blob: 9af74749f17c4532fc01bece5faaa95c3282bfeb [file] [log] [blame]
//===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit OpenMP nodes as LLVM code.
//
//===----------------------------------------------------------------------===//
#include "CGOpenMPRuntime.h"
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "TargetInfo.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/StmtOpenMP.h"
using namespace clang;
using namespace CodeGen;
//===----------------------------------------------------------------------===//
// OpenMP Directive Emission
//===----------------------------------------------------------------------===//
namespace {
/// \brief RAII for inlined OpenMP regions (like 'omp for', 'omp simd', 'omp
/// critical' etc.). Helps to generate proper debug info and provides correct
/// code generation for such constructs.
class InlinedOpenMPRegionScopeRAII {
InlinedOpenMPRegionRAII Region;
CodeGenFunction::LexicalScope DirectiveScope;
public:
InlinedOpenMPRegionScopeRAII(CodeGenFunction &CGF,
const OMPExecutableDirective &D)
: Region(CGF, D), DirectiveScope(CGF, D.getSourceRange()) {}
};
} // namespace
/// \brief Emits code for OpenMP 'if' clause using specified \a CodeGen
/// function. Here is the logic:
/// if (Cond) {
/// CodeGen(true);
/// } else {
/// CodeGen(false);
/// }
static void EmitOMPIfClause(CodeGenFunction &CGF, const Expr *Cond,
const std::function<void(bool)> &CodeGen) {
CodeGenFunction::LexicalScope ConditionScope(CGF, Cond->getSourceRange());
// If the condition constant folds and can be elided, try to avoid emitting
// the condition and the dead arm of the if/else.
bool CondConstant;
if (CGF.ConstantFoldsToSimpleInteger(Cond, CondConstant)) {
CodeGen(CondConstant);
return;
}
// Otherwise, the condition did not fold, or we couldn't elide it. Just
// emit the conditional branch.
auto ThenBlock = CGF.createBasicBlock(/*name*/ "omp_if.then");
auto ElseBlock = CGF.createBasicBlock(/*name*/ "omp_if.else");
auto ContBlock = CGF.createBasicBlock(/*name*/ "omp_if.end");
CGF.EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, /*TrueCount*/ 0);
// Emit the 'then' code.
CGF.EmitBlock(ThenBlock);
CodeGen(/*ThenBlock*/ true);
CGF.EmitBranch(ContBlock);
// Emit the 'else' code if present.
{
// There is no need to emit line number for unconditional branch.
auto NL = ApplyDebugLocation::CreateEmpty(CGF);
CGF.EmitBlock(ElseBlock);
}
CodeGen(/*ThenBlock*/ false);
{
// There is no need to emit line number for unconditional branch.
auto NL = ApplyDebugLocation::CreateEmpty(CGF);
CGF.EmitBranch(ContBlock);
}
// Emit the continuation block for code after the if.
CGF.EmitBlock(ContBlock, /*IsFinished*/ true);
}
void CodeGenFunction::EmitOMPAggregateAssign(LValue OriginalAddr,
llvm::Value *PrivateAddr,
const Expr *AssignExpr,
QualType OriginalType,
const VarDecl *VDInit) {
EmitBlock(createBasicBlock(".omp.assign.begin."));
if (!isa<CXXConstructExpr>(AssignExpr) || isTrivialInitializer(AssignExpr)) {
// Perform simple memcpy.
EmitAggregateAssign(PrivateAddr, OriginalAddr.getAddress(),
AssignExpr->getType());
} else {
// Perform element-by-element initialization.
QualType ElementTy;
auto SrcBegin = OriginalAddr.getAddress();
auto DestBegin = PrivateAddr;
auto ArrayTy = OriginalType->getAsArrayTypeUnsafe();
auto SrcNumElements = emitArrayLength(ArrayTy, ElementTy, SrcBegin);
auto DestNumElements = emitArrayLength(ArrayTy, ElementTy, DestBegin);
auto SrcEnd = Builder.CreateGEP(SrcBegin, SrcNumElements);
auto DestEnd = Builder.CreateGEP(DestBegin, DestNumElements);
// The basic structure here is a do-while loop, because we don't
// need to check for the zero-element case.
auto BodyBB = createBasicBlock("omp.arraycpy.body");
auto DoneBB = createBasicBlock("omp.arraycpy.done");
auto IsEmpty =
Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty");
Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
// Enter the loop body, making that address the current address.
auto EntryBB = Builder.GetInsertBlock();
EmitBlock(BodyBB);
auto SrcElementPast = Builder.CreatePHI(SrcBegin->getType(), 2,
"omp.arraycpy.srcElementPast");
SrcElementPast->addIncoming(SrcEnd, EntryBB);
auto DestElementPast = Builder.CreatePHI(DestBegin->getType(), 2,
"omp.arraycpy.destElementPast");
DestElementPast->addIncoming(DestEnd, EntryBB);
// Shift the address back by one element.
auto NegativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
auto DestElement = Builder.CreateGEP(DestElementPast, NegativeOne,
"omp.arraycpy.dest.element");
auto SrcElement = Builder.CreateGEP(SrcElementPast, NegativeOne,
"omp.arraycpy.src.element");
{
// Create RunCleanScope to cleanup possible temps.
CodeGenFunction::RunCleanupsScope Init(*this);
// Emit initialization for single element.
