blob: 22a9eadaad932e5024dc0b231b7c77f0c6ec49ab [file] [log] [blame]
//===--- DeclCXX.cpp - C++ Declaration AST Node Implementation ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the C++ related Decl classes.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTMutationListener.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/IdentifierTable.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
using namespace clang;
//===----------------------------------------------------------------------===//
// Decl Allocation/Deallocation Method Implementations
//===----------------------------------------------------------------------===//
void AccessSpecDecl::anchor() { }
AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(AccessSpecDecl));
return new (Mem) AccessSpecDecl(EmptyShell());
}
CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D)
: UserDeclaredConstructor(false), UserDeclaredCopyConstructor(false),
UserDeclaredMoveConstructor(false), UserDeclaredCopyAssignment(false),
UserDeclaredMoveAssignment(false), UserDeclaredDestructor(false),
Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
Abstract(false), IsStandardLayout(true), HasNoNonEmptyBases(true),
HasPrivateFields(false), HasProtectedFields(false), HasPublicFields(false),
HasMutableFields(false), HasOnlyCMembers(true),
HasTrivialDefaultConstructor(true),
HasConstexprNonCopyMoveConstructor(false),
DefaultedDefaultConstructorIsConstexpr(true),
DefaultedCopyConstructorIsConstexpr(true),
DefaultedMoveConstructorIsConstexpr(true),
HasConstexprDefaultConstructor(false), HasConstexprCopyConstructor(false),
HasConstexprMoveConstructor(false), HasTrivialCopyConstructor(true),
HasTrivialMoveConstructor(true), HasTrivialCopyAssignment(true),
HasTrivialMoveAssignment(true), HasTrivialDestructor(true),
HasNonLiteralTypeFieldsOrBases(false), ComputedVisibleConversions(false),
UserProvidedDefaultConstructor(false), DeclaredDefaultConstructor(false),
DeclaredCopyConstructor(false), DeclaredMoveConstructor(false),
DeclaredCopyAssignment(false), DeclaredMoveAssignment(false),
DeclaredDestructor(false), FailedImplicitMoveConstructor(false),
FailedImplicitMoveAssignment(false), IsLambda(false), NumBases(0),
NumVBases(0), Bases(), VBases(), Definition(D), FirstFriend(0) {
}
CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, CXXRecordDecl *PrevDecl)
: RecordDecl(K, TK, DC, StartLoc, IdLoc, Id, PrevDecl),
DefinitionData(PrevDecl ? PrevDecl->DefinitionData : 0),
TemplateOrInstantiation() { }
CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK,
DeclContext *DC, SourceLocation StartLoc,
SourceLocation IdLoc, IdentifierInfo *Id,
CXXRecordDecl* PrevDecl,
bool DelayTypeCreation) {
CXXRecordDecl* R = new (C) CXXRecordDecl(CXXRecord, TK, DC, StartLoc, IdLoc,
Id, PrevDecl);
// FIXME: DelayTypeCreation seems like such a hack
if (!DelayTypeCreation)
C.getTypeDeclType(R, PrevDecl);
return R;
}
CXXRecordDecl *
CXXRecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXRecordDecl));
return new (Mem) CXXRecordDecl(CXXRecord, TTK_Struct, 0, SourceLocation(),
SourceLocation(), 0, 0);
}
void
CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases,
unsigned NumBases) {
ASTContext &C = getASTContext();
if (!data().Bases.isOffset() && data().NumBases > 0)
C.Deallocate(data().getBases());
if (NumBases) {
// C++ [dcl.init.aggr]p1:
// An aggregate is [...] a class with [...] no base classes [...].
data().Aggregate = false;
// C++ [class]p4:
// A POD-struct is an aggregate class...
data().PlainOldData = false;
}
// The set of seen virtual base types.
llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes;
// The virtual bases of this class.
SmallVector<const CXXBaseSpecifier *, 8> VBases;
data().Bases = new(C) CXXBaseSpecifier [NumBases];
data().NumBases = NumBases;
for (unsigned i = 0; i < NumBases; ++i) {
data().getBases()[i] = *Bases[i];
// Keep track of inherited vbases for this base class.
const CXXBaseSpecifier *Base = Bases[i];
QualType BaseType = Base->getType();
// Skip dependent types; we can't do any checking on them now.
if (BaseType->isDependentType())
continue;
CXXRecordDecl *BaseClassDecl
= cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
// A class with a non-empty base class is not empty.
// FIXME: Standard ref?
if (!BaseClassDecl->isEmpty()) {
if (!data().Empty) {
// C++0x [class]p7:
// A standard-layout class is a class that:
// [...]
// -- either has no non-static data members in the most derived
// class and at most one base class with non-static data members,
// or has no base classes with non-static data members, and
// If this is the second non-empty base, then neither of these two
// clauses can be true.
data().IsStandardLayout = false;
}
data().Empty = false;
data().HasNoNonEmptyBases = false;
}
// C++ [class.virtual]p1:
// A class that declares or inherits a virtual function is called a
// polymorphic class.
if (BaseClassDecl->isPolymorphic())
data().Polymorphic = true;
// C++0x [class]p7:
// A standard-layout class is a class that: [...]
