| //===--- DeclCXX.cpp - C++ Declaration AST Node Implementation ------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the C++ related Decl classes. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/ASTMutationListener.h" |
| #include "clang/AST/CXXInheritance.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/TypeLoc.h" |
| #include "clang/Basic/IdentifierTable.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| using namespace clang; |
| |
| //===----------------------------------------------------------------------===// |
| // Decl Allocation/Deallocation Method Implementations |
| //===----------------------------------------------------------------------===// |
| |
| void AccessSpecDecl::anchor() { } |
| |
| AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) { |
| void *Mem = AllocateDeserializedDecl(C, ID, sizeof(AccessSpecDecl)); |
| return new (Mem) AccessSpecDecl(EmptyShell()); |
| } |
| |
| |
| CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D) |
| : UserDeclaredConstructor(false), UserDeclaredCopyConstructor(false), |
| UserDeclaredMoveConstructor(false), UserDeclaredCopyAssignment(false), |
| UserDeclaredMoveAssignment(false), UserDeclaredDestructor(false), |
| Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false), |
| Abstract(false), IsStandardLayout(true), HasNoNonEmptyBases(true), |
| HasPrivateFields(false), HasProtectedFields(false), HasPublicFields(false), |
| HasMutableFields(false), HasOnlyCMembers(true), |
| HasTrivialDefaultConstructor(true), |
| HasConstexprNonCopyMoveConstructor(false), |
| DefaultedDefaultConstructorIsConstexpr(true), |
| DefaultedCopyConstructorIsConstexpr(true), |
| DefaultedMoveConstructorIsConstexpr(true), |
| HasConstexprDefaultConstructor(false), HasConstexprCopyConstructor(false), |
| HasConstexprMoveConstructor(false), HasTrivialCopyConstructor(true), |
| HasTrivialMoveConstructor(true), HasTrivialCopyAssignment(true), |
| HasTrivialMoveAssignment(true), HasTrivialDestructor(true), |
| HasNonLiteralTypeFieldsOrBases(false), ComputedVisibleConversions(false), |
| UserProvidedDefaultConstructor(false), DeclaredDefaultConstructor(false), |
| DeclaredCopyConstructor(false), DeclaredMoveConstructor(false), |
| DeclaredCopyAssignment(false), DeclaredMoveAssignment(false), |
| DeclaredDestructor(false), FailedImplicitMoveConstructor(false), |
| FailedImplicitMoveAssignment(false), IsLambda(false), NumBases(0), |
| NumVBases(0), Bases(), VBases(), Definition(D), FirstFriend(0) { |
| } |
| |
| CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, DeclContext *DC, |
| SourceLocation StartLoc, SourceLocation IdLoc, |
| IdentifierInfo *Id, CXXRecordDecl *PrevDecl) |
| : RecordDecl(K, TK, DC, StartLoc, IdLoc, Id, PrevDecl), |
| DefinitionData(PrevDecl ? PrevDecl->DefinitionData : 0), |
| TemplateOrInstantiation() { } |
| |
| CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK, |
| DeclContext *DC, SourceLocation StartLoc, |
| SourceLocation IdLoc, IdentifierInfo *Id, |
| CXXRecordDecl* PrevDecl, |
| bool DelayTypeCreation) { |
| CXXRecordDecl* R = new (C) CXXRecordDecl(CXXRecord, TK, DC, StartLoc, IdLoc, |
| Id, PrevDecl); |
| |
| // FIXME: DelayTypeCreation seems like such a hack |
| if (!DelayTypeCreation) |
| C.getTypeDeclType(R, PrevDecl); |
| return R; |
| } |
| |
| CXXRecordDecl * |
| CXXRecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) { |
| void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXRecordDecl)); |
| return new (Mem) CXXRecordDecl(CXXRecord, TTK_Struct, 0, SourceLocation(), |
| SourceLocation(), 0, 0); |
| } |
| |
| void |
| CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases, |
| unsigned NumBases) { |
| ASTContext &C = getASTContext(); |
| |
| if (!data().Bases.isOffset() && data().NumBases > 0) |
| C.Deallocate(data().getBases()); |
| |
| if (NumBases) { |
| // C++ [dcl.init.aggr]p1: |
| // An aggregate is [...] a class with [...] no base classes [...]. |
| data().Aggregate = false; |
| |
| // C++ [class]p4: |
| // A POD-struct is an aggregate class... |
| data().PlainOldData = false; |
| } |
| |
| // The set of seen virtual base types. |
| llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes; |
| |
| // The virtual bases of this class. |
| SmallVector<const CXXBaseSpecifier *, 8> VBases; |
| |
| data().Bases = new(C) CXXBaseSpecifier [NumBases]; |
| data().NumBases = NumBases; |
| for (unsigned i = 0; i < NumBases; ++i) { |
| data().getBases()[i] = *Bases[i]; |
| // Keep track of inherited vbases for this base class. |
| const CXXBaseSpecifier *Base = Bases[i]; |
| QualType BaseType = Base->getType(); |
| // Skip dependent types; we can't do any checking on them now. |
| if (BaseType->isDependentType()) |
| continue; |
| CXXRecordDecl *BaseClassDecl |
| = cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()); |
| |
| // A class with a non-empty base class is not empty. |
| // FIXME: Standard ref? |
| if (!BaseClassDecl->isEmpty()) { |
| if (!data().Empty) { |
| // C++0x [class]p7: |
| // A standard-layout class is a class that: |
| // [...] |
| // -- either has no non-static data members in the most derived |
| // class and at most one base class with non-static data members, |
| // or has no base classes with non-static data members, and |
| // If this is the second non-empty base, then neither of these two |
| // clauses can be true. |
| data().IsStandardLayout = false; |
| } |
| |
| data().Empty = false; |
| data().HasNoNonEmptyBases = false; |
| } |
| |
| // C++ [class.virtual]p1: |
| // A class that declares or inherits a virtual function is called a |
| // polymorphic class. |
| if (BaseClassDecl->isPolymorphic()) |
| data().Polymorphic = true; |
| |
| // C++0x [class]p7: |
| // A standard-layout class is a class that: [...] |
| // -- has no non-standard-layout base classes |
| if (!BaseClassDecl->isStandardLayout()) |
| data().IsStandardLayout = false; |
| |
| // Record if this base is the first non-literal field or base. |
| if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType()) |
| data().HasNonLiteralTypeFieldsOrBases = true; |
| |
| // Now go through all virtual bases of this base and add them. |
| for (CXXRecordDecl::base_class_iterator VBase = |
| BaseClassDecl->vbases_begin(), |
| E = BaseClassDecl->vbases_end(); VBase != E; ++VBase) { |
| // Add this base if it's not already in the list. |
| if (SeenVBaseTypes.insert(C.getCanonicalType(VBase->getType()))) |
| VBases.push_back(VBase); |
| } |
| |
| if (Base->isVirtual()) { |
| // Add this base if it's not already in the list. |
| if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType))) |
| VBases.push_back(Base); |
| |
| // C++0x [meta.unary.prop] is_empty: |
| // T is a class type, but not a union type, with ... no virtual base |
| // classes |
| data().Empty = false; |
| |
| // C++ [class.ctor]p5: |
| // A default constructor is trivial [...] if: |
| // -- its class has [...] no virtual bases |
| data().HasTrivialDefaultConstructor = false; |
| |
| // C++0x [class.copy]p13: |
| // A copy/move constructor for class X is trivial if it is neither |
| // user-provided nor deleted and if |
| // -- class X has no virtual functions and no virtual base classes, and |
| data().HasTrivialCopyConstructor = false; |
| data().HasTrivialMoveConstructor = false; |
| |
| // C++0x [class.copy]p27: |
| // A copy/move assignment operator for class X is trivial if it is |
| // neither user-provided nor deleted and if |
| // -- class X has no virtual functions and no virtual base classes, and |
| data().HasTrivialCopyAssignment = false; |
| data().HasTrivialMoveAssignment = false; |
| |
| // C++0x [class]p7: |
| // A standard-layout class is a class that: [...] |
| // -- has [...] no virtual base classes |
| data().IsStandardLayout = false; |
| |
| // C++11 [dcl.constexpr]p4: |
| // In the definition of a constexpr constructor [...] |
| // -- the class shall not have any virtual base classes |
| data().DefaultedDefaultConstructorIsConstexpr = false; |
| data().DefaultedCopyConstructorIsConstexpr = false; |
| data().DefaultedMoveConstructorIsConstexpr = false; |
| } else { |
| // C++ [class.ctor]p5: |
| // A default constructor is trivial [...] if: |
| // -- all the direct base classes of its class have trivial default |
| // constructors. |
| if (!BaseClassDecl->hasTrivialDefaultConstructor()) |
| data().HasTrivialDefaultConstructor = false; |
| |
| // C++0x [class.copy]p13: |
| // A copy/move constructor for class X is trivial if [...] |
| // [...] |
| // -- the constructor selected to copy/move each direct base class |
| // subobject is trivial, and |
| // FIXME: C++0x: We need to only consider the selected constructor |
| // instead of all of them. |
| if (!BaseClassDecl->hasTrivialCopyConstructor()) |
| data().HasTrivialCopyConstructor = false; |
| if (!BaseClassDecl->hasTrivialMoveConstructor()) |
| data().HasTrivialMoveConstructor = false; |
| |
| // C++0x [class.copy]p27: |
| // A copy/move assignment operator for class X is trivial if [...] |
| // [...] |
| // -- the assignment operator selected to copy/move each direct base |
| // class subobject is trivial, and |
| // FIXME: C++0x: We need to only consider the selected operator instead |
| // of all of them. |
| if (!BaseClassDecl->hasTrivialCopyAssignment()) |