LocalDeclMap[VDInit] = SrcElement;
EmitAnyExprToMem(AssignExpr, DestElement,
AssignExpr->getType().getQualifiers(),
/*IsInitializer*/ false);
LocalDeclMap.erase(VDInit);
}
// Check whether we've reached the end.
auto Done =
Builder.CreateICmpEQ(DestElement, DestBegin, "omp.arraycpy.done");
Builder.CreateCondBr(Done, DoneBB, BodyBB);
DestElementPast->addIncoming(DestElement, Builder.GetInsertBlock());
SrcElementPast->addIncoming(SrcElement, Builder.GetInsertBlock());
// Done.
EmitBlock(DoneBB, true);
}
EmitBlock(createBasicBlock(".omp.assign.end."));
}
void CodeGenFunction::EmitOMPFirstprivateClause(
const OMPExecutableDirective &D,
CodeGenFunction::OMPPrivateScope &PrivateScope) {
auto PrivateFilter = [](const OMPClause *C) -> bool {
return C->getClauseKind() == OMPC_firstprivate;
};
for (OMPExecutableDirective::filtered_clause_iterator<decltype(PrivateFilter)>
I(D.clauses(), PrivateFilter); I; ++I) {
auto *C = cast<OMPFirstprivateClause>(*I);
auto IRef = C->varlist_begin();
auto InitsRef = C->inits().begin();
for (auto IInit : C->private_copies()) {
auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
bool IsRegistered;
if (*InitsRef != nullptr) {
// Emit VarDecl with copy init for arrays.
auto *FD = CapturedStmtInfo->lookup(OrigVD);
LValue Base = MakeNaturalAlignAddrLValue(
CapturedStmtInfo->getContextValue(),
getContext().getTagDeclType(FD->getParent()));
auto OriginalAddr = EmitLValueForField(Base, FD);
auto VDInit = cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl());
IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> llvm::Value * {
auto Emission = EmitAutoVarAlloca(*VD);
// Emit initialization of aggregate firstprivate vars.
EmitOMPAggregateAssign(OriginalAddr, Emission.getAllocatedAddress(),
VD->getInit(), (*IRef)->getType(), VDInit);
EmitAutoVarCleanups(Emission);
return Emission.getAllocatedAddress();
});
} else
IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> llvm::Value * {
// Emit private VarDecl with copy init.
EmitDecl(*VD);
return GetAddrOfLocalVar(VD);
});
assert(IsRegistered && "firstprivate var already registered as private");
// Silence the warning about unused variable.
(void)IsRegistered;
++IRef, ++InitsRef;
}
}
}
void CodeGenFunction::EmitOMPPrivateClause(
const OMPExecutableDirective &D,
CodeGenFunction::OMPPrivateScope &PrivateScope) {
auto PrivateFilter = [](const OMPClause *C) -> bool {
return C->getClauseKind() == OMPC_private;
};
for (OMPExecutableDirective::filtered_clause_iterator<decltype(PrivateFilter)>
I(D.clauses(), PrivateFilter); I; ++I) {
auto *C = cast<OMPPrivateClause>(*I);
auto IRef = C->varlist_begin();
for (auto IInit : C->private_copies()) {
auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
auto VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
bool IsRegistered =
PrivateScope.addPrivate(OrigVD, [&]() -> llvm::Value * {
// Emit private VarDecl with copy init.
EmitDecl(*VD);
return GetAddrOfLocalVar(VD);
});
assert(IsRegistered && "private var already registered as private");
// Silence the warning about unused variable.
(void)IsRegistered;
++IRef;
}
}
}
/// \brief Emits code for OpenMP parallel directive in the parallel region.
static void EmitOMPParallelCall(CodeGenFunction &CGF,
const OMPParallelDirective &S,
llvm::Value *OutlinedFn,
llvm::Value *CapturedStruct) {
if (auto C = S.getSingleClause(/*K*/ OMPC_num_threads)) {
CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
auto NumThreadsClause = cast<OMPNumThreadsClause>(C);
auto NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(),
/*IgnoreResultAssign*/ true);
CGF.CGM.getOpenMPRuntime().emitNumThreadsClause(
CGF, NumThreads, NumThreadsClause->getLocStart());
}
CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getLocStart(), OutlinedFn,
CapturedStruct);
}
void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) {
auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
auto CapturedStruct = GenerateCapturedStmtArgument(*CS);
auto OutlinedFn = CGM.getOpenMPRuntime().emitOutlinedFunction(
S, *CS->getCapturedDecl()->param_begin());
if (auto C = S.getSingleClause(/*K*/ OMPC_if)) {
auto Cond = cast<OMPIfClause>(C)->getCondition();
EmitOMPIfClause(*this, Cond, [&](bool ThenBlock) {
if (ThenBlock)
EmitOMPParallelCall(*this, S, OutlinedFn, CapturedStruct);
else
CGM.getOpenMPRuntime().emitSerialCall(*this, S.getLocStart(),
OutlinedFn, CapturedStruct);
});
} else
EmitOMPParallelCall(*this, S, OutlinedFn, CapturedStruct);
}
void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &S,
bool SeparateIter) {
RunCleanupsScope BodyScope(*this);
// Update counters values on current iteration.
for (auto I : S.updates()) {
EmitIgnoredExpr(I);
}
// Update the linear variables.
for (auto C : OMPExecutableDirective::linear_filter(S.clauses())) {
for (auto U : C->updates()) {
EmitIgnoredExpr(U);
}
}
// On a continue in the body, jump to the end.
auto Continue = getJumpDestInCurrentScope("omp.body.continue");
BreakContinueStack.push_back(BreakContinue(JumpDest(), Continue));
// Emit loop body.
EmitStmt(S.getBody());
// The end (updates/cleanups).
EmitBlock(Continue.getBlock());
BreakContinueStack.pop_back();
if (SeparateIter) {
// TODO: Update lastprivates if the SeparateIter flag is true.