// -- has no non-standard-layout base classes
if (!BaseClassDecl->isStandardLayout())
data().IsStandardLayout = false;
// Record if this base is the first non-literal field or base.
if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType())
data().HasNonLiteralTypeFieldsOrBases = true;
// Now go through all virtual bases of this base and add them.
for (CXXRecordDecl::base_class_iterator VBase =
BaseClassDecl->vbases_begin(),
E = BaseClassDecl->vbases_end(); VBase != E; ++VBase) {
// Add this base if it's not already in the list.
if (SeenVBaseTypes.insert(C.getCanonicalType(VBase->getType())))
VBases.push_back(VBase);
}
if (Base->isVirtual()) {
// Add this base if it's not already in the list.
if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)))
VBases.push_back(Base);
// C++0x [meta.unary.prop] is_empty:
// T is a class type, but not a union type, with ... no virtual base
// classes
data().Empty = false;
// C++ [class.ctor]p5:
// A default constructor is trivial [...] if:
// -- its class has [...] no virtual bases
data().HasTrivialDefaultConstructor = false;
// C++0x [class.copy]p13:
// A copy/move constructor for class X is trivial if it is neither
// user-provided nor deleted and if
// -- class X has no virtual functions and no virtual base classes, and
data().HasTrivialCopyConstructor = false;
data().HasTrivialMoveConstructor = false;
// C++0x [class.copy]p27:
// A copy/move assignment operator for class X is trivial if it is
// neither user-provided nor deleted and if
// -- class X has no virtual functions and no virtual base classes, and
data().HasTrivialCopyAssignment = false;
data().HasTrivialMoveAssignment = false;
// C++0x [class]p7:
// A standard-layout class is a class that: [...]
// -- has [...] no virtual base classes
data().IsStandardLayout = false;
// C++11 [dcl.constexpr]p4:
// In the definition of a constexpr constructor [...]
// -- the class shall not have any virtual base classes
data().DefaultedDefaultConstructorIsConstexpr = false;
data().DefaultedCopyConstructorIsConstexpr = false;
data().DefaultedMoveConstructorIsConstexpr = false;
} else {
// C++ [class.ctor]p5:
// A default constructor is trivial [...] if:
// -- all the direct base classes of its class have trivial default
// constructors.
if (!BaseClassDecl->hasTrivialDefaultConstructor())
data().HasTrivialDefaultConstructor = false;
// C++0x [class.copy]p13:
// A copy/move constructor for class X is trivial if [...]
// [...]
// -- the constructor selected to copy/move each direct base class
// subobject is trivial, and
// FIXME: C++0x: We need to only consider the selected constructor
// instead of all of them.
if (!BaseClassDecl->hasTrivialCopyConstructor())
data().HasTrivialCopyConstructor = false;
if (!BaseClassDecl->hasTrivialMoveConstructor())
data().HasTrivialMoveConstructor = false;
// C++0x [class.copy]p27:
// A copy/move assignment operator for class X is trivial if [...]
// [...]
// -- the assignment operator selected to copy/move each direct base
// class subobject is trivial, and
// FIXME: C++0x: We need to only consider the selected operator instead
// of all of them.
if (!BaseClassDecl->hasTrivialCopyAssignment())
data().HasTrivialCopyAssignment = false;
if (!BaseClassDecl->hasTrivialMoveAssignment())
data().HasTrivialMoveAssignment = false;
// C++11 [class.ctor]p6:
// If that user-written default constructor would satisfy the
// requirements of a constexpr constructor, the implicitly-defined
// default constructor is constexpr.
if (!BaseClassDecl->hasConstexprDefaultConstructor())
data().DefaultedDefaultConstructorIsConstexpr = false;
// C++11 [class.copy]p13:
// If the implicitly-defined constructor would satisfy the requirements
// of a constexpr constructor, the implicitly-defined constructor is
// constexpr.
// C++11 [dcl.constexpr]p4:
// -- every constructor involved in initializing [...] base class
// sub-objects shall be a constexpr constructor
if (!BaseClassDecl->hasConstexprCopyConstructor())
data().DefaultedCopyConstructorIsConstexpr = false;
if (BaseClassDecl->hasDeclaredMoveConstructor() ||
BaseClassDecl->needsImplicitMoveConstructor())
// FIXME: If the implicit move constructor generated for the base class
// would be ill-formed, the implicit move constructor generated for the
// derived class calls the base class' copy constructor.
data().DefaultedMoveConstructorIsConstexpr &=
BaseClassDecl->hasConstexprMoveConstructor();
else if (!BaseClassDecl->hasConstexprCopyConstructor())
data().DefaultedMoveConstructorIsConstexpr = false;
}
// C++ [class.ctor]p3:
// A destructor is trivial if all the direct base classes of its class
// have trivial destructors.
if (!BaseClassDecl->hasTrivialDestructor())
data().HasTrivialDestructor = false;
// A class has an Objective-C object member if... or any of its bases
// has an Objective-C object member.
if (BaseClassDecl->hasObjectMember())
setHasObjectMember(true);
// Keep track of the presence of mutable fields.
if (BaseClassDecl->hasMutableFields())
data().HasMutableFields = true;
}
if (VBases.empty())
return;
// Create base specifier for any direct or indirect virtual bases.
data().VBases = new (C) CXXBaseSpecifier[VBases.size()];
data().NumVBases = VBases.size();
for (int I = 0, E = VBases.size(); I != E; ++I)
data().getVBases()[I] = *VBases[I];
}
/// Callback function for CXXRecordDecl::forallBases that acknowledges
/// that it saw a base class.
static bool SawBase(const CXXRecordDecl *, void *) {
return true;
}
bool CXXRecordDecl::hasAnyDependentBases() const {
if (!isDependentContext())
return false;
return !forallBases(SawBase, 0);
}
bool CXXRecordDecl::hasConstCopyConstructor() const {
return getCopyConstructor(Qualifiers::Const) != 0;
}
bool CXXRecordDecl::isTriviallyCopyable() const {
// C++0x [class]p5:
// A trivially copyable class is a class that:
// -- has no non-trivial copy constructors,
if (!hasTrivialCopyConstructor()) return false;
// -- has no non-trivial move constructors,
if (!hasTrivialMoveConstructor()) return false;
// -- has no non-trivial copy assignment operators,
if (!hasTrivialCopyAssignment()) return false;
// -- has no non-trivial move assignment operators, and
if (!hasTrivialMoveAssignment()) return false;
// -- has a trivial destructor.
