QualType ObjectType = QualType()); |
| |
| /// \brief Transform the given template name. |
| /// |
| /// By default, transforms the template name by transforming the declarations |
| /// and nested-name-specifiers that occur within the template name. |
| /// Subclasses may override this function to provide alternate behavior. |
| TemplateName TransformTemplateName(TemplateName Name, |
| QualType ObjectType = QualType()); |
| |
| /// \brief Transform the given template argument. |
| /// |
| /// By default, this operation transforms the type, expression, or |
| /// declaration stored within the template argument and constructs a |
| /// new template argument from the transformed result. Subclasses may |
| /// override this function to provide alternate behavior. |
| /// |
| /// Returns true if there was an error. |
| bool TransformTemplateArgument(const TemplateArgumentLoc &Input, |
| TemplateArgumentLoc &Output); |
| |
| /// \brief Fakes up a TemplateArgumentLoc for a given TemplateArgument. |
| void InventTemplateArgumentLoc(const TemplateArgument &Arg, |
| TemplateArgumentLoc &ArgLoc); |
| |
| /// \brief Fakes up a DeclaratorInfo for a type. |
| DeclaratorInfo *InventDeclaratorInfo(QualType T) { |
| return SemaRef.Context.getTrivialDeclaratorInfo(T, |
| getDerived().getBaseLocation()); |
| } |
| |
| #define ABSTRACT_TYPELOC(CLASS, PARENT) |
| #define TYPELOC(CLASS, PARENT) \ |
| QualType Transform##CLASS##Type(TypeLocBuilder &TLB, CLASS##TypeLoc T); |
| #include "clang/AST/TypeLocNodes.def" |
| |
| QualType TransformReferenceType(TypeLocBuilder &TLB, ReferenceTypeLoc TL); |
| |
| QualType |
| TransformTemplateSpecializationType(const TemplateSpecializationType *T, |
| QualType ObjectType); |
| |
| QualType |
| TransformTemplateSpecializationType(TypeLocBuilder &TLB, |
| TemplateSpecializationTypeLoc TL, |
| QualType ObjectType); |
| |
| OwningStmtResult TransformCompoundStmt(CompoundStmt *S, bool IsStmtExpr); |
| |
| #define STMT(Node, Parent) \ |
| OwningStmtResult Transform##Node(Node *S); |
| #define EXPR(Node, Parent) \ |
| OwningExprResult Transform##Node(Node *E, bool isAddressOfOperand); |
| #define ABSTRACT_EXPR(Node, Parent) |
| #include "clang/AST/StmtNodes.def" |
| |
| /// \brief Build a new pointer type given its pointee type. |
| /// |
| /// By default, performs semantic analysis when building the pointer type. |
| /// Subclasses may override this routine to provide different behavior. |
| QualType RebuildPointerType(QualType PointeeType, SourceLocation Sigil); |
| |
| /// \brief Build a new block pointer type given its pointee type. |
| /// |
| /// By default, performs semantic analysis when building the block pointer |
| /// type. Subclasses may override this routine to provide different behavior. |
| QualType RebuildBlockPointerType(QualType PointeeType, SourceLocation Sigil); |
| |
| /// \brief Build a new reference type given the type it references. |
| /// |
| /// By default, performs semantic analysis when building the |
| /// reference type. Subclasses may override this routine to provide |
| /// different behavior. |
| /// |
| /// \param LValue whether the type was written with an lvalue sigil |
| /// or an rvalue sigil. |
| QualType RebuildReferenceType(QualType ReferentType, |
| bool LValue, |
| SourceLocation Sigil); |
| |
| /// \brief Build a new member pointer type given the pointee type and the |
| /// class type it refers into. |
| /// |
| /// By default, performs semantic analysis when building the member pointer |
| /// type. Subclasses may override this routine to provide different behavior. |
| QualType RebuildMemberPointerType(QualType PointeeType, QualType ClassType, |
| SourceLocation Sigil); |
| |
| /// \brief Build a new Objective C object pointer type. |
| QualType RebuildObjCObjectPointerType(QualType PointeeType, |
| SourceLocation Sigil); |
| |
| /// \brief Build a new array type given the element type, size |
| /// modifier, size of the array (if known), size expression, and index type |
| /// qualifiers. |
| /// |
| /// By default, performs semantic analysis when building the array type. |
| /// Subclasses may override this routine to provide different behavior. |
| /// Also by default, all of the other Rebuild*Array |
| QualType RebuildArrayType(QualType ElementType, |
| ArrayType::ArraySizeModifier SizeMod, |
| const llvm::APInt *Size, |
| Expr *SizeExpr, |
| unsigned IndexTypeQuals, |
| SourceRange BracketsRange); |
| |
| /// \brief Build a new constant array type given the element type, size |
| /// modifier, (known) size of the array, and index type qualifiers. |
| /// |
| /// By default, performs semantic analysis when building the array type. |
| /// Subclasses may override this routine to provide different behavior. |
| QualType RebuildConstantArrayType(QualType ElementType, |
| ArrayType::ArraySizeModifier SizeMod, |
| const llvm::APInt &Size, |
| unsigned IndexTypeQuals, |
| SourceRange BracketsRange); |
| |
| /// \brief Build a new incomplete array type given the element type, size |
| /// modifier, and index type qualifiers. |
| /// |
| /// By default, performs semantic analysis when building the array type. |
| /// Subclasses may override this routine to provide different behavior. |
| QualType RebuildIncompleteArrayType(QualType ElementType, |
| ArrayType::ArraySizeModifier SizeMod, |
| unsigned IndexTypeQuals, |
| SourceRange BracketsRange); |
| |
| /// \brief Build a new variable-length array type given the element type, |
| /// size modifier, size expression, and index type qualifiers. |
| /// |
| /// By default, performs semantic analysis when building the array type. |
| /// Subclasses may override this routine to provide different behavior. |
| QualType RebuildVariableArrayType(QualType ElementType, |
| ArrayType::ArraySizeModifier SizeMod, |
| ExprArg SizeExpr, |
| unsigned IndexTypeQuals, |
| SourceRange BracketsRange); |
| |
| /// \brief Build a new dependent-sized array type given the element type, |
| /// size modifier, size expression, and index type qualifiers. |
| /// |
| /// By default, performs semantic analysis when building the array type. |
| /// Subclasses may override this routine to provide different behavior. |
| QualType RebuildDependentSizedArrayType(QualType ElementType, |
| ArrayType::ArraySizeModifier SizeMod, |
| ExprArg SizeExpr, |
| unsigned IndexTypeQuals, |
| SourceRange BracketsRange); |
| |
| /// \brief Build a new vector type given the element type and |
| /// number of elements. |
| /// |
| /// By default, performs semantic analysis when building the vector type. |
| /// Subclasses may override this routine to provide different behavior. |
| QualType RebuildVectorType(QualType ElementType, unsigned NumElements); |
| |
| /// \brief Build a new extended vector type given the element type and |
| /// number of elements. |
| /// |
| /// By default, performs semantic analysis when building the vector type. |
| /// Subclasses may override this routine to provide different behavior. |
| QualType RebuildExtVectorType(QualType ElementType, unsigned NumElements, |
| SourceLocation AttributeLoc); |
| |
| /// \brief Build a new potentially dependently-sized extended vector type |
| /// given the element type and number of elements. |
| /// |
| /// By default, performs semantic analysis when building the vector type. |
| /// Subclasses may override this routine to provide different behavior. |
| QualType RebuildDependentSizedExtVectorType(QualType ElementType, |
| ExprArg SizeExpr, |
| SourceLocation AttributeLoc); |
| |
| /// \brief Build a new function type. |
| /// |
| /// By default, performs semantic analysis when building the function type. |
| /// Subclasses may override this routine to provide different behavior. |
| QualType RebuildFunctionProtoType(QualType T, |
| QualType *ParamTypes, |
| unsigned NumParamTypes, |
| bool Variadic, unsigned Quals); |
| |
| /// \brief Build a new unprototyped function type. |
| QualType RebuildFunctionNoProtoType(QualType ResultType); |
| |
| /// \brief Build a new typedef type. |
| QualType RebuildTypedefType(TypedefDecl *Typedef) { |
| return SemaRef.Context.getTypeDeclType(Typedef); |
| } |
| |
| /// \brief Build a new class/struct/union type. |
| QualType RebuildRecordType(RecordDecl *Record) { |
| return SemaRef.Context.getTypeDeclType(Record); |
| } |
| |
| /// \brief Build a new Enum type. |
| QualType RebuildEnumType(EnumDecl *Enum) { |
| return SemaRef.Context.getTypeDeclType(Enum); |
| } |
| |
| /// \brief Build a new elaborated type. |
| QualType RebuildElaboratedType(QualType T, ElaboratedType::TagKind Tag) { |
| return SemaRef.Context.getElaboratedType(T, Tag); |
| } |
| |
| /// \brief Build a new typeof(expr) type. |
| /// |
| /// By default, performs semantic analysis when building the typeof type. |
| /// Subclasses may override this routine to provide different behavior. |
| QualType RebuildTypeOfExprType(ExprArg Underlying); |
| |
| /// \brief Build a new typeof(type) type. |
| /// |
| /// By default, builds a new TypeOfType with the given underlying type. |
| QualType RebuildTypeOfType(QualType Underlying); |
| |
| /// \brief Build a new C++0x decltype type. |
| /// |
| /// By default, performs semantic analysis when building the decltype type. |
| /// Subclasses may override this routine to provide different behavior. |
| QualType RebuildDecltypeType(ExprArg Underlying); |
| |
| /// \brief Build a new template specialization type. |
| /// |
| /// By default, performs semantic analysis when building the template |
| /// specialization type. Subclasses may override this routine to provide |
| /// different behavior. |
| QualType RebuildTemplateSpecializationType(TemplateName Template, |
| SourceLocation TemplateLoc, |
| const TemplateArgumentListInfo &Args); |
| |
| /// \brief Build a new qualified name type. |
| /// |
| /// By default, builds a new QualifiedNameType type from the |
| /// nested-name-specifier and the named type. Subclasses may override |
| /// this routine to provide different behavior. |
| QualType RebuildQualifiedNameType(NestedNameSpecifier *NNS, QualType Named) { |
| return SemaRef.Context.getQualifiedNameType(NNS, Named); |
| } |
| |
| /// \brief Build a new typename type that refers to a template-id. |
| /// |
| /// By default, builds a new TypenameType type from the nested-name-specifier |
| /// and the given type. Subclasses may override this routine to provide |
| /// different behavior. |
| QualType RebuildTypenameType(NestedNameSpecifier *NNS, QualType T) { |
| if (NNS->isDependent()) |
| return SemaRef.Context.getTypenameType(NNS, |
| cast<TemplateSpecializationType>(T)); |
| |
| return SemaRef.Context.getQualifiedNameType(NNS, T); |
| } |
| |
| /// \brief Build a new typename type that refers to an identifier. |
| /// |
| /// By default, performs semantic analysis when building the typename type |
| /// (or qualified name type). Subclasses may override this routine to provide |
| /// different behavior. |
| QualType RebuildTypenameType(NestedNameSpecifier *NNS, |
| const IdentifierInfo *Id, |
| SourceRange SR) { |
| return SemaRef.CheckTypenameType(NNS, *Id, SR); |
| } |
| |
| /// \brief Build a new nested-name-specifier given the prefix and an |
| /// identifier that names the next step in the nested-name-specifier. |
| /// |
| /// By default, performs semantic analysis when building the new |
| /// nested-name-specifier. Subclasses may override this routine to provide |
| /// different behavior. |
| NestedNameSpecifier *RebuildNestedNameSpecifier(NestedNameSpecifier *Prefix, |
| SourceRange Range, |
| IdentifierInfo &II, |
| QualType ObjectType, |
| NamedDecl *FirstQualifierInScope); |
| |
| /// \brief Build a new nested-name-specifier given the prefix and the |
| /// namespace named in the next step in the nested-name-specifier. |
| /// |
| /// By default, performs semantic analysis when building the new |
| /// nested-name-specifier. Subclasses may override this routine to provide |
| /// different behavior. |
| NestedNameSpecifier *RebuildNestedNameSpecifier(NestedNameSpecifier *Prefix, |
| SourceRange Range, |
| NamespaceDecl *NS); |
| |
| /// \brief Build a new nested-name-specifier given the prefix and the |
| /// type named in the next step in the nested-name-specifier. |
| /// |
| /// By default, performs semantic analysis when building the new |
| /// nested-name-specifier. Subclasses may override this routine to provide |
| /// different behavior. |
| NestedNameSpecifier *RebuildNestedNameSpecifier(NestedNameSpecifier *Prefix, |
| SourceRange Range, |
| bool TemplateKW, |
| QualType T); |
| |
| /// \brief Build a new template name given a nested name specifier, a flag |
| /// indicating whether the "template" keyword was provided, and the template |
| /// that the template name refers to. |
| /// |
| /// By default, builds the new template name directly. Subclasses may override |
| /// this routine to provide different behavior. |
| TemplateName RebuildTemplateName(NestedNameSpecifier *Qualifier, |
| bool TemplateKW, |
| TemplateDecl *Template); |
| |
| /// \brief Build a new template name given a nested name specifier and the |
| /// name that is referred to as a template. |
| /// |
| /// By default, performs semantic analysis to determine whether the name can |
| /// be resolved to a specific template, then builds the appropriate kind of |
| /// template name. Subclasses may override this routine to provide different |
| /// behavior. |
| TemplateName RebuildTemplateName(NestedNameSpecifier *Qualifier, |
| const IdentifierInfo &II, |
| QualType ObjectType); |
| |
| /// \brief Build a new template name given a nested name specifier and the |
| /// overloaded operator name that is referred to as a template. |
| /// |
| /// By default, performs semantic analysis to determine whether the name can |
| /// be resolved to a specific template, then builds the appropriate kind of |
| /// template name. Subclasses may override this routine to provide different |
| /// behavior. |
| TemplateName RebuildTemplateName(NestedNameSpecifier *Qualifier, |
| OverloadedOperatorKind Operator, |
| QualType ObjectType); |
| |
| /// \brief Build a new compound statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningStmtResult RebuildCompoundStmt(SourceLocation LBraceLoc, |
| MultiStmtArg Statements, |
| SourceLocation RBraceLoc, |
| bool IsStmtExpr) { |
| return getSema().ActOnCompoundStmt(LBraceLoc, RBraceLoc, move(Statements), |
| IsStmtExpr); |
| } |
| |
| /// \brief Build a new case statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningStmtResult RebuildCaseStmt(SourceLocation CaseLoc, |
| ExprArg LHS, |
| SourceLocation EllipsisLoc, |
| ExprArg RHS, |
| SourceLocation ColonLoc) { |
| return getSema().ActOnCaseStmt(CaseLoc, move(LHS), EllipsisLoc, move(RHS), |
| ColonLoc); |
| } |
| |
| /// \brief Attach the body to a new case statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningStmtResult RebuildCaseStmtBody(StmtArg S, StmtArg Body) { |
| getSema().ActOnCaseStmtBody(S.get(), move(Body)); |
| return move(S); |
| } |
| |
| /// \brief Build a new default statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningStmtResult RebuildDefaultStmt(SourceLocation DefaultLoc, |
| SourceLocation ColonLoc, |
| StmtArg SubStmt) { |
| return getSema().ActOnDefaultStmt(DefaultLoc, ColonLoc, move(SubStmt), |
| /*CurScope=*/0); |
| } |
| |
| /// \brief Build a new label statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningStmtResult RebuildLabelStmt(SourceLocation IdentLoc, |
| IdentifierInfo *Id, |
| SourceLocation ColonLoc, |
| StmtArg SubStmt) { |
| return SemaRef.ActOnLabelStmt(IdentLoc, Id, ColonLoc, move(SubStmt)); |
| } |
| |
| /// \brief Build a new "if" statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningStmtResult RebuildIfStmt(SourceLocation IfLoc, Sema::FullExprArg Cond, |
| VarDecl *CondVar, StmtArg Then, |
| SourceLocation ElseLoc, StmtArg Else) { |
| return getSema().ActOnIfStmt(IfLoc, Cond, DeclPtrTy::make(CondVar), |
| move(Then), ElseLoc, move(Else)); |
| } |
| |
| /// \brief Start building a new switch statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningStmtResult RebuildSwitchStmtStart(Sema::FullExprArg Cond, |
| VarDecl *CondVar) { |
| return getSema().ActOnStartOfSwitchStmt(Cond, DeclPtrTy::make(CondVar)); |
| } |
| |
| /// \brief Attach the body to the switch statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningStmtResult RebuildSwitchStmtBody(SourceLocation SwitchLoc, |
| StmtArg Switch, StmtArg Body) { |
| return getSema().ActOnFinishSwitchStmt(SwitchLoc, move(Switch), |
| move(Body)); |
| } |
| |
| /// \brief Build a new while statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningStmtResult RebuildWhileStmt(SourceLocation WhileLoc, |
| Sema::FullExprArg Cond, |
| VarDecl *CondVar, |
| StmtArg Body) { |
| return getSema().ActOnWhileStmt(WhileLoc, Cond, DeclPtrTy::make(CondVar), |
| move(Body)); |
| } |
| |
| /// \brief Build a new do-while statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningStmtResult RebuildDoStmt(SourceLocation DoLoc, StmtArg Body, |
| SourceLocation WhileLoc, |
| SourceLocation LParenLoc, |
| ExprArg Cond, |
| SourceLocation RParenLoc) { |
| return getSema().ActOnDoStmt(DoLoc, move(Body), WhileLoc, LParenLoc, |
| move(Cond), RParenLoc); |
| } |
| |
| /// \brief Build a new for statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningStmtResult RebuildForStmt(SourceLocation ForLoc, |
| SourceLocation LParenLoc, |
| StmtArg Init, Sema::FullExprArg Cond, |
| VarDecl *CondVar, Sema::FullExprArg Inc, |
| SourceLocation RParenLoc, StmtArg Body) { |
| return getSema().ActOnForStmt(ForLoc, LParenLoc, move(Init), Cond, |
| DeclPtrTy::make(CondVar), |
| Inc, RParenLoc, move(Body)); |
| } |
| |
| /// \brief Build a new goto statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningStmtResult RebuildGotoStmt(SourceLocation GotoLoc, |
| SourceLocation LabelLoc, |
| LabelStmt *Label) { |
| return getSema().ActOnGotoStmt(GotoLoc, LabelLoc, Label->getID()); |
| } |
| |
| /// \brief Build a new indirect goto statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningStmtResult RebuildIndirectGotoStmt(SourceLocation GotoLoc, |
| SourceLocation StarLoc, |
| ExprArg Target) { |
| return getSema().ActOnIndirectGotoStmt(GotoLoc, StarLoc, move(Target)); |
| } |
| |
| /// \brief Build a new return statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningStmtResult RebuildReturnStmt(SourceLocation ReturnLoc, |
| ExprArg Result) { |
| |
| return getSema().ActOnReturnStmt(ReturnLoc, move(Result)); |
| } |
| |
| /// \brief Build a new declaration statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningStmtResult RebuildDeclStmt(Decl **Decls, unsigned NumDecls, |
| SourceLocation StartLoc, |
| SourceLocation EndLoc) { |
| return getSema().Owned( |
| new (getSema().Context) DeclStmt( |
| DeclGroupRef::Create(getSema().Context, |
| Decls, NumDecls), |
| StartLoc, EndLoc)); |
| } |
| |
| /// \brief Build a new C++ exception declaration. |
| /// |
| /// By default, performs semantic analysis to build the new decaration. |
| /// Subclasses may override this routine to provide different behavior. |
| VarDecl *RebuildExceptionDecl(VarDecl *ExceptionDecl, QualType T, |
| DeclaratorInfo *Declarator, |
| IdentifierInfo *Name, |
| SourceLocation Loc, |
| SourceRange TypeRange) { |
| return getSema().BuildExceptionDeclaration(0, T, Declarator, Name, Loc, |
| TypeRange); |
| } |
| |
| /// \brief Build a new C++ catch statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningStmtResult RebuildCXXCatchStmt(SourceLocation CatchLoc, |
| VarDecl *ExceptionDecl, |
| StmtArg Handler) { |
| return getSema().Owned( |
| new (getSema().Context) CXXCatchStmt(CatchLoc, ExceptionDecl, |
| Handler.takeAs<Stmt>())); |
| } |
| |
| /// \brief Build a new C++ try statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningStmtResult RebuildCXXTryStmt(SourceLocation TryLoc, |
| StmtArg TryBlock, |
| MultiStmtArg Handlers) { |
| return getSema().ActOnCXXTryBlock(TryLoc, move(TryBlock), move(Handlers)); |
| } |
| |
| /// \brief Build a new expression that references a declaration. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildDeclarationNameExpr(const CXXScopeSpec &SS, |
| LookupResult &R, |
| bool RequiresADL) { |
| return getSema().BuildDeclarationNameExpr(SS, R, RequiresADL); |
| } |
