| //===--- ParseInit.cpp - Initializer Parsing ------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements initializer parsing as specified by C99 6.7.8. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Parse/Parser.h" |
| #include "RAIIObjectsForParser.h" |
| #include "clang/Parse/ParseDiagnostic.h" |
| #include "clang/Sema/Designator.h" |
| #include "clang/Sema/Scope.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/Support/raw_ostream.h" |
| using namespace clang; |
| |
| |
| /// MayBeDesignationStart - Return true if the current token might be the start |
| /// of a designator. If we can tell it is impossible that it is a designator, |
| /// return false. |
| bool Parser::MayBeDesignationStart() { |
| switch (Tok.getKind()) { |
| default: |
| return false; |
| |
| case tok::period: // designator: '.' identifier |
| return true; |
| |
| case tok::l_square: { // designator: array-designator |
| if (!PP.getLangOpts().CPlusPlus11) |
| return true; |
| |
| // C++11 lambda expressions and C99 designators can be ambiguous all the |
| // way through the closing ']' and to the next character. Handle the easy |
| // cases here, and fall back to tentative parsing if those fail. |
| switch (PP.LookAhead(0).getKind()) { |
| case tok::equal: |
| case tok::r_square: |
| // Definitely starts a lambda expression. |
| return false; |
| |
| case tok::amp: |
| case tok::kw_this: |
| case tok::identifier: |
| // We have to do additional analysis, because these could be the |
| // start of a constant expression or a lambda capture list. |
| break; |
| |
| default: |
| // Anything not mentioned above cannot occur following a '[' in a |
| // lambda expression. |
| return true; |
| } |
| |
| // Handle the complicated case below. |
| break; |
| } |
| case tok::identifier: // designation: identifier ':' |
| return PP.LookAhead(0).is(tok::colon); |
| } |
| |
| // Parse up to (at most) the token after the closing ']' to determine |
| // whether this is a C99 designator or a lambda. |
| TentativeParsingAction Tentative(*this); |
| ConsumeBracket(); |
| while (true) { |
| switch (Tok.getKind()) { |
| case tok::equal: |
| case tok::amp: |
| case tok::identifier: |
| case tok::kw_this: |
| // These tokens can occur in a capture list or a constant-expression. |
| // Keep looking. |
| ConsumeToken(); |
| continue; |
| |
| case tok::comma: |
| // Since a comma cannot occur in a constant-expression, this must |
| // be a lambda. |
| Tentative.Revert(); |
| return false; |
| |
| case tok::r_square: { |
| // Once we hit the closing square bracket, we look at the next |
| // token. If it's an '=', this is a designator. Otherwise, it's a |
| // lambda expression. This decision favors lambdas over the older |
| // GNU designator syntax, which allows one to omit the '=', but is |
| // consistent with GCC. |
| ConsumeBracket(); |
| tok::TokenKind Kind = Tok.getKind(); |
| Tentative.Revert(); |
| return Kind == tok::equal; |
| } |
| |
| default: |
| // Anything else cannot occur in a lambda capture list, so it |
| // must be a designator. |
| Tentative.Revert(); |
| return true; |
| } |
| } |
| |
| return true; |
| } |
| |
| static void CheckArrayDesignatorSyntax(Parser &P, SourceLocation Loc, |
| Designation &Desig) { |
| // If we have exactly one array designator, this used the GNU |
| // 'designation: array-designator' extension, otherwise there should be no |
| // designators at all! |
| if (Desig.getNumDesignators() == 1 && |
| (Desig.getDesignator(0).isArrayDesignator() || |
| Desig.getDesignator(0).isArrayRangeDesignator())) |
| P.Diag(Loc, diag::ext_gnu_missing_equal_designator); |
| else if (Desig.getNumDesignators() > 0) |