| data().HasTrivialCopyAssignment = false; |
| if (!BaseClassDecl->hasTrivialMoveAssignment()) |
| data().HasTrivialMoveAssignment = false; |
| |
| // C++11 [class.ctor]p6: |
| // If that user-written default constructor would satisfy the |
| // requirements of a constexpr constructor, the implicitly-defined |
| // default constructor is constexpr. |
| if (!BaseClassDecl->hasConstexprDefaultConstructor()) |
| data().DefaultedDefaultConstructorIsConstexpr = false; |
| |
| // C++11 [class.copy]p13: |
| // If the implicitly-defined constructor would satisfy the requirements |
| // of a constexpr constructor, the implicitly-defined constructor is |
| // constexpr. |
| // C++11 [dcl.constexpr]p4: |
| // -- every constructor involved in initializing [...] base class |
| // sub-objects shall be a constexpr constructor |
| if (!BaseClassDecl->hasConstexprCopyConstructor()) |
| data().DefaultedCopyConstructorIsConstexpr = false; |
| if (BaseClassDecl->hasDeclaredMoveConstructor() || |
| BaseClassDecl->needsImplicitMoveConstructor()) |
| // FIXME: If the implicit move constructor generated for the base class |
| // would be ill-formed, the implicit move constructor generated for the |
| // derived class calls the base class' copy constructor. |
| data().DefaultedMoveConstructorIsConstexpr &= |
| BaseClassDecl->hasConstexprMoveConstructor(); |
| else if (!BaseClassDecl->hasConstexprCopyConstructor()) |
| data().DefaultedMoveConstructorIsConstexpr = false; |
| } |
| |
| // C++ [class.ctor]p3: |
| // A destructor is trivial if all the direct base classes of its class |
| // have trivial destructors. |
| if (!BaseClassDecl->hasTrivialDestructor()) |
| data().HasTrivialDestructor = false; |
| |
| // A class has an Objective-C object member if... or any of its bases |
| // has an Objective-C object member. |
| if (BaseClassDecl->hasObjectMember()) |
| setHasObjectMember(true); |
| |
| // Keep track of the presence of mutable fields. |
| if (BaseClassDecl->hasMutableFields()) |
| data().HasMutableFields = true; |
| } |
| |
| if (VBases.empty()) |
| return; |
| |
| // Create base specifier for any direct or indirect virtual bases. |
| data().VBases = new (C) CXXBaseSpecifier[VBases.size()]; |
| data().NumVBases = VBases.size(); |
| for (int I = 0, E = VBases.size(); I != E; ++I) |
| data().getVBases()[I] = *VBases[I]; |
| } |
| |
| /// Callback function for CXXRecordDecl::forallBases that acknowledges |
| /// that it saw a base class. |
| static bool SawBase(const CXXRecordDecl *, void *) { |
| return true; |
| } |
| |
| bool CXXRecordDecl::hasAnyDependentBases() const { |
| if (!isDependentContext()) |
| return false; |
| |
| return !forallBases(SawBase, 0); |
| } |
| |
| bool CXXRecordDecl::hasConstCopyConstructor() const { |
| return getCopyConstructor(Qualifiers::Const) != 0; |
| } |
| |
| bool CXXRecordDecl::isTriviallyCopyable() const { |
| // C++0x [class]p5: |
| // A trivially copyable class is a class that: |
| // -- has no non-trivial copy constructors, |
| if (!hasTrivialCopyConstructor()) return false; |
| // -- has no non-trivial move constructors, |
| if (!hasTrivialMoveConstructor()) return false; |
| // -- has no non-trivial copy assignment operators, |
| if (!hasTrivialCopyAssignment()) return false; |
| // -- has no non-trivial move assignment operators, and |
| if (!hasTrivialMoveAssignment()) return false; |
| // -- has a trivial destructor. |
| if (!hasTrivialDestructor()) return false; |
| |
| return true; |
| } |
| |
| /// \brief Perform a simplistic form of overload resolution that only considers |
| /// cv-qualifiers on a single parameter, and return the best overload candidate |
| /// (if there is one). |
| static CXXMethodDecl * |
| GetBestOverloadCandidateSimple( |
| const SmallVectorImpl<std::pair<CXXMethodDecl *, Qualifiers> > &Cands) { |
| if (Cands.empty()) |
| return 0; |
| if (Cands.size() == 1) |
| return Cands[0].first; |
| |
| unsigned Best = 0, N = Cands.size(); |
| for (unsigned I = 1; I != N; ++I) |
| if (Cands[Best].second.compatiblyIncludes(Cands[I].second)) |
| Best = I; |
| |
| for (unsigned I = 1; I != N; ++I) |
| if (Cands[Best].second.compatiblyIncludes(Cands[I].second)) |
| return 0; |
| |
| return Cands[Best].first; |
| } |
| |
| CXXConstructorDecl *CXXRecordDecl::getCopyConstructor(unsigned TypeQuals) const{ |
| ASTContext &Context = getASTContext(); |
| QualType ClassType |
| = Context.getTypeDeclType(const_cast<CXXRecordDecl*>(this)); |
| DeclarationName ConstructorName |
| = Context.DeclarationNames.getCXXConstructorName( |
| Context.getCanonicalType(ClassType)); |
| unsigned FoundTQs; |
| SmallVector<std::pair<CXXMethodDecl *, Qualifiers>, 4> Found; |
| DeclContext::lookup_const_iterator Con, ConEnd; |
| for (llvm::tie(Con, ConEnd) = this->lookup(ConstructorName); |
| Con != ConEnd; ++Con) { |
| // C++ [class.copy]p2: |
| // A non-template constructor for class X is a copy constructor if [...] |
| if (isa<FunctionTemplateDecl>(*Con)) |
| continue; |
| |
| CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con); |
| if (Constructor->isCopyConstructor(FoundTQs)) { |
| if (((TypeQuals & Qualifiers::Const) == (FoundTQs & Qualifiers::Const)) || |
| (!(TypeQuals & Qualifiers::Const) && (FoundTQs & Qualifiers::Const))) |
| Found.push_back(std::make_pair( |
| const_cast<CXXConstructorDecl *>(Constructor), |
| Qualifiers::fromCVRMask(FoundTQs))); |
| } |
| } |
| |
| return cast_or_null<CXXConstructorDecl>( |
| GetBestOverloadCandidateSimple(Found)); |
| } |
| |
| CXXConstructorDecl *CXXRecordDecl::getMoveConstructor() const { |
| for (ctor_iterator I = ctor_begin(), E = ctor_end(); I != E; ++I) |
| if (I->isMoveConstructor()) |
| return *I; |
| |
| return 0; |
| } |
| |
| CXXMethodDecl *CXXRecordDecl::getCopyAssignmentOperator(bool ArgIsConst) const { |
| ASTContext &Context = getASTContext(); |
| QualType Class = Context.getTypeDeclType(const_cast<CXXRecordDecl *>(this)); |
| DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); |
| |
| SmallVector<std::pair<CXXMethodDecl *, Qualifiers>, 4> Found; |
| DeclContext::lookup_const_iterator Op, OpEnd; |
| for (llvm::tie(Op, OpEnd) = this->lookup(Name); Op != OpEnd; ++Op) { |
| // C++ [class.copy]p9: |
| // A user-declared copy assignment operator is a non-static non-template |
| // member function of class X with exactly one parameter of type X, X&, |
| // const X&, volatile X& or const volatile X&. |
| const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op); |
| if (!Method || Method->isStatic() || Method->getPrimaryTemplate()) |
| continue; |
| |
| const FunctionProtoType *FnType |
| = Method->getType()->getAs<FunctionProtoType>(); |
| assert(FnType && "Overloaded operator has no prototype."); |
| // Don't assert on this; an invalid decl might have been left in the AST. |
| if (FnType->getNumArgs() != 1 || FnType->isVariadic()) |
| continue; |
| |
| QualType ArgType = FnType->getArgType(0); |
| Qualifiers Quals; |
| if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()) { |
| ArgType = Ref->getPointeeType(); |
| // If we have a const argument and we have a reference to a non-const, |
| // this function does not match. |
| if (ArgIsConst && !ArgType.isConstQualified()) |
| continue; |
| |
| Quals = ArgType.getQualifiers(); |
| } else { |
| // By-value copy-assignment operators are treated like const X& |
| // copy-assignment operators. |
| Quals = Qualifiers::fromCVRMask(Qualifiers::Const); |
| } |
| |
| if (!Context.hasSameUnqualifiedType(ArgType, Class)) |
| continue; |
| |
| // Save this copy-assignment operator. It might be "the one". |
| Found.push_back(std::make_pair(const_cast<CXXMethodDecl *>(Method), Quals)); |
| } |
| |
| // Use a simplistic form of overload resolution to find the candidate. |
| return GetBestOverloadCandidateSimple(Found); |
| } |
| |
| CXXMethodDecl *CXXRecordDecl::getMoveAssignmentOperator() const { |
| for (method_iterator I = method_begin(), E = method_end(); I != E; ++I) |
| if (I->isMoveAssignmentOperator()) |
| return *I; |
| |
| return 0; |
| } |
| |
| void CXXRecordDecl::markedVirtualFunctionPure() { |
| // C++ [class.abstract]p2: |
| // A class is abstract if it has at least one pure virtual function. |
| data().Abstract = true; |
| } |
| |
| void CXXRecordDecl::addedMember(Decl *D) { |
| if (!D->isImplicit() && |
| !isa<FieldDecl>(D) && |
| !isa<IndirectFieldDecl>(D) && |
| (!isa<TagDecl>(D) || cast<TagDecl>(D)->getTagKind() == TTK_Class)) |
| data().HasOnlyCMembers = false; |
| |
| // Ignore friends and invalid declarations. |
| if (D->getFriendObjectKind() || D->isInvalidDecl()) |
| return; |
| |
| FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D); |
| if (FunTmpl) |
| D = FunTmpl->getTemplatedDecl(); |
| |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { |
| if (Method->isVirtual()) { |
| // C++ [dcl.init.aggr]p1: |
| // An aggregate is an array or a class with [...] no virtual functions. |
| data().Aggregate = false; |
| |
| // C++ [class]p4: |
| // A POD-struct is an aggregate class... |
| data().PlainOldData = false; |
| |
| // Virtual functions make the class non-empty. |
| // FIXME: Standard ref? |
| data().Empty = false; |
| |
| // C++ [class.virtual]p1: |
| // A class that declares or inherits a virtual function is called a |
| // polymorphic class. |
| data().Polymorphic = true; |