| |
| |
| /// \brief Build a new expression that references a declaration. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildDeclRefExpr(NestedNameSpecifier *Qualifier, |
| SourceRange QualifierRange, |
| NamedDecl *ND, SourceLocation Loc, |
| bool isAddressOfOperand) { |
| CXXScopeSpec SS; |
| SS.setScopeRep(Qualifier); |
| SS.setRange(QualifierRange); |
| return getSema().BuildDeclarationNameExpr(Loc, ND, |
| /*FIXME:*/false, |
| &SS, |
| isAddressOfOperand); |
| } |
| |
| /// \brief Build a new expression in parentheses. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildParenExpr(ExprArg SubExpr, SourceLocation LParen, |
| SourceLocation RParen) { |
| return getSema().ActOnParenExpr(LParen, RParen, move(SubExpr)); |
| } |
| |
| /// \brief Build a new pseudo-destructor expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildCXXPseudoDestructorExpr(ExprArg Base, |
| SourceLocation OperatorLoc, |
| bool isArrow, |
| SourceLocation DestroyedTypeLoc, |
| QualType DestroyedType, |
| NestedNameSpecifier *Qualifier, |
| SourceRange QualifierRange) { |
| CXXScopeSpec SS; |
| if (Qualifier) { |
| SS.setRange(QualifierRange); |
| SS.setScopeRep(Qualifier); |
| } |
| |
| QualType BaseType = ((Expr*) Base.get())->getType(); |
| |
| DeclarationName Name |
| = SemaRef.Context.DeclarationNames.getCXXDestructorName( |
| SemaRef.Context.getCanonicalType(DestroyedType)); |
| |
| return getSema().BuildMemberReferenceExpr(move(Base), BaseType, |
| OperatorLoc, isArrow, |
| SS, /*FIXME: FirstQualifier*/ 0, |
| Name, DestroyedTypeLoc, |
| /*TemplateArgs*/ 0); |
| } |
| |
| /// \brief Build a new unary operator expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildUnaryOperator(SourceLocation OpLoc, |
| UnaryOperator::Opcode Opc, |
| ExprArg SubExpr) { |
| return getSema().BuildUnaryOp(/*Scope=*/0, OpLoc, Opc, move(SubExpr)); |
| } |
| |
| /// \brief Build a new sizeof or alignof expression with a type argument. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildSizeOfAlignOf(DeclaratorInfo *DInfo, |
| SourceLocation OpLoc, |
| bool isSizeOf, SourceRange R) { |
| return getSema().CreateSizeOfAlignOfExpr(DInfo, OpLoc, isSizeOf, R); |
| } |
| |
| /// \brief Build a new sizeof or alignof expression with an expression |
| /// argument. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildSizeOfAlignOf(ExprArg SubExpr, SourceLocation OpLoc, |
| bool isSizeOf, SourceRange R) { |
| OwningExprResult Result |
| = getSema().CreateSizeOfAlignOfExpr((Expr *)SubExpr.get(), |
| OpLoc, isSizeOf, R); |
| if (Result.isInvalid()) |
| return getSema().ExprError(); |
| |
| SubExpr.release(); |
| return move(Result); |
| } |
| |
| /// \brief Build a new array subscript expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildArraySubscriptExpr(ExprArg LHS, |
| SourceLocation LBracketLoc, |
| ExprArg RHS, |
| SourceLocation RBracketLoc) { |
| return getSema().ActOnArraySubscriptExpr(/*Scope=*/0, move(LHS), |
| LBracketLoc, move(RHS), |
| RBracketLoc); |
| } |
| |
| /// \brief Build a new call expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildCallExpr(ExprArg Callee, SourceLocation LParenLoc, |
| MultiExprArg Args, |
| SourceLocation *CommaLocs, |
| SourceLocation RParenLoc) { |
| return getSema().ActOnCallExpr(/*Scope=*/0, move(Callee), LParenLoc, |
| move(Args), CommaLocs, RParenLoc); |
| } |
| |
| /// \brief Build a new member access expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildMemberExpr(ExprArg Base, SourceLocation OpLoc, |
| bool isArrow, |
| NestedNameSpecifier *Qualifier, |
| SourceRange QualifierRange, |
| SourceLocation MemberLoc, |
| NamedDecl *Member, |
| const TemplateArgumentListInfo *ExplicitTemplateArgs, |
| NamedDecl *FirstQualifierInScope) { |
| if (!Member->getDeclName()) { |
| // We have a reference to an unnamed field. |
| assert(!Qualifier && "Can't have an unnamed field with a qualifier!"); |
| |
| MemberExpr *ME = |
| new (getSema().Context) MemberExpr(Base.takeAs<Expr>(), isArrow, |
| Member, MemberLoc, |
| cast<FieldDecl>(Member)->getType()); |
| return getSema().Owned(ME); |
| } |
| |
| CXXScopeSpec SS; |
| if (Qualifier) { |
| SS.setRange(QualifierRange); |
| SS.setScopeRep(Qualifier); |
| } |
| |
| QualType BaseType = ((Expr*) Base.get())->getType(); |
| |
| // FIXME: wait, this is re-performing lookup? |
| return getSema().BuildMemberReferenceExpr(move(Base), BaseType, |
| OpLoc, isArrow, |
| SS, FirstQualifierInScope, |
| Member->getDeclName(), MemberLoc, |
| ExplicitTemplateArgs); |
| } |
| |
| /// \brief Build a new binary operator expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildBinaryOperator(SourceLocation OpLoc, |
| BinaryOperator::Opcode Opc, |
| ExprArg LHS, ExprArg RHS) { |
| return getSema().BuildBinOp(/*Scope=*/0, OpLoc, Opc, |
| LHS.takeAs<Expr>(), RHS.takeAs<Expr>()); |
| } |
| |
| /// \brief Build a new conditional operator expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildConditionalOperator(ExprArg Cond, |
| SourceLocation QuestionLoc, |
| ExprArg LHS, |
| SourceLocation ColonLoc, |
| ExprArg RHS) { |
| return getSema().ActOnConditionalOp(QuestionLoc, ColonLoc, move(Cond), |
| move(LHS), move(RHS)); |
| } |
| |
| /// \brief Build a new implicit cast expression. |
| /// |
| /// By default, builds a new implicit cast without any semantic analysis. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildImplicitCastExpr(QualType T, CastExpr::CastKind Kind, |
| ExprArg SubExpr, bool isLvalue) { |
| ImplicitCastExpr *ICE |
| = new (getSema().Context) ImplicitCastExpr(T, Kind, |
| (Expr *)SubExpr.release(), |
| isLvalue); |
| return getSema().Owned(ICE); |
| } |
| |
| /// \brief Build a new C-style cast expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildCStyleCaseExpr(SourceLocation LParenLoc, |
| QualType ExplicitTy, |
| SourceLocation RParenLoc, |
| ExprArg SubExpr) { |
| return getSema().ActOnCastExpr(/*Scope=*/0, |
| LParenLoc, |
| ExplicitTy.getAsOpaquePtr(), |
| RParenLoc, |
| move(SubExpr)); |
| } |
| |
| /// \brief Build a new compound literal expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildCompoundLiteralExpr(SourceLocation LParenLoc, |
| QualType T, |
| SourceLocation RParenLoc, |
| ExprArg Init) { |
| return getSema().ActOnCompoundLiteral(LParenLoc, T.getAsOpaquePtr(), |
| RParenLoc, move(Init)); |
| } |
| |
| /// \brief Build a new extended vector element access expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildExtVectorElementExpr(ExprArg Base, |
| SourceLocation OpLoc, |
| SourceLocation AccessorLoc, |
| IdentifierInfo &Accessor) { |
| |
| CXXScopeSpec SS; |
| QualType BaseType = ((Expr*) Base.get())->getType(); |
| return getSema().BuildMemberReferenceExpr(move(Base), BaseType, |
| OpLoc, /*IsArrow*/ false, |
| SS, /*FirstQualifierInScope*/ 0, |
| DeclarationName(&Accessor), |
| AccessorLoc, |
| /* TemplateArgs */ 0); |
| } |
| |
| /// \brief Build a new initializer list expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildInitList(SourceLocation LBraceLoc, |
| MultiExprArg Inits, |
| SourceLocation RBraceLoc, |
| QualType ResultTy) { |
| OwningExprResult Result |
| = SemaRef.ActOnInitList(LBraceLoc, move(Inits), RBraceLoc); |
| if (Result.isInvalid() || ResultTy->isDependentType()) |
| return move(Result); |
| |
| // Patch in the result type we were given, which may have been computed |
| // when the initial InitListExpr was built. |
| InitListExpr *ILE = cast<InitListExpr>((Expr *)Result.get()); |
| ILE->setType(ResultTy); |
| return move(Result); |
| } |
| |
| /// \brief Build a new designated initializer expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildDesignatedInitExpr(Designation &Desig, |
| MultiExprArg ArrayExprs, |
| SourceLocation EqualOrColonLoc, |
| bool GNUSyntax, |
| ExprArg Init) { |
| OwningExprResult Result |
| = SemaRef.ActOnDesignatedInitializer(Desig, EqualOrColonLoc, GNUSyntax, |
| move(Init)); |
| if (Result.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| ArrayExprs.release(); |
| return move(Result); |
| } |
| |
| /// \brief Build a new value-initialized expression. |
| /// |
| /// By default, builds the implicit value initialization without performing |
| /// any semantic analysis. Subclasses may override this routine to provide |
| /// different behavior. |
| OwningExprResult RebuildImplicitValueInitExpr(QualType T) { |
| return SemaRef.Owned(new (SemaRef.Context) ImplicitValueInitExpr(T)); |
| } |
| |
| /// \brief Build a new \c va_arg expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildVAArgExpr(SourceLocation BuiltinLoc, ExprArg SubExpr, |
| QualType T, SourceLocation RParenLoc) { |
| return getSema().ActOnVAArg(BuiltinLoc, move(SubExpr), T.getAsOpaquePtr(), |
| RParenLoc); |
| } |
| |
| /// \brief Build a new expression list in parentheses. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildParenListExpr(SourceLocation LParenLoc, |
| MultiExprArg SubExprs, |
| SourceLocation RParenLoc) { |
| return getSema().ActOnParenOrParenListExpr(LParenLoc, RParenLoc, |
| move(SubExprs)); |
| } |
| |
| /// \brief Build a new address-of-label expression. |
| /// |
| /// By default, performs semantic analysis, using the name of the label |
| /// rather than attempting to map the label statement itself. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildAddrLabelExpr(SourceLocation AmpAmpLoc, |
| SourceLocation LabelLoc, |
| LabelStmt *Label) { |
| return getSema().ActOnAddrLabel(AmpAmpLoc, LabelLoc, Label->getID()); |
| } |
| |
| /// \brief Build a new GNU statement expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildStmtExpr(SourceLocation LParenLoc, |
| StmtArg SubStmt, |
| SourceLocation RParenLoc) { |
| return getSema().ActOnStmtExpr(LParenLoc, move(SubStmt), RParenLoc); |
| } |
| |
| /// \brief Build a new __builtin_types_compatible_p expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildTypesCompatibleExpr(SourceLocation BuiltinLoc, |
| QualType T1, QualType T2, |
| SourceLocation RParenLoc) { |
| return getSema().ActOnTypesCompatibleExpr(BuiltinLoc, |
| T1.getAsOpaquePtr(), |
| T2.getAsOpaquePtr(), |
| RParenLoc); |
| } |
| |
| /// \brief Build a new __builtin_choose_expr expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildChooseExpr(SourceLocation BuiltinLoc, |
| ExprArg Cond, ExprArg LHS, ExprArg RHS, |
| SourceLocation RParenLoc) { |
| return SemaRef.ActOnChooseExpr(BuiltinLoc, |
| move(Cond), move(LHS), move(RHS), |
| RParenLoc); |
| } |
| |
| /// \brief Build a new overloaded operator call expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// The semantic analysis provides the behavior of template instantiation, |
| /// copying with transformations that turn what looks like an overloaded |
| /// operator call into a use of a builtin operator, performing |
| /// argument-dependent lookup, etc. Subclasses may override this routine to |
| /// provide different behavior. |
| OwningExprResult RebuildCXXOperatorCallExpr(OverloadedOperatorKind Op, |
| SourceLocation OpLoc, |
| ExprArg Callee, |
| ExprArg First, |
| ExprArg Second); |
| |
| /// \brief Build a new C++ "named" cast expression, such as static_cast or |
| /// reinterpret_cast. |
| /// |
| /// By default, this routine dispatches to one of the more-specific routines |
| /// for a particular named case, e.g., RebuildCXXStaticCastExpr(). |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildCXXNamedCastExpr(SourceLocation OpLoc, |
| Stmt::StmtClass Class, |
| SourceLocation LAngleLoc, |
| QualType T, |
| SourceLocation RAngleLoc, |
| SourceLocation LParenLoc, |
| ExprArg SubExpr, |
| SourceLocation RParenLoc) { |
| switch (Class) { |
| case Stmt::CXXStaticCastExprClass: |
| return getDerived().RebuildCXXStaticCastExpr(OpLoc, LAngleLoc, T, |
| RAngleLoc, LParenLoc, |
| move(SubExpr), RParenLoc); |
| |
| case Stmt::CXXDynamicCastExprClass: |
| return getDerived().RebuildCXXDynamicCastExpr(OpLoc, LAngleLoc, T, |
| RAngleLoc, LParenLoc, |
| move(SubExpr), RParenLoc); |
| |
| case Stmt::CXXReinterpretCastExprClass: |
| return getDerived().RebuildCXXReinterpretCastExpr(OpLoc, LAngleLoc, T, |
| RAngleLoc, LParenLoc, |
| move(SubExpr), |
| RParenLoc); |
| |
| case Stmt::CXXConstCastExprClass: |
| return getDerived().RebuildCXXConstCastExpr(OpLoc, LAngleLoc, T, |
| RAngleLoc, LParenLoc, |
| move(SubExpr), RParenLoc); |
| |
| default: |
| assert(false && "Invalid C++ named cast"); |
| break; |
| } |
| |
| return getSema().ExprError(); |
| } |
| |
| /// \brief Build a new C++ static_cast expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildCXXStaticCastExpr(SourceLocation OpLoc, |
| SourceLocation LAngleLoc, |
| QualType T, |
| SourceLocation RAngleLoc, |
| SourceLocation LParenLoc, |
| ExprArg SubExpr, |
| SourceLocation RParenLoc) { |
| return getSema().ActOnCXXNamedCast(OpLoc, tok::kw_static_cast, |
| LAngleLoc, T.getAsOpaquePtr(), RAngleLoc, |
| LParenLoc, move(SubExpr), RParenLoc); |
| } |
| |
| /// \brief Build a new C++ dynamic_cast expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildCXXDynamicCastExpr(SourceLocation OpLoc, |
| SourceLocation LAngleLoc, |
| QualType T, |
| SourceLocation RAngleLoc, |
| SourceLocation LParenLoc, |
| ExprArg SubExpr, |
| SourceLocation RParenLoc) { |
| return getSema().ActOnCXXNamedCast(OpLoc, tok::kw_dynamic_cast, |
| LAngleLoc, T.getAsOpaquePtr(), RAngleLoc, |
| LParenLoc, move(SubExpr), RParenLoc); |
| } |
| |
| /// \brief Build a new C++ reinterpret_cast expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildCXXReinterpretCastExpr(SourceLocation OpLoc, |
| SourceLocation LAngleLoc, |
| QualType T, |
| SourceLocation RAngleLoc, |
| SourceLocation LParenLoc, |
| ExprArg SubExpr, |
| SourceLocation RParenLoc) { |
| return getSema().ActOnCXXNamedCast(OpLoc, tok::kw_reinterpret_cast, |
| LAngleLoc, T.getAsOpaquePtr(), RAngleLoc, |
| LParenLoc, move(SubExpr), RParenLoc); |
| } |
| |
| /// \brief Build a new C++ const_cast expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildCXXConstCastExpr(SourceLocation OpLoc, |
| SourceLocation LAngleLoc, |
| QualType T, |
| SourceLocation RAngleLoc, |
| SourceLocation LParenLoc, |
| ExprArg SubExpr, |
| SourceLocation RParenLoc) { |
| return getSema().ActOnCXXNamedCast(OpLoc, tok::kw_const_cast, |
| LAngleLoc, T.getAsOpaquePtr(), RAngleLoc, |
| LParenLoc, move(SubExpr), RParenLoc); |
| } |
| |
| /// \brief Build a new C++ functional-style cast expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildCXXFunctionalCastExpr(SourceRange TypeRange, |
| QualType T, |
| SourceLocation LParenLoc, |
| ExprArg SubExpr, |
| SourceLocation RParenLoc) { |
| void *Sub = SubExpr.takeAs<Expr>(); |
| return getSema().ActOnCXXTypeConstructExpr(TypeRange, |
| T.getAsOpaquePtr(), |
| LParenLoc, |
| Sema::MultiExprArg(getSema(), &Sub, 1), |
| /*CommaLocs=*/0, |
| RParenLoc); |
| } |
| |
| /// \brief Build a new C++ typeid(type) expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildCXXTypeidExpr(SourceLocation TypeidLoc, |
| SourceLocation LParenLoc, |
| QualType T, |
| SourceLocation RParenLoc) { |
| return getSema().ActOnCXXTypeid(TypeidLoc, LParenLoc, true, |
| T.getAsOpaquePtr(), RParenLoc); |
| } |
| |
| /// \brief Build a new C++ typeid(expr) expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildCXXTypeidExpr(SourceLocation TypeidLoc, |
| SourceLocation LParenLoc, |
| ExprArg Operand, |
| SourceLocation RParenLoc) { |
| OwningExprResult Result |
| = getSema().ActOnCXXTypeid(TypeidLoc, LParenLoc, false, Operand.get(), |
| RParenLoc); |
| if (Result.isInvalid()) |
| return getSema().ExprError(); |
| |
| Operand.release(); // FIXME: since ActOnCXXTypeid silently took ownership |
| return move(Result); |
| } |
| |
| /// \brief Build a new C++ "this" expression. |
| /// |
| /// By default, builds a new "this" expression without performing any |
| /// semantic analysis. Subclasses may override this routine to provide |
| /// different behavior. |
| OwningExprResult RebuildCXXThisExpr(SourceLocation ThisLoc, |
| QualType ThisType) { |
| return getSema().Owned( |
| new (getSema().Context) CXXThisExpr(ThisLoc, ThisType)); |
| } |
| |
| /// \brief Build a new C++ throw expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildCXXThrowExpr(SourceLocation ThrowLoc, ExprArg Sub) { |
| return getSema().ActOnCXXThrow(ThrowLoc, move(Sub)); |
| } |
| |
| /// \brief Build a new C++ default-argument expression. |
| /// |
| /// By default, builds a new default-argument expression, which does not |
| /// require any semantic analysis. Subclasses may override this routine to |
| /// provide different behavior. |
| OwningExprResult RebuildCXXDefaultArgExpr(ParmVarDecl *Param) { |
| return getSema().Owned(CXXDefaultArgExpr::Create(getSema().Context, Param)); |
| } |
| |
| /// \brief Build a new C++ zero-initialization expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildCXXZeroInitValueExpr(SourceLocation TypeStartLoc, |
| SourceLocation LParenLoc, |
| QualType T, |
| SourceLocation RParenLoc) { |
| return getSema().ActOnCXXTypeConstructExpr(SourceRange(TypeStartLoc), |
| T.getAsOpaquePtr(), LParenLoc, |
| MultiExprArg(getSema(), 0, 0), |
| 0, RParenLoc); |
| } |
| |
| /// \brief Build a new C++ "new" expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildCXXNewExpr(SourceLocation StartLoc, |
| bool UseGlobal, |
| SourceLocation PlacementLParen, |
| MultiExprArg PlacementArgs, |
| SourceLocation PlacementRParen, |
| bool ParenTypeId, |
| QualType AllocType, |
| SourceLocation TypeLoc, |
| SourceRange TypeRange, |
| ExprArg ArraySize, |
| SourceLocation ConstructorLParen, |
| MultiExprArg ConstructorArgs, |
| SourceLocation ConstructorRParen) { |
| return getSema().BuildCXXNew(StartLoc, UseGlobal, |
| PlacementLParen, |
| move(PlacementArgs), |
| PlacementRParen, |
| ParenTypeId, |
| AllocType, |
| TypeLoc, |
| TypeRange, |
| move(ArraySize), |
| ConstructorLParen, |
| move(ConstructorArgs), |
| ConstructorRParen); |
| } |
| |
| /// \brief Build a new C++ "delete" expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildCXXDeleteExpr(SourceLocation StartLoc, |
| bool IsGlobalDelete, |
| bool IsArrayForm, |
| ExprArg Operand) { |
| return getSema().ActOnCXXDelete(StartLoc, IsGlobalDelete, IsArrayForm, |
| move(Operand)); |
| } |
| |
| /// \brief Build a new unary type trait expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildUnaryTypeTrait(UnaryTypeTrait Trait, |
| SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| QualType T, |
| SourceLocation RParenLoc) { |
| return getSema().ActOnUnaryTypeTrait(Trait, StartLoc, LParenLoc, |
| T.getAsOpaquePtr(), RParenLoc); |
| } |
| |
| /// \brief Build a new (previously unresolved) declaration reference |
| /// expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildDependentScopeDeclRefExpr(NestedNameSpecifier *NNS, |
| SourceRange QualifierRange, |
| DeclarationName Name, |
| SourceLocation Location, |
| const TemplateArgumentListInfo *TemplateArgs) { |
| CXXScopeSpec SS; |
| SS.setRange(QualifierRange); |
| SS.setScopeRep(NNS); |
| |
| if (TemplateArgs) |
| return getSema().BuildQualifiedTemplateIdExpr(SS, Name, Location, |
| *TemplateArgs); |
| |
| return getSema().BuildQualifiedDeclarationNameExpr(SS, Name, Location); |
| } |
| |
| /// \brief Build a new template-id expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildTemplateIdExpr(const CXXScopeSpec &SS, |
| LookupResult &R, |
| bool RequiresADL, |
| const TemplateArgumentListInfo &TemplateArgs) { |
| return getSema().BuildTemplateIdExpr(SS, R, RequiresADL, TemplateArgs); |
| } |
| |
| /// \brief Build a new object-construction expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildCXXConstructExpr(QualType T, |
| CXXConstructorDecl *Constructor, |
| bool IsElidable, |
| MultiExprArg Args) { |
| return getSema().BuildCXXConstructExpr(/*FIXME:ConstructLoc*/ |
| SourceLocation(), |
| T, Constructor, IsElidable, |
| move(Args)); |
| } |
| |
| /// \brief Build a new object-construction expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildCXXTemporaryObjectExpr(SourceLocation TypeBeginLoc, |
| QualType T, |
| SourceLocation LParenLoc, |
| MultiExprArg Args, |
| SourceLocation *Commas, |
| SourceLocation RParenLoc) { |
| return getSema().ActOnCXXTypeConstructExpr(SourceRange(TypeBeginLoc), |
| T.getAsOpaquePtr(), |
| LParenLoc, |
| move(Args), |
| Commas, |
| RParenLoc); |
| } |
| |
| /// \brief Build a new object-construction expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildCXXUnresolvedConstructExpr(SourceLocation TypeBeginLoc, |