// This will be implemented in a follow-up OMPLastprivateClause patch, but
// result should be still correct without it, as we do not make these
// variables private yet.
}
}
void CodeGenFunction::EmitOMPInnerLoop(const Stmt &S, bool RequiresCleanup,
const Expr *LoopCond,
const Expr *IncExpr,
const std::function<void()> &BodyGen) {
auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end");
auto Cnt = getPGORegionCounter(&S);
// Start the loop with a block that tests the condition.
auto CondBlock = createBasicBlock("omp.inner.for.cond");
EmitBlock(CondBlock);
LoopStack.push(CondBlock);
// If there are any cleanups between here and the loop-exit scope,
// create a block to stage a loop exit along.
auto ExitBlock = LoopExit.getBlock();
if (RequiresCleanup)
ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup");
auto LoopBody = createBasicBlock("omp.inner.for.body");
// Emit condition.
EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, Cnt.getCount());
if (ExitBlock != LoopExit.getBlock()) {
EmitBlock(ExitBlock);
EmitBranchThroughCleanup(LoopExit);
}
EmitBlock(LoopBody);
Cnt.beginRegion(Builder);
// Create a block for the increment.
auto Continue = getJumpDestInCurrentScope("omp.inner.for.inc");
BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
BodyGen();
// Emit "IV = IV + 1" and a back-edge to the condition block.
EmitBlock(Continue.getBlock());
EmitIgnoredExpr(IncExpr);
BreakContinueStack.pop_back();
EmitBranch(CondBlock);
LoopStack.pop();
// Emit the fall-through block.
EmitBlock(LoopExit.getBlock());
}
void CodeGenFunction::EmitOMPSimdFinal(const OMPLoopDirective &S) {
auto IC = S.counters().begin();
for (auto F : S.finals()) {
if (LocalDeclMap.lookup(cast<DeclRefExpr>((*IC))->getDecl())) {
EmitIgnoredExpr(F);
}
++IC;
}
// Emit the final values of the linear variables.
for (auto C : OMPExecutableDirective::linear_filter(S.clauses())) {
for (auto F : C->finals()) {
EmitIgnoredExpr(F);
}
}
}
static void EmitOMPAlignedClause(CodeGenFunction &CGF, CodeGenModule &CGM,
const OMPAlignedClause &Clause) {
unsigned ClauseAlignment = 0;
if (auto AlignmentExpr = Clause.getAlignment()) {
auto AlignmentCI =
cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr));
ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue());
}
for (auto E : Clause.varlists()) {
unsigned Alignment = ClauseAlignment;
if (Alignment == 0) {
// OpenMP [2.8.1, Description]
// If no optional parameter is specified, implementation-defined default
// alignments for SIMD instructions on the target platforms are assumed.
Alignment = CGM.getTargetCodeGenInfo().getOpenMPSimdDefaultAlignment(
E->getType());
}
assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) &&
"alignment is not power of 2");
if (Alignment != 0) {
llvm::Value *PtrValue = CGF.EmitScalarExpr(E);
CGF.EmitAlignmentAssumption(PtrValue, Alignment);
}
}
}
static void EmitPrivateLoopCounters(CodeGenFunction &CGF,
CodeGenFunction::OMPPrivateScope &LoopScope,
ArrayRef<Expr *> Counters) {
for (auto *E : Counters) {
auto VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
bool IsRegistered = LoopScope.addPrivate(VD, [&]() -> llvm::Value * {
// Emit var without initialization.
auto VarEmission = CGF.EmitAutoVarAlloca(*VD);
CGF.EmitAutoVarCleanups(VarEmission);
return VarEmission.getAllocatedAddress();
});
assert(IsRegistered && "counter already registered as private");
// Silence the warning about unused variable.
(void)IsRegistered;
}
}
static void
EmitPrivateLinearVars(CodeGenFunction &CGF, const OMPExecutableDirective &D,
CodeGenFunction::OMPPrivateScope &PrivateScope) {
for (auto Clause : OMPExecutableDirective::linear_filter(D.clauses())) {
for (auto *E : Clause->varlists()) {
auto VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
bool IsRegistered = PrivateScope.addPrivate(VD, [&]()->llvm::Value * {
// Emit var without initialization.
auto VarEmission = CGF.EmitAutoVarAlloca(*VD);
CGF.EmitAutoVarCleanups(VarEmission);
return VarEmission.getAllocatedAddress();
});
assert(IsRegistered && "linear var already registered as private");
// Silence the warning about unused variable.
(void)IsRegistered;
}
}
}
void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) {
// Pragma 'simd' code depends on presence of 'lastprivate'.
// If present, we have to separate last iteration of the loop:
//
// if (LastIteration != 0) {
// for (IV in 0..LastIteration-1) BODY;
// BODY with updates of lastprivate vars;
// <Final counter/linear vars updates>;
// }
//
// otherwise (when there's no lastprivate):
//
// for (IV in 0..LastIteration) BODY;
// <Final counter/linear vars updates>;
//
// Walk clauses and process safelen/lastprivate.
bool SeparateIter = false;
LoopStack.setParallel();
LoopStack.setVectorizerEnable(true);
for (auto C : S.clauses()) {
switch (C->getClauseKind()) {
case OMPC_safelen: {
RValue Len = EmitAnyExpr(cast<OMPSafelenClause>(C)->getSafelen(),
AggValueSlot::ignored(), true);
llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
LoopStack.setVectorizerWidth(Val->getZExtValue());
// In presence of finite 'safelen', it may be unsafe to mark all
// the memory instructions parallel, because loop-carried
// dependences of 'safelen' iterations are possible.