| |
| // C++0x [class.ctor]p5 |
| // A default constructor is trivial [...] if: |
| // -- its class has no virtual functions [...] |
| data().HasTrivialDefaultConstructor = false; |
| |
| // C++0x [class.copy]p13: |
| // A copy/move constructor for class X is trivial if [...] |
| // -- class X has no virtual functions [...] |
| data().HasTrivialCopyConstructor = false; |
| data().HasTrivialMoveConstructor = false; |
| |
| // C++0x [class.copy]p27: |
| // A copy/move assignment operator for class X is trivial if [...] |
| // -- class X has no virtual functions [...] |
| data().HasTrivialCopyAssignment = false; |
| data().HasTrivialMoveAssignment = false; |
| |
| // C++0x [class]p7: |
| // A standard-layout class is a class that: [...] |
| // -- has no virtual functions |
| data().IsStandardLayout = false; |
| } |
| } |
| |
| if (D->isImplicit()) { |
| // Notify that an implicit member was added after the definition |
| // was completed. |
| if (!isBeingDefined()) |
| if (ASTMutationListener *L = getASTMutationListener()) |
| L->AddedCXXImplicitMember(data().Definition, D); |
| |
| // If this is a special member function, note that it was added and then |
| // return early. |
| if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) { |
| if (Constructor->isDefaultConstructor()) { |
| data().DeclaredDefaultConstructor = true; |
| if (Constructor->isConstexpr()) { |
| data().HasConstexprDefaultConstructor = true; |
| data().HasConstexprNonCopyMoveConstructor = true; |
| } |
| } else if (Constructor->isCopyConstructor()) { |
| data().DeclaredCopyConstructor = true; |
| if (Constructor->isConstexpr()) |
| data().HasConstexprCopyConstructor = true; |
| } else if (Constructor->isMoveConstructor()) { |
| data().DeclaredMoveConstructor = true; |
| if (Constructor->isConstexpr()) |
| data().HasConstexprMoveConstructor = true; |
| } else |
| goto NotASpecialMember; |
| return; |
| } else if (isa<CXXDestructorDecl>(D)) { |
| data().DeclaredDestructor = true; |
| return; |
| } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { |
| if (Method->isCopyAssignmentOperator()) |
| data().DeclaredCopyAssignment = true; |
| else if (Method->isMoveAssignmentOperator()) |
| data().DeclaredMoveAssignment = true; |
| else |
| goto NotASpecialMember; |
| return; |
| } |
| |
| NotASpecialMember:; |
| // Any other implicit declarations are handled like normal declarations. |
| } |
| |
| // Handle (user-declared) constructors. |
| if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) { |
| // Note that we have a user-declared constructor. |
| data().UserDeclaredConstructor = true; |
| |
| // Technically, "user-provided" is only defined for special member |
| // functions, but the intent of the standard is clearly that it should apply |
| // to all functions. |
| bool UserProvided = Constructor->isUserProvided(); |
| |
| if (Constructor->isDefaultConstructor()) { |
| data().DeclaredDefaultConstructor = true; |
| if (UserProvided) { |
| // C++0x [class.ctor]p5: |
| // A default constructor is trivial if it is not user-provided [...] |
| data().HasTrivialDefaultConstructor = false; |
| data().UserProvidedDefaultConstructor = true; |
| } |
| if (Constructor->isConstexpr()) { |
| data().HasConstexprDefaultConstructor = true; |
| data().HasConstexprNonCopyMoveConstructor = true; |
| } |
| } |
| |
| // Note when we have a user-declared copy or move constructor, which will |
| // suppress the implicit declaration of those constructors. |
| if (!FunTmpl) { |
| if (Constructor->isCopyConstructor()) { |
| data().UserDeclaredCopyConstructor = true; |
| data().DeclaredCopyConstructor = true; |
| |
| // C++0x [class.copy]p13: |
| // A copy/move constructor for class X is trivial if it is not |
| // user-provided [...] |
| if (UserProvided) |
| data().HasTrivialCopyConstructor = false; |
| |
| if (Constructor->isConstexpr()) |
| data().HasConstexprCopyConstructor = true; |
| } else if (Constructor->isMoveConstructor()) { |
| data().UserDeclaredMoveConstructor = true; |
| data().DeclaredMoveConstructor = true; |
| |
| // C++0x [class.copy]p13: |
| // A copy/move constructor for class X is trivial if it is not |
| // user-provided [...] |
| if (UserProvided) |
| data().HasTrivialMoveConstructor = false; |
| |
| if (Constructor->isConstexpr()) |
| data().HasConstexprMoveConstructor = true; |
| } |
| } |
| if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor()) { |
| // Record if we see any constexpr constructors which are neither copy |
| // nor move constructors. |
| data().HasConstexprNonCopyMoveConstructor = true; |
| } |
| |
| // C++ [dcl.init.aggr]p1: |
| // An aggregate is an array or a class with no user-declared |
| // constructors [...]. |
| // C++0x [dcl.init.aggr]p1: |
| // An aggregate is an array or a class with no user-provided |
| // constructors [...]. |
| if (!getASTContext().getLangOptions().CPlusPlus0x || UserProvided) |
| data().Aggregate = false; |
| |
| // C++ [class]p4: |
| // A POD-struct is an aggregate class [...] |
| // Since the POD bit is meant to be C++03 POD-ness, clear it even if the |
| // type is technically an aggregate in C++0x since it wouldn't be in 03. |
| data().PlainOldData = false; |
| |
| return; |
| } |
| |
| // Handle (user-declared) destructors. |
| if (CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) { |
| data().DeclaredDestructor = true; |
| data().UserDeclaredDestructor = true; |
| |
| // C++ [class]p4: |
| // A POD-struct is an aggregate class that has [...] no user-defined |
| // destructor. |
| // This bit is the C++03 POD bit, not the 0x one. |
| data().PlainOldData = false; |
| |
| // C++11 [class.dtor]p5: |
| // A destructor is trivial if it is not user-provided and if |
| // -- the destructor is not virtual. |
| if (DD->isUserProvided() || DD->isVirtual()) { |
| data().HasTrivialDestructor = false; |
| // C++11 [dcl.constexpr]p1: |
| // The constexpr specifier shall be applied only to [...] the |
| // declaration of a static data member of a literal type. |
| // C++11 [basic.types]p10: |
| // A type is a literal type if it is [...] a class type that [...] has |
| // a trivial destructor. |
| data().DefaultedDefaultConstructorIsConstexpr = false; |
| data().DefaultedCopyConstructorIsConstexpr = false; |
| data().DefaultedMoveConstructorIsConstexpr = false; |
| } |
| |
| return; |
| } |
| |
| // Handle (user-declared) member functions. |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { |
| if (Method->isCopyAssignmentOperator()) { |
| // C++ [class]p4: |
| // A POD-struct is an aggregate class that [...] has no user-defined |
| // copy assignment operator [...]. |
| // This is the C++03 bit only. |
| data().PlainOldData = false; |
| |
| // This is a copy assignment operator. |
| |
| // Suppress the implicit declaration of a copy constructor. |
| data().UserDeclaredCopyAssignment = true; |
| data().DeclaredCopyAssignment = true; |
| |
| // C++0x [class.copy]p27: |
| // A copy/move assignment operator for class X is trivial if it is |
| // neither user-provided nor deleted [...] |
| if (Method->isUserProvided()) |
| data().HasTrivialCopyAssignment = false; |
| |
| return; |
| } |
| |
| if (Method->isMoveAssignmentOperator()) { |
| // This is an extension in C++03 mode, but we'll keep consistency by |
| // taking a move assignment operator to induce non-POD-ness |
| data().PlainOldData = false; |
| |
| // This is a move assignment operator. |
| data().UserDeclaredMoveAssignment = true; |
| data().DeclaredMoveAssignment = true; |
| |
| // C++0x [class.copy]p27: |
| // A copy/move assignment operator for class X is trivial if it is |
| // neither user-provided nor deleted [...] |
| if (Method->isUserProvided()) |
| data().HasTrivialMoveAssignment = false; |
| } |
| |
| // Keep the list of conversion functions up-to-date. |
| if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) { |
| // We don't record specializations. |
| if (Conversion->getPrimaryTemplate()) |
| return; |
| |
| // FIXME: We intentionally don't use the decl's access here because it |
| // hasn't been set yet. That's really just a misdesign in Sema. |
| |
| if (FunTmpl) { |
| if (FunTmpl->getPreviousDecl()) |
| data().Conversions.replace(FunTmpl->getPreviousDecl(), |
| FunTmpl); |
| else |
| data().Conversions.addDecl(FunTmpl); |
| } else { |
| if (Conversion->getPreviousDecl()) |
| data().Conversions.replace(Conversion->getPreviousDecl(), |
| Conversion); |
| else |
| data().Conversions.addDecl(Conversion); |
| } |
| } |
| |
| return; |
| } |
| |
| // Handle non-static data members. |
| if (FieldDecl *Field = dyn_cast<FieldDecl>(D)) { |
| // C++ [class.bit]p2: |
| // A declaration for a bit-field that omits the identifier declares an |
| // unnamed bit-field. Unnamed bit-fields are not members and cannot be |
| // initialized. |
| if (Field->isUnnamedBitfield()) |
| return; |
| |
| // C++ [dcl.init.aggr]p1: |
| // An aggregate is an array or a class (clause 9) with [...] no |
| // private or protected non-static data members (clause 11). |
| // |
| // A POD must be an aggregate. |
| if (D->getAccess() == AS_private || D->getAccess() == AS_protected) { |
| data().Aggregate = false; |
| data().PlainOldData = false; |
| } |
| |
| // C++0x [class]p7: |
| // A standard-layout class is a class that: |