| QualType T, |
| SourceLocation LParenLoc, |
| MultiExprArg Args, |
| SourceLocation *Commas, |
| SourceLocation RParenLoc) { |
| return getSema().ActOnCXXTypeConstructExpr(SourceRange(TypeBeginLoc, |
| /*FIXME*/LParenLoc), |
| T.getAsOpaquePtr(), |
| LParenLoc, |
| move(Args), |
| Commas, |
| RParenLoc); |
| } |
| |
| /// \brief Build a new member reference expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildCXXDependentScopeMemberExpr(ExprArg BaseE, |
| QualType BaseType, |
| bool IsArrow, |
| SourceLocation OperatorLoc, |
| NestedNameSpecifier *Qualifier, |
| SourceRange QualifierRange, |
| NamedDecl *FirstQualifierInScope, |
| DeclarationName Name, |
| SourceLocation MemberLoc, |
| const TemplateArgumentListInfo *TemplateArgs) { |
| CXXScopeSpec SS; |
| SS.setRange(QualifierRange); |
| SS.setScopeRep(Qualifier); |
| |
| return SemaRef.BuildMemberReferenceExpr(move(BaseE), BaseType, |
| OperatorLoc, IsArrow, |
| SS, FirstQualifierInScope, |
| Name, MemberLoc, TemplateArgs); |
| } |
| |
| /// \brief Build a new member reference expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildUnresolvedMemberExpr(ExprArg BaseE, |
| QualType BaseType, |
| SourceLocation OperatorLoc, |
| bool IsArrow, |
| NestedNameSpecifier *Qualifier, |
| SourceRange QualifierRange, |
| LookupResult &R, |
| const TemplateArgumentListInfo *TemplateArgs) { |
| CXXScopeSpec SS; |
| SS.setRange(QualifierRange); |
| SS.setScopeRep(Qualifier); |
| |
| return SemaRef.BuildMemberReferenceExpr(move(BaseE), BaseType, |
| OperatorLoc, IsArrow, |
| SS, R, TemplateArgs); |
| } |
| |
| /// \brief Build a new Objective-C @encode expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildObjCEncodeExpr(SourceLocation AtLoc, |
| QualType T, |
| SourceLocation RParenLoc) { |
| return SemaRef.Owned(SemaRef.BuildObjCEncodeExpression(AtLoc, T, |
| RParenLoc)); |
| } |
| |
| /// \brief Build a new Objective-C protocol expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildObjCProtocolExpr(ObjCProtocolDecl *Protocol, |
| SourceLocation AtLoc, |
| SourceLocation ProtoLoc, |
| SourceLocation LParenLoc, |
| SourceLocation RParenLoc) { |
| return SemaRef.Owned(SemaRef.ParseObjCProtocolExpression( |
| Protocol->getIdentifier(), |
| AtLoc, |
| ProtoLoc, |
| LParenLoc, |
| RParenLoc)); |
| } |
| |
| /// \brief Build a new shuffle vector expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| OwningExprResult RebuildShuffleVectorExpr(SourceLocation BuiltinLoc, |
| MultiExprArg SubExprs, |
| SourceLocation RParenLoc) { |
| // Find the declaration for __builtin_shufflevector |
| const IdentifierInfo &Name |
| = SemaRef.Context.Idents.get("__builtin_shufflevector"); |
| TranslationUnitDecl *TUDecl = SemaRef.Context.getTranslationUnitDecl(); |
| DeclContext::lookup_result Lookup = TUDecl->lookup(DeclarationName(&Name)); |
| assert(Lookup.first != Lookup.second && "No __builtin_shufflevector?"); |
| |
| // Build a reference to the __builtin_shufflevector builtin |
| FunctionDecl *Builtin = cast<FunctionDecl>(*Lookup.first); |
| Expr *Callee |
| = new (SemaRef.Context) DeclRefExpr(Builtin, Builtin->getType(), |
| BuiltinLoc); |
| SemaRef.UsualUnaryConversions(Callee); |
| |
| // Build the CallExpr |
| unsigned NumSubExprs = SubExprs.size(); |
| Expr **Subs = (Expr **)SubExprs.release(); |
| CallExpr *TheCall = new (SemaRef.Context) CallExpr(SemaRef.Context, Callee, |
| Subs, NumSubExprs, |
| Builtin->getResultType(), |
| RParenLoc); |
| OwningExprResult OwnedCall(SemaRef.Owned(TheCall)); |
| |
| // Type-check the __builtin_shufflevector expression. |
| OwningExprResult Result = SemaRef.SemaBuiltinShuffleVector(TheCall); |
| if (Result.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| OwnedCall.release(); |
| return move(Result); |
| } |
| }; |
| |
| template<typename Derived> |
| Sema::OwningStmtResult TreeTransform<Derived>::TransformStmt(Stmt *S) { |
| if (!S) |
| return SemaRef.Owned(S); |
| |
| switch (S->getStmtClass()) { |
| case Stmt::NoStmtClass: break; |
| |
| // Transform individual statement nodes |
| #define STMT(Node, Parent) \ |
| case Stmt::Node##Class: return getDerived().Transform##Node(cast<Node>(S)); |
| #define EXPR(Node, Parent) |
| #include "clang/AST/StmtNodes.def" |
| |
| // Transform expressions by calling TransformExpr. |
| #define STMT(Node, Parent) |
| #define EXPR(Node, Parent) case Stmt::Node##Class: |
| #include "clang/AST/StmtNodes.def" |
| { |
| Sema::OwningExprResult E = getDerived().TransformExpr(cast<Expr>(S)); |
| if (E.isInvalid()) |
| return getSema().StmtError(); |
| |
| return getSema().ActOnExprStmt(getSema().FullExpr(E)); |
| } |
| } |
| |
| return SemaRef.Owned(S->Retain()); |
| } |
| |
| |
| template<typename Derived> |
| Sema::OwningExprResult TreeTransform<Derived>::TransformExpr(Expr *E, |
| bool isAddressOfOperand) { |
| if (!E) |
| return SemaRef.Owned(E); |
| |
| switch (E->getStmtClass()) { |
| case Stmt::NoStmtClass: break; |
| #define STMT(Node, Parent) case Stmt::Node##Class: break; |
| #define EXPR(Node, Parent) \ |
| case Stmt::Node##Class: return getDerived().Transform##Node(cast<Node>(E), \ |
| isAddressOfOperand); |
| #include "clang/AST/StmtNodes.def" |
| } |
| |
| return SemaRef.Owned(E->Retain()); |
| } |
| |
| template<typename Derived> |
| NestedNameSpecifier * |
| TreeTransform<Derived>::TransformNestedNameSpecifier(NestedNameSpecifier *NNS, |
| SourceRange Range, |
| QualType ObjectType, |
| NamedDecl *FirstQualifierInScope) { |
| if (!NNS) |
| return 0; |
| |
| // Transform the prefix of this nested name specifier. |
| NestedNameSpecifier *Prefix = NNS->getPrefix(); |
| if (Prefix) { |
| Prefix = getDerived().TransformNestedNameSpecifier(Prefix, Range, |
| ObjectType, |
| FirstQualifierInScope); |
| if (!Prefix) |
| return 0; |
| |
| // Clear out the object type and the first qualifier in scope; they only |
| // apply to the first element in the nested-name-specifier. |
| ObjectType = QualType(); |
| FirstQualifierInScope = 0; |
| } |
| |
| switch (NNS->getKind()) { |
| case NestedNameSpecifier::Identifier: |
| assert((Prefix || !ObjectType.isNull()) && |
| "Identifier nested-name-specifier with no prefix or object type"); |
| if (!getDerived().AlwaysRebuild() && Prefix == NNS->getPrefix() && |
| ObjectType.isNull()) |
| return NNS; |
| |
| return getDerived().RebuildNestedNameSpecifier(Prefix, Range, |
| *NNS->getAsIdentifier(), |
| ObjectType, |
| FirstQualifierInScope); |
| |
| case NestedNameSpecifier::Namespace: { |
| NamespaceDecl *NS |
| = cast_or_null<NamespaceDecl>( |
| getDerived().TransformDecl(NNS->getAsNamespace())); |
| if (!getDerived().AlwaysRebuild() && |
| Prefix == NNS->getPrefix() && |
| NS == NNS->getAsNamespace()) |
| return NNS; |
| |
| return getDerived().RebuildNestedNameSpecifier(Prefix, Range, NS); |
| } |
| |
| case NestedNameSpecifier::Global: |
| // There is no meaningful transformation that one could perform on the |
| // global scope. |
| return NNS; |
| |
| case NestedNameSpecifier::TypeSpecWithTemplate: |
| case NestedNameSpecifier::TypeSpec: { |
| TemporaryBase Rebase(*this, Range.getBegin(), DeclarationName()); |
| QualType T = getDerived().TransformType(QualType(NNS->getAsType(), 0)); |
| if (T.isNull()) |
| return 0; |
| |
| if (!getDerived().AlwaysRebuild() && |
| Prefix == NNS->getPrefix() && |
| T == QualType(NNS->getAsType(), 0)) |
| return NNS; |
| |
| return getDerived().RebuildNestedNameSpecifier(Prefix, Range, |
| NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate, |
| T); |
| } |
| } |
| |
| // Required to silence a GCC warning |
| return 0; |
| } |
| |
| template<typename Derived> |
| DeclarationName |
| TreeTransform<Derived>::TransformDeclarationName(DeclarationName Name, |
| SourceLocation Loc, |
| QualType ObjectType) { |
| if (!Name) |
| return Name; |
| |
| switch (Name.getNameKind()) { |
| case DeclarationName::Identifier: |
| case DeclarationName::ObjCZeroArgSelector: |
| case DeclarationName::ObjCOneArgSelector: |
| case DeclarationName::ObjCMultiArgSelector: |
| case DeclarationName::CXXOperatorName: |
| case DeclarationName::CXXLiteralOperatorName: |
| case DeclarationName::CXXUsingDirective: |
| return Name; |
| |
| case DeclarationName::CXXConstructorName: |
| case DeclarationName::CXXDestructorName: |
| case DeclarationName::CXXConversionFunctionName: { |
| TemporaryBase Rebase(*this, Loc, Name); |
| QualType T; |
| if (!ObjectType.isNull() && |
| isa<TemplateSpecializationType>(Name.getCXXNameType())) { |
| TemplateSpecializationType *SpecType |
| = cast<TemplateSpecializationType>(Name.getCXXNameType()); |
| T = TransformTemplateSpecializationType(SpecType, ObjectType); |
| } else |
| T = getDerived().TransformType(Name.getCXXNameType()); |
| if (T.isNull()) |
| return DeclarationName(); |
| |
| return SemaRef.Context.DeclarationNames.getCXXSpecialName( |
| Name.getNameKind(), |
| SemaRef.Context.getCanonicalType(T)); |
| } |
| } |
| |
| return DeclarationName(); |
| } |
| |
| template<typename Derived> |
| TemplateName |
| TreeTransform<Derived>::TransformTemplateName(TemplateName Name, |
| QualType ObjectType) { |
| if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName()) { |
| NestedNameSpecifier *NNS |
| = getDerived().TransformNestedNameSpecifier(QTN->getQualifier(), |
| /*FIXME:*/SourceRange(getDerived().getBaseLocation())); |
| if (!NNS) |
| return TemplateName(); |
| |
| if (TemplateDecl *Template = QTN->getTemplateDecl()) { |
| TemplateDecl *TransTemplate |
| = cast_or_null<TemplateDecl>(getDerived().TransformDecl(Template)); |
| if (!TransTemplate) |
| return TemplateName(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| NNS == QTN->getQualifier() && |
| TransTemplate == Template) |
| return Name; |
| |
| return getDerived().RebuildTemplateName(NNS, QTN->hasTemplateKeyword(), |
| TransTemplate); |
| } |
| |
| // These should be getting filtered out before they make it into the AST. |
| assert(false && "overloaded template name survived to here"); |
| } |
| |
| if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) { |
| NestedNameSpecifier *NNS |
| = getDerived().TransformNestedNameSpecifier(DTN->getQualifier(), |
| /*FIXME:*/SourceRange(getDerived().getBaseLocation())); |
| if (!NNS && DTN->getQualifier()) |
| return TemplateName(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| NNS == DTN->getQualifier() && |
| ObjectType.isNull()) |
| return Name; |
| |
| if (DTN->isIdentifier()) |
| return getDerived().RebuildTemplateName(NNS, *DTN->getIdentifier(), |
| ObjectType); |
| |
| return getDerived().RebuildTemplateName(NNS, DTN->getOperator(), |
| ObjectType); |
| } |
| |
| if (TemplateDecl *Template = Name.getAsTemplateDecl()) { |
| TemplateDecl *TransTemplate |
| = cast_or_null<TemplateDecl>(getDerived().TransformDecl(Template)); |
| if (!TransTemplate) |
| return TemplateName(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| TransTemplate == Template) |
| return Name; |
| |
| return TemplateName(TransTemplate); |
| } |
| |
| // These should be getting filtered out before they reach the AST. |
| assert(false && "overloaded function decl survived to here"); |
| return TemplateName(); |
| } |
| |
| template<typename Derived> |
| void TreeTransform<Derived>::InventTemplateArgumentLoc( |
| const TemplateArgument &Arg, |
| TemplateArgumentLoc &Output) { |
| SourceLocation Loc = getDerived().getBaseLocation(); |
| switch (Arg.getKind()) { |
| case TemplateArgument::Null: |
| llvm::llvm_unreachable("null template argument in TreeTransform"); |
| break; |
| |
| case TemplateArgument::Type: |
| Output = TemplateArgumentLoc(Arg, |
| SemaRef.Context.getTrivialDeclaratorInfo(Arg.getAsType(), Loc)); |
| |
| break; |
| |
| case TemplateArgument::Template: |
| Output = TemplateArgumentLoc(Arg, SourceRange(), Loc); |
| break; |
| |
| case TemplateArgument::Expression: |
| Output = TemplateArgumentLoc(Arg, Arg.getAsExpr()); |
| break; |
| |
| case TemplateArgument::Declaration: |
| case TemplateArgument::Integral: |
| case TemplateArgument::Pack: |
| Output = TemplateArgumentLoc(Arg, TemplateArgumentLocInfo()); |
| break; |
| } |
| } |
| |
| template<typename Derived> |
| bool TreeTransform<Derived>::TransformTemplateArgument( |
| const TemplateArgumentLoc &Input, |
| TemplateArgumentLoc &Output) { |
| const TemplateArgument &Arg = Input.getArgument(); |
| switch (Arg.getKind()) { |
| case TemplateArgument::Null: |
| case TemplateArgument::Integral: |
| Output = Input; |
| return false; |
| |
| case TemplateArgument::Type: { |
| DeclaratorInfo *DI = Input.getSourceDeclaratorInfo(); |
| if (DI == NULL) |
| DI = InventDeclaratorInfo(Input.getArgument().getAsType()); |
| |
| DI = getDerived().TransformType(DI); |
| if (!DI) return true; |
| |
| Output = TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); |
| return false; |
| } |
| |
| case TemplateArgument::Declaration: { |
| // FIXME: we should never have to transform one of these. |
| DeclarationName Name; |
| if (NamedDecl *ND = dyn_cast<NamedDecl>(Arg.getAsDecl())) |
| Name = ND->getDeclName(); |
| TemporaryBase Rebase(*this, Input.getLocation(), Name); |
| Decl *D = getDerived().TransformDecl(Arg.getAsDecl()); |
| if (!D) return true; |
| |
| Expr *SourceExpr = Input.getSourceDeclExpression(); |
| if (SourceExpr) { |
| EnterExpressionEvaluationContext Unevaluated(getSema(), |
| Action::Unevaluated); |
| Sema::OwningExprResult E = getDerived().TransformExpr(SourceExpr); |
| if (E.isInvalid()) |
| SourceExpr = NULL; |
| else { |
| SourceExpr = E.takeAs<Expr>(); |
| SourceExpr->Retain(); |
| } |
| } |
| |
| Output = TemplateArgumentLoc(TemplateArgument(D), SourceExpr); |
| return false; |
| } |
| |
| case TemplateArgument::Template: { |
| TemporaryBase Rebase(*this, Input.getLocation(), DeclarationName()); |
| TemplateName Template |
| = getDerived().TransformTemplateName(Arg.getAsTemplate()); |
| if (Template.isNull()) |
| return true; |
| |
| Output = TemplateArgumentLoc(TemplateArgument(Template), |
| Input.getTemplateQualifierRange(), |
| Input.getTemplateNameLoc()); |
| return false; |
| } |
| |
| case TemplateArgument::Expression: { |
| // Template argument expressions are not potentially evaluated. |
| EnterExpressionEvaluationContext Unevaluated(getSema(), |
| Action::Unevaluated); |
| |
| Expr *InputExpr = Input.getSourceExpression(); |
| if (!InputExpr) InputExpr = Input.getArgument().getAsExpr(); |
| |
| Sema::OwningExprResult E |
| = getDerived().TransformExpr(InputExpr); |
| if (E.isInvalid()) return true; |
| |
| Expr *ETaken = E.takeAs<Expr>(); |
| ETaken->Retain(); |
| Output = TemplateArgumentLoc(TemplateArgument(ETaken), ETaken); |
| return false; |
| } |
| |
| case TemplateArgument::Pack: { |
| llvm::SmallVector<TemplateArgument, 4> TransformedArgs; |
| TransformedArgs.reserve(Arg.pack_size()); |
| for (TemplateArgument::pack_iterator A = Arg.pack_begin(), |
| AEnd = Arg.pack_end(); |
| A != AEnd; ++A) { |
| |
| // FIXME: preserve source information here when we start |
| // caring about parameter packs. |
| |
| TemplateArgumentLoc InputArg; |
| TemplateArgumentLoc OutputArg; |
| getDerived().InventTemplateArgumentLoc(*A, InputArg); |
| if (getDerived().TransformTemplateArgument(InputArg, OutputArg)) |
| return true; |
| |
| TransformedArgs.push_back(OutputArg.getArgument()); |
| } |
| TemplateArgument Result; |
| Result.setArgumentPack(TransformedArgs.data(), TransformedArgs.size(), |
| true); |
| Output = TemplateArgumentLoc(Result, Input.getLocInfo()); |
| return false; |
| } |
| } |
| |
| // Work around bogus GCC warning |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Type transformation |
| //===----------------------------------------------------------------------===// |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformType(QualType T) { |
| if (getDerived().AlreadyTransformed(T)) |
| return T; |
| |
| // Temporary workaround. All of these transformations should |
| // eventually turn into transformations on TypeLocs. |
| DeclaratorInfo *DI = getSema().Context.CreateDeclaratorInfo(T); |
| DI->getTypeLoc().initialize(getDerived().getBaseLocation()); |
| |
| DeclaratorInfo *NewDI = getDerived().TransformType(DI); |
| |
| if (!NewDI) |
| return QualType(); |
| |
| return NewDI->getType(); |
| } |
| |
| template<typename Derived> |
| DeclaratorInfo *TreeTransform<Derived>::TransformType(DeclaratorInfo *DI) { |
| if (getDerived().AlreadyTransformed(DI->getType())) |
| return DI; |
| |
| TypeLocBuilder TLB; |
| |
| TypeLoc TL = DI->getTypeLoc(); |
| TLB.reserve(TL.getFullDataSize()); |
| |
| QualType Result = getDerived().TransformType(TLB, TL); |
| if (Result.isNull()) |
| return 0; |
| |
| return TLB.getDeclaratorInfo(SemaRef.Context, Result); |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformType(TypeLocBuilder &TLB, TypeLoc T) { |
| switch (T.getTypeLocClass()) { |
| #define ABSTRACT_TYPELOC(CLASS, PARENT) |
| #define TYPELOC(CLASS, PARENT) \ |
| case TypeLoc::CLASS: \ |
| return getDerived().Transform##CLASS##Type(TLB, cast<CLASS##TypeLoc>(T)); |
| #include "clang/AST/TypeLocNodes.def" |
| } |
| |
| llvm::llvm_unreachable("unhandled type loc!"); |
| return QualType(); |
| } |
| |
| /// FIXME: By default, this routine adds type qualifiers only to types |
| /// that can have qualifiers, and silently suppresses those qualifiers |
| /// that are not permitted (e.g., qualifiers on reference or function |
| /// types). This is the right thing for template instantiation, but |
| /// probably not for other clients. |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformQualifiedType(TypeLocBuilder &TLB, |
| QualifiedTypeLoc T) { |
| Qualifiers Quals = T.getType().getLocalQualifiers(); |
| |
| QualType Result = getDerived().TransformType(TLB, T.getUnqualifiedLoc()); |
| if (Result.isNull()) |
| return QualType(); |
| |
| // Silently suppress qualifiers if the result type can't be qualified. |
| // FIXME: this is the right thing for template instantiation, but |
| // probably not for other clients. |
| if (Result->isFunctionType() || Result->isReferenceType()) |
| return Result; |
| |
| Result = SemaRef.Context.getQualifiedType(Result, Quals); |
| |
| TLB.push<QualifiedTypeLoc>(Result); |
| |
| // No location information to preserve. |
| |
| return Result; |
| } |
| |
| template <class TyLoc> static inline |
| QualType TransformTypeSpecType(TypeLocBuilder &TLB, TyLoc T) { |
| TyLoc NewT = TLB.push<TyLoc>(T.getType()); |
| NewT.setNameLoc(T.getNameLoc()); |
| return T.getType(); |
| } |
| |
| // Ugly metaprogramming macros because I couldn't be bothered to make |
| // the equivalent template version work. |
| #define TransformPointerLikeType(TypeClass) do { \ |
| QualType PointeeType \ |
| = getDerived().TransformType(TLB, TL.getPointeeLoc()); \ |
| if (PointeeType.isNull()) \ |
| return QualType(); \ |
| \ |
| QualType Result = TL.getType(); \ |
| if (getDerived().AlwaysRebuild() || \ |
| PointeeType != TL.getPointeeLoc().getType()) { \ |
| Result = getDerived().Rebuild##TypeClass(PointeeType, \ |
| TL.getSigilLoc()); \ |
| if (Result.isNull()) \ |
| return QualType(); \ |
| } \ |
| \ |
| TypeClass##Loc NewT = TLB.push<TypeClass##Loc>(Result); \ |
| NewT.setSigilLoc(TL.getSigilLoc()); \ |
| \ |
| return Result; \ |
| } while(0) |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformBuiltinType(TypeLocBuilder &TLB, |
| BuiltinTypeLoc T) { |
| return TransformTypeSpecType(TLB, T); |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformFixedWidthIntType(TypeLocBuilder &TLB, |
| FixedWidthIntTypeLoc T) { |
| return TransformTypeSpecType(TLB, T); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformComplexType(TypeLocBuilder &TLB, |
| ComplexTypeLoc T) { |
| // FIXME: recurse? |
| return TransformTypeSpecType(TLB, T); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformPointerType(TypeLocBuilder &TLB, |
| PointerTypeLoc TL) { |
| TransformPointerLikeType(PointerType); |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformBlockPointerType(TypeLocBuilder &TLB, |
| BlockPointerTypeLoc TL) { |
| TransformPointerLikeType(BlockPointerType); |
| } |
| |
| /// Transforms a reference type. Note that somewhat paradoxically we |
| /// don't care whether the type itself is an l-value type or an r-value |
| /// type; we only care if the type was *written* as an l-value type |
| /// or an r-value type. |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformReferenceType(TypeLocBuilder &TLB, |