LoopStack.setParallel(false);
break;
}
case OMPC_aligned:
EmitOMPAlignedClause(*this, CGM, cast<OMPAlignedClause>(*C));
break;
case OMPC_lastprivate:
SeparateIter = true;
break;
default:
// Not handled yet
;
}
}
InlinedOpenMPRegionScopeRAII Region(*this, S);
// Emit inits for the linear variables.
for (auto C : OMPExecutableDirective::linear_filter(S.clauses())) {
for (auto Init : C->inits()) {
auto *D = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl());
EmitVarDecl(*D);
}
}
// Emit the loop iteration variable.
const Expr *IVExpr = S.getIterationVariable();
const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
EmitVarDecl(*IVDecl);
EmitIgnoredExpr(S.getInit());
// Emit the iterations count variable.
// If it is not a variable, Sema decided to calculate iterations count on each
// iteration (e.g., it is foldable into a constant).
if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
// Emit calculation of the iterations count.
EmitIgnoredExpr(S.getCalcLastIteration());
}
// Emit the linear steps for the linear clauses.
// If a step is not constant, it is pre-calculated before the loop.
for (auto C : OMPExecutableDirective::linear_filter(S.clauses())) {
if (auto CS = cast_or_null<BinaryOperator>(C->getCalcStep()))
if (auto SaveRef = cast<DeclRefExpr>(CS->getLHS())) {
EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl()));
// Emit calculation of the linear step.
EmitIgnoredExpr(CS);
}
}
if (SeparateIter) {
// Emit: if (LastIteration > 0) - begin.
RegionCounter Cnt = getPGORegionCounter(&S);
auto ThenBlock = createBasicBlock("simd.if.then");
auto ContBlock = createBasicBlock("simd.if.end");
EmitBranchOnBoolExpr(S.getPreCond(), ThenBlock, ContBlock, Cnt.getCount());
EmitBlock(ThenBlock);
Cnt.beginRegion(Builder);
// Emit 'then' code.
{
OMPPrivateScope LoopScope(*this);
EmitPrivateLoopCounters(*this, LoopScope, S.counters());
EmitPrivateLinearVars(*this, S, LoopScope);
EmitOMPPrivateClause(S, LoopScope);
(void)LoopScope.Privatize();
EmitOMPInnerLoop(S, LoopScope.requiresCleanups(),
S.getCond(/*SeparateIter=*/true), S.getInc(),
[&S, this]() {
EmitOMPLoopBody(S);
EmitStopPoint(&S);
});
EmitOMPLoopBody(S, /* SeparateIter */ true);
}
EmitOMPSimdFinal(S);
// Emit: if (LastIteration != 0) - end.
EmitBranch(ContBlock);
EmitBlock(ContBlock, true);
} else {
{
OMPPrivateScope LoopScope(*this);
EmitPrivateLoopCounters(*this, LoopScope, S.counters());
EmitPrivateLinearVars(*this, S, LoopScope);
EmitOMPPrivateClause(S, LoopScope);
(void)LoopScope.Privatize();
EmitOMPInnerLoop(S, LoopScope.requiresCleanups(),
S.getCond(/*SeparateIter=*/false), S.getInc(),
[&S, this]() {
EmitOMPLoopBody(S);
EmitStopPoint(&S);
});
}
EmitOMPSimdFinal(S);
}
}
void CodeGenFunction::EmitOMPForOuterLoop(OpenMPScheduleClauseKind ScheduleKind,
const OMPLoopDirective &S,
OMPPrivateScope &LoopScope,
llvm::Value *LB, llvm::Value *UB,
llvm::Value *ST, llvm::Value *IL,
llvm::Value *Chunk) {
auto &RT = CGM.getOpenMPRuntime();
// Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime).
const bool Dynamic = RT.isDynamic(ScheduleKind);
assert(!RT.isStaticNonchunked(ScheduleKind, /* Chunked */ Chunk != nullptr) &&
"static non-chunked schedule does not need outer loop");
// Emit outer loop.
//
// OpenMP [2.7.1, Loop Construct, Description, table 2-1]
// When schedule(dynamic,chunk_size) is specified, the iterations are
// distributed to threads in the team in chunks as the threads request them.
// Each thread executes a chunk of iterations, then requests another chunk,
// until no chunks remain to be distributed. Each chunk contains chunk_size
// iterations, except for the last chunk to be distributed, which may have
// fewer iterations. When no chunk_size is specified, it defaults to 1.
//
// When schedule(guided,chunk_size) is specified, the iterations are assigned
// to threads in the team in chunks as the executing threads request them.
// Each thread executes a chunk of iterations, then requests another chunk,
// until no chunks remain to be assigned. For a chunk_size of 1, the size of
// each chunk is proportional to the number of unassigned iterations divided
// by the number of threads in the team, decreasing to 1. For a chunk_size
// with value k (greater than 1), the size of each chunk is determined in the
// same way, with the restriction that the chunks do not contain fewer than k
// iterations (except for the last chunk to be assigned, which may have fewer
// than k iterations).
//
// When schedule(auto) is specified, the decision regarding scheduling is
// delegated to the compiler and/or runtime system. The programmer gives the
// implementation the freedom to choose any possible mapping of iterations to
// threads in the team.
//
// When schedule(runtime) is specified, the decision regarding scheduling is
// deferred until run time, and the schedule and chunk size are taken from the
// run-sched-var ICV. If the ICV is set to auto, the schedule is
// implementation defined
//
// while(__kmpc_dispatch_next(&LB, &UB)) {
// idx = LB;
// while (idx <= UB) { BODY; ++idx; } // inner loop
// }
//
// OpenMP [2.7.1, Loop Construct, Description, table 2-1]
// When schedule(static, chunk_size) is specified, iterations are divided into
// chunks of size chunk_size, and the chunks are assigned to the threads in
// the team in a round-robin fashion in the order of the thread number.