| // [...] |
| // -- has the same access control for all non-static data members, |
| switch (D->getAccess()) { |
| case AS_private: data().HasPrivateFields = true; break; |
| case AS_protected: data().HasProtectedFields = true; break; |
| case AS_public: data().HasPublicFields = true; break; |
| case AS_none: llvm_unreachable("Invalid access specifier"); |
| }; |
| if ((data().HasPrivateFields + data().HasProtectedFields + |
| data().HasPublicFields) > 1) |
| data().IsStandardLayout = false; |
| |
| // Keep track of the presence of mutable fields. |
| if (Field->isMutable()) |
| data().HasMutableFields = true; |
| |
| // C++0x [class]p9: |
| // A POD struct is a class that is both a trivial class and a |
| // standard-layout class, and has no non-static data members of type |
| // non-POD struct, non-POD union (or array of such types). |
| // |
| // Automatic Reference Counting: the presence of a member of Objective-C pointer type |
| // that does not explicitly have no lifetime makes the class a non-POD. |
| // However, we delay setting PlainOldData to false in this case so that |
| // Sema has a chance to diagnostic causes where the same class will be |
| // non-POD with Automatic Reference Counting but a POD without Instant Objects. |
| // In this case, the class will become a non-POD class when we complete |
| // the definition. |
| ASTContext &Context = getASTContext(); |
| QualType T = Context.getBaseElementType(Field->getType()); |
| if (T->isObjCRetainableType() || T.isObjCGCStrong()) { |
| if (!Context.getLangOptions().ObjCAutoRefCount || |
| T.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) |
| setHasObjectMember(true); |
| } else if (!T.isPODType(Context)) |
| data().PlainOldData = false; |
| |
| if (T->isReferenceType()) { |
| data().HasTrivialDefaultConstructor = false; |
| |
| // C++0x [class]p7: |
| // A standard-layout class is a class that: |
| // -- has no non-static data members of type [...] reference, |
| data().IsStandardLayout = false; |
| } |
| |
| // Record if this field is the first non-literal field or base. |
| if (!hasNonLiteralTypeFieldsOrBases() && !T->isLiteralType()) |
| data().HasNonLiteralTypeFieldsOrBases = true; |
| |
| if (Field->hasInClassInitializer()) { |
| // C++0x [class]p5: |
| // A default constructor is trivial if [...] no non-static data member |
| // of its class has a brace-or-equal-initializer. |
| data().HasTrivialDefaultConstructor = false; |
| |
| // C++0x [dcl.init.aggr]p1: |
| // An aggregate is a [...] class with [...] no |
| // brace-or-equal-initializers for non-static data members. |
| data().Aggregate = false; |
| |
| // C++0x [class]p10: |
| // A POD struct is [...] a trivial class. |
| data().PlainOldData = false; |
| } |
| |
| if (const RecordType *RecordTy = T->getAs<RecordType>()) { |
| CXXRecordDecl* FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl()); |
| if (FieldRec->getDefinition()) { |
| // C++0x [class.ctor]p5: |
| // A default constructor is trivial [...] if: |
| // -- for all the non-static data members of its class that are of |
| // class type (or array thereof), each such class has a trivial |
| // default constructor. |
| if (!FieldRec->hasTrivialDefaultConstructor()) |
| data().HasTrivialDefaultConstructor = false; |
| |
| // C++0x [class.copy]p13: |
| // A copy/move constructor for class X is trivial if [...] |
| // [...] |
| // -- for each non-static data member of X that is of class type (or |
| // an array thereof), the constructor selected to copy/move that |
| // member is trivial; |
| // FIXME: C++0x: We don't correctly model 'selected' constructors. |
| if (!FieldRec->hasTrivialCopyConstructor()) |
| data().HasTrivialCopyConstructor = false; |
| if (!FieldRec->hasTrivialMoveConstructor()) |
| data().HasTrivialMoveConstructor = false; |
| |
| // C++0x [class.copy]p27: |
| // A copy/move assignment operator for class X is trivial if [...] |
| // [...] |
| // -- for each non-static data member of X that is of class type (or |
| // an array thereof), the assignment operator selected to |
| // copy/move that member is trivial; |
| // FIXME: C++0x: We don't correctly model 'selected' operators. |
| if (!FieldRec->hasTrivialCopyAssignment()) |
| data().HasTrivialCopyAssignment = false; |
| if (!FieldRec->hasTrivialMoveAssignment()) |
| data().HasTrivialMoveAssignment = false; |
| |
| if (!FieldRec->hasTrivialDestructor()) |
| data().HasTrivialDestructor = false; |
| if (FieldRec->hasObjectMember()) |
| setHasObjectMember(true); |
| |
| // C++0x [class]p7: |
| // A standard-layout class is a class that: |
| // -- has no non-static data members of type non-standard-layout |
| // class (or array of such types) [...] |
| if (!FieldRec->isStandardLayout()) |
| data().IsStandardLayout = false; |
| |
| // C++0x [class]p7: |
| // A standard-layout class is a class that: |
| // [...] |
| // -- has no base classes of the same type as the first non-static |
| // data member. |
| // We don't want to expend bits in the state of the record decl |
| // tracking whether this is the first non-static data member so we |
| // cheat a bit and use some of the existing state: the empty bit. |
| // Virtual bases and virtual methods make a class non-empty, but they |
| // also make it non-standard-layout so we needn't check here. |
| // A non-empty base class may leave the class standard-layout, but not |
| // if we have arrived here, and have at least on non-static data |
| // member. If IsStandardLayout remains true, then the first non-static |
| // data member must come through here with Empty still true, and Empty |
| // will subsequently be set to false below. |
| if (data().IsStandardLayout && data().Empty) { |
| for (CXXRecordDecl::base_class_const_iterator BI = bases_begin(), |
| BE = bases_end(); |
| BI != BE; ++BI) { |
| if (Context.hasSameUnqualifiedType(BI->getType(), T)) { |
| data().IsStandardLayout = false; |
| break; |
| } |
| } |
| } |
| |
| // Keep track of the presence of mutable fields. |
| if (FieldRec->hasMutableFields()) |
| data().HasMutableFields = true; |
| |
| // C++11 [class.copy]p13: |
| // If the implicitly-defined constructor would satisfy the |
| // requirements of a constexpr constructor, the implicitly-defined |
| // constructor is constexpr. |
| // C++11 [dcl.constexpr]p4: |
| // -- every constructor involved in initializing non-static data |
| // members [...] shall be a constexpr constructor |
| if (!Field->hasInClassInitializer() && |
| !FieldRec->hasConstexprDefaultConstructor()) |
| // The standard requires any in-class initializer to be a constant |
| // expression. We consider this to be a defect. |
| data().DefaultedDefaultConstructorIsConstexpr = false; |
| |
| if (!FieldRec->hasConstexprCopyConstructor()) |
| data().DefaultedCopyConstructorIsConstexpr = false; |
| |
| if (FieldRec->hasDeclaredMoveConstructor() || |
| FieldRec->needsImplicitMoveConstructor()) |
| // FIXME: If the implicit move constructor generated for the member's |
| // class would be ill-formed, the implicit move constructor generated |
| // for this class calls the member's copy constructor. |
| data().DefaultedMoveConstructorIsConstexpr &= |
| FieldRec->hasConstexprMoveConstructor(); |
| else if (!FieldRec->hasConstexprCopyConstructor()) |
| data().DefaultedMoveConstructorIsConstexpr = false; |
| } |
| } else { |
| // Base element type of field is a non-class type. |
| if (!T->isLiteralType()) { |
| data().DefaultedDefaultConstructorIsConstexpr = false; |
| data().DefaultedCopyConstructorIsConstexpr = false; |
| data().DefaultedMoveConstructorIsConstexpr = false; |
| } else if (!Field->hasInClassInitializer()) |
| data().DefaultedDefaultConstructorIsConstexpr = false; |
| } |
| |
| // C++0x [class]p7: |
| // A standard-layout class is a class that: |
| // [...] |
| // -- either has no non-static data members in the most derived |
| // class and at most one base class with non-static data members, |
| // or has no base classes with non-static data members, and |
| // At this point we know that we have a non-static data member, so the last |
| // clause holds. |
| if (!data().HasNoNonEmptyBases) |
| data().IsStandardLayout = false; |
| |
| // If this is not a zero-length bit-field, then the class is not empty. |
| if (data().Empty) { |
| if (!Field->isBitField() || |
| (!Field->getBitWidth()->isTypeDependent() && |
| !Field->getBitWidth()->isValueDependent() && |
| Field->getBitWidthValue(Context) != 0)) |
| data().Empty = false; |
| } |
| } |
| |
| // Handle using declarations of conversion functions. |
| if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(D)) |
| if (Shadow->getDeclName().getNameKind() |
| == DeclarationName::CXXConversionFunctionName) |
| data().Conversions.addDecl(Shadow, Shadow->getAccess()); |
| } |
| |
| bool CXXRecordDecl::isCLike() const { |
| if (getTagKind() == TTK_Class || !TemplateOrInstantiation.isNull()) |
| return false; |
| if (!hasDefinition()) |
| return true; |
| |
| return isPOD() && data().HasOnlyCMembers; |
| } |
| |
| void CXXRecordDecl::setLambda(LambdaExpr *Lambda) { |
| if (!Lambda) |
| return; |
| |
| data().IsLambda = true; |
| getASTContext().Lambdas[this] = Lambda; |
| } |
| |
| void CXXRecordDecl::getCaptureFields( |
| llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures, |