| P.Diag(Loc, diag::err_expected_equal_designator); |
| } |
| |
| /// ParseInitializerWithPotentialDesignator - Parse the 'initializer' production |
| /// checking to see if the token stream starts with a designator. |
| /// |
| /// designation: |
| /// designator-list '=' |
| /// [GNU] array-designator |
| /// [GNU] identifier ':' |
| /// |
| /// designator-list: |
| /// designator |
| /// designator-list designator |
| /// |
| /// designator: |
| /// array-designator |
| /// '.' identifier |
| /// |
| /// array-designator: |
| /// '[' constant-expression ']' |
| /// [GNU] '[' constant-expression '...' constant-expression ']' |
| /// |
| /// NOTE: [OBC] allows '[ objc-receiver objc-message-args ]' as an |
| /// initializer (because it is an expression). We need to consider this case |
| /// when parsing array designators. |
| /// |
| ExprResult Parser::ParseInitializerWithPotentialDesignator() { |
| |
| // If this is the old-style GNU extension: |
| // designation ::= identifier ':' |
| // Handle it as a field designator. Otherwise, this must be the start of a |
| // normal expression. |
| if (Tok.is(tok::identifier)) { |
| const IdentifierInfo *FieldName = Tok.getIdentifierInfo(); |
| |
| SmallString<256> NewSyntax; |
| llvm::raw_svector_ostream(NewSyntax) << '.' << FieldName->getName() |
| << " = "; |
| |
| SourceLocation NameLoc = ConsumeToken(); // Eat the identifier. |
| |
| assert(Tok.is(tok::colon) && "MayBeDesignationStart not working properly!"); |
| SourceLocation ColonLoc = ConsumeToken(); |
| |
| Diag(NameLoc, diag::ext_gnu_old_style_field_designator) |
| << FixItHint::CreateReplacement(SourceRange(NameLoc, ColonLoc), |
| NewSyntax.str()); |
| |
| Designation D; |
| D.AddDesignator(Designator::getField(FieldName, SourceLocation(), NameLoc)); |
| return Actions.ActOnDesignatedInitializer(D, ColonLoc, true, |
| ParseInitializer()); |
| } |
| |
| // Desig - This is initialized when we see our first designator. We may have |
| // an objc message send with no designator, so we don't want to create this |
| // eagerly. |
| Designation Desig; |
| |
| // Parse each designator in the designator list until we find an initializer. |
| while (Tok.is(tok::period) || Tok.is(tok::l_square)) { |
| if (Tok.is(tok::period)) { |
| // designator: '.' identifier |
| SourceLocation DotLoc = ConsumeToken(); |
| |
| if (Tok.isNot(tok::identifier)) { |
| Diag(Tok.getLocation(), diag::err_expected_field_designator); |
| return ExprError(); |
| } |
| |
| Desig.AddDesignator(Designator::getField(Tok.getIdentifierInfo(), DotLoc, |
| Tok.getLocation())); |
| ConsumeToken(); // Eat the identifier. |
| continue; |
| } |
| |
| // We must have either an array designator now or an objc message send. |
| assert(Tok.is(tok::l_square) && "Unexpected token!"); |
| |
| // Handle the two forms of array designator: |
| // array-designator: '[' constant-expression ']' |
| // array-designator: '[' constant-expression '...' constant-expression ']' |
| // |
| // Also, we have to handle the case where the expression after the |
| // designator an an objc message send: '[' objc-message-expr ']'. |
| // Interesting cases are: |
| // [foo bar] -> objc message send |
| // [foo] -> array designator |
| // [foo ... bar] -> array designator |
| // [4][foo bar] -> obsolete GNU designation with objc message send. |
| // |
| // We do not need to check for an expression starting with [[ here. If it |
| // contains an Objective-C message send, then it is not an ill-formed |
| // attribute. If it is a lambda-expression within an array-designator, then |
| // it will be rejected because a constant-expression cannot begin with a |