//
// while(UB = min(UB, GlobalUB), idx = LB, idx < UB) {
// while (idx <= UB) { BODY; ++idx; } // inner loop
// LB = LB + ST;
// UB = UB + ST;
// }
//
const Expr *IVExpr = S.getIterationVariable();
const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
RT.emitForInit(
*this, S.getLocStart(), ScheduleKind, IVSize, IVSigned, IL, LB,
(Dynamic ? EmitAnyExpr(S.getLastIteration()).getScalarVal() : UB), ST,
Chunk);
auto LoopExit = getJumpDestInCurrentScope("omp.dispatch.end");
// Start the loop with a block that tests the condition.
auto CondBlock = createBasicBlock("omp.dispatch.cond");
EmitBlock(CondBlock);
LoopStack.push(CondBlock);
llvm::Value *BoolCondVal = nullptr;
if (!Dynamic) {
// UB = min(UB, GlobalUB)
EmitIgnoredExpr(S.getEnsureUpperBound());
// IV = LB
EmitIgnoredExpr(S.getInit());
// IV < UB
BoolCondVal = EvaluateExprAsBool(S.getCond(false));
} else {
BoolCondVal = RT.emitForNext(*this, S.getLocStart(), IVSize, IVSigned,
IL, LB, UB, ST);
}
// If there are any cleanups between here and the loop-exit scope,
// create a block to stage a loop exit along.
auto ExitBlock = LoopExit.getBlock();
if (LoopScope.requiresCleanups())
ExitBlock = createBasicBlock("omp.dispatch.cleanup");
auto LoopBody = createBasicBlock("omp.dispatch.body");
Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
if (ExitBlock != LoopExit.getBlock()) {
EmitBlock(ExitBlock);
EmitBranchThroughCleanup(LoopExit);
}
EmitBlock(LoopBody);
// Emit "IV = LB" (in case of static schedule, we have already calculated new
// LB for loop condition and emitted it above).
if (Dynamic)
EmitIgnoredExpr(S.getInit());
// Create a block for the increment.
auto Continue = getJumpDestInCurrentScope("omp.dispatch.inc");
BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
EmitOMPInnerLoop(S, LoopScope.requiresCleanups(),
S.getCond(/*SeparateIter=*/false), S.getInc(), [&S, this]() {
EmitOMPLoopBody(S);
EmitStopPoint(&S);
});
EmitBlock(Continue.getBlock());
BreakContinueStack.pop_back();
if (!Dynamic) {
// Emit "LB = LB + Stride", "UB = UB + Stride".
EmitIgnoredExpr(S.getNextLowerBound());
EmitIgnoredExpr(S.getNextUpperBound());
}
EmitBranch(CondBlock);
LoopStack.pop();
// Emit the fall-through block.
EmitBlock(LoopExit.getBlock());
// Tell the runtime we are done.
// FIXME: Also call fini for ordered loops with dynamic scheduling.
if (!Dynamic)
RT.emitForFinish(*this, S.getLocStart(), ScheduleKind);
}
/// \brief Emit a helper variable and return corresponding lvalue.
static LValue EmitOMPHelperVar(CodeGenFunction &CGF,
const DeclRefExpr *Helper) {
auto VDecl = cast<VarDecl>(Helper->getDecl());
CGF.EmitVarDecl(*VDecl);
return CGF.EmitLValue(Helper);
}
void CodeGenFunction::EmitOMPWorksharingLoop(const OMPLoopDirective &S) {
// Emit the loop iteration variable.
auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
auto IVDecl = cast<VarDecl>(IVExpr->getDecl());
EmitVarDecl(*IVDecl);
// Emit the iterations count variable.
// If it is not a variable, Sema decided to calculate iterations count on each
// iteration (e.g., it is foldable into a constant).
if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
// Emit calculation of the iterations count.
EmitIgnoredExpr(S.getCalcLastIteration());
}
auto &RT = CGM.getOpenMPRuntime();
// Check pre-condition.
{
// Skip the entire loop if we don't meet the precondition.
RegionCounter Cnt = getPGORegionCounter(&S);
auto ThenBlock = createBasicBlock("omp.precond.then");
auto ContBlock = createBasicBlock("omp.precond.end");
EmitBranchOnBoolExpr(S.getPreCond(), ThenBlock, ContBlock, Cnt.getCount());
EmitBlock(ThenBlock);
Cnt.beginRegion(Builder);
// Emit 'then' code.
{
// Emit helper vars inits.
LValue LB =
EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getLowerBoundVariable()));
LValue UB =
EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getUpperBoundVariable()));
LValue ST =
EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
LValue IL =
EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
OMPPrivateScope LoopScope(*this);
EmitPrivateLoopCounters(*this, LoopScope, S.counters());
(void)LoopScope.Privatize();
// Detect the loop schedule kind and chunk.
auto ScheduleKind = OMPC_SCHEDULE_unknown;
llvm::Value *Chunk = nullptr;
if (auto C = cast_or_null<OMPScheduleClause>(
S.getSingleClause(OMPC_schedule))) {
ScheduleKind = C->getScheduleKind();
if (auto Ch = C->getChunkSize()) {
Chunk = EmitScalarExpr(Ch);
Chunk = EmitScalarConversion(Chunk, Ch->getType(),
S.getIterationVariable()->getType());
}
}
const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
if (RT.isStaticNonchunked(ScheduleKind,
/* Chunked */ Chunk != nullptr)) {
// OpenMP [2.7.1, Loop Construct, Description, table 2-1]
// When no chunk_size is specified, the iteration space is divided into
// chunks that are approximately equal in size, and at most one chunk is
// distributed to each thread. Note that the size of the chunks is
// unspecified in this case.