| FieldDecl *&ThisCapture) const { |
| Captures.clear(); |
| ThisCapture = 0; |
| |
| LambdaExpr *Lambda = getASTContext().Lambdas[this]; |
| RecordDecl::field_iterator Field = field_begin(); |
| for (LambdaExpr::capture_iterator C = Lambda->capture_begin(), |
| CEnd = Lambda->capture_end(); |
| C != CEnd; ++C, ++Field) { |
| if (C->capturesThis()) { |
| ThisCapture = *Field; |
| continue; |
| } |
| |
| Captures[C->getCapturedVar()] = *Field; |
| } |
| } |
| |
| |
| static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) { |
| QualType T; |
| if (isa<UsingShadowDecl>(Conv)) |
| Conv = cast<UsingShadowDecl>(Conv)->getTargetDecl(); |
| if (FunctionTemplateDecl *ConvTemp = dyn_cast<FunctionTemplateDecl>(Conv)) |
| T = ConvTemp->getTemplatedDecl()->getResultType(); |
| else |
| T = cast<CXXConversionDecl>(Conv)->getConversionType(); |
| return Context.getCanonicalType(T); |
| } |
| |
| /// Collect the visible conversions of a base class. |
| /// |
| /// \param Base a base class of the class we're considering |
| /// \param InVirtual whether this base class is a virtual base (or a base |
| /// of a virtual base) |
| /// \param Access the access along the inheritance path to this base |
| /// \param ParentHiddenTypes the conversions provided by the inheritors |
| /// of this base |
| /// \param Output the set to which to add conversions from non-virtual bases |
| /// \param VOutput the set to which to add conversions from virtual bases |
| /// \param HiddenVBaseCs the set of conversions which were hidden in a |
| /// virtual base along some inheritance path |
| static void CollectVisibleConversions(ASTContext &Context, |
| CXXRecordDecl *Record, |
| bool InVirtual, |
| AccessSpecifier Access, |
| const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes, |
| UnresolvedSetImpl &Output, |
| UnresolvedSetImpl &VOutput, |
| llvm::SmallPtrSet<NamedDecl*, 8> &HiddenVBaseCs) { |
| // The set of types which have conversions in this class or its |
| // subclasses. As an optimization, we don't copy the derived set |
| // unless it might change. |
| const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes; |
| llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer; |
| |
| // Collect the direct conversions and figure out which conversions |
| // will be hidden in the subclasses. |
| UnresolvedSetImpl &Cs = *Record->getConversionFunctions(); |
| if (!Cs.empty()) { |
| HiddenTypesBuffer = ParentHiddenTypes; |
| HiddenTypes = &HiddenTypesBuffer; |
| |
| for (UnresolvedSetIterator I = Cs.begin(), E = Cs.end(); I != E; ++I) { |
| bool Hidden = |
| !HiddenTypesBuffer.insert(GetConversionType(Context, I.getDecl())); |
| |
| // If this conversion is hidden and we're in a virtual base, |
| // remember that it's hidden along some inheritance path. |
| if (Hidden && InVirtual) |
| HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())); |
| |
| // If this conversion isn't hidden, add it to the appropriate output. |
| else if (!Hidden) { |
| AccessSpecifier IAccess |
| = CXXRecordDecl::MergeAccess(Access, I.getAccess()); |
| |
| if (InVirtual) |
| VOutput.addDecl(I.getDecl(), IAccess); |
| else |
| Output.addDecl(I.getDecl(), IAccess); |
| } |
| } |
| } |
| |
| // Collect information recursively from any base classes. |
| for (CXXRecordDecl::base_class_iterator |
| I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) { |
| const RecordType *RT = I->getType()->getAs<RecordType>(); |
| if (!RT) continue; |
| |
| AccessSpecifier BaseAccess |
| = CXXRecordDecl::MergeAccess(Access, I->getAccessSpecifier()); |
| bool BaseInVirtual = InVirtual || I->isVirtual(); |
| |
| CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl()); |
| CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess, |
| *HiddenTypes, Output, VOutput, HiddenVBaseCs); |
| } |
| } |
| |
| /// Collect the visible conversions of a class. |
| /// |
| /// This would be extremely straightforward if it weren't for virtual |
| /// bases. It might be worth special-casing that, really. |
| static void CollectVisibleConversions(ASTContext &Context, |
| CXXRecordDecl *Record, |
| UnresolvedSetImpl &Output) { |
| // The collection of all conversions in virtual bases that we've |
| // found. These will be added to the output as long as they don't |
| // appear in the hidden-conversions set. |
| UnresolvedSet<8> VBaseCs; |
| |
| // The set of conversions in virtual bases that we've determined to |
| // be hidden. |
| llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs; |
| |
| // The set of types hidden by classes derived from this one. |
| llvm::SmallPtrSet<CanQualType, 8> HiddenTypes; |
| |
| // Go ahead and collect the direct conversions and add them to the |
| // hidden-types set. |
| UnresolvedSetImpl &Cs = *Record->getConversionFunctions(); |
| Output.append(Cs.begin(), Cs.end()); |
| for (UnresolvedSetIterator I = Cs.begin(), E = Cs.end(); I != E; ++I) |
| HiddenTypes.insert(GetConversionType(Context, I.getDecl())); |
| |
| // Recursively collect conversions from base classes. |
| for (CXXRecordDecl::base_class_iterator |
| I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) { |
| const RecordType *RT = I->getType()->getAs<RecordType>(); |
| if (!RT) continue; |
| |
| CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()), |
| I->isVirtual(), I->getAccessSpecifier(), |
| HiddenTypes, Output, VBaseCs, HiddenVBaseCs); |
| } |
| |
| // Add any unhidden conversions provided by virtual bases. |
| for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end(); |
| I != E; ++I) { |
| if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()))) |
| Output.addDecl(I.getDecl(), I.getAccess()); |
| } |
| } |
| |
| /// getVisibleConversionFunctions - get all conversion functions visible |
| /// in current class; including conversion function templates. |
| const UnresolvedSetImpl *CXXRecordDecl::getVisibleConversionFunctions() { |
| // If root class, all conversions are visible. |
| if (bases_begin() == bases_end()) |
| return &data().Conversions; |
| // If visible conversion list is already evaluated, return it. |
| if (data().ComputedVisibleConversions) |
| return &data().VisibleConversions; |
| CollectVisibleConversions(getASTContext(), this, data().VisibleConversions); |
| data().ComputedVisibleConversions = true; |
| return &data().VisibleConversions; |
| } |
| |
| void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) { |
| // This operation is O(N) but extremely rare. Sema only uses it to |
| // remove UsingShadowDecls in a class that were followed by a direct |
| // declaration, e.g.: |
| // class A : B { |
| // using B::operator int; |
| // operator int(); |
| // }; |
| // This is uncommon by itself and even more uncommon in conjunction |
| // with sufficiently large numbers of directly-declared conversions |
| // that asymptotic behavior matters. |
| |
| UnresolvedSetImpl &Convs = *getConversionFunctions(); |
| for (unsigned I = 0, E = Convs.size(); I != E; ++I) { |
| if (Convs[I].getDecl() == ConvDecl) { |
| Convs.erase(I); |
| assert(std::find(Convs.begin(), Convs.end(), ConvDecl) == Convs.end() |
| && "conversion was found multiple times in unresolved set"); |
| return; |
| } |
| } |
| |
| llvm_unreachable("conversion not found in set!"); |
| } |
| |
| CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const { |
| if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) |
| return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom()); |
| |
| return 0; |
| } |
| |
| MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const { |
| return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>(); |
| } |
| |
| void |
| CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD, |
| TemplateSpecializationKind TSK) { |
| assert(TemplateOrInstantiation.isNull() && |
| "Previous template or instantiation?"); |
| assert(!isa<ClassTemplateSpecializationDecl>(this)); |
| TemplateOrInstantiation |
| = new (getASTContext()) MemberSpecializationInfo(RD, TSK); |
| } |
| |
| TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{ |
| if (const ClassTemplateSpecializationDecl *Spec |
| = dyn_cast<ClassTemplateSpecializationDecl>(this)) |
| return Spec->getSpecializationKind(); |
| |
| if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) |
| return MSInfo->getTemplateSpecializationKind(); |
| |
| return TSK_Undeclared; |
| } |
| |
| void |
| CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) { |
| if (ClassTemplateSpecializationDecl *Spec |
| = dyn_cast<ClassTemplateSpecializationDecl>(this)) { |
| Spec->setSpecializationKind(TSK); |
| return; |
| } |
| |
| if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { |
| MSInfo->setTemplateSpecializationKind(TSK); |
| return; |
| } |
| |
| llvm_unreachable("Not a class template or member class specialization"); |
| } |
| |
| CXXDestructorDecl *CXXRecordDecl::getDestructor() const { |
| ASTContext &Context = getASTContext(); |
| QualType ClassType = Context.getTypeDeclType(this); |
| |
| DeclarationName Name |
| = Context.DeclarationNames.getCXXDestructorName( |
| Context.getCanonicalType(ClassType)); |
| |
| DeclContext::lookup_const_iterator I, E; |
| llvm::tie(I, E) = lookup(Name); |
| if (I == E) |
| return 0; |
| |
| CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(*I); |
| return Dtor; |
| } |