| // lambda-expression. |
| InMessageExpressionRAIIObject InMessage(*this, true); |
| |
| BalancedDelimiterTracker T(*this, tok::l_square); |
| T.consumeOpen(); |
| SourceLocation StartLoc = T.getOpenLocation(); |
| |
| ExprResult Idx; |
| |
| // If Objective-C is enabled and this is a typename (class message |
| // send) or send to 'super', parse this as a message send |
| // expression. We handle C++ and C separately, since C++ requires |
| // much more complicated parsing. |
| if (getLangOpts().ObjC1 && getLangOpts().CPlusPlus) { |
| // Send to 'super'. |
| if (Tok.is(tok::identifier) && Tok.getIdentifierInfo() == Ident_super && |
| NextToken().isNot(tok::period) && |
| getCurScope()->isInObjcMethodScope()) { |
| CheckArrayDesignatorSyntax(*this, StartLoc, Desig); |
| return ParseAssignmentExprWithObjCMessageExprStart(StartLoc, |
| ConsumeToken(), |
| ParsedType(), |
| 0); |
| } |
| |
| // Parse the receiver, which is either a type or an expression. |
| bool IsExpr; |
| void *TypeOrExpr; |
| if (ParseObjCXXMessageReceiver(IsExpr, TypeOrExpr)) { |
| SkipUntil(tok::r_square); |
| return ExprError(); |
| } |
| |
| // If the receiver was a type, we have a class message; parse |
| // the rest of it. |
| if (!IsExpr) { |
| CheckArrayDesignatorSyntax(*this, StartLoc, Desig); |
| return ParseAssignmentExprWithObjCMessageExprStart(StartLoc, |
| SourceLocation(), |
| ParsedType::getFromOpaquePtr(TypeOrExpr), |
| 0); |
| } |
| |
| // If the receiver was an expression, we still don't know |
| // whether we have a message send or an array designator; just |
| // adopt the expression for further analysis below. |
| // FIXME: potentially-potentially evaluated expression above? |
| Idx = ExprResult(static_cast<Expr*>(TypeOrExpr)); |
| } else if (getLangOpts().ObjC1 && Tok.is(tok::identifier)) { |
| IdentifierInfo *II = Tok.getIdentifierInfo(); |
| SourceLocation IILoc = Tok.getLocation(); |
| ParsedType ReceiverType; |
| // Three cases. This is a message send to a type: [type foo] |
| // This is a message send to super: [super foo] |
| // This is a message sent to an expr: [super.bar foo] |
| switch (Sema::ObjCMessageKind Kind |
| = Actions.getObjCMessageKind(getCurScope(), II, IILoc, |
| II == Ident_super, |
| NextToken().is(tok::period), |
| ReceiverType)) { |
| case Sema::ObjCSuperMessage: |
| case Sema::ObjCClassMessage: |
| CheckArrayDesignatorSyntax(*this, StartLoc, Desig); |
| if (Kind == Sema::ObjCSuperMessage) |
| return ParseAssignmentExprWithObjCMessageExprStart(StartLoc, |
| ConsumeToken(), |
| ParsedType(), |
| 0); |
| ConsumeToken(); // the identifier |
| if (!ReceiverType) { |
| SkipUntil(tok::r_square); |
| return ExprError(); |
| } |
| |
| return ParseAssignmentExprWithObjCMessageExprStart(StartLoc, |
| SourceLocation(), |
| ReceiverType, |
| 0); |
| |
| case Sema::ObjCInstanceMessage: |
| // Fall through; we'll just parse the expression and |
| // (possibly) treat this like an Objective-C message send |
| // later. |
| break; |
| } |
| } |
| |
| // Parse the index expression, if we haven't already gotten one |
| // above (which can only happen in Objective-C++). |
| // Note that we parse this as an assignment expression, not a constant |
| // expression (allowing *=, =, etc) to handle the objc case. Sema needs |
| // to validate that the expression is a constant. |
| // FIXME: We also need to tell Sema that we're in a |
| // potentially-potentially evaluated context. |
| if (!Idx.get()) { |
| Idx = ParseAssignmentExpression(); |
| if (Idx.isInvalid()) { |
| SkipUntil(tok::r_square); |
| return Idx; |
| } |
| } |
| |
| // Given an expression, we could either have a designator (if the next |