RT.emitForInit(*this, S.getLocStart(), ScheduleKind, IVSize, IVSigned,
IL.getAddress(), LB.getAddress(), UB.getAddress(),
ST.getAddress());
// UB = min(UB, GlobalUB);
EmitIgnoredExpr(S.getEnsureUpperBound());
// IV = LB;
EmitIgnoredExpr(S.getInit());
// while (idx <= UB) { BODY; ++idx; }
EmitOMPInnerLoop(S, LoopScope.requiresCleanups(),
S.getCond(/*SeparateIter=*/false), S.getInc(),
[&S, this]() {
EmitOMPLoopBody(S);
EmitStopPoint(&S);
});
// Tell the runtime we are done.
RT.emitForFinish(*this, S.getLocStart(), ScheduleKind);
} else {
// Emit the outer loop, which requests its work chunk [LB..UB] from
// runtime and runs the inner loop to process it.
EmitOMPForOuterLoop(ScheduleKind, S, LoopScope, LB.getAddress(),
UB.getAddress(), ST.getAddress(), IL.getAddress(),
Chunk);
}
}
// We're now done with the loop, so jump to the continuation block.
EmitBranch(ContBlock);
EmitBlock(ContBlock, true);
}
}
void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) {
InlinedOpenMPRegionScopeRAII Region(*this, S);
EmitOMPWorksharingLoop(S);
// Emit an implicit barrier at the end.
CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(),
/*IsExplicit*/ false);
}
void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &) {
llvm_unreachable("CodeGen for 'omp for simd' is not supported yet.");
}
static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty,
const Twine &Name,
llvm::Value *Init = nullptr) {
auto LVal = CGF.MakeNaturalAlignAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty);
if (Init)
CGF.EmitScalarInit(Init, LVal);
return LVal;
}
void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) {
InlinedOpenMPRegionScopeRAII Region(*this, S);
auto *Stmt = cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt();
auto *CS = dyn_cast<CompoundStmt>(Stmt);
if (CS && CS->size() > 1) {
auto &C = CGM.getContext();
auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
// Emit helper vars inits.
LValue LB = createSectionLVal(*this, KmpInt32Ty, ".omp.sections.lb.",
Builder.getInt32(0));
auto *GlobalUBVal = Builder.getInt32(CS->size() - 1);
LValue UB =
createSectionLVal(*this, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal);
LValue ST = createSectionLVal(*this, KmpInt32Ty, ".omp.sections.st.",
Builder.getInt32(1));
LValue IL = createSectionLVal(*this, KmpInt32Ty, ".omp.sections.il.",
Builder.getInt32(0));
// Loop counter.
LValue IV = createSectionLVal(*this, KmpInt32Ty, ".omp.sections.iv.");
OpaqueValueExpr IVRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue);
OpaqueValueMapping OpaqueIV(*this, &IVRefExpr, IV);
OpaqueValueExpr UBRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue);
OpaqueValueMapping OpaqueUB(*this, &UBRefExpr, UB);
// Generate condition for loop.
BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue,
OK_Ordinary, S.getLocStart(), /*fpContractable=*/false);
// Increment for loop counter.
UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary,
S.getLocStart());
auto BodyGen = [this, CS, &S, &IV]() {
// Iterate through all sections and emit a switch construct:
// switch (IV) {
// case 0:
// <SectionStmt[0]>;
// break;
// ...
// case <NumSection> - 1:
// <SectionStmt[<NumSection> - 1]>;
// break;
// }
// .omp.sections.exit:
auto *ExitBB = createBasicBlock(".omp.sections.exit");
auto *SwitchStmt = Builder.CreateSwitch(
EmitLoadOfLValue(IV, S.getLocStart()).getScalarVal(), ExitBB,
CS->size());
unsigned CaseNumber = 0;
for (auto C = CS->children(); C; ++C, ++CaseNumber) {
auto CaseBB = createBasicBlock(".omp.sections.case");
EmitBlock(CaseBB);
SwitchStmt->addCase(Builder.getInt32(CaseNumber), CaseBB);
EmitStmt(*C);
EmitBranch(ExitBB);
}
EmitBlock(ExitBB, /*IsFinished=*/true);
};
// Emit static non-chunked loop.
CGM.getOpenMPRuntime().emitForInit(
*this, S.getLocStart(), OMPC_SCHEDULE_static, /*IVSize=*/32,
/*IVSigned=*/true, IL.getAddress(), LB.getAddress(), UB.getAddress(),
ST.getAddress());
// UB = min(UB, GlobalUB);
auto *UBVal = EmitLoadOfScalar(UB, S.getLocStart());
auto *MinUBGlobalUB = Builder.CreateSelect(
Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal);
EmitStoreOfScalar(MinUBGlobalUB, UB);
// IV = LB;
EmitStoreOfScalar(EmitLoadOfScalar(LB, S.getLocStart()), IV);
// while (idx <= UB) { BODY; ++idx; }
EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen);
// Tell the runtime we are done.
CGM.getOpenMPRuntime().emitForFinish(*this, S.getLocStart(),
OMPC_SCHEDULE_static);
} else {
// If only one section is found - no need to generate loop, emit as a single
// region.