| |
| void CXXRecordDecl::completeDefinition() { |
| completeDefinition(0); |
| } |
| |
| void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) { |
| RecordDecl::completeDefinition(); |
| |
| if (hasObjectMember() && getASTContext().getLangOptions().ObjCAutoRefCount) { |
| // Objective-C Automatic Reference Counting: |
| // If a class has a non-static data member of Objective-C pointer |
| // type (or array thereof), it is a non-POD type and its |
| // default constructor (if any), copy constructor, copy assignment |
| // operator, and destructor are non-trivial. |
| struct DefinitionData &Data = data(); |
| Data.PlainOldData = false; |
| Data.HasTrivialDefaultConstructor = false; |
| Data.HasTrivialCopyConstructor = false; |
| Data.HasTrivialCopyAssignment = false; |
| Data.HasTrivialDestructor = false; |
| } |
| |
| // If the class may be abstract (but hasn't been marked as such), check for |
| // any pure final overriders. |
| if (mayBeAbstract()) { |
| CXXFinalOverriderMap MyFinalOverriders; |
| if (!FinalOverriders) { |
| getFinalOverriders(MyFinalOverriders); |
| FinalOverriders = &MyFinalOverriders; |
| } |
| |
| bool Done = false; |
| for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(), |
| MEnd = FinalOverriders->end(); |
| M != MEnd && !Done; ++M) { |
| for (OverridingMethods::iterator SO = M->second.begin(), |
| SOEnd = M->second.end(); |
| SO != SOEnd && !Done; ++SO) { |
| assert(SO->second.size() > 0 && |
| "All virtual functions have overridding virtual functions"); |
| |
| // C++ [class.abstract]p4: |
| // A class is abstract if it contains or inherits at least one |
| // pure virtual function for which the final overrider is pure |
| // virtual. |
| if (SO->second.front().Method->isPure()) { |
| data().Abstract = true; |
| Done = true; |
| break; |
| } |
| } |
| } |
| } |
| |
| // Set access bits correctly on the directly-declared conversions. |
| for (UnresolvedSetIterator I = data().Conversions.begin(), |
| E = data().Conversions.end(); |
| I != E; ++I) |
| data().Conversions.setAccess(I, (*I)->getAccess()); |
| } |
| |
| bool CXXRecordDecl::mayBeAbstract() const { |
| if (data().Abstract || isInvalidDecl() || !data().Polymorphic || |
| isDependentContext()) |
| return false; |
| |
| for (CXXRecordDecl::base_class_const_iterator B = bases_begin(), |
| BEnd = bases_end(); |
| B != BEnd; ++B) { |
| CXXRecordDecl *BaseDecl |
| = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl()); |
| if (BaseDecl->isAbstract()) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void CXXMethodDecl::anchor() { } |
| |
| CXXMethodDecl * |
| CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD, |
| SourceLocation StartLoc, |
| const DeclarationNameInfo &NameInfo, |
| QualType T, TypeSourceInfo *TInfo, |
| bool isStatic, StorageClass SCAsWritten, bool isInline, |
| bool isConstexpr, SourceLocation EndLocation) { |
| return new (C) CXXMethodDecl(CXXMethod, RD, StartLoc, NameInfo, T, TInfo, |
| isStatic, SCAsWritten, isInline, isConstexpr, |
| EndLocation); |
| } |
| |
| CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) { |
| void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXMethodDecl)); |
| return new (Mem) CXXMethodDecl(CXXMethod, 0, SourceLocation(), |
| DeclarationNameInfo(), QualType(), |
| 0, false, SC_None, false, false, |
| SourceLocation()); |
| } |
| |
| bool CXXMethodDecl::isUsualDeallocationFunction() const { |
| if (getOverloadedOperator() != OO_Delete && |
| getOverloadedOperator() != OO_Array_Delete) |
| return false; |
| |
| // C++ [basic.stc.dynamic.deallocation]p2: |
| // A template instance is never a usual deallocation function, |
| // regardless of its signature. |
| if (getPrimaryTemplate()) |
| return false; |
| |
| // C++ [basic.stc.dynamic.deallocation]p2: |
| // If a class T has a member deallocation function named operator delete |
| // with exactly one parameter, then that function is a usual (non-placement) |
| // deallocation function. [...] |
| if (getNumParams() == 1) |
| return true; |
| |
| // C++ [basic.stc.dynamic.deallocation]p2: |
| // [...] If class T does not declare such an operator delete but does |
| // declare a member deallocation function named operator delete with |
| // exactly two parameters, the second of which has type std::size_t (18.1), |
| // then this function is a usual deallocation function. |
| ASTContext &Context = getASTContext(); |
| if (getNumParams() != 2 || |
| !Context.hasSameUnqualifiedType(getParamDecl(1)->getType(), |
| Context.getSizeType())) |
| return false; |
| |
| // This function is a usual deallocation function if there are no |
| // single-parameter deallocation functions of the same kind. |
| for (DeclContext::lookup_const_result R = getDeclContext()->lookup(getDeclName()); |
| R.first != R.second; ++R.first) { |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*R.first)) |
| if (FD->getNumParams() == 1) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool CXXMethodDecl::isCopyAssignmentOperator() const { |
| // C++0x [class.copy]p17: |
| // A user-declared copy assignment operator X::operator= is a non-static |
| // non-template member function of class X with exactly one parameter of |
| // type X, X&, const X&, volatile X& or const volatile X&. |
| if (/*operator=*/getOverloadedOperator() != OO_Equal || |
| /*non-static*/ isStatic() || |
| /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate()) |
| return false; |
| |
| QualType ParamType = getParamDecl(0)->getType(); |
| if (const LValueReferenceType *Ref = ParamType->getAs<LValueReferenceType>()) |
| ParamType = Ref->getPointeeType(); |
| |
| ASTContext &Context = getASTContext(); |
| QualType ClassType |
| = Context.getCanonicalType(Context.getTypeDeclType(getParent())); |
| return Context.hasSameUnqualifiedType(ClassType, ParamType); |
| } |
| |
| bool CXXMethodDecl::isMoveAssignmentOperator() const { |
| // C++0x [class.copy]p19: |
| // A user-declared move assignment operator X::operator= is a non-static |
| // non-template member function of class X with exactly one parameter of type |
| // X&&, const X&&, volatile X&&, or const volatile X&&. |
| if (getOverloadedOperator() != OO_Equal || isStatic() || |
| getPrimaryTemplate() || getDescribedFunctionTemplate()) |
| return false; |
| |
| QualType ParamType = getParamDecl(0)->getType(); |
| if (!isa<RValueReferenceType>(ParamType)) |
| return false; |
| ParamType = ParamType->getPointeeType(); |
| |
| ASTContext &Context = getASTContext(); |
| QualType ClassType |
| = Context.getCanonicalType(Context.getTypeDeclType(getParent())); |
| return Context.hasSameUnqualifiedType(ClassType, ParamType); |
| } |
| |
| void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) { |
| assert(MD->isCanonicalDecl() && "Method is not canonical!"); |
| assert(!MD->getParent()->isDependentContext() && |
| "Can't add an overridden method to a class template!"); |
| |
| getASTContext().addOverriddenMethod(this, MD); |
| } |
| |
| CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const { |
| return getASTContext().overridden_methods_begin(this); |
| } |
| |
| CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const { |
| return getASTContext().overridden_methods_end(this); |
| } |
| |
| unsigned CXXMethodDecl::size_overridden_methods() const { |
| return getASTContext().overridden_methods_size(this); |
| } |
| |
| QualType CXXMethodDecl::getThisType(ASTContext &C) const { |
| // C++ 9.3.2p1: The type of this in a member function of a class X is X*. |
| // If the member function is declared const, the type of this is const X*, |
| // if the member function is declared volatile, the type of this is |
| // volatile X*, and if the member function is declared const volatile, |
| // the type of this is const volatile X*. |
| |
| assert(isInstance() && "No 'this' for static methods!"); |
| |
| QualType ClassTy = C.getTypeDeclType(getParent()); |
| ClassTy = C.getQualifiedType(ClassTy, |
| Qualifiers::fromCVRMask(getTypeQualifiers())); |
| return C.getPointerType(ClassTy); |
| } |
| |
| bool CXXMethodDecl::hasInlineBody() const { |
| // If this function is a template instantiation, look at the template from |
| // which it was instantiated. |
| const FunctionDecl *CheckFn = getTemplateInstantiationPattern(); |
| if (!CheckFn) |
| CheckFn = this; |
| |
| const FunctionDecl *fn; |
| return CheckFn->hasBody(fn) && !fn->isOutOfLine(); |
| } |
| |
| CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, |
| TypeSourceInfo *TInfo, bool IsVirtual, |
| SourceLocation L, Expr *Init, |
| SourceLocation R, |
| SourceLocation EllipsisLoc) |
| : Initializee(TInfo), MemberOrEllipsisLocation(EllipsisLoc), Init(Init), |
| LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual), |
| IsWritten(false), SourceOrderOrNumArrayIndices(0) |
| { |
| } |
| |
| CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, |
| FieldDecl *Member, |
| SourceLocation MemberLoc, |
| SourceLocation L, Expr *Init, |
| SourceLocation R) |
| : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init), |
| LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false), |
| IsWritten(false), SourceOrderOrNumArrayIndices(0) |
| { |
| } |
| |
| CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, |
| IndirectFieldDecl *Member, |
| SourceLocation MemberLoc, |