| ReferenceTypeLoc TL) { |
| const ReferenceType *T = TL.getTypePtr(); |
| |
| // Note that this works with the pointee-as-written. |
| QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc()); |
| if (PointeeType.isNull()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| PointeeType != T->getPointeeTypeAsWritten()) { |
| Result = getDerived().RebuildReferenceType(PointeeType, |
| T->isSpelledAsLValue(), |
| TL.getSigilLoc()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| // r-value references can be rebuilt as l-value references. |
| ReferenceTypeLoc NewTL; |
| if (isa<LValueReferenceType>(Result)) |
| NewTL = TLB.push<LValueReferenceTypeLoc>(Result); |
| else |
| NewTL = TLB.push<RValueReferenceTypeLoc>(Result); |
| NewTL.setSigilLoc(TL.getSigilLoc()); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformLValueReferenceType(TypeLocBuilder &TLB, |
| LValueReferenceTypeLoc TL) { |
| return TransformReferenceType(TLB, TL); |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformRValueReferenceType(TypeLocBuilder &TLB, |
| RValueReferenceTypeLoc TL) { |
| return TransformReferenceType(TLB, TL); |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformMemberPointerType(TypeLocBuilder &TLB, |
| MemberPointerTypeLoc TL) { |
| MemberPointerType *T = TL.getTypePtr(); |
| |
| QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc()); |
| if (PointeeType.isNull()) |
| return QualType(); |
| |
| // TODO: preserve source information for this. |
| QualType ClassType |
| = getDerived().TransformType(QualType(T->getClass(), 0)); |
| if (ClassType.isNull()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| PointeeType != T->getPointeeType() || |
| ClassType != QualType(T->getClass(), 0)) { |
| Result = getDerived().RebuildMemberPointerType(PointeeType, ClassType, |
| TL.getStarLoc()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| MemberPointerTypeLoc NewTL = TLB.push<MemberPointerTypeLoc>(Result); |
| NewTL.setSigilLoc(TL.getSigilLoc()); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformConstantArrayType(TypeLocBuilder &TLB, |
| ConstantArrayTypeLoc TL) { |
| ConstantArrayType *T = TL.getTypePtr(); |
| QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc()); |
| if (ElementType.isNull()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| ElementType != T->getElementType()) { |
| Result = getDerived().RebuildConstantArrayType(ElementType, |
| T->getSizeModifier(), |
| T->getSize(), |
| T->getIndexTypeCVRQualifiers(), |
| TL.getBracketsRange()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| ConstantArrayTypeLoc NewTL = TLB.push<ConstantArrayTypeLoc>(Result); |
| NewTL.setLBracketLoc(TL.getLBracketLoc()); |
| NewTL.setRBracketLoc(TL.getRBracketLoc()); |
| |
| Expr *Size = TL.getSizeExpr(); |
| if (Size) { |
| EnterExpressionEvaluationContext Unevaluated(SemaRef, Action::Unevaluated); |
| Size = getDerived().TransformExpr(Size).template takeAs<Expr>(); |
| } |
| NewTL.setSizeExpr(Size); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformIncompleteArrayType( |
| TypeLocBuilder &TLB, |
| IncompleteArrayTypeLoc TL) { |
| IncompleteArrayType *T = TL.getTypePtr(); |
| QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc()); |
| if (ElementType.isNull()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| ElementType != T->getElementType()) { |
| Result = getDerived().RebuildIncompleteArrayType(ElementType, |
| T->getSizeModifier(), |
| T->getIndexTypeCVRQualifiers(), |
| TL.getBracketsRange()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| IncompleteArrayTypeLoc NewTL = TLB.push<IncompleteArrayTypeLoc>(Result); |
| NewTL.setLBracketLoc(TL.getLBracketLoc()); |
| NewTL.setRBracketLoc(TL.getRBracketLoc()); |
| NewTL.setSizeExpr(0); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformVariableArrayType(TypeLocBuilder &TLB, |
| VariableArrayTypeLoc TL) { |
| VariableArrayType *T = TL.getTypePtr(); |
| QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc()); |
| if (ElementType.isNull()) |
| return QualType(); |
| |
| // Array bounds are not potentially evaluated contexts |
| EnterExpressionEvaluationContext Unevaluated(SemaRef, Action::Unevaluated); |
| |
| Sema::OwningExprResult SizeResult |
| = getDerived().TransformExpr(T->getSizeExpr()); |
| if (SizeResult.isInvalid()) |
| return QualType(); |
| |
| Expr *Size = static_cast<Expr*>(SizeResult.get()); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| ElementType != T->getElementType() || |
| Size != T->getSizeExpr()) { |
| Result = getDerived().RebuildVariableArrayType(ElementType, |
| T->getSizeModifier(), |
| move(SizeResult), |
| T->getIndexTypeCVRQualifiers(), |
| TL.getBracketsRange()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| else SizeResult.take(); |
| |
| VariableArrayTypeLoc NewTL = TLB.push<VariableArrayTypeLoc>(Result); |
| NewTL.setLBracketLoc(TL.getLBracketLoc()); |
| NewTL.setRBracketLoc(TL.getRBracketLoc()); |
| NewTL.setSizeExpr(Size); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformDependentSizedArrayType(TypeLocBuilder &TLB, |
| DependentSizedArrayTypeLoc TL) { |
| DependentSizedArrayType *T = TL.getTypePtr(); |
| QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc()); |
| if (ElementType.isNull()) |
| return QualType(); |
| |
| // Array bounds are not potentially evaluated contexts |
| EnterExpressionEvaluationContext Unevaluated(SemaRef, Action::Unevaluated); |
| |
| Sema::OwningExprResult SizeResult |
| = getDerived().TransformExpr(T->getSizeExpr()); |
| if (SizeResult.isInvalid()) |
| return QualType(); |
| |
| Expr *Size = static_cast<Expr*>(SizeResult.get()); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| ElementType != T->getElementType() || |
| Size != T->getSizeExpr()) { |
| Result = getDerived().RebuildDependentSizedArrayType(ElementType, |
| T->getSizeModifier(), |
| move(SizeResult), |
| T->getIndexTypeCVRQualifiers(), |
| TL.getBracketsRange()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| else SizeResult.take(); |
| |
| // We might have any sort of array type now, but fortunately they |
| // all have the same location layout. |
| ArrayTypeLoc NewTL = TLB.push<ArrayTypeLoc>(Result); |
| NewTL.setLBracketLoc(TL.getLBracketLoc()); |
| NewTL.setRBracketLoc(TL.getRBracketLoc()); |
| NewTL.setSizeExpr(Size); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformDependentSizedExtVectorType( |
| TypeLocBuilder &TLB, |
| DependentSizedExtVectorTypeLoc TL) { |
| DependentSizedExtVectorType *T = TL.getTypePtr(); |
| |
| // FIXME: ext vector locs should be nested |
| QualType ElementType = getDerived().TransformType(T->getElementType()); |
| if (ElementType.isNull()) |
| return QualType(); |
| |
| // Vector sizes are not potentially evaluated contexts |
| EnterExpressionEvaluationContext Unevaluated(SemaRef, Action::Unevaluated); |
| |
| Sema::OwningExprResult Size = getDerived().TransformExpr(T->getSizeExpr()); |
| if (Size.isInvalid()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| ElementType != T->getElementType() || |
| Size.get() != T->getSizeExpr()) { |
| Result = getDerived().RebuildDependentSizedExtVectorType(ElementType, |
| move(Size), |
| T->getAttributeLoc()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| else Size.take(); |
| |
| // Result might be dependent or not. |
| if (isa<DependentSizedExtVectorType>(Result)) { |
| DependentSizedExtVectorTypeLoc NewTL |
| = TLB.push<DependentSizedExtVectorTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| } else { |
| ExtVectorTypeLoc NewTL = TLB.push<ExtVectorTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| } |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformVectorType(TypeLocBuilder &TLB, |
| VectorTypeLoc TL) { |
| VectorType *T = TL.getTypePtr(); |
| QualType ElementType = getDerived().TransformType(T->getElementType()); |
| if (ElementType.isNull()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| ElementType != T->getElementType()) { |
| Result = getDerived().RebuildVectorType(ElementType, T->getNumElements()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| VectorTypeLoc NewTL = TLB.push<VectorTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformExtVectorType(TypeLocBuilder &TLB, |
| ExtVectorTypeLoc TL) { |
| VectorType *T = TL.getTypePtr(); |
| QualType ElementType = getDerived().TransformType(T->getElementType()); |
| if (ElementType.isNull()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| ElementType != T->getElementType()) { |
| Result = getDerived().RebuildExtVectorType(ElementType, |
| T->getNumElements(), |
| /*FIXME*/ SourceLocation()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| ExtVectorTypeLoc NewTL = TLB.push<ExtVectorTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformFunctionProtoType(TypeLocBuilder &TLB, |
| FunctionProtoTypeLoc TL) { |
| FunctionProtoType *T = TL.getTypePtr(); |
| QualType ResultType = getDerived().TransformType(TLB, TL.getResultLoc()); |
| if (ResultType.isNull()) |
| return QualType(); |
| |
| // Transform the parameters. |
| llvm::SmallVector<QualType, 4> ParamTypes; |
| llvm::SmallVector<ParmVarDecl*, 4> ParamDecls; |
| for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) { |
| ParmVarDecl *OldParm = TL.getArg(i); |
| |
| QualType NewType; |
| ParmVarDecl *NewParm; |
| |
| if (OldParm) { |
| DeclaratorInfo *OldDI = OldParm->getDeclaratorInfo(); |
| assert(OldDI->getType() == T->getArgType(i)); |
| |
| DeclaratorInfo *NewDI = getDerived().TransformType(OldDI); |
| if (!NewDI) |
| return QualType(); |
| |
| if (NewDI == OldDI) |
| NewParm = OldParm; |
| else |
| NewParm = ParmVarDecl::Create(SemaRef.Context, |
| OldParm->getDeclContext(), |
| OldParm->getLocation(), |
| OldParm->getIdentifier(), |
| NewDI->getType(), |
| NewDI, |
| OldParm->getStorageClass(), |
| /* DefArg */ NULL); |
| NewType = NewParm->getType(); |
| |
| // Deal with the possibility that we don't have a parameter |
| // declaration for this parameter. |
| } else { |
| NewParm = 0; |
| |
| QualType OldType = T->getArgType(i); |
| NewType = getDerived().TransformType(OldType); |
| if (NewType.isNull()) |
| return QualType(); |
| } |
| |
| ParamTypes.push_back(NewType); |
| ParamDecls.push_back(NewParm); |
| } |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| ResultType != T->getResultType() || |
| !std::equal(T->arg_type_begin(), T->arg_type_end(), ParamTypes.begin())) { |
| Result = getDerived().RebuildFunctionProtoType(ResultType, |
| ParamTypes.data(), |
| ParamTypes.size(), |
| T->isVariadic(), |
| T->getTypeQuals()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result); |
| NewTL.setLParenLoc(TL.getLParenLoc()); |
| NewTL.setRParenLoc(TL.getRParenLoc()); |
| for (unsigned i = 0, e = NewTL.getNumArgs(); i != e; ++i) |
| NewTL.setArg(i, ParamDecls[i]); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformFunctionNoProtoType( |
| TypeLocBuilder &TLB, |
| FunctionNoProtoTypeLoc TL) { |
| FunctionNoProtoType *T = TL.getTypePtr(); |
| QualType ResultType = getDerived().TransformType(TLB, TL.getResultLoc()); |
| if (ResultType.isNull()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| ResultType != T->getResultType()) |
| Result = getDerived().RebuildFunctionNoProtoType(ResultType); |
| |
| FunctionNoProtoTypeLoc NewTL = TLB.push<FunctionNoProtoTypeLoc>(Result); |
| NewTL.setLParenLoc(TL.getLParenLoc()); |
| NewTL.setRParenLoc(TL.getRParenLoc()); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformTypedefType(TypeLocBuilder &TLB, |
| TypedefTypeLoc TL) { |
| TypedefType *T = TL.getTypePtr(); |
| TypedefDecl *Typedef |
| = cast_or_null<TypedefDecl>(getDerived().TransformDecl(T->getDecl())); |
| if (!Typedef) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| Typedef != T->getDecl()) { |
| Result = getDerived().RebuildTypedefType(Typedef); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| TypedefTypeLoc NewTL = TLB.push<TypedefTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformTypeOfExprType(TypeLocBuilder &TLB, |
| TypeOfExprTypeLoc TL) { |
| TypeOfExprType *T = TL.getTypePtr(); |
| |
| // typeof expressions are not potentially evaluated contexts |
| EnterExpressionEvaluationContext Unevaluated(SemaRef, Action::Unevaluated); |
| |
| Sema::OwningExprResult E = getDerived().TransformExpr(T->getUnderlyingExpr()); |
| if (E.isInvalid()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| E.get() != T->getUnderlyingExpr()) { |
| Result = getDerived().RebuildTypeOfExprType(move(E)); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| else E.take(); |
| |
| TypeOfExprTypeLoc NewTL = TLB.push<TypeOfExprTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformTypeOfType(TypeLocBuilder &TLB, |
| TypeOfTypeLoc TL) { |
| TypeOfType *T = TL.getTypePtr(); |
| |
| // FIXME: should be an inner type, or at least have a DeclaratorInfo. |
| QualType Underlying = getDerived().TransformType(T->getUnderlyingType()); |
| if (Underlying.isNull()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| Underlying != T->getUnderlyingType()) { |
| Result = getDerived().RebuildTypeOfType(Underlying); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| TypeOfTypeLoc NewTL = TLB.push<TypeOfTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformDecltypeType(TypeLocBuilder &TLB, |
| DecltypeTypeLoc TL) { |
| DecltypeType *T = TL.getTypePtr(); |
| |
| // decltype expressions are not potentially evaluated contexts |
| EnterExpressionEvaluationContext Unevaluated(SemaRef, Action::Unevaluated); |
| |
| Sema::OwningExprResult E = getDerived().TransformExpr(T->getUnderlyingExpr()); |
| if (E.isInvalid()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| E.get() != T->getUnderlyingExpr()) { |
| Result = getDerived().RebuildDecltypeType(move(E)); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| else E.take(); |
| |
| DecltypeTypeLoc NewTL = TLB.push<DecltypeTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformRecordType(TypeLocBuilder &TLB, |
| RecordTypeLoc TL) { |
| RecordType *T = TL.getTypePtr(); |
| RecordDecl *Record |
| = cast_or_null<RecordDecl>(getDerived().TransformDecl(T->getDecl())); |
| if (!Record) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| Record != T->getDecl()) { |
| Result = getDerived().RebuildRecordType(Record); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| RecordTypeLoc NewTL = TLB.push<RecordTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformEnumType(TypeLocBuilder &TLB, |
| EnumTypeLoc TL) { |
| EnumType *T = TL.getTypePtr(); |
| EnumDecl *Enum |
| = cast_or_null<EnumDecl>(getDerived().TransformDecl(T->getDecl())); |
| if (!Enum) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| Enum != T->getDecl()) { |
| Result = getDerived().RebuildEnumType(Enum); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| EnumTypeLoc NewTL = TLB.push<EnumTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| |
| return Result; |
| } |
| |
| template <typename Derived> |
| QualType TreeTransform<Derived>::TransformElaboratedType(TypeLocBuilder &TLB, |
| ElaboratedTypeLoc TL) { |
| ElaboratedType *T = TL.getTypePtr(); |
| |
| // FIXME: this should be a nested type. |
| QualType Underlying = getDerived().TransformType(T->getUnderlyingType()); |
| if (Underlying.isNull()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| Underlying != T->getUnderlyingType()) { |
| Result = getDerived().RebuildElaboratedType(Underlying, T->getTagKind()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| |
| return Result; |
| } |
| |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformTemplateTypeParmType( |
| TypeLocBuilder &TLB, |
| TemplateTypeParmTypeLoc TL) { |
| return TransformTypeSpecType(TLB, TL); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformSubstTemplateTypeParmType( |
| TypeLocBuilder &TLB, |
| SubstTemplateTypeParmTypeLoc TL) { |
| return TransformTypeSpecType(TLB, TL); |
| } |
| |
| template<typename Derived> |
| inline QualType |
| TreeTransform<Derived>::TransformTemplateSpecializationType( |
| TypeLocBuilder &TLB, |
| TemplateSpecializationTypeLoc TL) { |
| return TransformTemplateSpecializationType(TLB, TL, QualType()); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformTemplateSpecializationType( |
| const TemplateSpecializationType *TST, |
| QualType ObjectType) { |
| // FIXME: this entire method is a temporary workaround; callers |
| // should be rewritten to provide real type locs. |
| |
| // Fake up a TemplateSpecializationTypeLoc. |
| TypeLocBuilder TLB; |
| TemplateSpecializationTypeLoc TL |
| = TLB.push<TemplateSpecializationTypeLoc>(QualType(TST, 0)); |
| |
| SourceLocation BaseLoc = getDerived().getBaseLocation(); |
| |
| TL.setTemplateNameLoc(BaseLoc); |
| TL.setLAngleLoc(BaseLoc); |
| TL.setRAngleLoc(BaseLoc); |
| for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) { |
| const TemplateArgument &TA = TST->getArg(i); |
| TemplateArgumentLoc TAL; |
| getDerived().InventTemplateArgumentLoc(TA, TAL); |
| TL.setArgLocInfo(i, TAL.getLocInfo()); |
| } |
| |
| TypeLocBuilder IgnoredTLB; |
| return TransformTemplateSpecializationType(IgnoredTLB, TL, ObjectType); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformTemplateSpecializationType( |
| TypeLocBuilder &TLB, |
| TemplateSpecializationTypeLoc TL, |
| QualType ObjectType) { |
| const TemplateSpecializationType *T = TL.getTypePtr(); |
| |
| TemplateName Template |
| = getDerived().TransformTemplateName(T->getTemplateName(), ObjectType); |
| if (Template.isNull()) |
| return QualType(); |
| |
| TemplateArgumentListInfo NewTemplateArgs; |
| NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc()); |
| NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc()); |
| |
| for (unsigned i = 0, e = T->getNumArgs(); i != e; ++i) { |
| TemplateArgumentLoc Loc; |
| if (getDerived().TransformTemplateArgument(TL.getArgLoc(i), Loc)) |
| return QualType(); |
| NewTemplateArgs.addArgument(Loc); |
| } |
| |
| // FIXME: maybe don't rebuild if all the template arguments are the same. |
| |
| QualType Result = |
| getDerived().RebuildTemplateSpecializationType(Template, |
| TL.getTemplateNameLoc(), |
| NewTemplateArgs); |
| |
| if (!Result.isNull()) { |
| TemplateSpecializationTypeLoc NewTL |
| = TLB.push<TemplateSpecializationTypeLoc>(Result); |
| NewTL.setTemplateNameLoc(TL.getTemplateNameLoc()); |
| NewTL.setLAngleLoc(TL.getLAngleLoc()); |
| NewTL.setRAngleLoc(TL.getRAngleLoc()); |
| for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i) |
| NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo()); |
| } |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformQualifiedNameType(TypeLocBuilder &TLB, |
| QualifiedNameTypeLoc TL) { |
| QualifiedNameType *T = TL.getTypePtr(); |
| NestedNameSpecifier *NNS |
| = getDerived().TransformNestedNameSpecifier(T->getQualifier(), |
| SourceRange()); |
| if (!NNS) |
| return QualType(); |
| |
| QualType Named = getDerived().TransformType(T->getNamedType()); |
| if (Named.isNull()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| NNS != T->getQualifier() || |
| Named != T->getNamedType()) { |
| Result = getDerived().RebuildQualifiedNameType(NNS, Named); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| QualifiedNameTypeLoc NewTL = TLB.push<QualifiedNameTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformTypenameType(TypeLocBuilder &TLB, |
| TypenameTypeLoc TL) { |
| TypenameType *T = TL.getTypePtr(); |
| |
| /* FIXME: preserve source information better than this */ |
| SourceRange SR(TL.getNameLoc()); |
| |
| NestedNameSpecifier *NNS |
| = getDerived().TransformNestedNameSpecifier(T->getQualifier(), SR); |
| if (!NNS) |
| return QualType(); |
| |
| QualType Result; |
| |
| if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) { |
| QualType NewTemplateId |
| = getDerived().TransformType(QualType(TemplateId, 0)); |
| if (NewTemplateId.isNull()) |
| return QualType(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| NNS == T->getQualifier() && |
| NewTemplateId == QualType(TemplateId, 0)) |
| return QualType(T, 0); |
| |
| Result = getDerived().RebuildTypenameType(NNS, NewTemplateId); |
| } else { |
| Result = getDerived().RebuildTypenameType(NNS, T->getIdentifier(), SR); |
| } |
| if (Result.isNull()) |
| return QualType(); |
| |
| TypenameTypeLoc NewTL = TLB.push<TypenameTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformObjCInterfaceType(TypeLocBuilder &TLB, |
| ObjCInterfaceTypeLoc TL) { |