CGM.getOpenMPRuntime().emitSingleRegion(*this, [&]() -> void {
InlinedOpenMPRegionScopeRAII Region(*this, S);
EmitStmt(Stmt);
EnsureInsertPoint();
}, S.getLocStart(), llvm::None, llvm::None, llvm::None, llvm::None);
}
// Emit an implicit barrier at the end.
if (!S.getSingleClause(OMPC_nowait))
CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(),
/*IsExplicit=*/false);
}
void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) {
InlinedOpenMPRegionScopeRAII Region(*this, S);
EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
EnsureInsertPoint();
}
void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) {
llvm::SmallVector<const Expr *, 8> CopyprivateVars;
llvm::SmallVector<const Expr *, 8> SrcExprs;
llvm::SmallVector<const Expr *, 8> DstExprs;
llvm::SmallVector<const Expr *, 8> AssignmentOps;
// Check if there are any 'copyprivate' clauses associated with this 'single'
// construct.
auto CopyprivateFilter = [](const OMPClause *C) -> bool {
return C->getClauseKind() == OMPC_copyprivate;
};
// Build a list of copyprivate variables along with helper expressions
// (<source>, <destination>, <destination>=<source> expressions)
typedef OMPExecutableDirective::filtered_clause_iterator<decltype(
CopyprivateFilter)> CopyprivateIter;
for (CopyprivateIter I(S.clauses(), CopyprivateFilter); I; ++I) {
auto *C = cast<OMPCopyprivateClause>(*I);
CopyprivateVars.append(C->varlists().begin(), C->varlists().end());
SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end());
DstExprs.append(C->destination_exprs().begin(),
C->destination_exprs().end());
AssignmentOps.append(C->assignment_ops().begin(),
C->assignment_ops().end());
}
// Emit code for 'single' region along with 'copyprivate' clauses
CGM.getOpenMPRuntime().emitSingleRegion(*this, [&]() -> void {
InlinedOpenMPRegionScopeRAII Region(*this, S);
EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
EnsureInsertPoint();
}, S.getLocStart(), CopyprivateVars, SrcExprs, DstExprs, AssignmentOps);
// Emit an implicit barrier at the end.
if (!S.getSingleClause(OMPC_nowait))
CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(),
/*IsExplicit=*/false);
}
void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) {
CGM.getOpenMPRuntime().emitMasterRegion(*this, [&]() -> void {
InlinedOpenMPRegionScopeRAII Region(*this, S);
EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
EnsureInsertPoint();
}, S.getLocStart());
}
void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) {
CGM.getOpenMPRuntime().emitCriticalRegion(
*this, S.getDirectiveName().getAsString(), [&]() -> void {
InlinedOpenMPRegionScopeRAII Region(*this, S);
EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
EnsureInsertPoint();
}, S.getLocStart());
}
void
CodeGenFunction::EmitOMPParallelForDirective(const OMPParallelForDirective &) {
llvm_unreachable("CodeGen for 'omp parallel for' is not supported yet.");
}
void CodeGenFunction::EmitOMPParallelForSimdDirective(
const OMPParallelForSimdDirective &) {
llvm_unreachable("CodeGen for 'omp parallel for simd' is not supported yet.");
}
void CodeGenFunction::EmitOMPParallelSectionsDirective(
const OMPParallelSectionsDirective &) {
llvm_unreachable("CodeGen for 'omp parallel sections' is not supported yet.");
}
void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) {
// Emit outlined function for task construct.
auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
auto CapturedStruct = GenerateCapturedStmtArgument(*CS);
auto *I = CS->getCapturedDecl()->param_begin();
// The first function argument for tasks is a thread id, the second one is a
// part id (0 for tied tasks, >=0 for untied task).
auto OutlinedFn =
CGM.getOpenMPRuntime().emitTaskOutlinedFunction(S, *I, *std::next(I));
// Check if we should emit tied or untied task.
bool Tied = !S.getSingleClause(OMPC_untied);
// Check if the task is final
llvm::PointerIntPair<llvm::Value *, 1, bool> Final;
if (auto *Clause = S.getSingleClause(OMPC_final)) {
// If the condition constant folds and can be elided, try to avoid emitting
// the condition and the dead arm of the if/else.
auto *Cond = cast<OMPFinalClause>(Clause)->getCondition();
bool CondConstant;
if (ConstantFoldsToSimpleInteger(Cond, CondConstant))
Final.setInt(CondConstant);
else
Final.setPointer(EvaluateExprAsBool(Cond));
} else {
// By default the task is not final.
Final.setInt(/*IntVal=*/false);
}
auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
CGM.getOpenMPRuntime().emitTaskCall(*this, S.getLocStart(), Tied, Final,
OutlinedFn, SharedsTy, CapturedStruct);
}
void CodeGenFunction::EmitOMPTaskyieldDirective(
const OMPTaskyieldDirective &S) {
CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getLocStart());
}
void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) {
CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart());
}
void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &) {
llvm_unreachable("CodeGen for 'omp taskwait' is not supported yet.");
}
void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) {
CGM.getOpenMPRuntime().emitFlush(*this, [&]() -> ArrayRef<const Expr *> {
if (auto C = S.getSingleClause(/*K*/ OMPC_flush)) {
auto FlushClause = cast<OMPFlushClause>(C);
return llvm::makeArrayRef(FlushClause->varlist_begin(),
FlushClause->varlist_end());
}
return llvm::None;
}(), S.getLocStart());
}
void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &) {
llvm_unreachable("CodeGen for 'omp ordered' is not supported yet.");
}
static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val,
QualType SrcType, QualType DestType) {
assert(CGF.hasScalarEvaluationKind(DestType) &&
"DestType must have scalar evaluation kind.");
assert(!Val.isAggregate() && "Must be a scalar or complex.");
return Val.isScalar()
? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestType)
: CGF.EmitComplexToScalarConversion(Val.getComplexVal(), SrcType,
DestType);
}
static CodeGenFunction::ComplexPairTy
convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType,
QualType DestType) {
assert(CGF.getEvaluationKind(DestType) == TEK_Complex &&
"DestType must have complex evaluation kind.");
CodeGenFunction::ComplexPairTy ComplexVal;
if (Val.isScalar()) {
// Convert the input element to the element type of the complex.