| SourceLocation L, Expr *Init, |
| SourceLocation R) |
| : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init), |
| LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false), |
| IsWritten(false), SourceOrderOrNumArrayIndices(0) |
| { |
| } |
| |
| CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, |
| TypeSourceInfo *TInfo, |
| SourceLocation L, Expr *Init, |
| SourceLocation R) |
| : Initializee(TInfo), MemberOrEllipsisLocation(), Init(Init), |
| LParenLoc(L), RParenLoc(R), IsDelegating(true), IsVirtual(false), |
| IsWritten(false), SourceOrderOrNumArrayIndices(0) |
| { |
| } |
| |
| CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, |
| FieldDecl *Member, |
| SourceLocation MemberLoc, |
| SourceLocation L, Expr *Init, |
| SourceLocation R, |
| VarDecl **Indices, |
| unsigned NumIndices) |
| : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init), |
| LParenLoc(L), RParenLoc(R), IsVirtual(false), |
| IsWritten(false), SourceOrderOrNumArrayIndices(NumIndices) |
| { |
| VarDecl **MyIndices = reinterpret_cast<VarDecl **> (this + 1); |
| memcpy(MyIndices, Indices, NumIndices * sizeof(VarDecl *)); |
| } |
| |
| CXXCtorInitializer *CXXCtorInitializer::Create(ASTContext &Context, |
| FieldDecl *Member, |
| SourceLocation MemberLoc, |
| SourceLocation L, Expr *Init, |
| SourceLocation R, |
| VarDecl **Indices, |
| unsigned NumIndices) { |
| void *Mem = Context.Allocate(sizeof(CXXCtorInitializer) + |
| sizeof(VarDecl *) * NumIndices, |
| llvm::alignOf<CXXCtorInitializer>()); |
| return new (Mem) CXXCtorInitializer(Context, Member, MemberLoc, L, Init, R, |
| Indices, NumIndices); |
| } |
| |
| TypeLoc CXXCtorInitializer::getBaseClassLoc() const { |
| if (isBaseInitializer()) |
| return Initializee.get<TypeSourceInfo*>()->getTypeLoc(); |
| else |
| return TypeLoc(); |
| } |
| |
| const Type *CXXCtorInitializer::getBaseClass() const { |
| if (isBaseInitializer()) |
| return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr(); |
| else |
| return 0; |
| } |
| |
| SourceLocation CXXCtorInitializer::getSourceLocation() const { |
| if (isAnyMemberInitializer()) |
| return getMemberLocation(); |
| |
| if (isInClassMemberInitializer()) |
| return getAnyMember()->getLocation(); |
| |
| if (TypeSourceInfo *TSInfo = Initializee.get<TypeSourceInfo*>()) |
| return TSInfo->getTypeLoc().getLocalSourceRange().getBegin(); |
| |
| return SourceLocation(); |
| } |
| |
| SourceRange CXXCtorInitializer::getSourceRange() const { |
| if (isInClassMemberInitializer()) { |
| FieldDecl *D = getAnyMember(); |
| if (Expr *I = D->getInClassInitializer()) |
| return I->getSourceRange(); |
| return SourceRange(); |
| } |
| |
| return SourceRange(getSourceLocation(), getRParenLoc()); |
| } |
| |
| void CXXConstructorDecl::anchor() { } |
| |
| CXXConstructorDecl * |
| CXXConstructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) { |
| void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXConstructorDecl)); |
| return new (Mem) CXXConstructorDecl(0, SourceLocation(),DeclarationNameInfo(), |
| QualType(), 0, false, false, false,false); |
| } |
| |
| CXXConstructorDecl * |
| CXXConstructorDecl::Create(ASTContext &C, CXXRecordDecl *RD, |
| SourceLocation StartLoc, |
| const DeclarationNameInfo &NameInfo, |
| QualType T, TypeSourceInfo *TInfo, |
| bool isExplicit, bool isInline, |
| bool isImplicitlyDeclared, bool isConstexpr) { |
| assert(NameInfo.getName().getNameKind() |
| == DeclarationName::CXXConstructorName && |
| "Name must refer to a constructor"); |
| return new (C) CXXConstructorDecl(RD, StartLoc, NameInfo, T, TInfo, |
| isExplicit, isInline, isImplicitlyDeclared, |
| isConstexpr); |
| } |
| |
| CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const { |
| assert(isDelegatingConstructor() && "Not a delegating constructor!"); |
| Expr *E = (*init_begin())->getInit()->IgnoreImplicit(); |
| if (CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(E)) |
| return Construct->getConstructor(); |
| |
| return 0; |
| } |
| |
| bool CXXConstructorDecl::isDefaultConstructor() const { |
| // C++ [class.ctor]p5: |
| // A default constructor for a class X is a constructor of class |
| // X that can be called without an argument. |
| return (getNumParams() == 0) || |
| (getNumParams() > 0 && getParamDecl(0)->hasDefaultArg()); |
| } |
| |
| bool |
| CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const { |
| return isCopyOrMoveConstructor(TypeQuals) && |
| getParamDecl(0)->getType()->isLValueReferenceType(); |
| } |
| |
| bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const { |
| return isCopyOrMoveConstructor(TypeQuals) && |
| getParamDecl(0)->getType()->isRValueReferenceType(); |
| } |
| |
| /// \brief Determine whether this is a copy or move constructor. |
| bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const { |
| // C++ [class.copy]p2: |
| // A non-template constructor for class X is a copy constructor |
| // if its first parameter is of type X&, const X&, volatile X& or |
| // const volatile X&, and either there are no other parameters |
| // or else all other parameters have default arguments (8.3.6). |
| // C++0x [class.copy]p3: |
| // A non-template constructor for class X is a move constructor if its |
| // first parameter is of type X&&, const X&&, volatile X&&, or |
| // const volatile X&&, and either there are no other parameters or else |
| // all other parameters have default arguments. |
| if ((getNumParams() < 1) || |
| (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) || |
| (getPrimaryTemplate() != 0) || |
| (getDescribedFunctionTemplate() != 0)) |
| return false; |
| |
| const ParmVarDecl *Param = getParamDecl(0); |
| |
| // Do we have a reference type? |
| const ReferenceType *ParamRefType = Param->getType()->getAs<ReferenceType>(); |
| if (!ParamRefType) |
| return false; |
| |
| // Is it a reference to our class type? |
| ASTContext &Context = getASTContext(); |
| |
| CanQualType PointeeType |
| = Context.getCanonicalType(ParamRefType->getPointeeType()); |
| CanQualType ClassTy |
| = Context.getCanonicalType(Context.getTagDeclType(getParent())); |
| if (PointeeType.getUnqualifiedType() != ClassTy) |
| return false; |
| |
| // FIXME: other qualifiers? |
| |
| // We have a copy or move constructor. |
| TypeQuals = PointeeType.getCVRQualifiers(); |
| return true; |
| } |
| |
| bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const { |
| // C++ [class.conv.ctor]p1: |
| // A constructor declared without the function-specifier explicit |
| // that can be called with a single parameter specifies a |
| // conversion from the type of its first parameter to the type of |
| // its class. Such a constructor is called a converting |
| // constructor. |
| if (isExplicit() && !AllowExplicit) |
| return false; |
| |
| return (getNumParams() == 0 && |
| getType()->getAs<FunctionProtoType>()->isVariadic()) || |
| (getNumParams() == 1) || |
| (getNumParams() > 1 && getParamDecl(1)->hasDefaultArg()); |
| } |
| |
| bool CXXConstructorDecl::isSpecializationCopyingObject() const { |
| if ((getNumParams() < 1) || |
| (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) || |
| (getPrimaryTemplate() == 0) || |
| (getDescribedFunctionTemplate() != 0)) |
| return false; |
| |
| const ParmVarDecl *Param = getParamDecl(0); |
| |
| ASTContext &Context = getASTContext(); |
| CanQualType ParamType = Context.getCanonicalType(Param->getType()); |
| |
| // Is it the same as our our class type? |
| CanQualType ClassTy |
| = Context.getCanonicalType(Context.getTagDeclType(getParent())); |
| if (ParamType.getUnqualifiedType() != ClassTy) |
| return false; |
| |
| return true; |
| } |
| |
| const CXXConstructorDecl *CXXConstructorDecl::getInheritedConstructor() const { |
| // Hack: we store the inherited constructor in the overridden method table |
| method_iterator It = begin_overridden_methods(); |
| if (It == end_overridden_methods()) |
| return 0; |
| |
| return cast<CXXConstructorDecl>(*It); |
| } |
| |
| void |
| CXXConstructorDecl::setInheritedConstructor(const CXXConstructorDecl *BaseCtor){ |
| // Hack: we store the inherited constructor in the overridden method table |
| assert(size_overridden_methods() == 0 && "Base ctor already set."); |
| addOverriddenMethod(BaseCtor); |
| } |
| |
| void CXXDestructorDecl::anchor() { } |
| |
| CXXDestructorDecl * |
| CXXDestructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) { |
| void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXDestructorDecl)); |
| return new (Mem) CXXDestructorDecl(0, SourceLocation(), DeclarationNameInfo(), |
| QualType(), 0, false, false); |
| } |
| |
| CXXDestructorDecl * |
| CXXDestructorDecl::Create(ASTContext &C, CXXRecordDecl *RD, |
| SourceLocation StartLoc, |
| const DeclarationNameInfo &NameInfo, |
| QualType T, TypeSourceInfo *TInfo, |
| bool isInline, bool isImplicitlyDeclared) { |
| assert(NameInfo.getName().getNameKind() |
| == DeclarationName::CXXDestructorName && |
| "Name must refer to a destructor"); |
| return new (C) CXXDestructorDecl(RD, StartLoc, NameInfo, T, TInfo, isInline, |
| isImplicitlyDeclared); |
| } |
| |
| void CXXConversionDecl::anchor() { } |
| |
| CXXConversionDecl * |
| CXXConversionDecl::CreateDeserialized(ASTContext &C, unsigned ID) { |