| assert(false && "TransformObjCInterfaceType unimplemented"); |
| return QualType(); |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformObjCObjectPointerType(TypeLocBuilder &TLB, |
| ObjCObjectPointerTypeLoc TL) { |
| assert(false && "TransformObjCObjectPointerType unimplemented"); |
| return QualType(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Statement transformation |
| //===----------------------------------------------------------------------===// |
| template<typename Derived> |
| Sema::OwningStmtResult |
| TreeTransform<Derived>::TransformNullStmt(NullStmt *S) { |
| return SemaRef.Owned(S->Retain()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningStmtResult |
| TreeTransform<Derived>::TransformCompoundStmt(CompoundStmt *S) { |
| return getDerived().TransformCompoundStmt(S, false); |
| } |
| |
| template<typename Derived> |
| Sema::OwningStmtResult |
| TreeTransform<Derived>::TransformCompoundStmt(CompoundStmt *S, |
| bool IsStmtExpr) { |
| bool SubStmtChanged = false; |
| ASTOwningVector<&ActionBase::DeleteStmt> Statements(getSema()); |
| for (CompoundStmt::body_iterator B = S->body_begin(), BEnd = S->body_end(); |
| B != BEnd; ++B) { |
| OwningStmtResult Result = getDerived().TransformStmt(*B); |
| if (Result.isInvalid()) |
| return getSema().StmtError(); |
| |
| SubStmtChanged = SubStmtChanged || Result.get() != *B; |
| Statements.push_back(Result.takeAs<Stmt>()); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && |
| !SubStmtChanged) |
| return SemaRef.Owned(S->Retain()); |
| |
| return getDerived().RebuildCompoundStmt(S->getLBracLoc(), |
| move_arg(Statements), |
| S->getRBracLoc(), |
| IsStmtExpr); |
| } |
| |
| template<typename Derived> |
| Sema::OwningStmtResult |
| TreeTransform<Derived>::TransformCaseStmt(CaseStmt *S) { |
| OwningExprResult LHS(SemaRef), RHS(SemaRef); |
| { |
| // The case value expressions are not potentially evaluated. |
| EnterExpressionEvaluationContext Unevaluated(SemaRef, Action::Unevaluated); |
| |
| // Transform the left-hand case value. |
| LHS = getDerived().TransformExpr(S->getLHS()); |
| if (LHS.isInvalid()) |
| return SemaRef.StmtError(); |
| |
| // Transform the right-hand case value (for the GNU case-range extension). |
| RHS = getDerived().TransformExpr(S->getRHS()); |
| if (RHS.isInvalid()) |
| return SemaRef.StmtError(); |
| } |
| |
| // Build the case statement. |
| // Case statements are always rebuilt so that they will attached to their |
| // transformed switch statement. |
| OwningStmtResult Case = getDerived().RebuildCaseStmt(S->getCaseLoc(), |
| move(LHS), |
| S->getEllipsisLoc(), |
| move(RHS), |
| S->getColonLoc()); |
| if (Case.isInvalid()) |
| return SemaRef.StmtError(); |
| |
| // Transform the statement following the case |
| OwningStmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt()); |
| if (SubStmt.isInvalid()) |
| return SemaRef.StmtError(); |
| |
| // Attach the body to the case statement |
| return getDerived().RebuildCaseStmtBody(move(Case), move(SubStmt)); |
| } |
| |
| template<typename Derived> |
| Sema::OwningStmtResult |
| TreeTransform<Derived>::TransformDefaultStmt(DefaultStmt *S) { |
| // Transform the statement following the default case |
| OwningStmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt()); |
| if (SubStmt.isInvalid()) |
| return SemaRef.StmtError(); |
| |
| // Default statements are always rebuilt |
| return getDerived().RebuildDefaultStmt(S->getDefaultLoc(), S->getColonLoc(), |
| move(SubStmt)); |
| } |
| |
| template<typename Derived> |
| Sema::OwningStmtResult |
| TreeTransform<Derived>::TransformLabelStmt(LabelStmt *S) { |
| OwningStmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt()); |
| if (SubStmt.isInvalid()) |
| return SemaRef.StmtError(); |
| |
| // FIXME: Pass the real colon location in. |
| SourceLocation ColonLoc = SemaRef.PP.getLocForEndOfToken(S->getIdentLoc()); |
| return getDerived().RebuildLabelStmt(S->getIdentLoc(), S->getID(), ColonLoc, |
| move(SubStmt)); |
| } |
| |
| template<typename Derived> |
| Sema::OwningStmtResult |
| TreeTransform<Derived>::TransformIfStmt(IfStmt *S) { |
| // Transform the condition |
| OwningExprResult Cond(SemaRef); |
| VarDecl *ConditionVar = 0; |
| if (S->getConditionVariable()) { |
| ConditionVar |
| = cast_or_null<VarDecl>( |
| getDerived().TransformDefinition(S->getConditionVariable())); |
| if (!ConditionVar) |
| return SemaRef.StmtError(); |
| } else { |
| Cond = getDerived().TransformExpr(S->getCond()); |
| |
| if (Cond.isInvalid()) |
| return SemaRef.StmtError(); |
| } |
| |
| Sema::FullExprArg FullCond(getSema().FullExpr(Cond)); |
| |
| // Transform the "then" branch. |
| OwningStmtResult Then = getDerived().TransformStmt(S->getThen()); |
| if (Then.isInvalid()) |
| return SemaRef.StmtError(); |
| |
| // Transform the "else" branch. |
| OwningStmtResult Else = getDerived().TransformStmt(S->getElse()); |
| if (Else.isInvalid()) |
| return SemaRef.StmtError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| FullCond->get() == S->getCond() && |
| ConditionVar == S->getConditionVariable() && |
| Then.get() == S->getThen() && |
| Else.get() == S->getElse()) |
| return SemaRef.Owned(S->Retain()); |
| |
| return getDerived().RebuildIfStmt(S->getIfLoc(), FullCond, ConditionVar, |
| move(Then), |
| S->getElseLoc(), move(Else)); |
| } |
| |
| template<typename Derived> |
| Sema::OwningStmtResult |
| TreeTransform<Derived>::TransformSwitchStmt(SwitchStmt *S) { |
| // Transform the condition. |
| OwningExprResult Cond(SemaRef); |
| VarDecl *ConditionVar = 0; |
| if (S->getConditionVariable()) { |
| ConditionVar |
| = cast_or_null<VarDecl>( |
| getDerived().TransformDefinition(S->getConditionVariable())); |
| if (!ConditionVar) |
| return SemaRef.StmtError(); |
| } else { |
| Cond = getDerived().TransformExpr(S->getCond()); |
| |
| if (Cond.isInvalid()) |
| return SemaRef.StmtError(); |
| } |
| |
| Sema::FullExprArg FullCond(getSema().FullExpr(Cond)); |
| |
| // Rebuild the switch statement. |
| OwningStmtResult Switch = getDerived().RebuildSwitchStmtStart(FullCond, |
| ConditionVar); |
| if (Switch.isInvalid()) |
| return SemaRef.StmtError(); |
| |
| // Transform the body of the switch statement. |
| OwningStmtResult Body = getDerived().TransformStmt(S->getBody()); |
| if (Body.isInvalid()) |
| return SemaRef.StmtError(); |
| |
| // Complete the switch statement. |
| return getDerived().RebuildSwitchStmtBody(S->getSwitchLoc(), move(Switch), |
| move(Body)); |
| } |
| |
| template<typename Derived> |
| Sema::OwningStmtResult |
| TreeTransform<Derived>::TransformWhileStmt(WhileStmt *S) { |
| // Transform the condition |
| OwningExprResult Cond(SemaRef); |
| VarDecl *ConditionVar = 0; |
| if (S->getConditionVariable()) { |
| ConditionVar |
| = cast_or_null<VarDecl>( |
| getDerived().TransformDefinition(S->getConditionVariable())); |
| if (!ConditionVar) |
| return SemaRef.StmtError(); |
| } else { |
| Cond = getDerived().TransformExpr(S->getCond()); |
| |
| if (Cond.isInvalid()) |
| return SemaRef.StmtError(); |
| } |
| |
| Sema::FullExprArg FullCond(getSema().FullExpr(Cond)); |
| |
| // Transform the body |
| OwningStmtResult Body = getDerived().TransformStmt(S->getBody()); |
| if (Body.isInvalid()) |
| return SemaRef.StmtError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| FullCond->get() == S->getCond() && |
| ConditionVar == S->getConditionVariable() && |
| Body.get() == S->getBody()) |
| return SemaRef.Owned(S->Retain()); |
| |
| return getDerived().RebuildWhileStmt(S->getWhileLoc(), FullCond, ConditionVar, |
| move(Body)); |
| } |
| |
| template<typename Derived> |
| Sema::OwningStmtResult |
| TreeTransform<Derived>::TransformDoStmt(DoStmt *S) { |
| // Transform the condition |
| OwningExprResult Cond = getDerived().TransformExpr(S->getCond()); |
| if (Cond.isInvalid()) |
| return SemaRef.StmtError(); |
| |
| // Transform the body |
| OwningStmtResult Body = getDerived().TransformStmt(S->getBody()); |
| if (Body.isInvalid()) |
| return SemaRef.StmtError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| Cond.get() == S->getCond() && |
| Body.get() == S->getBody()) |
| return SemaRef.Owned(S->Retain()); |
| |
| return getDerived().RebuildDoStmt(S->getDoLoc(), move(Body), S->getWhileLoc(), |
| /*FIXME:*/S->getWhileLoc(), move(Cond), |
| S->getRParenLoc()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningStmtResult |
| TreeTransform<Derived>::TransformForStmt(ForStmt *S) { |
| // Transform the initialization statement |
| OwningStmtResult Init = getDerived().TransformStmt(S->getInit()); |
| if (Init.isInvalid()) |
| return SemaRef.StmtError(); |
| |
| // Transform the condition |
| OwningExprResult Cond(SemaRef); |
| VarDecl *ConditionVar = 0; |
| if (S->getConditionVariable()) { |
| ConditionVar |
| = cast_or_null<VarDecl>( |
| getDerived().TransformDefinition(S->getConditionVariable())); |
| if (!ConditionVar) |
| return SemaRef.StmtError(); |
| } else { |
| Cond = getDerived().TransformExpr(S->getCond()); |
| |
| if (Cond.isInvalid()) |
| return SemaRef.StmtError(); |
| } |
| |
| // Transform the increment |
| OwningExprResult Inc = getDerived().TransformExpr(S->getInc()); |
| if (Inc.isInvalid()) |
| return SemaRef.StmtError(); |
| |
| // Transform the body |
| OwningStmtResult Body = getDerived().TransformStmt(S->getBody()); |
| if (Body.isInvalid()) |
| return SemaRef.StmtError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| Init.get() == S->getInit() && |
| Cond.get() == S->getCond() && |
| Inc.get() == S->getInc() && |
| Body.get() == S->getBody()) |
| return SemaRef.Owned(S->Retain()); |
| |
| return getDerived().RebuildForStmt(S->getForLoc(), S->getLParenLoc(), |
| move(Init), getSema().FullExpr(Cond), |
| ConditionVar, |
| getSema().FullExpr(Inc), |
| S->getRParenLoc(), move(Body)); |
| } |
| |
| template<typename Derived> |
| Sema::OwningStmtResult |
| TreeTransform<Derived>::TransformGotoStmt(GotoStmt *S) { |
| // Goto statements must always be rebuilt, to resolve the label. |
| return getDerived().RebuildGotoStmt(S->getGotoLoc(), S->getLabelLoc(), |
| S->getLabel()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningStmtResult |
| TreeTransform<Derived>::TransformIndirectGotoStmt(IndirectGotoStmt *S) { |
| OwningExprResult Target = getDerived().TransformExpr(S->getTarget()); |
| if (Target.isInvalid()) |
| return SemaRef.StmtError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| Target.get() == S->getTarget()) |
| return SemaRef.Owned(S->Retain()); |
| |
| return getDerived().RebuildIndirectGotoStmt(S->getGotoLoc(), S->getStarLoc(), |
| move(Target)); |
| } |
| |
| template<typename Derived> |
| Sema::OwningStmtResult |
| TreeTransform<Derived>::TransformContinueStmt(ContinueStmt *S) { |
| return SemaRef.Owned(S->Retain()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningStmtResult |
| TreeTransform<Derived>::TransformBreakStmt(BreakStmt *S) { |
| return SemaRef.Owned(S->Retain()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningStmtResult |
| TreeTransform<Derived>::TransformReturnStmt(ReturnStmt *S) { |
| Sema::OwningExprResult Result = getDerived().TransformExpr(S->getRetValue()); |
| if (Result.isInvalid()) |
| return SemaRef.StmtError(); |
| |
| // FIXME: We always rebuild the return statement because there is no way |
| // to tell whether the return type of the function has changed. |
| return getDerived().RebuildReturnStmt(S->getReturnLoc(), move(Result)); |
| } |
| |
| template<typename Derived> |
| Sema::OwningStmtResult |
| TreeTransform<Derived>::TransformDeclStmt(DeclStmt *S) { |
| bool DeclChanged = false; |
| llvm::SmallVector<Decl *, 4> Decls; |
| for (DeclStmt::decl_iterator D = S->decl_begin(), DEnd = S->decl_end(); |
| D != DEnd; ++D) { |
| Decl *Transformed = getDerived().TransformDefinition(*D); |
| if (!Transformed) |
| return SemaRef.StmtError(); |
| |
| if (Transformed != *D) |
| DeclChanged = true; |
| |
| Decls.push_back(Transformed); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && !DeclChanged) |
| return SemaRef.Owned(S->Retain()); |
| |
| return getDerived().RebuildDeclStmt(Decls.data(), Decls.size(), |
| S->getStartLoc(), S->getEndLoc()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningStmtResult |
| TreeTransform<Derived>::TransformSwitchCase(SwitchCase *S) { |
| assert(false && "SwitchCase is abstract and cannot be transformed"); |
| return SemaRef.Owned(S->Retain()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningStmtResult |
| TreeTransform<Derived>::TransformAsmStmt(AsmStmt *S) { |
| // FIXME: Implement! |
| assert(false && "Inline assembly cannot be transformed"); |
| return SemaRef.Owned(S->Retain()); |
| } |
| |
| |
| template<typename Derived> |
| Sema::OwningStmtResult |
| TreeTransform<Derived>::TransformObjCAtTryStmt(ObjCAtTryStmt *S) { |
| // FIXME: Implement this |
| assert(false && "Cannot transform an Objective-C @try statement"); |
| return SemaRef.Owned(S->Retain()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningStmtResult |
| TreeTransform<Derived>::TransformObjCAtCatchStmt(ObjCAtCatchStmt *S) { |
| // FIXME: Implement this |
| assert(false && "Cannot transform an Objective-C @catch statement"); |
| return SemaRef.Owned(S->Retain()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningStmtResult |
| TreeTransform<Derived>::TransformObjCAtFinallyStmt(ObjCAtFinallyStmt *S) { |
| // FIXME: Implement this |
| assert(false && "Cannot transform an Objective-C @finally statement"); |
| return SemaRef.Owned(S->Retain()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningStmtResult |
| TreeTransform<Derived>::TransformObjCAtThrowStmt(ObjCAtThrowStmt *S) { |
| // FIXME: Implement this |
| assert(false && "Cannot transform an Objective-C @throw statement"); |
| return SemaRef.Owned(S->Retain()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningStmtResult |
| TreeTransform<Derived>::TransformObjCAtSynchronizedStmt( |
| ObjCAtSynchronizedStmt *S) { |
| // FIXME: Implement this |
| assert(false && "Cannot transform an Objective-C @synchronized statement"); |
| return SemaRef.Owned(S->Retain()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningStmtResult |
| TreeTransform<Derived>::TransformObjCForCollectionStmt( |
| ObjCForCollectionStmt *S) { |
| // FIXME: Implement this |
| assert(false && "Cannot transform an Objective-C for-each statement"); |
| return SemaRef.Owned(S->Retain()); |
| } |
| |
| |
| template<typename Derived> |
| Sema::OwningStmtResult |
| TreeTransform<Derived>::TransformCXXCatchStmt(CXXCatchStmt *S) { |
| // Transform the exception declaration, if any. |
| VarDecl *Var = 0; |
| if (S->getExceptionDecl()) { |
| VarDecl *ExceptionDecl = S->getExceptionDecl(); |
| TemporaryBase Rebase(*this, ExceptionDecl->getLocation(), |
| ExceptionDecl->getDeclName()); |
| |
| QualType T = getDerived().TransformType(ExceptionDecl->getType()); |
| if (T.isNull()) |
| return SemaRef.StmtError(); |
| |
| Var = getDerived().RebuildExceptionDecl(ExceptionDecl, |
| T, |
| ExceptionDecl->getDeclaratorInfo(), |
| ExceptionDecl->getIdentifier(), |
| ExceptionDecl->getLocation(), |
| /*FIXME: Inaccurate*/ |
| SourceRange(ExceptionDecl->getLocation())); |
| if (!Var || Var->isInvalidDecl()) { |
| if (Var) |
| Var->Destroy(SemaRef.Context); |
| return SemaRef.StmtError(); |
| } |
| } |
| |
| // Transform the actual exception handler. |
| OwningStmtResult Handler = getDerived().TransformStmt(S->getHandlerBlock()); |
| if (Handler.isInvalid()) { |
| if (Var) |
| Var->Destroy(SemaRef.Context); |
| return SemaRef.StmtError(); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && |
| !Var && |
| Handler.get() == S->getHandlerBlock()) |
| return SemaRef.Owned(S->Retain()); |
| |
| return getDerived().RebuildCXXCatchStmt(S->getCatchLoc(), |
| Var, |
| move(Handler)); |
| } |
| |
| template<typename Derived> |
| Sema::OwningStmtResult |
| TreeTransform<Derived>::TransformCXXTryStmt(CXXTryStmt *S) { |
| // Transform the try block itself. |
| OwningStmtResult TryBlock |
| = getDerived().TransformCompoundStmt(S->getTryBlock()); |
| if (TryBlock.isInvalid()) |
| return SemaRef.StmtError(); |
| |
| // Transform the handlers. |
| bool HandlerChanged = false; |
| ASTOwningVector<&ActionBase::DeleteStmt> Handlers(SemaRef); |
| for (unsigned I = 0, N = S->getNumHandlers(); I != N; ++I) { |
| OwningStmtResult Handler |
| = getDerived().TransformCXXCatchStmt(S->getHandler(I)); |
| if (Handler.isInvalid()) |
| return SemaRef.StmtError(); |
| |
| HandlerChanged = HandlerChanged || Handler.get() != S->getHandler(I); |
| Handlers.push_back(Handler.takeAs<Stmt>()); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && |
| TryBlock.get() == S->getTryBlock() && |
| !HandlerChanged) |
| return SemaRef.Owned(S->Retain()); |
| |
| return getDerived().RebuildCXXTryStmt(S->getTryLoc(), move(TryBlock), |
| move_arg(Handlers)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Expression transformation |
| //===----------------------------------------------------------------------===// |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformPredefinedExpr(PredefinedExpr *E, |
| bool isAddressOfOperand) { |
| return SemaRef.Owned(E->Retain()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformDeclRefExpr(DeclRefExpr *E, |
| bool isAddressOfOperand) { |
| NestedNameSpecifier *Qualifier = 0; |
| if (E->getQualifier()) { |
| Qualifier = getDerived().TransformNestedNameSpecifier(E->getQualifier(), |
| E->getQualifierRange()); |
| if (!Qualifier) |
| return SemaRef.ExprError(); |
| } |
| |
| NamedDecl *ND |
| = dyn_cast_or_null<NamedDecl>(getDerived().TransformDecl(E->getDecl())); |
| if (!ND) |
| return SemaRef.ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| Qualifier == E->getQualifier() && |
| ND == E->getDecl() && |
| !E->hasExplicitTemplateArgumentList()) |
| return SemaRef.Owned(E->Retain()); |
| |
| // FIXME: We're losing the explicit template arguments in this transformation. |
| |
| llvm::SmallVector<TemplateArgumentLoc, 4> TransArgs(E->getNumTemplateArgs()); |
| for (unsigned I = 0, N = E->getNumTemplateArgs(); I != N; ++I) { |
| if (getDerived().TransformTemplateArgument(E->getTemplateArgs()[I], |
| TransArgs[I])) |
| return SemaRef.ExprError(); |
| } |
| |
| // FIXME: Pass the qualifier/qualifier range along. |
| return getDerived().RebuildDeclRefExpr(Qualifier, E->getQualifierRange(), |
| ND, E->getLocation(), |
| isAddressOfOperand); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformIntegerLiteral(IntegerLiteral *E, |
| bool isAddressOfOperand) { |
| return SemaRef.Owned(E->Retain()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformFloatingLiteral(FloatingLiteral *E, |
| bool isAddressOfOperand) { |
| return SemaRef.Owned(E->Retain()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformImaginaryLiteral(ImaginaryLiteral *E, |
| bool isAddressOfOperand) { |
| return SemaRef.Owned(E->Retain()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformStringLiteral(StringLiteral *E, |
| bool isAddressOfOperand) { |
| return SemaRef.Owned(E->Retain()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformCharacterLiteral(CharacterLiteral *E, |
| bool isAddressOfOperand) { |
| return SemaRef.Owned(E->Retain()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformParenExpr(ParenExpr *E, |
| bool isAddressOfOperand) { |
| OwningExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr()); |
| if (SubExpr.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getSubExpr()) |
| return SemaRef.Owned(E->Retain()); |
| |
| return getDerived().RebuildParenExpr(move(SubExpr), E->getLParen(), |
| E->getRParen()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformUnaryOperator(UnaryOperator *E, |
| bool isAddressOfOperand) { |
| OwningExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr(), |
| E->getOpcode() == UnaryOperator::AddrOf); |
| if (SubExpr.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getSubExpr()) |
| return SemaRef.Owned(E->Retain()); |
| |
| return getDerived().RebuildUnaryOperator(E->getOperatorLoc(), |
| E->getOpcode(), |
| move(SubExpr)); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformSizeOfAlignOfExpr(SizeOfAlignOfExpr *E, |
| bool isAddressOfOperand) { |
| if (E->isArgumentType()) { |
| DeclaratorInfo *OldT = E->getArgumentTypeInfo(); |
| |
| DeclaratorInfo *NewT = getDerived().TransformType(OldT); |
| if (!NewT) |
| return SemaRef.ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && OldT == NewT) |