| // tokens are '...' or ']' or an objc message send. If this is an objc |
| // message send, handle it now. An objc-message send is the start of |
| // an assignment-expression production. |
| if (getLangOpts().ObjC1 && Tok.isNot(tok::ellipsis) && |
| Tok.isNot(tok::r_square)) { |
| CheckArrayDesignatorSyntax(*this, Tok.getLocation(), Desig); |
| return ParseAssignmentExprWithObjCMessageExprStart(StartLoc, |
| SourceLocation(), |
| ParsedType(), |
| Idx.take()); |
| } |
| |
| // If this is a normal array designator, remember it. |
| if (Tok.isNot(tok::ellipsis)) { |
| Desig.AddDesignator(Designator::getArray(Idx.release(), StartLoc)); |
| } else { |
| // Handle the gnu array range extension. |
| Diag(Tok, diag::ext_gnu_array_range); |
| SourceLocation EllipsisLoc = ConsumeToken(); |
| |
| ExprResult RHS(ParseConstantExpression()); |
| if (RHS.isInvalid()) { |
| SkipUntil(tok::r_square); |
| return RHS; |
| } |
| Desig.AddDesignator(Designator::getArrayRange(Idx.release(), |
| RHS.release(), |
| StartLoc, EllipsisLoc)); |
| } |
| |
| T.consumeClose(); |
| Desig.getDesignator(Desig.getNumDesignators() - 1).setRBracketLoc( |
| T.getCloseLocation()); |
| } |
| |
| // Okay, we're done with the designator sequence. We know that there must be |
| // at least one designator, because the only case we can get into this method |
| // without a designator is when we have an objc message send. That case is |
| // handled and returned from above. |
| assert(!Desig.empty() && "Designator is empty?"); |
| |
| // Handle a normal designator sequence end, which is an equal. |
| if (Tok.is(tok::equal)) { |
| SourceLocation EqualLoc = ConsumeToken(); |
| return Actions.ActOnDesignatedInitializer(Desig, EqualLoc, false, |
| ParseInitializer()); |
| } |
| |
| // We read some number of designators and found something that isn't an = or |
| // an initializer. If we have exactly one array designator, this |
| // is the GNU 'designation: array-designator' extension. Otherwise, it is a |
| // parse error. |
| if (Desig.getNumDesignators() == 1 && |
| (Desig.getDesignator(0).isArrayDesignator() || |
| Desig.getDesignator(0).isArrayRangeDesignator())) { |
| Diag(Tok, diag::ext_gnu_missing_equal_designator) |
| << FixItHint::CreateInsertion(Tok.getLocation(), "= "); |
| return Actions.ActOnDesignatedInitializer(Desig, Tok.getLocation(), |
| true, ParseInitializer()); |
| } |
| |
| Diag(Tok, diag::err_expected_equal_designator); |
| return ExprError(); |
| } |
| |
| |
| /// ParseBraceInitializer - Called when parsing an initializer that has a |
| /// leading open brace. |
| /// |
| /// initializer: [C99 6.7.8] |
| /// '{' initializer-list '}' |
| /// '{' initializer-list ',' '}' |
| /// [GNU] '{' '}' |
| /// |
| /// initializer-list: |
| /// designation[opt] initializer ...[opt] |
| /// initializer-list ',' designation[opt] initializer ...[opt] |
| /// |
| ExprResult Parser::ParseBraceInitializer() { |
| InMessageExpressionRAIIObject InMessage(*this, false); |
| |
| BalancedDelimiterTracker T(*this, tok::l_brace); |
| T.consumeOpen(); |
| SourceLocation LBraceLoc = T.getOpenLocation(); |
| |
| /// InitExprs - This is the actual list of expressions contained in the |
| /// initializer. |
| ExprVector InitExprs; |
| |
| if (Tok.is(tok::r_brace)) { |
| // Empty initializers are a C++ feature and a GNU extension to C. |
| if (!getLangOpts().CPlusPlus) |
| Diag(LBraceLoc, diag::ext_gnu_empty_initializer); |
| // Match the '}'. |
| return Actions.ActOnInitList(LBraceLoc, MultiExprArg(), ConsumeBrace()); |
| } |
| |
| bool InitExprsOk = true; |
| |
| while (1) { |
| // Handle Microsoft __if_exists/if_not_exists if necessary. |