if (!hasTrivialDestructor()) return false;
return true;
}
/// \brief Perform a simplistic form of overload resolution that only considers
/// cv-qualifiers on a single parameter, and return the best overload candidate
/// (if there is one).
static CXXMethodDecl *
GetBestOverloadCandidateSimple(
const SmallVectorImpl<std::pair<CXXMethodDecl *, Qualifiers> > &Cands) {
if (Cands.empty())
return 0;
if (Cands.size() == 1)
return Cands[0].first;
unsigned Best = 0, N = Cands.size();
for (unsigned I = 1; I != N; ++I)
if (Cands[Best].second.compatiblyIncludes(Cands[I].second))
Best = I;
for (unsigned I = 1; I != N; ++I)
if (Cands[Best].second.compatiblyIncludes(Cands[I].second))
return 0;
return Cands[Best].first;
}
CXXConstructorDecl *CXXRecordDecl::getCopyConstructor(unsigned TypeQuals) const{
ASTContext &Context = getASTContext();
QualType ClassType
= Context.getTypeDeclType(const_cast<CXXRecordDecl*>(this));
DeclarationName ConstructorName
= Context.DeclarationNames.getCXXConstructorName(
Context.getCanonicalType(ClassType));
unsigned FoundTQs;
SmallVector<std::pair<CXXMethodDecl *, Qualifiers>, 4> Found;
DeclContext::lookup_const_iterator Con, ConEnd;
for (llvm::tie(Con, ConEnd) = this->lookup(ConstructorName);
Con != ConEnd; ++Con) {
// C++ [class.copy]p2:
// A non-template constructor for class X is a copy constructor if [...]
if (isa<FunctionTemplateDecl>(*Con))
continue;
CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
if (Constructor->isCopyConstructor(FoundTQs)) {
if (((TypeQuals & Qualifiers::Const) == (FoundTQs & Qualifiers::Const)) ||
(!(TypeQuals & Qualifiers::Const) && (FoundTQs & Qualifiers::Const)))
Found.push_back(std::make_pair(
const_cast<CXXConstructorDecl *>(Constructor),
Qualifiers::fromCVRMask(FoundTQs)));
}
}
return cast_or_null<CXXConstructorDecl>(
GetBestOverloadCandidateSimple(Found));
}
CXXConstructorDecl *CXXRecordDecl::getMoveConstructor() const {
for (ctor_iterator I = ctor_begin(), E = ctor_end(); I != E; ++I)
if (I->isMoveConstructor())
return *I;
return 0;
}
CXXMethodDecl *CXXRecordDecl::getCopyAssignmentOperator(bool ArgIsConst) const {
ASTContext &Context = getASTContext();
QualType Class = Context.getTypeDeclType(const_cast<CXXRecordDecl *>(this));
DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
SmallVector<std::pair<CXXMethodDecl *, Qualifiers>, 4> Found;
DeclContext::lookup_const_iterator Op, OpEnd;
for (llvm::tie(Op, OpEnd) = this->lookup(Name); Op != OpEnd; ++Op) {
// C++ [class.copy]p9:
// A user-declared copy assignment operator is a non-static non-template
// member function of class X with exactly one parameter of type X, X&,
// const X&, volatile X& or const volatile X&.
const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
if (!Method || Method->isStatic() || Method->getPrimaryTemplate())
continue;
const FunctionProtoType *FnType
= Method->getType()->getAs<FunctionProtoType>();
assert(FnType && "Overloaded operator has no prototype.");
// Don't assert on this; an invalid decl might have been left in the AST.
if (FnType->getNumArgs() != 1 || FnType->isVariadic())
continue;
QualType ArgType = FnType->getArgType(0);
Qualifiers Quals;
if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()) {
ArgType = Ref->getPointeeType();
// If we have a const argument and we have a reference to a non-const,
// this function does not match.
if (ArgIsConst && !ArgType.isConstQualified())
continue;
Quals = ArgType.getQualifiers();
} else {
// By-value copy-assignment operators are treated like const X&
// copy-assignment operators.
Quals = Qualifiers::fromCVRMask(Qualifiers::Const);
}
if (!Context.hasSameUnqualifiedType(ArgType, Class))
continue;
// Save this copy-assignment operator. It might be "the one".
Found.push_back(std::make_pair(const_cast<CXXMethodDecl *>(Method), Quals));
}
// Use a simplistic form of overload resolution to find the candidate.
return GetBestOverloadCandidateSimple(Found);
}
CXXMethodDecl *CXXRecordDecl::getMoveAssignmentOperator() const {
for (method_iterator I = method_begin(), E = method_end(); I != E; ++I)
if (I->isMoveAssignmentOperator())
return *I;
return 0;
}
void CXXRecordDecl::markedVirtualFunctionPure() {
// C++ [class.abstract]p2:
// A class is abstract if it has at least one pure virtual function.
data().Abstract = true;
}
void CXXRecordDecl::addedMember(Decl *D) {
if (!D->isImplicit() &&
!isa<FieldDecl>(D) &&
!isa<IndirectFieldDecl>(D) &&
(!isa<TagDecl>(D) || cast<TagDecl>(D)->getTagKind() == TTK_Class))
data().HasOnlyCMembers = false;
// Ignore friends and invalid declarations.
if (D->getFriendObjectKind() || D->isInvalidDecl())
return;
FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
if (FunTmpl)
D = FunTmpl->getTemplatedDecl();
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
if (Method->isVirtual()) {
// C++ [dcl.init.aggr]p1:
// An aggregate is an array or a class with [...] no virtual functions.
data().Aggregate = false;
// C++ [class]p4:
// A POD-struct is an aggregate class...
data().PlainOldData = false;
// Virtual functions make the class non-empty.