| return SemaRef.Owned(E->Retain()); |
| |
| return getDerived().RebuildSizeOfAlignOf(NewT, E->getOperatorLoc(), |
| E->isSizeOf(), |
| E->getSourceRange()); |
| } |
| |
| Sema::OwningExprResult SubExpr(SemaRef); |
| { |
| // C++0x [expr.sizeof]p1: |
| // The operand is either an expression, which is an unevaluated operand |
| // [...] |
| EnterExpressionEvaluationContext Unevaluated(SemaRef, Action::Unevaluated); |
| |
| SubExpr = getDerived().TransformExpr(E->getArgumentExpr()); |
| if (SubExpr.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getArgumentExpr()) |
| return SemaRef.Owned(E->Retain()); |
| } |
| |
| return getDerived().RebuildSizeOfAlignOf(move(SubExpr), E->getOperatorLoc(), |
| E->isSizeOf(), |
| E->getSourceRange()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformArraySubscriptExpr(ArraySubscriptExpr *E, |
| bool isAddressOfOperand) { |
| OwningExprResult LHS = getDerived().TransformExpr(E->getLHS()); |
| if (LHS.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| OwningExprResult RHS = getDerived().TransformExpr(E->getRHS()); |
| if (RHS.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| |
| if (!getDerived().AlwaysRebuild() && |
| LHS.get() == E->getLHS() && |
| RHS.get() == E->getRHS()) |
| return SemaRef.Owned(E->Retain()); |
| |
| return getDerived().RebuildArraySubscriptExpr(move(LHS), |
| /*FIXME:*/E->getLHS()->getLocStart(), |
| move(RHS), |
| E->getRBracketLoc()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformCallExpr(CallExpr *E, |
| bool isAddressOfOperand) { |
| // Transform the callee. |
| OwningExprResult Callee = getDerived().TransformExpr(E->getCallee()); |
| if (Callee.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| // Transform arguments. |
| bool ArgChanged = false; |
| ASTOwningVector<&ActionBase::DeleteExpr> Args(SemaRef); |
| llvm::SmallVector<SourceLocation, 4> FakeCommaLocs; |
| for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I) { |
| OwningExprResult Arg = getDerived().TransformExpr(E->getArg(I)); |
| if (Arg.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| // FIXME: Wrong source location information for the ','. |
| FakeCommaLocs.push_back( |
| SemaRef.PP.getLocForEndOfToken(E->getArg(I)->getSourceRange().getEnd())); |
| |
| ArgChanged = ArgChanged || Arg.get() != E->getArg(I); |
| Args.push_back(Arg.takeAs<Expr>()); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && |
| Callee.get() == E->getCallee() && |
| !ArgChanged) |
| return SemaRef.Owned(E->Retain()); |
| |
| // FIXME: Wrong source location information for the '('. |
| SourceLocation FakeLParenLoc |
| = ((Expr *)Callee.get())->getSourceRange().getBegin(); |
| return getDerived().RebuildCallExpr(move(Callee), FakeLParenLoc, |
| move_arg(Args), |
| FakeCommaLocs.data(), |
| E->getRParenLoc()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformMemberExpr(MemberExpr *E, |
| bool isAddressOfOperand) { |
| OwningExprResult Base = getDerived().TransformExpr(E->getBase()); |
| if (Base.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| NestedNameSpecifier *Qualifier = 0; |
| if (E->hasQualifier()) { |
| Qualifier |
| = getDerived().TransformNestedNameSpecifier(E->getQualifier(), |
| E->getQualifierRange()); |
| if (Qualifier == 0) |
| return SemaRef.ExprError(); |
| } |
| |
| NamedDecl *Member |
| = cast_or_null<NamedDecl>(getDerived().TransformDecl(E->getMemberDecl())); |
| if (!Member) |
| return SemaRef.ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| Base.get() == E->getBase() && |
| Qualifier == E->getQualifier() && |
| Member == E->getMemberDecl() && |
| !E->hasExplicitTemplateArgumentList()) |
| return SemaRef.Owned(E->Retain()); |
| |
| TemplateArgumentListInfo TransArgs; |
| if (E->hasExplicitTemplateArgumentList()) { |
| TransArgs.setLAngleLoc(E->getLAngleLoc()); |
| TransArgs.setRAngleLoc(E->getRAngleLoc()); |
| for (unsigned I = 0, N = E->getNumTemplateArgs(); I != N; ++I) { |
| TemplateArgumentLoc Loc; |
| if (getDerived().TransformTemplateArgument(E->getTemplateArgs()[I], Loc)) |
| return SemaRef.ExprError(); |
| TransArgs.addArgument(Loc); |
| } |
| } |
| |
| // FIXME: Bogus source location for the operator |
| SourceLocation FakeOperatorLoc |
| = SemaRef.PP.getLocForEndOfToken(E->getBase()->getSourceRange().getEnd()); |
| |
| return getDerived().RebuildMemberExpr(move(Base), FakeOperatorLoc, |
| E->isArrow(), |
| Qualifier, |
| E->getQualifierRange(), |
| E->getMemberLoc(), |
| Member, |
| (E->hasExplicitTemplateArgumentList() |
| ? &TransArgs : 0), |
| 0); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformCastExpr(CastExpr *E, |
| bool isAddressOfOperand) { |
| assert(false && "Cannot transform abstract class"); |
| return SemaRef.Owned(E->Retain()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformBinaryOperator(BinaryOperator *E, |
| bool isAddressOfOperand) { |
| OwningExprResult LHS = getDerived().TransformExpr(E->getLHS()); |
| if (LHS.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| OwningExprResult RHS = getDerived().TransformExpr(E->getRHS()); |
| if (RHS.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| LHS.get() == E->getLHS() && |
| RHS.get() == E->getRHS()) |
| return SemaRef.Owned(E->Retain()); |
| |
| return getDerived().RebuildBinaryOperator(E->getOperatorLoc(), E->getOpcode(), |
| move(LHS), move(RHS)); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformCompoundAssignOperator( |
| CompoundAssignOperator *E, |
| bool isAddressOfOperand) { |
| return getDerived().TransformBinaryOperator(E, isAddressOfOperand); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformConditionalOperator(ConditionalOperator *E, |
| bool isAddressOfOperand) { |
| OwningExprResult Cond = getDerived().TransformExpr(E->getCond()); |
| if (Cond.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| OwningExprResult LHS = getDerived().TransformExpr(E->getLHS()); |
| if (LHS.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| OwningExprResult RHS = getDerived().TransformExpr(E->getRHS()); |
| if (RHS.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| Cond.get() == E->getCond() && |
| LHS.get() == E->getLHS() && |
| RHS.get() == E->getRHS()) |
| return SemaRef.Owned(E->Retain()); |
| |
| return getDerived().RebuildConditionalOperator(move(Cond), |
| E->getQuestionLoc(), |
| move(LHS), |
| E->getColonLoc(), |
| move(RHS)); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformImplicitCastExpr(ImplicitCastExpr *E, |
| bool isAddressOfOperand) { |
| TemporaryBase Rebase(*this, E->getLocStart(), DeclarationName()); |
| |
| // FIXME: Will we ever have type information here? It seems like we won't, |
| // so do we even need to transform the type? |
| QualType T = getDerived().TransformType(E->getType()); |
| if (T.isNull()) |
| return SemaRef.ExprError(); |
| |
| OwningExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr()); |
| if (SubExpr.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| T == E->getType() && |
| SubExpr.get() == E->getSubExpr()) |
| return SemaRef.Owned(E->Retain()); |
| |
| return getDerived().RebuildImplicitCastExpr(T, E->getCastKind(), |
| move(SubExpr), |
| E->isLvalueCast()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformExplicitCastExpr(ExplicitCastExpr *E, |
| bool isAddressOfOperand) { |
| assert(false && "Cannot transform abstract class"); |
| return SemaRef.Owned(E->Retain()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformCStyleCastExpr(CStyleCastExpr *E, |
| bool isAddressOfOperand) { |
| QualType T; |
| { |
| // FIXME: Source location isn't quite accurate. |
| SourceLocation TypeStartLoc |
| = SemaRef.PP.getLocForEndOfToken(E->getLParenLoc()); |
| TemporaryBase Rebase(*this, TypeStartLoc, DeclarationName()); |
| |
| T = getDerived().TransformType(E->getTypeAsWritten()); |
| if (T.isNull()) |
| return SemaRef.ExprError(); |
| } |
| |
| OwningExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr()); |
| if (SubExpr.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| T == E->getTypeAsWritten() && |
| SubExpr.get() == E->getSubExpr()) |
| return SemaRef.Owned(E->Retain()); |
| |
| return getDerived().RebuildCStyleCaseExpr(E->getLParenLoc(), T, |
| E->getRParenLoc(), |
| move(SubExpr)); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformCompoundLiteralExpr(CompoundLiteralExpr *E, |
| bool isAddressOfOperand) { |
| QualType T; |
| { |
| // FIXME: Source location isn't quite accurate. |
| SourceLocation FakeTypeLoc |
| = SemaRef.PP.getLocForEndOfToken(E->getLParenLoc()); |
| TemporaryBase Rebase(*this, FakeTypeLoc, DeclarationName()); |
| |
| T = getDerived().TransformType(E->getType()); |
| if (T.isNull()) |
| return SemaRef.ExprError(); |
| } |
| |
| OwningExprResult Init = getDerived().TransformExpr(E->getInitializer()); |
| if (Init.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| T == E->getType() && |
| Init.get() == E->getInitializer()) |
| return SemaRef.Owned(E->Retain()); |
| |
| return getDerived().RebuildCompoundLiteralExpr(E->getLParenLoc(), T, |
| /*FIXME:*/E->getInitializer()->getLocEnd(), |
| move(Init)); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformExtVectorElementExpr(ExtVectorElementExpr *E, |
| bool isAddressOfOperand) { |
| OwningExprResult Base = getDerived().TransformExpr(E->getBase()); |
| if (Base.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| Base.get() == E->getBase()) |
| return SemaRef.Owned(E->Retain()); |
| |
| // FIXME: Bad source location |
| SourceLocation FakeOperatorLoc |
| = SemaRef.PP.getLocForEndOfToken(E->getBase()->getLocEnd()); |
| return getDerived().RebuildExtVectorElementExpr(move(Base), FakeOperatorLoc, |
| E->getAccessorLoc(), |
| E->getAccessor()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformInitListExpr(InitListExpr *E, |
| bool isAddressOfOperand) { |
| bool InitChanged = false; |
| |
| ASTOwningVector<&ActionBase::DeleteExpr, 4> Inits(SemaRef); |
| for (unsigned I = 0, N = E->getNumInits(); I != N; ++I) { |
| OwningExprResult Init = getDerived().TransformExpr(E->getInit(I)); |
| if (Init.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| InitChanged = InitChanged || Init.get() != E->getInit(I); |
| Inits.push_back(Init.takeAs<Expr>()); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && !InitChanged) |
| return SemaRef.Owned(E->Retain()); |
| |
| return getDerived().RebuildInitList(E->getLBraceLoc(), move_arg(Inits), |
| E->getRBraceLoc(), E->getType()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformDesignatedInitExpr(DesignatedInitExpr *E, |
| bool isAddressOfOperand) { |
| Designation Desig; |
| |
| // transform the initializer value |
| OwningExprResult Init = getDerived().TransformExpr(E->getInit()); |
| if (Init.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| // transform the designators. |
| ASTOwningVector<&ActionBase::DeleteExpr, 4> ArrayExprs(SemaRef); |
| bool ExprChanged = false; |
| for (DesignatedInitExpr::designators_iterator D = E->designators_begin(), |
| DEnd = E->designators_end(); |
| D != DEnd; ++D) { |
| if (D->isFieldDesignator()) { |
| Desig.AddDesignator(Designator::getField(D->getFieldName(), |
| D->getDotLoc(), |
| D->getFieldLoc())); |
| continue; |
| } |
| |
| if (D->isArrayDesignator()) { |
| OwningExprResult Index = getDerived().TransformExpr(E->getArrayIndex(*D)); |
| if (Index.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| Desig.AddDesignator(Designator::getArray(Index.get(), |
| D->getLBracketLoc())); |
| |
| ExprChanged = ExprChanged || Init.get() != E->getArrayIndex(*D); |
| ArrayExprs.push_back(Index.release()); |
| continue; |
| } |
| |
| assert(D->isArrayRangeDesignator() && "New kind of designator?"); |
| OwningExprResult Start |
| = getDerived().TransformExpr(E->getArrayRangeStart(*D)); |
| if (Start.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| OwningExprResult End = getDerived().TransformExpr(E->getArrayRangeEnd(*D)); |
| if (End.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| Desig.AddDesignator(Designator::getArrayRange(Start.get(), |
| End.get(), |
| D->getLBracketLoc(), |
| D->getEllipsisLoc())); |
| |
| ExprChanged = ExprChanged || Start.get() != E->getArrayRangeStart(*D) || |
| End.get() != E->getArrayRangeEnd(*D); |
| |
| ArrayExprs.push_back(Start.release()); |
| ArrayExprs.push_back(End.release()); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && |
| Init.get() == E->getInit() && |
| !ExprChanged) |
| return SemaRef.Owned(E->Retain()); |
| |
| return getDerived().RebuildDesignatedInitExpr(Desig, move_arg(ArrayExprs), |
| E->getEqualOrColonLoc(), |
| E->usesGNUSyntax(), move(Init)); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformImplicitValueInitExpr( |
| ImplicitValueInitExpr *E, |
| bool isAddressOfOperand) { |
| TemporaryBase Rebase(*this, E->getLocStart(), DeclarationName()); |
| |
| // FIXME: Will we ever have proper type location here? Will we actually |
| // need to transform the type? |
| QualType T = getDerived().TransformType(E->getType()); |
| if (T.isNull()) |
| return SemaRef.ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| T == E->getType()) |
| return SemaRef.Owned(E->Retain()); |
| |
| return getDerived().RebuildImplicitValueInitExpr(T); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformVAArgExpr(VAArgExpr *E, |
| bool isAddressOfOperand) { |
| // FIXME: Do we want the type as written? |
| QualType T; |
| |
| { |
| // FIXME: Source location isn't quite accurate. |
| TemporaryBase Rebase(*this, E->getBuiltinLoc(), DeclarationName()); |
| T = getDerived().TransformType(E->getType()); |
| if (T.isNull()) |
| return SemaRef.ExprError(); |
| } |
| |
| OwningExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr()); |
| if (SubExpr.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| T == E->getType() && |
| SubExpr.get() == E->getSubExpr()) |
| return SemaRef.Owned(E->Retain()); |
| |
| return getDerived().RebuildVAArgExpr(E->getBuiltinLoc(), move(SubExpr), |
| T, E->getRParenLoc()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformParenListExpr(ParenListExpr *E, |
| bool isAddressOfOperand) { |
| bool ArgumentChanged = false; |
| ASTOwningVector<&ActionBase::DeleteExpr, 4> Inits(SemaRef); |
| for (unsigned I = 0, N = E->getNumExprs(); I != N; ++I) { |
| OwningExprResult Init = getDerived().TransformExpr(E->getExpr(I)); |
| if (Init.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| ArgumentChanged = ArgumentChanged || Init.get() != E->getExpr(I); |
| Inits.push_back(Init.takeAs<Expr>()); |
| } |
| |
| return getDerived().RebuildParenListExpr(E->getLParenLoc(), |
| move_arg(Inits), |
| E->getRParenLoc()); |
| } |
| |
| /// \brief Transform an address-of-label expression. |
| /// |
| /// By default, the transformation of an address-of-label expression always |
| /// rebuilds the expression, so that the label identifier can be resolved to |
| /// the corresponding label statement by semantic analysis. |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformAddrLabelExpr(AddrLabelExpr *E, |
| bool isAddressOfOperand) { |
| return getDerived().RebuildAddrLabelExpr(E->getAmpAmpLoc(), E->getLabelLoc(), |
| E->getLabel()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformStmtExpr(StmtExpr *E, |
| bool isAddressOfOperand) { |
| OwningStmtResult SubStmt |
| = getDerived().TransformCompoundStmt(E->getSubStmt(), true); |
| if (SubStmt.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| SubStmt.get() == E->getSubStmt()) |
| return SemaRef.Owned(E->Retain()); |
| |
| return getDerived().RebuildStmtExpr(E->getLParenLoc(), |
| move(SubStmt), |
| E->getRParenLoc()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformTypesCompatibleExpr(TypesCompatibleExpr *E, |
| bool isAddressOfOperand) { |
| QualType T1, T2; |
| { |
| // FIXME: Source location isn't quite accurate. |
| TemporaryBase Rebase(*this, E->getBuiltinLoc(), DeclarationName()); |
| |
| T1 = getDerived().TransformType(E->getArgType1()); |
| if (T1.isNull()) |
| return SemaRef.ExprError(); |
| |
| T2 = getDerived().TransformType(E->getArgType2()); |
| if (T2.isNull()) |
| return SemaRef.ExprError(); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && |
| T1 == E->getArgType1() && |
| T2 == E->getArgType2()) |
| return SemaRef.Owned(E->Retain()); |
| |
| return getDerived().RebuildTypesCompatibleExpr(E->getBuiltinLoc(), |
| T1, T2, E->getRParenLoc()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformChooseExpr(ChooseExpr *E, |
| bool isAddressOfOperand) { |
| OwningExprResult Cond = getDerived().TransformExpr(E->getCond()); |
| if (Cond.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| OwningExprResult LHS = getDerived().TransformExpr(E->getLHS()); |
| if (LHS.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| OwningExprResult RHS = getDerived().TransformExpr(E->getRHS()); |
| if (RHS.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| Cond.get() == E->getCond() && |
| LHS.get() == E->getLHS() && |
| RHS.get() == E->getRHS()) |
| return SemaRef.Owned(E->Retain()); |
| |
| return getDerived().RebuildChooseExpr(E->getBuiltinLoc(), |
| move(Cond), move(LHS), move(RHS), |
| E->getRParenLoc()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformGNUNullExpr(GNUNullExpr *E, |
| bool isAddressOfOperand) { |
| return SemaRef.Owned(E->Retain()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E, |
| bool isAddressOfOperand) { |
| OwningExprResult Callee = getDerived().TransformExpr(E->getCallee()); |
| if (Callee.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| OwningExprResult First |
| = getDerived().TransformExpr(E->getArg(0), |
| E->getNumArgs() == 1 && E->getOperator() == OO_Amp); |
| if (First.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| OwningExprResult Second(SemaRef); |
| if (E->getNumArgs() == 2) { |
| Second = getDerived().TransformExpr(E->getArg(1)); |
| if (Second.isInvalid()) |
| return SemaRef.ExprError(); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && |
| Callee.get() == E->getCallee() && |
| First.get() == E->getArg(0) && |
| (E->getNumArgs() != 2 || Second.get() == E->getArg(1))) |
| return SemaRef.Owned(E->Retain()); |
| |
| return getDerived().RebuildCXXOperatorCallExpr(E->getOperator(), |
| E->getOperatorLoc(), |
| move(Callee), |
| move(First), |
| move(Second)); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformCXXMemberCallExpr(CXXMemberCallExpr *E, |
| bool isAddressOfOperand) { |
| return getDerived().TransformCallExpr(E, isAddressOfOperand); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformCXXNamedCastExpr(CXXNamedCastExpr *E, |
| bool isAddressOfOperand) { |
| QualType ExplicitTy; |
| { |
| // FIXME: Source location isn't quite accurate. |
| SourceLocation TypeStartLoc |
| = SemaRef.PP.getLocForEndOfToken(E->getOperatorLoc()); |
| TemporaryBase Rebase(*this, TypeStartLoc, DeclarationName()); |
| |
| ExplicitTy = getDerived().TransformType(E->getTypeAsWritten()); |
| if (ExplicitTy.isNull()) |
| return SemaRef.ExprError(); |
| } |
| |
| OwningExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr()); |
| if (SubExpr.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| ExplicitTy == E->getTypeAsWritten() && |
| SubExpr.get() == E->getSubExpr()) |
| return SemaRef.Owned(E->Retain()); |
| |
| // FIXME: Poor source location information here. |
| SourceLocation FakeLAngleLoc |
| = SemaRef.PP.getLocForEndOfToken(E->getOperatorLoc()); |
| SourceLocation FakeRAngleLoc = E->getSubExpr()->getSourceRange().getBegin(); |
| SourceLocation FakeRParenLoc |
| = SemaRef.PP.getLocForEndOfToken( |
| E->getSubExpr()->getSourceRange().getEnd()); |
| return getDerived().RebuildCXXNamedCastExpr(E->getOperatorLoc(), |
| E->getStmtClass(), |
| FakeLAngleLoc, |
| ExplicitTy, |
| FakeRAngleLoc, |
| FakeRAngleLoc, |
| move(SubExpr), |
| FakeRParenLoc); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformCXXStaticCastExpr(CXXStaticCastExpr *E, |
| bool isAddressOfOperand) { |
| return getDerived().TransformCXXNamedCastExpr(E, isAddressOfOperand); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformCXXDynamicCastExpr(CXXDynamicCastExpr *E, |
| bool isAddressOfOperand) { |
| return getDerived().TransformCXXNamedCastExpr(E, isAddressOfOperand); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformCXXReinterpretCastExpr( |
| CXXReinterpretCastExpr *E, |
| bool isAddressOfOperand) { |
| return getDerived().TransformCXXNamedCastExpr(E, isAddressOfOperand); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformCXXConstCastExpr(CXXConstCastExpr *E, |