auto DestElementType = DestType->castAs<ComplexType>()->getElementType();
auto ScalarVal =
CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestElementType);
ComplexVal = CodeGenFunction::ComplexPairTy(
ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType()));
} else {
assert(Val.isComplex() && "Must be a scalar or complex.");
auto SrcElementType = SrcType->castAs<ComplexType>()->getElementType();
auto DestElementType = DestType->castAs<ComplexType>()->getElementType();
ComplexVal.first = CGF.EmitScalarConversion(
Val.getComplexVal().first, SrcElementType, DestElementType);
ComplexVal.second = CGF.EmitScalarConversion(
Val.getComplexVal().second, SrcElementType, DestElementType);
}
return ComplexVal;
}
static void EmitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst,
const Expr *X, const Expr *V,
SourceLocation Loc) {
// v = x;
assert(V->isLValue() && "V of 'omp atomic read' is not lvalue");
assert(X->isLValue() && "X of 'omp atomic read' is not lvalue");
LValue XLValue = CGF.EmitLValue(X);
LValue VLValue = CGF.EmitLValue(V);
RValue Res = XLValue.isGlobalReg()
? CGF.EmitLoadOfLValue(XLValue, Loc)
: CGF.EmitAtomicLoad(XLValue, Loc,
IsSeqCst ? llvm::SequentiallyConsistent
: llvm::Monotonic,
XLValue.isVolatile());
// OpenMP, 2.12.6, atomic Construct
// Any atomic construct with a seq_cst clause forces the atomically
// performed operation to include an implicit flush operation without a
// list.
if (IsSeqCst)
CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
switch (CGF.getEvaluationKind(V->getType())) {
case TEK_Scalar:
CGF.EmitStoreOfScalar(
convertToScalarValue(CGF, Res, X->getType(), V->getType()), VLValue);
break;
case TEK_Complex:
CGF.EmitStoreOfComplex(
convertToComplexValue(CGF, Res, X->getType(), V->getType()), VLValue,
/*isInit=*/false);
break;
case TEK_Aggregate:
llvm_unreachable("Must be a scalar or complex.");
}
}
static void EmitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst,
const Expr *X, const Expr *E,
SourceLocation Loc) {
// x = expr;
assert(X->isLValue() && "X of 'omp atomic write' is not lvalue");
LValue XLValue = CGF.EmitLValue(X);
RValue ExprRValue = CGF.EmitAnyExpr(E);
if (XLValue.isGlobalReg())
CGF.EmitStoreThroughGlobalRegLValue(ExprRValue, XLValue);
else
CGF.EmitAtomicStore(ExprRValue, XLValue,
IsSeqCst ? llvm::SequentiallyConsistent
: llvm::Monotonic,
XLValue.isVolatile(), /*IsInit=*/false);
// OpenMP, 2.12.6, atomic Construct
// Any atomic construct with a seq_cst clause forces the atomically
// performed operation to include an implicit flush operation without a
// list.
if (IsSeqCst)
CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
}
static void EmitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind,
bool IsSeqCst, const Expr *X, const Expr *V,
const Expr *E, SourceLocation Loc) {
switch (Kind) {
case OMPC_read:
EmitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc);
break;
case OMPC_write:
EmitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc);
break;
case OMPC_update:
case OMPC_capture:
llvm_unreachable("CodeGen for 'omp atomic clause' is not supported yet.");
case OMPC_if:
case OMPC_final:
case OMPC_num_threads:
case OMPC_private:
case OMPC_firstprivate:
case OMPC_lastprivate:
case OMPC_reduction:
case OMPC_safelen:
case OMPC_collapse:
case OMPC_default:
case OMPC_seq_cst:
case OMPC_shared:
case OMPC_linear:
case OMPC_aligned:
case OMPC_copyin:
case OMPC_copyprivate:
case OMPC_flush:
case OMPC_proc_bind:
case OMPC_schedule:
case OMPC_ordered:
case OMPC_nowait:
case OMPC_untied:
case OMPC_threadprivate:
case OMPC_mergeable:
case OMPC_unknown:
llvm_unreachable("Clause is not allowed in 'omp atomic'.");
}
}
void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) {
bool IsSeqCst = S.getSingleClause(/*K=*/OMPC_seq_cst);
OpenMPClauseKind Kind = OMPC_unknown;
for (auto *C : S.clauses()) {
// Find first clause (skip seq_cst clause, if it is first).
if (C->getClauseKind() != OMPC_seq_cst) {
Kind = C->getClauseKind();
break;
}
}
const auto *CS =
S.getAssociatedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
if (const auto *EWC = dyn_cast<ExprWithCleanups>(CS))
enterFullExpression(EWC);
InlinedOpenMPRegionScopeRAII Region(*this, S);
EmitOMPAtomicExpr(*this, Kind, IsSeqCst, S.getX(), S.getV(), S.getExpr(),
S.getLocStart());
}
void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &) {
llvm_unreachable("CodeGen for 'omp target' is not supported yet.");
}
void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &) {
llvm_unreachable("CodeGen for 'omp teams' is not supported yet.");
}