// FIXME: Standard ref?
data().Empty = false;
// C++ [class.virtual]p1:
// A class that declares or inherits a virtual function is called a
// polymorphic class.
data().Polymorphic = true;
// C++0x [class.ctor]p5
// A default constructor is trivial [...] if:
// -- its class has no virtual functions [...]
data().HasTrivialDefaultConstructor = false;
// C++0x [class.copy]p13:
// A copy/move constructor for class X is trivial if [...]
// -- class X has no virtual functions [...]
data().HasTrivialCopyConstructor = false;
data().HasTrivialMoveConstructor = false;
// C++0x [class.copy]p27:
// A copy/move assignment operator for class X is trivial if [...]
// -- class X has no virtual functions [...]
data().HasTrivialCopyAssignment = false;
data().HasTrivialMoveAssignment = false;
// C++0x [class]p7:
// A standard-layout class is a class that: [...]
// -- has no virtual functions
data().IsStandardLayout = false;
}
}
if (D->isImplicit()) {
// Notify that an implicit member was added after the definition
// was completed.
if (!isBeingDefined())
if (ASTMutationListener *L = getASTMutationListener())
L->AddedCXXImplicitMember(data().Definition, D);
// If this is a special member function, note that it was added and then
// return early.
if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
if (Constructor->isDefaultConstructor()) {
data().DeclaredDefaultConstructor = true;
if (Constructor->isConstexpr()) {
data().HasConstexprDefaultConstructor = true;
data().HasConstexprNonCopyMoveConstructor = true;
}
} else if (Constructor->isCopyConstructor()) {
data().DeclaredCopyConstructor = true;
if (Constructor->isConstexpr())
data().HasConstexprCopyConstructor = true;
} else if (Constructor->isMoveConstructor()) {
data().DeclaredMoveConstructor = true;
if (Constructor->isConstexpr())
data().HasConstexprMoveConstructor = true;
} else
goto NotASpecialMember;
return;
} else if (isa<CXXDestructorDecl>(D)) {
data().DeclaredDestructor = true;
return;
} else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
if (Method->isCopyAssignmentOperator())
data().DeclaredCopyAssignment = true;
else if (Method->isMoveAssignmentOperator())
data().DeclaredMoveAssignment = true;
else
goto NotASpecialMember;
return;
}
NotASpecialMember:;
// Any other implicit declarations are handled like normal declarations.
}
// Handle (user-declared) constructors.
if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
// Note that we have a user-declared constructor.
data().UserDeclaredConstructor = true;
// Technically, "user-provided" is only defined for special member
// functions, but the intent of the standard is clearly that it should apply
// to all functions.
bool UserProvided = Constructor->isUserProvided();
if (Constructor->isDefaultConstructor()) {
data().DeclaredDefaultConstructor = true;
if (UserProvided) {
// C++0x [class.ctor]p5:
// A default constructor is trivial if it is not user-provided [...]
data().HasTrivialDefaultConstructor = false;
data().UserProvidedDefaultConstructor = true;
}
if (Constructor->isConstexpr()) {
data().HasConstexprDefaultConstructor = true;
data().HasConstexprNonCopyMoveConstructor = true;
}
}
// Note when we have a user-declared copy or move constructor, which will
// suppress the implicit declaration of those constructors.
if (!FunTmpl) {
if (Constructor->isCopyConstructor()) {
data().UserDeclaredCopyConstructor = true;
data().DeclaredCopyConstructor = true;
// C++0x [class.copy]p13:
// A copy/move constructor for class X is trivial if it is not
// user-provided [...]
if (UserProvided)
data().HasTrivialCopyConstructor = false;
if (Constructor->isConstexpr())
data().HasConstexprCopyConstructor = true;
} else if (Constructor->isMoveConstructor()) {
data().UserDeclaredMoveConstructor = true;
data().DeclaredMoveConstructor = true;
// C++0x [class.copy]p13:
// A copy/move constructor for class X is trivial if it is not
// user-provided [...]
if (UserProvided)
data().HasTrivialMoveConstructor = false;
if (Constructor->isConstexpr())
data().HasConstexprMoveConstructor = true;
}
}
if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor()) {
// Record if we see any constexpr constructors which are neither copy
// nor move constructors.
data().HasConstexprNonCopyMoveConstructor = true;
}
// C++ [dcl.init.aggr]p1:
// An aggregate is an array or a class with no user-declared
// constructors [...].
// C++0x [dcl.init.aggr]p1:
// An aggregate is an array or a class with no user-provided
// constructors [...].
if (!getASTContext().getLangOptions().CPlusPlus0x || UserProvided)
data().Aggregate = false;
// C++ [class]p4:
// A POD-struct is an aggregate class [...]
// Since the POD bit is meant to be C++03 POD-ness, clear it even if the
// type is technically an aggregate in C++0x since it wouldn't be in 03.
data().PlainOldData = false;
return;
}
// Handle (user-declared) destructors.
if (CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) {
data().DeclaredDestructor = true;
data().UserDeclaredDestructor = true;
// C++ [class]p4:
// A POD-struct is an aggregate class that has [...] no user-defined
// destructor.
// This bit is the C++03 POD bit, not the 0x one.
data().PlainOldData = false;
// C++11 [class.dtor]p5:
// A destructor is trivial if it is not user-provided and if
// -- the destructor is not virtual.
if (DD->isUserProvided() || DD->isVirtual()) {
data().HasTrivialDestructor = false;
// C++11 [dcl.constexpr]p1:
// The constexpr specifier shall be applied only to [...] the
// declaration of a static data member of a literal type.
// C++11 [basic.types]p10:
// A type is a literal type if it is [...] a class type that [...] has
// a trivial destructor.
data().DefaultedDefaultConstructorIsConstexpr = false;
data().DefaultedCopyConstructorIsConstexpr = false;
data().DefaultedMoveConstructorIsConstexpr = false;
}
return;
}
// Handle (user-declared) member functions.