| bool isAddressOfOperand) { |
| return getDerived().TransformCXXNamedCastExpr(E, isAddressOfOperand); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformCXXFunctionalCastExpr( |
| CXXFunctionalCastExpr *E, |
| bool isAddressOfOperand) { |
| QualType ExplicitTy; |
| { |
| TemporaryBase Rebase(*this, E->getTypeBeginLoc(), DeclarationName()); |
| |
| ExplicitTy = getDerived().TransformType(E->getTypeAsWritten()); |
| if (ExplicitTy.isNull()) |
| return SemaRef.ExprError(); |
| } |
| |
| OwningExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr()); |
| if (SubExpr.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| ExplicitTy == E->getTypeAsWritten() && |
| SubExpr.get() == E->getSubExpr()) |
| return SemaRef.Owned(E->Retain()); |
| |
| // FIXME: The end of the type's source range is wrong |
| return getDerived().RebuildCXXFunctionalCastExpr( |
| /*FIXME:*/SourceRange(E->getTypeBeginLoc()), |
| ExplicitTy, |
| /*FIXME:*/E->getSubExpr()->getLocStart(), |
| move(SubExpr), |
| E->getRParenLoc()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformCXXTypeidExpr(CXXTypeidExpr *E, |
| bool isAddressOfOperand) { |
| if (E->isTypeOperand()) { |
| TemporaryBase Rebase(*this, /*FIXME*/E->getLocStart(), DeclarationName()); |
| |
| QualType T = getDerived().TransformType(E->getTypeOperand()); |
| if (T.isNull()) |
| return SemaRef.ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| T == E->getTypeOperand()) |
| return SemaRef.Owned(E->Retain()); |
| |
| return getDerived().RebuildCXXTypeidExpr(E->getLocStart(), |
| /*FIXME:*/E->getLocStart(), |
| T, |
| E->getLocEnd()); |
| } |
| |
| // We don't know whether the expression is potentially evaluated until |
| // after we perform semantic analysis, so the expression is potentially |
| // potentially evaluated. |
| EnterExpressionEvaluationContext Unevaluated(SemaRef, |
| Action::PotentiallyPotentiallyEvaluated); |
| |
| OwningExprResult SubExpr = getDerived().TransformExpr(E->getExprOperand()); |
| if (SubExpr.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| SubExpr.get() == E->getExprOperand()) |
| return SemaRef.Owned(E->Retain()); |
| |
| return getDerived().RebuildCXXTypeidExpr(E->getLocStart(), |
| /*FIXME:*/E->getLocStart(), |
| move(SubExpr), |
| E->getLocEnd()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformCXXBoolLiteralExpr(CXXBoolLiteralExpr *E, |
| bool isAddressOfOperand) { |
| return SemaRef.Owned(E->Retain()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformCXXNullPtrLiteralExpr( |
| CXXNullPtrLiteralExpr *E, |
| bool isAddressOfOperand) { |
| return SemaRef.Owned(E->Retain()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformCXXThisExpr(CXXThisExpr *E, |
| bool isAddressOfOperand) { |
| TemporaryBase Rebase(*this, E->getLocStart(), DeclarationName()); |
| |
| QualType T = getDerived().TransformType(E->getType()); |
| if (T.isNull()) |
| return SemaRef.ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| T == E->getType()) |
| return SemaRef.Owned(E->Retain()); |
| |
| return getDerived().RebuildCXXThisExpr(E->getLocStart(), T); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformCXXThrowExpr(CXXThrowExpr *E, |
| bool isAddressOfOperand) { |
| OwningExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr()); |
| if (SubExpr.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| SubExpr.get() == E->getSubExpr()) |
| return SemaRef.Owned(E->Retain()); |
| |
| return getDerived().RebuildCXXThrowExpr(E->getThrowLoc(), move(SubExpr)); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformCXXDefaultArgExpr(CXXDefaultArgExpr *E, |
| bool isAddressOfOperand) { |
| ParmVarDecl *Param |
| = cast_or_null<ParmVarDecl>(getDerived().TransformDecl(E->getParam())); |
| if (!Param) |
| return SemaRef.ExprError(); |
| |
| if (getDerived().AlwaysRebuild() && |
| Param == E->getParam()) |
| return SemaRef.Owned(E->Retain()); |
| |
| return getDerived().RebuildCXXDefaultArgExpr(Param); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformCXXZeroInitValueExpr(CXXZeroInitValueExpr *E, |
| bool isAddressOfOperand) { |
| TemporaryBase Rebase(*this, E->getTypeBeginLoc(), DeclarationName()); |
| |
| QualType T = getDerived().TransformType(E->getType()); |
| if (T.isNull()) |
| return SemaRef.ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| T == E->getType()) |
| return SemaRef.Owned(E->Retain()); |
| |
| return getDerived().RebuildCXXZeroInitValueExpr(E->getTypeBeginLoc(), |
| /*FIXME:*/E->getTypeBeginLoc(), |
| T, |
| E->getRParenLoc()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformCXXNewExpr(CXXNewExpr *E, |
| bool isAddressOfOperand) { |
| // Transform the type that we're allocating |
| TemporaryBase Rebase(*this, E->getLocStart(), DeclarationName()); |
| QualType AllocType = getDerived().TransformType(E->getAllocatedType()); |
| if (AllocType.isNull()) |
| return SemaRef.ExprError(); |
| |
| // Transform the size of the array we're allocating (if any). |
| OwningExprResult ArraySize = getDerived().TransformExpr(E->getArraySize()); |
| if (ArraySize.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| // Transform the placement arguments (if any). |
| bool ArgumentChanged = false; |
| ASTOwningVector<&ActionBase::DeleteExpr> PlacementArgs(SemaRef); |
| for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { |
| OwningExprResult Arg = getDerived().TransformExpr(E->getPlacementArg(I)); |
| if (Arg.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| ArgumentChanged = ArgumentChanged || Arg.get() != E->getPlacementArg(I); |
| PlacementArgs.push_back(Arg.take()); |
| } |
| |
| // transform the constructor arguments (if any). |
| ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(SemaRef); |
| for (unsigned I = 0, N = E->getNumConstructorArgs(); I != N; ++I) { |
| OwningExprResult Arg = getDerived().TransformExpr(E->getConstructorArg(I)); |
| if (Arg.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| ArgumentChanged = ArgumentChanged || Arg.get() != E->getConstructorArg(I); |
| ConstructorArgs.push_back(Arg.take()); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && |
| AllocType == E->getAllocatedType() && |
| ArraySize.get() == E->getArraySize() && |
| !ArgumentChanged) |
| return SemaRef.Owned(E->Retain()); |
| |
| return getDerived().RebuildCXXNewExpr(E->getLocStart(), |
| E->isGlobalNew(), |
| /*FIXME:*/E->getLocStart(), |
| move_arg(PlacementArgs), |
| /*FIXME:*/E->getLocStart(), |
| E->isParenTypeId(), |
| AllocType, |
| /*FIXME:*/E->getLocStart(), |
| /*FIXME:*/SourceRange(), |
| move(ArraySize), |
| /*FIXME:*/E->getLocStart(), |
| move_arg(ConstructorArgs), |
| E->getLocEnd()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformCXXDeleteExpr(CXXDeleteExpr *E, |
| bool isAddressOfOperand) { |
| OwningExprResult Operand = getDerived().TransformExpr(E->getArgument()); |
| if (Operand.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| Operand.get() == E->getArgument()) |
| return SemaRef.Owned(E->Retain()); |
| |
| return getDerived().RebuildCXXDeleteExpr(E->getLocStart(), |
| E->isGlobalDelete(), |
| E->isArrayForm(), |
| move(Operand)); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformCXXPseudoDestructorExpr( |
| CXXPseudoDestructorExpr *E, |
| bool isAddressOfOperand) { |
| OwningExprResult Base = getDerived().TransformExpr(E->getBase()); |
| if (Base.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| NestedNameSpecifier *Qualifier |
| = getDerived().TransformNestedNameSpecifier(E->getQualifier(), |
| E->getQualifierRange()); |
| if (E->getQualifier() && !Qualifier) |
| return SemaRef.ExprError(); |
| |
| QualType DestroyedType; |
| { |
| TemporaryBase Rebase(*this, E->getDestroyedTypeLoc(), DeclarationName()); |
| DestroyedType = getDerived().TransformType(E->getDestroyedType()); |
| if (DestroyedType.isNull()) |
| return SemaRef.ExprError(); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && |
| Base.get() == E->getBase() && |
| Qualifier == E->getQualifier() && |
| DestroyedType == E->getDestroyedType()) |
| return SemaRef.Owned(E->Retain()); |
| |
| return getDerived().RebuildCXXPseudoDestructorExpr(move(Base), |
| E->getOperatorLoc(), |
| E->isArrow(), |
| E->getDestroyedTypeLoc(), |
| DestroyedType, |
| Qualifier, |
| E->getQualifierRange()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformUnresolvedLookupExpr( |
| UnresolvedLookupExpr *Old, |
| bool isAddressOfOperand) { |
| TemporaryBase Rebase(*this, Old->getNameLoc(), DeclarationName()); |
| |
| LookupResult R(SemaRef, Old->getName(), Old->getNameLoc(), |
| Sema::LookupOrdinaryName); |
| |
| // Transform all the decls. |
| for (UnresolvedLookupExpr::decls_iterator I = Old->decls_begin(), |
| E = Old->decls_end(); I != E; ++I) { |
| NamedDecl *InstD = static_cast<NamedDecl*>(getDerived().TransformDecl(*I)); |
| if (!InstD) |
| return SemaRef.ExprError(); |
| |
| // Expand using declarations. |
| if (isa<UsingDecl>(InstD)) { |
| UsingDecl *UD = cast<UsingDecl>(InstD); |
| for (UsingDecl::shadow_iterator I = UD->shadow_begin(), |
| E = UD->shadow_end(); I != E; ++I) |
| R.addDecl(*I); |
| continue; |
| } |
| |
| R.addDecl(InstD); |
| } |
| |
| // Resolve a kind, but don't do any further analysis. If it's |
| // ambiguous, the callee needs to deal with it. |
| R.resolveKind(); |
| |
| // Rebuild the nested-name qualifier, if present. |
| CXXScopeSpec SS; |
| NestedNameSpecifier *Qualifier = 0; |
| if (Old->getQualifier()) { |
| Qualifier = getDerived().TransformNestedNameSpecifier(Old->getQualifier(), |
| Old->getQualifierRange()); |
| if (!Qualifier) |
| return SemaRef.ExprError(); |
| |
| SS.setScopeRep(Qualifier); |
| SS.setRange(Old->getQualifierRange()); |
| } |
| |
| // If we have no template arguments, it's a normal declaration name. |
| if (!Old->hasExplicitTemplateArgs()) |
| return getDerived().RebuildDeclarationNameExpr(SS, R, Old->requiresADL()); |
| |
| // If we have template arguments, rebuild them, then rebuild the |
| // templateid expression. |
| TemplateArgumentListInfo TransArgs(Old->getLAngleLoc(), Old->getRAngleLoc()); |
| for (unsigned I = 0, N = Old->getNumTemplateArgs(); I != N; ++I) { |
| TemplateArgumentLoc Loc; |
| if (getDerived().TransformTemplateArgument(Old->getTemplateArgs()[I], Loc)) |
| return SemaRef.ExprError(); |
| TransArgs.addArgument(Loc); |
| } |
| |
| return getDerived().RebuildTemplateIdExpr(SS, R, Old->requiresADL(), |
| TransArgs); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformUnaryTypeTraitExpr(UnaryTypeTraitExpr *E, |
| bool isAddressOfOperand) { |
| TemporaryBase Rebase(*this, /*FIXME*/E->getLocStart(), DeclarationName()); |
| |
| QualType T = getDerived().TransformType(E->getQueriedType()); |
| if (T.isNull()) |
| return SemaRef.ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| T == E->getQueriedType()) |
| return SemaRef.Owned(E->Retain()); |
| |
| // FIXME: Bad location information |
| SourceLocation FakeLParenLoc |
| = SemaRef.PP.getLocForEndOfToken(E->getLocStart()); |
| |
| return getDerived().RebuildUnaryTypeTrait(E->getTrait(), |
| E->getLocStart(), |
| /*FIXME:*/FakeLParenLoc, |
| T, |
| E->getLocEnd()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformDependentScopeDeclRefExpr( |
| DependentScopeDeclRefExpr *E, |
| bool isAddressOfOperand) { |
| NestedNameSpecifier *NNS |
| = getDerived().TransformNestedNameSpecifier(E->getQualifier(), |
| E->getQualifierRange()); |
| if (!NNS) |
| return SemaRef.ExprError(); |
| |
| DeclarationName Name |
| = getDerived().TransformDeclarationName(E->getDeclName(), E->getLocation()); |
| if (!Name) |
| return SemaRef.ExprError(); |
| |
| if (!E->hasExplicitTemplateArgs()) { |
| if (!getDerived().AlwaysRebuild() && |
| NNS == E->getQualifier() && |
| Name == E->getDeclName()) |
| return SemaRef.Owned(E->Retain()); |
| |
| return getDerived().RebuildDependentScopeDeclRefExpr(NNS, |
| E->getQualifierRange(), |
| Name, E->getLocation(), |
| /*TemplateArgs*/ 0); |
| } |
| |
| TemplateArgumentListInfo TransArgs(E->getLAngleLoc(), E->getRAngleLoc()); |
| for (unsigned I = 0, N = E->getNumTemplateArgs(); I != N; ++I) { |
| TemplateArgumentLoc Loc; |
| if (getDerived().TransformTemplateArgument(E->getTemplateArgs()[I], Loc)) |
| return SemaRef.ExprError(); |
| TransArgs.addArgument(Loc); |
| } |
| |
| return getDerived().RebuildDependentScopeDeclRefExpr(NNS, |
| E->getQualifierRange(), |
| Name, E->getLocation(), |
| &TransArgs); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformCXXConstructExpr(CXXConstructExpr *E, |
| bool isAddressOfOperand) { |
| TemporaryBase Rebase(*this, /*FIXME*/E->getLocStart(), DeclarationName()); |
| |
| QualType T = getDerived().TransformType(E->getType()); |
| if (T.isNull()) |
| return SemaRef.ExprError(); |
| |
| CXXConstructorDecl *Constructor |
| = cast_or_null<CXXConstructorDecl>( |
| getDerived().TransformDecl(E->getConstructor())); |
| if (!Constructor) |
| return SemaRef.ExprError(); |
| |
| bool ArgumentChanged = false; |
| ASTOwningVector<&ActionBase::DeleteExpr> Args(SemaRef); |
| for (CXXConstructExpr::arg_iterator Arg = E->arg_begin(), |
| ArgEnd = E->arg_end(); |
| Arg != ArgEnd; ++Arg) { |
| OwningExprResult TransArg = getDerived().TransformExpr(*Arg); |
| if (TransArg.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| ArgumentChanged = ArgumentChanged || TransArg.get() != *Arg; |
| Args.push_back(TransArg.takeAs<Expr>()); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && |
| T == E->getType() && |
| Constructor == E->getConstructor() && |
| !ArgumentChanged) |
| return SemaRef.Owned(E->Retain()); |
| |
| return getDerived().RebuildCXXConstructExpr(T, Constructor, E->isElidable(), |
| move_arg(Args)); |
| } |
| |
| /// \brief Transform a C++ temporary-binding expression. |
| /// |
| /// The transformation of a temporary-binding expression always attempts to |
| /// bind a new temporary variable to its subexpression, even if the |
| /// subexpression itself did not change, because the temporary variable itself |
| /// must be unique. |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformCXXBindTemporaryExpr(CXXBindTemporaryExpr *E, |
| bool isAddressOfOperand) { |
| OwningExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr()); |
| if (SubExpr.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| return SemaRef.MaybeBindToTemporary(SubExpr.takeAs<Expr>()); |
| } |
| |
| /// \brief Transform a C++ expression that contains temporaries that should |
| /// be destroyed after the expression is evaluated. |
| /// |
| /// The transformation of a full expression always attempts to build a new |
| /// CXXExprWithTemporaries expression, even if the |
| /// subexpression itself did not change, because it will need to capture the |
| /// the new temporary variables introduced in the subexpression. |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformCXXExprWithTemporaries( |
| CXXExprWithTemporaries *E, |
| bool isAddressOfOperand) { |
| OwningExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr()); |
| if (SubExpr.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| return SemaRef.Owned( |
| SemaRef.MaybeCreateCXXExprWithTemporaries(SubExpr.takeAs<Expr>(), |
| E->shouldDestroyTemporaries())); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformCXXTemporaryObjectExpr( |
| CXXTemporaryObjectExpr *E, |
| bool isAddressOfOperand) { |
| TemporaryBase Rebase(*this, E->getTypeBeginLoc(), DeclarationName()); |
| QualType T = getDerived().TransformType(E->getType()); |
| if (T.isNull()) |
| return SemaRef.ExprError(); |
| |
| CXXConstructorDecl *Constructor |
| = cast_or_null<CXXConstructorDecl>( |
| getDerived().TransformDecl(E->getConstructor())); |
| if (!Constructor) |
| return SemaRef.ExprError(); |
| |
| bool ArgumentChanged = false; |
| ASTOwningVector<&ActionBase::DeleteExpr> Args(SemaRef); |
| Args.reserve(E->getNumArgs()); |
| for (CXXTemporaryObjectExpr::arg_iterator Arg = E->arg_begin(), |
| ArgEnd = E->arg_end(); |
| Arg != ArgEnd; ++Arg) { |
| OwningExprResult TransArg = getDerived().TransformExpr(*Arg); |
| if (TransArg.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| ArgumentChanged = ArgumentChanged || TransArg.get() != *Arg; |
| Args.push_back((Expr *)TransArg.release()); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && |
| T == E->getType() && |
| Constructor == E->getConstructor() && |
| !ArgumentChanged) |
| return SemaRef.Owned(E->Retain()); |
| |
| // FIXME: Bogus location information |
| SourceLocation CommaLoc; |
| if (Args.size() > 1) { |
| Expr *First = (Expr *)Args[0]; |
| CommaLoc |
| = SemaRef.PP.getLocForEndOfToken(First->getSourceRange().getEnd()); |
| } |
| return getDerived().RebuildCXXTemporaryObjectExpr(E->getTypeBeginLoc(), |
| T, |
| /*FIXME:*/E->getTypeBeginLoc(), |
| move_arg(Args), |
| &CommaLoc, |
| E->getLocEnd()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformCXXUnresolvedConstructExpr( |
| CXXUnresolvedConstructExpr *E, |
| bool isAddressOfOperand) { |
| TemporaryBase Rebase(*this, E->getTypeBeginLoc(), DeclarationName()); |
| QualType T = getDerived().TransformType(E->getTypeAsWritten()); |
| if (T.isNull()) |
| return SemaRef.ExprError(); |
| |
| bool ArgumentChanged = false; |
| ASTOwningVector<&ActionBase::DeleteExpr> Args(SemaRef); |
| llvm::SmallVector<SourceLocation, 8> FakeCommaLocs; |
| for (CXXUnresolvedConstructExpr::arg_iterator Arg = E->arg_begin(), |
| ArgEnd = E->arg_end(); |
| Arg != ArgEnd; ++Arg) { |
| OwningExprResult TransArg = getDerived().TransformExpr(*Arg); |
| if (TransArg.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| ArgumentChanged = ArgumentChanged || TransArg.get() != *Arg; |
| FakeCommaLocs.push_back( |
| SemaRef.PP.getLocForEndOfToken((*Arg)->getLocEnd())); |
| Args.push_back(TransArg.takeAs<Expr>()); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && |
| T == E->getTypeAsWritten() && |
| !ArgumentChanged) |
| return SemaRef.Owned(E->Retain()); |
| |
| // FIXME: we're faking the locations of the commas |
| return getDerived().RebuildCXXUnresolvedConstructExpr(E->getTypeBeginLoc(), |
| T, |
| E->getLParenLoc(), |
| move_arg(Args), |
| FakeCommaLocs.data(), |
| E->getRParenLoc()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformCXXDependentScopeMemberExpr( |
| CXXDependentScopeMemberExpr *E, |
| bool isAddressOfOperand) { |
| // Transform the base of the expression. |
| OwningExprResult Base(SemaRef, (Expr*) 0); |
| Expr *OldBase; |
| QualType BaseType; |
| QualType ObjectType; |
| if (!E->isImplicitAccess()) { |
| OldBase = E->getBase(); |
| Base = getDerived().TransformExpr(OldBase); |
| if (Base.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| // Start the member reference and compute the object's type. |
| Sema::TypeTy *ObjectTy = 0; |
| Base = SemaRef.ActOnStartCXXMemberReference(0, move(Base), |
| E->getOperatorLoc(), |
| E->isArrow()? tok::arrow : tok::period, |
| ObjectTy); |
| if (Base.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| ObjectType = QualType::getFromOpaquePtr(ObjectTy); |
| BaseType = ((Expr*) Base.get())->getType(); |
| } else { |
| OldBase = 0; |
| BaseType = getDerived().TransformType(E->getBaseType()); |
| ObjectType = BaseType->getAs<PointerType>()->getPointeeType(); |
| } |
| |
| // Transform the first part of the nested-name-specifier that qualifies |
| // the member name. |
| NamedDecl *FirstQualifierInScope |
| = getDerived().TransformFirstQualifierInScope( |
| E->getFirstQualifierFoundInScope(), |
| E->getQualifierRange().getBegin()); |
| |
| NestedNameSpecifier *Qualifier = 0; |
| if (E->getQualifier()) { |
| Qualifier = getDerived().TransformNestedNameSpecifier(E->getQualifier(), |
| E->getQualifierRange(), |
| ObjectType, |
| FirstQualifierInScope); |
| if (!Qualifier) |
| return SemaRef.ExprError(); |
| } |
| |
| DeclarationName Name |
| = getDerived().TransformDeclarationName(E->getMember(), E->getMemberLoc(), |
| ObjectType); |
| if (!Name) |
| return SemaRef.ExprError(); |
| |
| if (!E->hasExplicitTemplateArgs()) { |
| // This is a reference to a member without an explicitly-specified |
| // template argument list. Optimize for this common case. |
| if (!getDerived().AlwaysRebuild() && |
| Base.get() == OldBase && |
| BaseType == E->getBaseType() && |
| Qualifier == E->getQualifier() && |
| Name == E->getMember() && |
| FirstQualifierInScope == E->getFirstQualifierFoundInScope()) |
| return SemaRef.Owned(E->Retain()); |
| |
| return getDerived().RebuildCXXDependentScopeMemberExpr(move(Base), |