| if (getLangOpts().MicrosoftExt && (Tok.is(tok::kw___if_exists) || |
| Tok.is(tok::kw___if_not_exists))) { |
| if (ParseMicrosoftIfExistsBraceInitializer(InitExprs, InitExprsOk)) { |
| if (Tok.isNot(tok::comma)) break; |
| ConsumeToken(); |
| } |
| if (Tok.is(tok::r_brace)) break; |
| continue; |
| } |
| |
| // Parse: designation[opt] initializer |
| |
| // If we know that this cannot be a designation, just parse the nested |
| // initializer directly. |
| ExprResult SubElt; |
| if (MayBeDesignationStart()) |
| SubElt = ParseInitializerWithPotentialDesignator(); |
| else |
| SubElt = ParseInitializer(); |
| |
| if (Tok.is(tok::ellipsis)) |
| SubElt = Actions.ActOnPackExpansion(SubElt.get(), ConsumeToken()); |
| |
| // If we couldn't parse the subelement, bail out. |
| if (!SubElt.isInvalid()) { |
| InitExprs.push_back(SubElt.release()); |
| } else { |
| InitExprsOk = false; |
| |
| // We have two ways to try to recover from this error: if the code looks |
| // grammatically ok (i.e. we have a comma coming up) try to continue |
| // parsing the rest of the initializer. This allows us to emit |
| // diagnostics for later elements that we find. If we don't see a comma, |
| // assume there is a parse error, and just skip to recover. |
| // FIXME: This comment doesn't sound right. If there is a r_brace |
| // immediately, it can't be an error, since there is no other way of |
| // leaving this loop except through this if. |
| if (Tok.isNot(tok::comma)) { |
| SkipUntil(tok::r_brace, false, true); |
| break; |
| } |
| } |
| |
| // If we don't have a comma continued list, we're done. |
| if (Tok.isNot(tok::comma)) break; |
| |
| // TODO: save comma locations if some client cares. |
| ConsumeToken(); |
| |
| // Handle trailing comma. |
| if (Tok.is(tok::r_brace)) break; |
| } |
| |
| bool closed = !T.consumeClose(); |
| |
| if (InitExprsOk && closed) |
| return Actions.ActOnInitList(LBraceLoc, InitExprs, |
| T.getCloseLocation()); |
| |
| return ExprError(); // an error occurred. |
| } |
| |
| |
| // Return true if a comma (or closing brace) is necessary after the |
| // __if_exists/if_not_exists statement. |
| bool Parser::ParseMicrosoftIfExistsBraceInitializer(ExprVector &InitExprs, |
| bool &InitExprsOk) { |
| bool trailingComma = false; |
| IfExistsCondition Result; |
| if (ParseMicrosoftIfExistsCondition(Result)) |
| return false; |
| |
| BalancedDelimiterTracker Braces(*this, tok::l_brace); |
| if (Braces.consumeOpen()) { |
| Diag(Tok, diag::err_expected_lbrace); |
| return false; |
| } |
| |
| switch (Result.Behavior) { |
| case IEB_Parse: |
| // Parse the declarations below. |
| break; |
| |
| case IEB_Dependent: |
| Diag(Result.KeywordLoc, diag::warn_microsoft_dependent_exists) |
| << Result.IsIfExists; |
| // Fall through to skip. |
| |
| case IEB_Skip: |
| Braces.skipToEnd(); |
| return false; |
| } |
| |
| while (Tok.isNot(tok::eof)) { |
| trailingComma = false; |
| // If we know that this cannot be a designation, just parse the nested |
| // initializer directly. |
| ExprResult SubElt; |
| if (MayBeDesignationStart()) |
| SubElt = ParseInitializerWithPotentialDesignator(); |
| else |
| SubElt = ParseInitializer(); |
| |
| if (Tok.is(tok::ellipsis)) |
| SubElt = Actions.ActOnPackExpansion(SubElt.get(), ConsumeToken()); |
| |
| // If we couldn't parse the subelement, bail out. |
| if (!SubElt.isInvalid()) |
| InitExprs.push_back(SubElt.release()); |
| else |
| InitExprsOk = false; |
| |
| if (Tok.is(tok::comma)) { |
| ConsumeToken(); |
| trailingComma = true; |
| } |
| |
| if (Tok.is(tok::r_brace)) |
| break; |
| } |
| |
| Braces.consumeClose(); |
| |
| return !trailingComma; |
| } |