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
if (Method->isCopyAssignmentOperator()) {
// C++ [class]p4:
// A POD-struct is an aggregate class that [...] has no user-defined
// copy assignment operator [...].
// This is the C++03 bit only.
data().PlainOldData = false;
// This is a copy assignment operator.
// Suppress the implicit declaration of a copy constructor.
data().UserDeclaredCopyAssignment = true;
data().DeclaredCopyAssignment = true;
// C++0x [class.copy]p27:
// A copy/move assignment operator for class X is trivial if it is
// neither user-provided nor deleted [...]
if (Method->isUserProvided())
data().HasTrivialCopyAssignment = false;
return;
}
if (Method->isMoveAssignmentOperator()) {
// This is an extension in C++03 mode, but we'll keep consistency by
// taking a move assignment operator to induce non-POD-ness
data().PlainOldData = false;
// This is a move assignment operator.
data().UserDeclaredMoveAssignment = true;
data().DeclaredMoveAssignment = true;
// C++0x [class.copy]p27:
// A copy/move assignment operator for class X is trivial if it is
// neither user-provided nor deleted [...]
if (Method->isUserProvided())
data().HasTrivialMoveAssignment = false;
}
// Keep the list of conversion functions up-to-date.
if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) {
// We don't record specializations.
if (Conversion->getPrimaryTemplate())
return;
// FIXME: We intentionally don't use the decl's access here because it
// hasn't been set yet. That's really just a misdesign in Sema.
if (FunTmpl) {
if (FunTmpl->getPreviousDecl())
data().Conversions.replace(FunTmpl->getPreviousDecl(),
FunTmpl);
else
data().Conversions.addDecl(FunTmpl);
} else {
if (Conversion->getPreviousDecl())
data().Conversions.replace(Conversion->getPreviousDecl(),
Conversion);
else
data().Conversions.addDecl(Conversion);
}
}
return;
}
// Handle non-static data members.
if (FieldDecl *Field = dyn_cast<FieldDecl>(D)) {
// C++ [class.bit]p2:
// A declaration for a bit-field that omits the identifier declares an
// unnamed bit-field. Unnamed bit-fields are not members and cannot be
// initialized.
if (Field->isUnnamedBitfield())
return;
// C++ [dcl.init.aggr]p1:
// An aggregate is an array or a class (clause 9) with [...] no
// private or protected non-static data members (clause 11).
//
// A POD must be an aggregate.
if (D->getAccess() == AS_private || D->getAccess() == AS_protected) {
data().Aggregate = false;
data().PlainOldData = false;
}
// C++0x [class]p7:
// A standard-layout class is a class that:
// [...]
// -- has the same access control for all non-static data members,
switch (D->getAccess()) {
case AS_private: data().HasPrivateFields = true; break;
case AS_protected: data().HasProtectedFields = true; break;
case AS_public: data().HasPublicFields = true; break;
case AS_none: llvm_unreachable("Invalid access specifier");
};
if ((data().HasPrivateFields + data().HasProtectedFields +
data().HasPublicFields) > 1)
data().IsStandardLayout = false;
// Keep track of the presence of mutable fields.
if (Field->isMutable())
data().HasMutableFields = true;
// C++0x [class]p9:
// A POD struct is a class that is both a trivial class and a
// standard-layout class, and has no non-static data members of type
// non-POD struct, non-POD union (or array of such types).
//
// Automatic Reference Counting: the presence of a member of Objective-C pointer type
// that does not explicitly have no lifetime makes the class a non-POD.
// However, we delay setting PlainOldData to false in this case so that
// Sema has a chance to diagnostic causes where the same class will be
// non-POD with Automatic Reference Counting but a POD without Instant Objects.
// In this case, the class will become a non-POD class when we complete
// the definition.
ASTContext &Context = getASTContext();
QualType T = Context.getBaseElementType(Field->getType());
if (T->isObjCRetainableType() || T.isObjCGCStrong()) {
if (!Context.getLangOptions().ObjCAutoRefCount ||
T.getObjCLifetime() != Qualifiers::OCL_ExplicitNone)
setHasObjectMember(true);
} else if (!T.isPODType(Context))
data().PlainOldData = false;
if (T->isReferenceType()) {
data().HasTrivialDefaultConstructor = false;
// C++0x [class]p7:
// A standard-layout class is a class that:
// -- has no non-static data members of type [...] reference,
data().IsStandardLayout = false;
}
// Record if this field is the first non-literal field or base.
if (!hasNonLiteralTypeFieldsOrBases() && !T->isLiteralType())
data().HasNonLiteralTypeFieldsOrBases = true;
if (Field->hasInClassInitializer()) {
// C++0x [class]p5:
// A default constructor is trivial if [...] no non-static data member
// of its class has a brace-or-equal-initializer.
data().HasTrivialDefaultConstructor = false;
// C++0x [dcl.init.aggr]p1:
// An aggregate is a [...] class with [...] no
// brace-or-equal-initializers for non-static data members.
data().Aggregate = false;
// C++0x [class]p10:
// A POD struct is [...] a trivial class.
data().PlainOldData = false;
}
if (const RecordType *RecordTy = T->getAs<RecordType>()) {
CXXRecordDecl* FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl());
if (FieldRec->getDefinition()) {
// C++0x [class.ctor]p5:
// A default constructor is trivial [...] if:
// -- for all the non-static data members of its class that are of
// class type (or array thereof), each such class has a trivial
// default constructor.
if (!FieldRec->hasTrivialDefaultConstructor())
data().HasTrivialDefaultConstructor = false;
// C++0x [class.copy]p13:
// A copy/move constructor for class X is trivial if [...]
// [...]