| BaseType, |
| E->isArrow(), |
| E->getOperatorLoc(), |
| Qualifier, |
| E->getQualifierRange(), |
| FirstQualifierInScope, |
| Name, |
| E->getMemberLoc(), |
| /*TemplateArgs*/ 0); |
| } |
| |
| TemplateArgumentListInfo TransArgs(E->getLAngleLoc(), E->getRAngleLoc()); |
| for (unsigned I = 0, N = E->getNumTemplateArgs(); I != N; ++I) { |
| TemplateArgumentLoc Loc; |
| if (getDerived().TransformTemplateArgument(E->getTemplateArgs()[I], Loc)) |
| return SemaRef.ExprError(); |
| TransArgs.addArgument(Loc); |
| } |
| |
| return getDerived().RebuildCXXDependentScopeMemberExpr(move(Base), |
| BaseType, |
| E->isArrow(), |
| E->getOperatorLoc(), |
| Qualifier, |
| E->getQualifierRange(), |
| FirstQualifierInScope, |
| Name, |
| E->getMemberLoc(), |
| &TransArgs); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformUnresolvedMemberExpr(UnresolvedMemberExpr *Old, |
| bool isAddressOfOperand) { |
| // Transform the base of the expression. |
| OwningExprResult Base(SemaRef, (Expr*) 0); |
| QualType BaseType; |
| if (!Old->isImplicitAccess()) { |
| Base = getDerived().TransformExpr(Old->getBase()); |
| if (Base.isInvalid()) |
| return SemaRef.ExprError(); |
| BaseType = ((Expr*) Base.get())->getType(); |
| } else { |
| BaseType = getDerived().TransformType(Old->getBaseType()); |
| } |
| |
| NestedNameSpecifier *Qualifier = 0; |
| if (Old->getQualifier()) { |
| Qualifier |
| = getDerived().TransformNestedNameSpecifier(Old->getQualifier(), |
| Old->getQualifierRange()); |
| if (Qualifier == 0) |
| return SemaRef.ExprError(); |
| } |
| |
| LookupResult R(SemaRef, Old->getMemberName(), Old->getMemberLoc(), |
| Sema::LookupOrdinaryName); |
| |
| // Transform all the decls. |
| for (UnresolvedMemberExpr::decls_iterator I = Old->decls_begin(), |
| E = Old->decls_end(); I != E; ++I) { |
| NamedDecl *InstD = static_cast<NamedDecl*>(getDerived().TransformDecl(*I)); |
| if (!InstD) |
| return SemaRef.ExprError(); |
| |
| // Expand using declarations. |
| if (isa<UsingDecl>(InstD)) { |
| UsingDecl *UD = cast<UsingDecl>(InstD); |
| for (UsingDecl::shadow_iterator I = UD->shadow_begin(), |
| E = UD->shadow_end(); I != E; ++I) |
| R.addDecl(*I); |
| continue; |
| } |
| |
| R.addDecl(InstD); |
| } |
| |
| R.resolveKind(); |
| |
| TemplateArgumentListInfo TransArgs; |
| if (Old->hasExplicitTemplateArgs()) { |
| TransArgs.setLAngleLoc(Old->getLAngleLoc()); |
| TransArgs.setRAngleLoc(Old->getRAngleLoc()); |
| for (unsigned I = 0, N = Old->getNumTemplateArgs(); I != N; ++I) { |
| TemplateArgumentLoc Loc; |
| if (getDerived().TransformTemplateArgument(Old->getTemplateArgs()[I], |
| Loc)) |
| return SemaRef.ExprError(); |
| TransArgs.addArgument(Loc); |
| } |
| } |
| |
| return getDerived().RebuildUnresolvedMemberExpr(move(Base), |
| BaseType, |
| Old->getOperatorLoc(), |
| Old->isArrow(), |
| Qualifier, |
| Old->getQualifierRange(), |
| R, |
| (Old->hasExplicitTemplateArgs() |
| ? &TransArgs : 0)); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformObjCStringLiteral(ObjCStringLiteral *E, |
| bool isAddressOfOperand) { |
| return SemaRef.Owned(E->Retain()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformObjCEncodeExpr(ObjCEncodeExpr *E, |
| bool isAddressOfOperand) { |
| // FIXME: poor source location |
| TemporaryBase Rebase(*this, E->getAtLoc(), DeclarationName()); |
| QualType EncodedType = getDerived().TransformType(E->getEncodedType()); |
| if (EncodedType.isNull()) |
| return SemaRef.ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| EncodedType == E->getEncodedType()) |
| return SemaRef.Owned(E->Retain()); |
| |
| return getDerived().RebuildObjCEncodeExpr(E->getAtLoc(), |
| EncodedType, |
| E->getRParenLoc()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformObjCMessageExpr(ObjCMessageExpr *E, |
| bool isAddressOfOperand) { |
| // FIXME: Implement this! |
| assert(false && "Cannot transform Objective-C expressions yet"); |
| return SemaRef.Owned(E->Retain()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformObjCSelectorExpr(ObjCSelectorExpr *E, |
| bool isAddressOfOperand) { |
| return SemaRef.Owned(E->Retain()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformObjCProtocolExpr(ObjCProtocolExpr *E, |
| bool isAddressOfOperand) { |
| ObjCProtocolDecl *Protocol |
| = cast_or_null<ObjCProtocolDecl>( |
| getDerived().TransformDecl(E->getProtocol())); |
| if (!Protocol) |
| return SemaRef.ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| Protocol == E->getProtocol()) |
| return SemaRef.Owned(E->Retain()); |
| |
| return getDerived().RebuildObjCProtocolExpr(Protocol, |
| E->getAtLoc(), |
| /*FIXME:*/E->getAtLoc(), |
| /*FIXME:*/E->getAtLoc(), |
| E->getRParenLoc()); |
| |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformObjCIvarRefExpr(ObjCIvarRefExpr *E, |
| bool isAddressOfOperand) { |
| // FIXME: Implement this! |
| assert(false && "Cannot transform Objective-C expressions yet"); |
| return SemaRef.Owned(E->Retain()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformObjCPropertyRefExpr(ObjCPropertyRefExpr *E, |
| bool isAddressOfOperand) { |
| // FIXME: Implement this! |
| assert(false && "Cannot transform Objective-C expressions yet"); |
| return SemaRef.Owned(E->Retain()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformObjCImplicitSetterGetterRefExpr( |
| ObjCImplicitSetterGetterRefExpr *E, |
| bool isAddressOfOperand) { |
| // FIXME: Implement this! |
| assert(false && "Cannot transform Objective-C expressions yet"); |
| return SemaRef.Owned(E->Retain()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformObjCSuperExpr(ObjCSuperExpr *E, |
| bool isAddressOfOperand) { |
| // FIXME: Implement this! |
| assert(false && "Cannot transform Objective-C expressions yet"); |
| return SemaRef.Owned(E->Retain()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformObjCIsaExpr(ObjCIsaExpr *E, |
| bool isAddressOfOperand) { |
| // FIXME: Implement this! |
| assert(false && "Cannot transform Objective-C expressions yet"); |
| return SemaRef.Owned(E->Retain()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformShuffleVectorExpr(ShuffleVectorExpr *E, |
| bool isAddressOfOperand) { |
| bool ArgumentChanged = false; |
| ASTOwningVector<&ActionBase::DeleteExpr> SubExprs(SemaRef); |
| for (unsigned I = 0, N = E->getNumSubExprs(); I != N; ++I) { |
| OwningExprResult SubExpr = getDerived().TransformExpr(E->getExpr(I)); |
| if (SubExpr.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| ArgumentChanged = ArgumentChanged || SubExpr.get() != E->getExpr(I); |
| SubExprs.push_back(SubExpr.takeAs<Expr>()); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && |
| !ArgumentChanged) |
| return SemaRef.Owned(E->Retain()); |
| |
| return getDerived().RebuildShuffleVectorExpr(E->getBuiltinLoc(), |
| move_arg(SubExprs), |
| E->getRParenLoc()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformBlockExpr(BlockExpr *E, |
| bool isAddressOfOperand) { |
| // FIXME: Implement this! |
| assert(false && "Cannot transform block expressions yet"); |
| return SemaRef.Owned(E->Retain()); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::TransformBlockDeclRefExpr(BlockDeclRefExpr *E, |
| bool isAddressOfOperand) { |
| // FIXME: Implement this! |
| assert(false && "Cannot transform block-related expressions yet"); |
| return SemaRef.Owned(E->Retain()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Type reconstruction |
| //===----------------------------------------------------------------------===// |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::RebuildPointerType(QualType PointeeType, |
| SourceLocation Star) { |
| return SemaRef.BuildPointerType(PointeeType, Qualifiers(), Star, |
| getDerived().getBaseEntity()); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::RebuildBlockPointerType(QualType PointeeType, |
| SourceLocation Star) { |
| return SemaRef.BuildBlockPointerType(PointeeType, Qualifiers(), Star, |
| getDerived().getBaseEntity()); |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::RebuildReferenceType(QualType ReferentType, |
| bool WrittenAsLValue, |
| SourceLocation Sigil) { |
| return SemaRef.BuildReferenceType(ReferentType, WrittenAsLValue, Qualifiers(), |
| Sigil, getDerived().getBaseEntity()); |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::RebuildMemberPointerType(QualType PointeeType, |
| QualType ClassType, |
| SourceLocation Sigil) { |
| return SemaRef.BuildMemberPointerType(PointeeType, ClassType, Qualifiers(), |
| Sigil, getDerived().getBaseEntity()); |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::RebuildObjCObjectPointerType(QualType PointeeType, |
| SourceLocation Sigil) { |
| return SemaRef.BuildPointerType(PointeeType, Qualifiers(), Sigil, |
| getDerived().getBaseEntity()); |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::RebuildArrayType(QualType ElementType, |
| ArrayType::ArraySizeModifier SizeMod, |
| const llvm::APInt *Size, |
| Expr *SizeExpr, |
| unsigned IndexTypeQuals, |
| SourceRange BracketsRange) { |
| if (SizeExpr || !Size) |
| return SemaRef.BuildArrayType(ElementType, SizeMod, SizeExpr, |
| IndexTypeQuals, BracketsRange, |
| getDerived().getBaseEntity()); |
| |
| QualType Types[] = { |
| SemaRef.Context.UnsignedCharTy, SemaRef.Context.UnsignedShortTy, |
| SemaRef.Context.UnsignedIntTy, SemaRef.Context.UnsignedLongTy, |
| SemaRef.Context.UnsignedLongLongTy, SemaRef.Context.UnsignedInt128Ty |
| }; |
| const unsigned NumTypes = sizeof(Types) / sizeof(QualType); |
| QualType SizeType; |
| for (unsigned I = 0; I != NumTypes; ++I) |
| if (Size->getBitWidth() == SemaRef.Context.getIntWidth(Types[I])) { |
| SizeType = Types[I]; |
| break; |
| } |
| |
| if (SizeType.isNull()) |
| SizeType = SemaRef.Context.getFixedWidthIntType(Size->getBitWidth(), false); |
| |
| IntegerLiteral ArraySize(*Size, SizeType, /*FIXME*/BracketsRange.getBegin()); |
| return SemaRef.BuildArrayType(ElementType, SizeMod, &ArraySize, |
| IndexTypeQuals, BracketsRange, |
| getDerived().getBaseEntity()); |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::RebuildConstantArrayType(QualType ElementType, |
| ArrayType::ArraySizeModifier SizeMod, |
| const llvm::APInt &Size, |
| unsigned IndexTypeQuals, |
| SourceRange BracketsRange) { |
| return getDerived().RebuildArrayType(ElementType, SizeMod, &Size, 0, |
| IndexTypeQuals, BracketsRange); |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::RebuildIncompleteArrayType(QualType ElementType, |
| ArrayType::ArraySizeModifier SizeMod, |
| unsigned IndexTypeQuals, |
| SourceRange BracketsRange) { |
| return getDerived().RebuildArrayType(ElementType, SizeMod, 0, 0, |
| IndexTypeQuals, BracketsRange); |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::RebuildVariableArrayType(QualType ElementType, |
| ArrayType::ArraySizeModifier SizeMod, |
| ExprArg SizeExpr, |
| unsigned IndexTypeQuals, |
| SourceRange BracketsRange) { |
| return getDerived().RebuildArrayType(ElementType, SizeMod, 0, |
| SizeExpr.takeAs<Expr>(), |
| IndexTypeQuals, BracketsRange); |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::RebuildDependentSizedArrayType(QualType ElementType, |
| ArrayType::ArraySizeModifier SizeMod, |
| ExprArg SizeExpr, |
| unsigned IndexTypeQuals, |
| SourceRange BracketsRange) { |
| return getDerived().RebuildArrayType(ElementType, SizeMod, 0, |
| SizeExpr.takeAs<Expr>(), |
| IndexTypeQuals, BracketsRange); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::RebuildVectorType(QualType ElementType, |
| unsigned NumElements) { |
| // FIXME: semantic checking! |
| return SemaRef.Context.getVectorType(ElementType, NumElements); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::RebuildExtVectorType(QualType ElementType, |
| unsigned NumElements, |
| SourceLocation AttributeLoc) { |
| llvm::APInt numElements(SemaRef.Context.getIntWidth(SemaRef.Context.IntTy), |
| NumElements, true); |
| IntegerLiteral *VectorSize |
| = new (SemaRef.Context) IntegerLiteral(numElements, SemaRef.Context.IntTy, |
| AttributeLoc); |
| return SemaRef.BuildExtVectorType(ElementType, SemaRef.Owned(VectorSize), |
| AttributeLoc); |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::RebuildDependentSizedExtVectorType(QualType ElementType, |
| ExprArg SizeExpr, |
| SourceLocation AttributeLoc) { |
| return SemaRef.BuildExtVectorType(ElementType, move(SizeExpr), AttributeLoc); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::RebuildFunctionProtoType(QualType T, |
| QualType *ParamTypes, |
| unsigned NumParamTypes, |
| bool Variadic, |
| unsigned Quals) { |
| return SemaRef.BuildFunctionType(T, ParamTypes, NumParamTypes, Variadic, |
| Quals, |
| getDerived().getBaseLocation(), |
| getDerived().getBaseEntity()); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::RebuildFunctionNoProtoType(QualType T) { |
| return SemaRef.Context.getFunctionNoProtoType(T); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::RebuildTypeOfExprType(ExprArg E) { |
| return SemaRef.BuildTypeofExprType(E.takeAs<Expr>()); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::RebuildTypeOfType(QualType Underlying) { |
| return SemaRef.Context.getTypeOfType(Underlying); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::RebuildDecltypeType(ExprArg E) { |
| return SemaRef.BuildDecltypeType(E.takeAs<Expr>()); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::RebuildTemplateSpecializationType( |
| TemplateName Template, |
| SourceLocation TemplateNameLoc, |
| const TemplateArgumentListInfo &TemplateArgs) { |
| return SemaRef.CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs); |
| } |
| |
| template<typename Derived> |
| NestedNameSpecifier * |
| TreeTransform<Derived>::RebuildNestedNameSpecifier(NestedNameSpecifier *Prefix, |
| SourceRange Range, |
| IdentifierInfo &II, |
| QualType ObjectType, |
| NamedDecl *FirstQualifierInScope) { |
| CXXScopeSpec SS; |
| // FIXME: The source location information is all wrong. |
| SS.setRange(Range); |
| SS.setScopeRep(Prefix); |
| return static_cast<NestedNameSpecifier *>( |
| SemaRef.BuildCXXNestedNameSpecifier(0, SS, Range.getEnd(), |
| Range.getEnd(), II, |
| ObjectType, |
| FirstQualifierInScope, |
| false)); |
| } |
| |
| template<typename Derived> |
| NestedNameSpecifier * |
| TreeTransform<Derived>::RebuildNestedNameSpecifier(NestedNameSpecifier *Prefix, |
| SourceRange Range, |
| NamespaceDecl *NS) { |
| return NestedNameSpecifier::Create(SemaRef.Context, Prefix, NS); |
| } |
| |
| template<typename Derived> |
| NestedNameSpecifier * |
| TreeTransform<Derived>::RebuildNestedNameSpecifier(NestedNameSpecifier *Prefix, |
| SourceRange Range, |
| bool TemplateKW, |
| QualType T) { |
| if (T->isDependentType() || T->isRecordType() || |
| (SemaRef.getLangOptions().CPlusPlus0x && T->isEnumeralType())) { |
| assert(!T.hasLocalQualifiers() && "Can't get cv-qualifiers here"); |
| return NestedNameSpecifier::Create(SemaRef.Context, Prefix, TemplateKW, |
| T.getTypePtr()); |
| } |
| |
| SemaRef.Diag(Range.getBegin(), diag::err_nested_name_spec_non_tag) << T; |
| return 0; |
| } |
| |
| template<typename Derived> |
| TemplateName |
| TreeTransform<Derived>::RebuildTemplateName(NestedNameSpecifier *Qualifier, |
| bool TemplateKW, |
| TemplateDecl *Template) { |
| return SemaRef.Context.getQualifiedTemplateName(Qualifier, TemplateKW, |
| Template); |
| } |
| |
| template<typename Derived> |
| TemplateName |
| TreeTransform<Derived>::RebuildTemplateName(NestedNameSpecifier *Qualifier, |
| const IdentifierInfo &II, |
| QualType ObjectType) { |
| CXXScopeSpec SS; |
| SS.setRange(SourceRange(getDerived().getBaseLocation())); |
| SS.setScopeRep(Qualifier); |
| UnqualifiedId Name; |
| Name.setIdentifier(&II, /*FIXME:*/getDerived().getBaseLocation()); |
| return getSema().ActOnDependentTemplateName( |
| /*FIXME:*/getDerived().getBaseLocation(), |
| SS, |
| Name, |
| ObjectType.getAsOpaquePtr(), |
| /*EnteringContext=*/false) |
| .template getAsVal<TemplateName>(); |
| } |
| |
| template<typename Derived> |
| TemplateName |
| TreeTransform<Derived>::RebuildTemplateName(NestedNameSpecifier *Qualifier, |
| OverloadedOperatorKind Operator, |
| QualType ObjectType) { |
| CXXScopeSpec SS; |
| SS.setRange(SourceRange(getDerived().getBaseLocation())); |
| SS.setScopeRep(Qualifier); |
| UnqualifiedId Name; |
| SourceLocation SymbolLocations[3]; // FIXME: Bogus location information. |
| Name.setOperatorFunctionId(/*FIXME:*/getDerived().getBaseLocation(), |
| Operator, SymbolLocations); |
| return getSema().ActOnDependentTemplateName( |
| /*FIXME:*/getDerived().getBaseLocation(), |
| SS, |
| Name, |
| ObjectType.getAsOpaquePtr(), |
| /*EnteringContext=*/false) |
| .template getAsVal<TemplateName>(); |
| } |
| |
| template<typename Derived> |
| Sema::OwningExprResult |
| TreeTransform<Derived>::RebuildCXXOperatorCallExpr(OverloadedOperatorKind Op, |
| SourceLocation OpLoc, |
| ExprArg Callee, |
| ExprArg First, |
| ExprArg Second) { |
| Expr *FirstExpr = (Expr *)First.get(); |
| Expr *SecondExpr = (Expr *)Second.get(); |
| Expr *CalleeExpr = ((Expr *)Callee.get())->IgnoreParenCasts(); |
| bool isPostIncDec = SecondExpr && (Op == OO_PlusPlus || Op == OO_MinusMinus); |
| |
| // Determine whether this should be a builtin operation. |
| if (Op == OO_Subscript) { |
| if (!FirstExpr->getType()->isOverloadableType() && |
| !SecondExpr->getType()->isOverloadableType()) |
| return getSema().CreateBuiltinArraySubscriptExpr(move(First), |
| CalleeExpr->getLocStart(), |
| move(Second), OpLoc); |
| } else if (Op == OO_Arrow) { |
| // -> is never a builtin operation. |
| return SemaRef.BuildOverloadedArrowExpr(0, move(First), OpLoc); |
| } else if (SecondExpr == 0 || isPostIncDec) { |
| if (!FirstExpr->getType()->isOverloadableType()) { |
| // The argument is not of overloadable type, so try to create a |
| // built-in unary operation. |
| UnaryOperator::Opcode Opc |
| = UnaryOperator::getOverloadedOpcode(Op, isPostIncDec); |
| |
| return getSema().CreateBuiltinUnaryOp(OpLoc, Opc, move(First)); |
| } |
| } else { |
| if (!FirstExpr->getType()->isOverloadableType() && |
| !SecondExpr->getType()->isOverloadableType()) { |
| // Neither of the arguments is an overloadable type, so try to |
| // create a built-in binary operation. |
| BinaryOperator::Opcode Opc = BinaryOperator::getOverloadedOpcode(Op); |
| OwningExprResult Result |
| = SemaRef.CreateBuiltinBinOp(OpLoc, Opc, FirstExpr, SecondExpr); |
| if (Result.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| First.release(); |
| Second.release(); |
| return move(Result); |
| } |
| } |
| |
| // Compute the transformed set of functions (and function templates) to be |
| // used during overload resolution. |
| Sema::FunctionSet Functions; |
| |
| if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(CalleeExpr)) { |
| assert(ULE->requiresADL()); |
| |
| // FIXME: Do we have to check |
| // IsAcceptableNonMemberOperatorCandidate for each of these? |
| for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), |
| E = ULE->decls_end(); I != E; ++I) |
| Functions.insert(AnyFunctionDecl::getFromNamedDecl(*I)); |
| } else { |
| Functions.insert(AnyFunctionDecl::getFromNamedDecl( |
| cast<DeclRefExpr>(CalleeExpr)->getDecl())); |
| } |
| |
| // Add any functions found via argument-dependent lookup. |
| Expr *Args[2] = { FirstExpr, SecondExpr }; |
| unsigned NumArgs = 1 + (SecondExpr != 0); |
| DeclarationName OpName |
| = SemaRef.Context.DeclarationNames.getCXXOperatorName(Op); |
| SemaRef.ArgumentDependentLookup(OpName, /*Operator*/true, Args, NumArgs, |
| Functions); |
| |
| // Create the overloaded operator invocation for unary operators. |
| if (NumArgs == 1 || isPostIncDec) { |
| UnaryOperator::Opcode Opc |
| = UnaryOperator::getOverloadedOpcode(Op, isPostIncDec); |
| return SemaRef.CreateOverloadedUnaryOp(OpLoc, Opc, Functions, move(First)); |
| } |
| |
| if (Op == OO_Subscript) |
| return SemaRef.CreateOverloadedArraySubscriptExpr(CalleeExpr->getLocStart(), |
| OpLoc, |
| move(First), |
| move(Second)); |
| |
| // Create the overloaded operator invocation for binary operators. |
| BinaryOperator::Opcode Opc = |
| BinaryOperator::getOverloadedOpcode(Op); |
| OwningExprResult Result |
| = SemaRef.CreateOverloadedBinOp(OpLoc, Opc, Functions, Args[0], Args[1]); |
| if (Result.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| First.release(); |
| Second.release(); |
| return move(Result); |
| } |
| |
| } // end namespace clang |
| |
| #endif // LLVM_CLANG_SEMA_TREETRANSFORM_H |