| void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXConversionDecl)); |
| return new (Mem) CXXConversionDecl(0, SourceLocation(), DeclarationNameInfo(), |
| QualType(), 0, false, false, false, |
| SourceLocation()); |
| } |
| |
| CXXConversionDecl * |
| CXXConversionDecl::Create(ASTContext &C, CXXRecordDecl *RD, |
| SourceLocation StartLoc, |
| const DeclarationNameInfo &NameInfo, |
| QualType T, TypeSourceInfo *TInfo, |
| bool isInline, bool isExplicit, |
| bool isConstexpr, SourceLocation EndLocation) { |
| assert(NameInfo.getName().getNameKind() |
| == DeclarationName::CXXConversionFunctionName && |
| "Name must refer to a conversion function"); |
| return new (C) CXXConversionDecl(RD, StartLoc, NameInfo, T, TInfo, |
| isInline, isExplicit, isConstexpr, |
| EndLocation); |
| } |
| |
| void LinkageSpecDecl::anchor() { } |
| |
| LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C, |
| DeclContext *DC, |
| SourceLocation ExternLoc, |
| SourceLocation LangLoc, |
| LanguageIDs Lang, |
| SourceLocation RBraceLoc) { |
| return new (C) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, RBraceLoc); |
| } |
| |
| LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) { |
| void *Mem = AllocateDeserializedDecl(C, ID, sizeof(LinkageSpecDecl)); |
| return new (Mem) LinkageSpecDecl(0, SourceLocation(), SourceLocation(), |
| lang_c, SourceLocation()); |
| } |
| |
| void UsingDirectiveDecl::anchor() { } |
| |
| UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC, |
| SourceLocation L, |
| SourceLocation NamespaceLoc, |
| NestedNameSpecifierLoc QualifierLoc, |
| SourceLocation IdentLoc, |
| NamedDecl *Used, |
| DeclContext *CommonAncestor) { |
| if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Used)) |
| Used = NS->getOriginalNamespace(); |
| return new (C) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc, |
| IdentLoc, Used, CommonAncestor); |
| } |
| |
| UsingDirectiveDecl * |
| UsingDirectiveDecl::CreateDeserialized(ASTContext &C, unsigned ID) { |
| void *Mem = AllocateDeserializedDecl(C, ID, sizeof(UsingDirectiveDecl)); |
| return new (Mem) UsingDirectiveDecl(0, SourceLocation(), SourceLocation(), |
| NestedNameSpecifierLoc(), |
| SourceLocation(), 0, 0); |
| } |
| |
| NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() { |
| if (NamespaceAliasDecl *NA = |
| dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace)) |
| return NA->getNamespace(); |
| return cast_or_null<NamespaceDecl>(NominatedNamespace); |
| } |
| |
| void NamespaceDecl::anchor() { } |
| |
| NamespaceDecl::NamespaceDecl(DeclContext *DC, bool Inline, |
| SourceLocation StartLoc, |
| SourceLocation IdLoc, IdentifierInfo *Id, |
| NamespaceDecl *PrevDecl) |
| : NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace), |
| LocStart(StartLoc), RBraceLoc(), AnonOrFirstNamespaceAndInline(0, Inline) |
| { |
| setPreviousDeclaration(PrevDecl); |
| |
| if (PrevDecl) |
| AnonOrFirstNamespaceAndInline.setPointer(PrevDecl->getOriginalNamespace()); |
| } |
| |
| NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC, |
| bool Inline, SourceLocation StartLoc, |
| SourceLocation IdLoc, IdentifierInfo *Id, |
| NamespaceDecl *PrevDecl) { |
| return new (C) NamespaceDecl(DC, Inline, StartLoc, IdLoc, Id, PrevDecl); |
| } |
| |
| NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, unsigned ID) { |
| void *Mem = AllocateDeserializedDecl(C, ID, sizeof(NamespaceDecl)); |
| return new (Mem) NamespaceDecl(0, false, SourceLocation(), SourceLocation(), |
| 0, 0); |
| } |
| |
| void NamespaceAliasDecl::anchor() { } |
| |
| NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC, |
| SourceLocation UsingLoc, |
| SourceLocation AliasLoc, |
| IdentifierInfo *Alias, |
| NestedNameSpecifierLoc QualifierLoc, |
| SourceLocation IdentLoc, |
| NamedDecl *Namespace) { |
| if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Namespace)) |
| Namespace = NS->getOriginalNamespace(); |
| return new (C) NamespaceAliasDecl(DC, UsingLoc, AliasLoc, Alias, |
| QualifierLoc, IdentLoc, Namespace); |
| } |
| |
| NamespaceAliasDecl * |
| NamespaceAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) { |
| void *Mem = AllocateDeserializedDecl(C, ID, sizeof(NamespaceAliasDecl)); |
| return new (Mem) NamespaceAliasDecl(0, SourceLocation(), SourceLocation(), 0, |
| NestedNameSpecifierLoc(), |
| SourceLocation(), 0); |
| } |
| |
| void UsingShadowDecl::anchor() { } |
| |
| UsingShadowDecl * |
| UsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) { |
| void *Mem = AllocateDeserializedDecl(C, ID, sizeof(UsingShadowDecl)); |
| return new (Mem) UsingShadowDecl(0, SourceLocation(), 0, 0); |
| } |
| |
| UsingDecl *UsingShadowDecl::getUsingDecl() const { |
| const UsingShadowDecl *Shadow = this; |
| while (const UsingShadowDecl *NextShadow = |
| dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow)) |
| Shadow = NextShadow; |
| return cast<UsingDecl>(Shadow->UsingOrNextShadow); |
| } |
| |
| void UsingDecl::anchor() { } |
| |
| void UsingDecl::addShadowDecl(UsingShadowDecl *S) { |
| assert(std::find(shadow_begin(), shadow_end(), S) == shadow_end() && |
| "declaration already in set"); |
| assert(S->getUsingDecl() == this); |
| |
| if (FirstUsingShadow.getPointer()) |
| S->UsingOrNextShadow = FirstUsingShadow.getPointer(); |
| FirstUsingShadow.setPointer(S); |
| } |
| |
| void UsingDecl::removeShadowDecl(UsingShadowDecl *S) { |
| assert(std::find(shadow_begin(), shadow_end(), S) != shadow_end() && |
| "declaration not in set"); |
| assert(S->getUsingDecl() == this); |
| |
| // Remove S from the shadow decl chain. This is O(n) but hopefully rare. |
| |
| if (FirstUsingShadow.getPointer() == S) { |
| FirstUsingShadow.setPointer( |
| dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow)); |
| S->UsingOrNextShadow = this; |
| return; |
| } |
| |
| UsingShadowDecl *Prev = FirstUsingShadow.getPointer(); |
| while (Prev->UsingOrNextShadow != S) |
| Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow); |
| Prev->UsingOrNextShadow = S->UsingOrNextShadow; |
| S->UsingOrNextShadow = this; |
| } |
| |
| UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL, |
| NestedNameSpecifierLoc QualifierLoc, |
| const DeclarationNameInfo &NameInfo, |
| bool IsTypeNameArg) { |
| return new (C) UsingDecl(DC, UL, QualifierLoc, NameInfo, IsTypeNameArg); |
| } |
| |
| UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, unsigned ID) { |
| void *Mem = AllocateDeserializedDecl(C, ID, sizeof(UsingDecl)); |
| return new (Mem) UsingDecl(0, SourceLocation(), NestedNameSpecifierLoc(), |
| DeclarationNameInfo(), false); |
| } |
| |
| void UnresolvedUsingValueDecl::anchor() { } |
| |
| UnresolvedUsingValueDecl * |
| UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC, |
| SourceLocation UsingLoc, |
| NestedNameSpecifierLoc QualifierLoc, |
| const DeclarationNameInfo &NameInfo) { |
| return new (C) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc, |
| QualifierLoc, NameInfo); |
| } |
| |
| UnresolvedUsingValueDecl * |
| UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, unsigned ID) { |
| void *Mem = AllocateDeserializedDecl(C, ID, sizeof(UnresolvedUsingValueDecl)); |
| return new (Mem) UnresolvedUsingValueDecl(0, QualType(), SourceLocation(), |
| NestedNameSpecifierLoc(), |
| DeclarationNameInfo()); |
| } |
| |
| void UnresolvedUsingTypenameDecl::anchor() { } |
| |
| UnresolvedUsingTypenameDecl * |
| UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC, |
| SourceLocation UsingLoc, |
| SourceLocation TypenameLoc, |
| NestedNameSpecifierLoc QualifierLoc, |
| SourceLocation TargetNameLoc, |
| DeclarationName TargetName) { |
| return new (C) UnresolvedUsingTypenameDecl(DC, UsingLoc, TypenameLoc, |
| QualifierLoc, TargetNameLoc, |
| TargetName.getAsIdentifierInfo()); |
| } |
| |
| UnresolvedUsingTypenameDecl * |
| UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, unsigned ID) { |
| void *Mem = AllocateDeserializedDecl(C, ID, |
| sizeof(UnresolvedUsingTypenameDecl)); |
| return new (Mem) UnresolvedUsingTypenameDecl(0, SourceLocation(), |
| SourceLocation(), |
| NestedNameSpecifierLoc(), |
| SourceLocation(), |
| 0); |
| } |
| |
| void StaticAssertDecl::anchor() { } |
| |
| StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC, |
| SourceLocation StaticAssertLoc, |
| Expr *AssertExpr, |
| StringLiteral *Message, |
| SourceLocation RParenLoc) { |
| return new (C) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message, |
| RParenLoc); |
| } |
| |
| StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C, |
| unsigned ID) { |
| void *Mem = AllocateDeserializedDecl(C, ID, sizeof(StaticAssertDecl)); |
| return new (Mem) StaticAssertDecl(0, SourceLocation(), 0, 0,SourceLocation()); |
| } |
| |
| static const char *getAccessName(AccessSpecifier AS) { |
| switch (AS) { |
| case AS_none: |
| llvm_unreachable("Invalid access specifier!"); |
| case AS_public: |
| return "public"; |
| case AS_private: |
| return "private"; |
| case AS_protected: |
| return "protected"; |
| } |
| llvm_unreachable("Invalid access specifier!"); |
| } |
| |
| const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB, |
| AccessSpecifier AS) { |
| return DB << getAccessName(AS); |
| } |
| |
| const PartialDiagnostic &clang::operator<<(const PartialDiagnostic &DB, |
| AccessSpecifier AS) { |
| return DB << getAccessName(AS); |
| } |