// -- for each non-static data member of X that is of class type (or
// an array thereof), the constructor selected to copy/move that
// member is trivial;
// FIXME: C++0x: We don't correctly model 'selected' constructors.
if (!FieldRec->hasTrivialCopyConstructor())
data().HasTrivialCopyConstructor = false;
if (!FieldRec->hasTrivialMoveConstructor())
data().HasTrivialMoveConstructor = false;
// C++0x [class.copy]p27:
// A copy/move assignment operator for class X is trivial if [...]
// [...]
// -- for each non-static data member of X that is of class type (or
// an array thereof), the assignment operator selected to
// copy/move that member is trivial;
// FIXME: C++0x: We don't correctly model 'selected' operators.
if (!FieldRec->hasTrivialCopyAssignment())
data().HasTrivialCopyAssignment = false;
if (!FieldRec->hasTrivialMoveAssignment())
data().HasTrivialMoveAssignment = false;
if (!FieldRec->hasTrivialDestructor())
data().HasTrivialDestructor = false;
if (FieldRec->hasObjectMember())
setHasObjectMember(true);
// C++0x [class]p7:
// A standard-layout class is a class that:
// -- has no non-static data members of type non-standard-layout
// class (or array of such types) [...]
if (!FieldRec->isStandardLayout())
data().IsStandardLayout = false;
// C++0x [class]p7:
// A standard-layout class is a class that:
// [...]
// -- has no base classes of the same type as the first non-static
// data member.
// We don't want to expend bits in the state of the record decl
// tracking whether this is the first non-static data member so we
// cheat a bit and use some of the existing state: the empty bit.
// Virtual bases and virtual methods make a class non-empty, but they
// also make it non-standard-layout so we needn't check here.
// A non-empty base class may leave the class standard-layout, but not
// if we have arrived here, and have at least on non-static data
// member. If IsStandardLayout remains true, then the first non-static
// data member must come through here with Empty still true, and Empty
// will subsequently be set to false below.
if (data().IsStandardLayout && data().Empty) {
for (CXXRecordDecl::base_class_const_iterator BI = bases_begin(),
BE = bases_end();
BI != BE; ++BI) {
if (Context.hasSameUnqualifiedType(BI->getType(), T)) {
data().IsStandardLayout = false;
break;
}
}
}
// Keep track of the presence of mutable fields.
if (FieldRec->hasMutableFields())
data().HasMutableFields = true;
// C++11 [class.copy]p13:
// If the implicitly-defined constructor would satisfy the
// requirements of a constexpr constructor, the implicitly-defined
// constructor is constexpr.
// C++11 [dcl.constexpr]p4:
// -- every constructor involved in initializing non-static data
// members [...] shall be a constexpr constructor
if (!Field->hasInClassInitializer() &&
!FieldRec->hasConstexprDefaultConstructor())
// The standard requires any in-class initializer to be a constant
// expression. We consider this to be a defect.
data().DefaultedDefaultConstructorIsConstexpr = false;
if (!FieldRec->hasConstexprCopyConstructor())
data().DefaultedCopyConstructorIsConstexpr = false;
if (FieldRec->hasDeclaredMoveConstructor() ||
FieldRec->needsImplicitMoveConstructor())
// FIXME: If the implicit move constructor generated for the member's
// class would be ill-formed, the implicit move constructor generated
// for this class calls the member's copy constructor.
data().DefaultedMoveConstructorIsConstexpr &=
FieldRec->hasConstexprMoveConstructor();
else if (!FieldRec->hasConstexprCopyConstructor())
data().DefaultedMoveConstructorIsConstexpr = false;
}
} else {
// Base element type of field is a non-class type.
if (!T->isLiteralType()) {
data().DefaultedDefaultConstructorIsConstexpr = false;
data().DefaultedCopyConstructorIsConstexpr = false;
data().DefaultedMoveConstructorIsConstexpr = false;
} else if (!Field->hasInClassInitializer())
data().DefaultedDefaultConstructorIsConstexpr = false;
}
// C++0x [class]p7:
// A standard-layout class is a class that:
// [...]
// -- either has no non-static data members in the most derived
// class and at most one base class with non-static data members,
// or has no base classes with non-static data members, and
// At this point we know that we have a non-static data member, so the last
// clause holds.
if (!data().HasNoNonEmptyBases)
data().IsStandardLayout = false;
// If this is not a zero-length bit-field, then the class is not empty.
if (data().Empty) {
if (!Field->isBitField() ||
(!Field->getBitWidth()->isTypeDependent() &&
!Field->getBitWidth()->isValueDependent() &&
Field->getBitWidthValue(Context) != 0))
data().Empty = false;
}
}
// Handle using declarations of conversion functions.
if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(D))
if (Shadow->getDeclName().getNameKind()
== DeclarationName::CXXConversionFunctionName)
data().Conversions.addDecl(Shadow, Shadow->getAccess());
}
bool CXXRecordDecl::isCLike() const {
if (getTagKind() == TTK_Class || !TemplateOrInstantiation.isNull())
return false;
if (!hasDefinition())
return true;
return isPOD() && data().HasOnlyCMembers;
}
void CXXRecordDecl::setLambda(LambdaExpr *Lambda) {
if (!Lambda)
return;
data().IsLambda = true;
getASTContext().Lambdas[this] = Lambda;
}
void CXXRecordDecl::getCaptureFields(
llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures,
FieldDecl *&ThisCapture) const {
Captures.clear();
ThisCapture = 0;
LambdaExpr *Lambda = getASTContext().Lambdas[this];
RecordDecl::field_iterator Field = field_begin();
for (LambdaExpr::capture_iterator C = Lambda->capture_begin(),
CEnd = Lambda->capture_end();
C != CEnd; ++C, ++Field) {
if (C->capturesThis()) {
ThisCapture = *Field;
continue;
}
Captures[C->getCapturedVar()] = *Field;
}
}
static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) {
QualType T;
if (isa<UsingShadowDecl>(Conv))
Conv = cast<UsingShadowDecl>(Conv)->getTargetDecl();
if (FunctionTemplateDecl *ConvTemp = dyn_cast<FunctionTemplateDecl>(Conv))
T = ConvTemp->getTemplatedDecl()->getResultType();
else
T = cast<CXXConversionDecl>(Conv)->getConversionType();
return Context.getCanonicalType(T);
}
/// Collect the visible conversions of a base class.
///
/// \param Base a base class of the class we're considering
/// \param InVirtual whether this base class is a virtual base (or a base
/// of a virtual base)
/// \param Access the access along the inheritance path to this base
/// \param ParentHiddenTypes the conversions provided by the inheritors
/// of this base
/// \param Output the set to which to add conversions from non-virtual bases
/// \param VOutput the set to which to add conversions from virtual bases
/// \param HiddenVBaseCs the set of conversions which were hidden in a
/// virtual base along some inheritance path
static void CollectVisibleConversions(ASTContext &Context,
CXXRecordDecl *Record,
bool InVirtual,
AccessSpecifier Access,
const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes,
UnresolvedSetImpl &Output,
UnresolvedSetImpl &VOutput,
llvm::SmallPtrSet<NamedDecl*, 8> &HiddenVBaseCs) {
// The set of types which have conversions in this class or its
// subclasses. As an optimization, we don't copy the derived set
// unless it might change.
const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes;
llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer;
// Collect the direct conversions and figure out which conversions
// will be hidden in the subclasses.
UnresolvedSetImpl &Cs = *Record->getConversionFunctions();
if (!Cs.empty()) {
HiddenTypesBuffer = ParentHiddenTypes;
HiddenTypes = &HiddenTypesBuffer;
for (UnresolvedSetIterator I = Cs.begin(), E = Cs.end(); I != E; ++I) {
bool Hidden =
!HiddenTypesBuffer.insert(GetConversionType(Context, I.getDecl()));
// If this conversion is hidden and we're in a virtual base,
// remember that it's hidden along some inheritance path.
if (Hidden && InVirtual)
HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()));
// If this conversion isn't hidden, add it to the appropriate output.
else if (!Hidden) {
AccessSpecifier IAccess
= CXXRecordDecl::MergeAccess(Access, I.getAccess());
if (InVirtual)
VOutput.addDecl(I.getDecl(), IAccess);
else
Output.addDecl(I.getDecl(), IAccess);
}
}
}
// Collect information recursively from any base classes.
for (CXXRecordDecl::base_class_iterator
I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) {
const RecordType *RT = I->getType()->getAs<RecordType>();
if (!RT) continue;
AccessSpecifier BaseAccess
= CXXRecordDecl::MergeAccess(Access, I->getAccessSpecifier());
bool BaseInVirtual = InVirtual || I->isVirtual();
CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl());
CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess,
*HiddenTypes, Output, VOutput, HiddenVBaseCs);
}
}
/// Collect the visible conversions of a class.
///
/// This would be extremely straightforward if it weren't for virtual
/// bases. It might be worth special-casing that, really.
static void CollectVisibleConversions(ASTContext &Context,
CXXRecordDecl *Record,
UnresolvedSetImpl &Output) {
// The collection of all conversions in virtual bases that we've
// found. These will be added to the output as long as they don't
// appear in the hidden-conversions set.
UnresolvedSet<8> VBaseCs;
// The set of conversions in virtual bases that we've determined to
// be hidden.
llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs;
// The set of types hidden by classes derived from this one.
llvm::SmallPtrSet<CanQualType, 8> HiddenTypes;
// Go ahead and collect the direct conversions and add them to the
// hidden-types set.
UnresolvedSetImpl &Cs = *Record->getConversionFunctions();
Output.append(Cs.begin(), Cs.end());
for (UnresolvedSetIterator I = Cs.begin(), E = Cs.end(); I != E; ++I)
HiddenTypes.insert(GetConversionType(Context, I.getDecl()));
// Recursively collect conversions from base classes.
for (CXXRecordDecl::base_class_iterator
I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) {
const RecordType *RT = I->getType()->getAs<RecordType>();
if (!RT) continue;
CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()),
I->isVirtual(), I->getAccessSpecifier(),
HiddenTypes, Output, VBaseCs, HiddenVBaseCs);
}
// Add any unhidden conversions provided by virtual bases.
for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end();
I != E; ++I) {
if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())))
Output.addDecl(I.getDecl(), I.getAccess());
}
}
/// getVisibleConversionFunctions - get all conversion functions visible
/// in current class; including conversion function templates.
const UnresolvedSetImpl *CXXRecordDecl::getVisibleConversionFunctions() {
// If root class, all conversions are visible.
if (bases_begin() == bases_end())
return &data().Conversions;
// If visible conversion list is already evaluated, return it.
if (data().ComputedVisibleConversions)
return &data().VisibleConversions;
CollectVisibleConversions(getASTContext(), this, data().VisibleConversions);
data().ComputedVisibleConversions = true;
return &data().VisibleConversions;
}
void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) {
// This operation is O(N) but extremely rare. Sema only uses it to
// remove UsingShadowDecls in a class that were followed by a direct
// declaration, e.g.:
// class A : B {
// using B::operator int;
// operator int();
// };
// This is uncommon by itself and even more uncommon in conjunction
// with sufficiently large numbers of directly-declared conversions
// that asymptotic behavior matters.
UnresolvedSetImpl &Convs = *getConversionFunctions();
for (unsigned I = 0, E = Convs.size(); I != E; ++I) {
if (Convs[I].getDecl() == ConvDecl) {
Convs.erase(I);
assert(std::find(Convs.begin(), Convs.end(), ConvDecl) == Convs.end()
&& "conversion was found multiple times in unresolved set");
return;
}
}
llvm_unreachable("conversion not found in set!");
}
CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const {
if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom());
return 0;
}
MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const {
return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>();
}
void
CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD,
TemplateSpecializationKind TSK) {
assert(TemplateOrInstantiation.isNull() &&
"Previous template or instantiation?");
assert(!isa<ClassTemplateSpecializationDecl>(this));
TemplateOrInstantiation
= new (getASTContext()) MemberSpecializationInfo(RD, TSK);
}
TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{
if (const ClassTemplateSpecializationDecl *Spec
= dyn_cast<ClassTemplateSpecializationDecl>(this))
return Spec->getSpecializationKind();
if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
return MSInfo->getTemplateSpecializationKind();
return TSK_Undeclared;
}
void
CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
if (ClassTemplateSpecializationDecl *Spec
= dyn_cast<ClassTemplateSpecializationDecl>(this)) {
Spec->setSpecializationKind(TSK);
return;
}
if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
MSInfo->setTemplateSpecializationKind(TSK);
return;
}
llvm_unreachable("Not a class template or member class specialization");
}
CXXDestructorDecl *CXXRecordDecl::getDestructor() const {
ASTContext &Context = getASTContext();
QualType ClassType = Context.getTypeDeclType(this);
DeclarationName Name
= Context.DeclarationNames.getCXXDestructorName(
Context.getCanonicalType(ClassType));
DeclContext::lookup_const_iterator I, E;
llvm::tie(I, E) = lookup(Name);
if (I == E)
return 0;
CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(*I);
return Dtor;
}
void CXXRecordDecl::completeDefinition() {
completeDefinition(0);
}
void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) {
RecordDecl::completeDefinition();
if (hasObjectMember() && getASTContext().getLangOptions().ObjCAutoRefCount) {
// Objective-C Automatic Reference Counting:
// If a class has a non-static data member of Objective-C pointer
// type (or array thereof), it is a non-POD type and its
// default constructor (if any), copy constructor, copy assignment
// operator, and destructor are non-trivial.
struct DefinitionData &Data = data();
Data.PlainOldData = false;
Data.HasTrivialDefaultConstructor = false;
Data.HasTrivialCopyConstructor = false;
Data.HasTrivialCopyAssignment = false;
Data.HasTrivialDestructor = false;
}
// If the class may be abstract (but hasn't been marked as such), check for
// any pure final overriders.
if (mayBeAbstract()) {
CXXFinalOverriderMap MyFinalOverriders;
if (!FinalOverriders) {
getFinalOverriders(MyFinalOverriders);
FinalOverriders = &MyFinalOverriders;
}
bool Done = false;
for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(),
MEnd = FinalOverriders->end();
M != MEnd && !Done; ++M) {
for (OverridingMethods::iterator SO = M->second.begin(),
SOEnd = M->second.end();
SO != SOEnd && !Done; ++SO) {
assert(SO->second.size() > 0 &&
"All virtual functions have overridding virtual functions");
// C++ [class.abstract]p4:
// A class is abstract if it contains or inherits at least one
// pure virtual function for which the final overrider is pure
// virtual.
if (SO->second.front().Method->isPure()) {
data().Abstract = true;
Done = true;
break;
}
}
}
}
// Set access bits correctly on the directly-declared conversions.
for (UnresolvedSetIterator I = data().Conversions.begin(),
E = data().Conversions.end();
I != E; ++I)
data().Conversions.setAccess(I, (*I)->getAccess());
}
bool CXXRecordDecl::mayBeAbstract() const {
if (data().Abstract || isInvalidDecl() || !data().Polymorphic ||
isDependentContext())
return false;
for (CXXRecordDecl::base_class_const_iterator B = bases_begin(),
BEnd = bases_end();
B != BEnd; ++B) {
CXXRecordDecl *BaseDecl
= cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
if (BaseDecl->isAbstract())
return true;
}
return false;
}
void CXXMethodDecl::anchor() { }
CXXMethodDecl *
CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD,
SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo,
QualType T, TypeSourceInfo *TInfo,
bool isStatic, StorageClass SCAsWritten, bool isInline,
bool isConstexpr, SourceLocation EndLocation) {
return new (C) CXXMethodDecl(CXXMethod, RD, StartLoc, NameInfo, T, TInfo,
isStatic, SCAsWritten, isInline, isConstexpr,
EndLocation);
}
CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXMethodDecl));
return new (Mem) CXXMethodDecl(CXXMethod, 0, SourceLocation(),
DeclarationNameInfo(), QualType(),
0, false, SC_None, false, false,
SourceLocation());
}
bool CXXMethodDecl::isUsualDeallocationFunction() const {
if (getOverloadedOperator() != OO_Delete &&
getOverloadedOperator() != OO_Array_Delete)
return false;
// C++ [basic.stc.dynamic.deallocation]p2:
// A template instance is never a usual deallocation function,
// regardless of its signature.
if (getPrimaryTemplate())
return false;
// C++ [basic.stc.dynamic.deallocation]p2:
// If a class T has a member deallocation function named operator delete
// with exactly one parameter, then that function is a usual (non-placement)
// deallocation function. [...]
if (getNumParams() == 1)
return true;
// C++ [basic.stc.dynamic.deallocation]p2:
// [...] If class T does not declare such an operator delete but does
// declare a member deallocation function named operator delete with
// exactly two parameters, the second of which has type std::size_t (18.1),
// then this function is a usual deallocation function.
ASTContext &Context = getASTContext();
if (getNumParams() != 2 ||
!Context.hasSameUnqualifiedType(getParamDecl(1)->getType(),
Context.getSizeType()))
return false;
// This function is a usual deallocation function if there are no
// single-parameter deallocation functions of the same kind.
for (DeclContext::lookup_const_result R = getDeclContext()->lookup(getDeclName());
R.first != R.second; ++R.first) {
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*R.first))
if (FD->getNumParams() == 1)
return false;
}
return true;
}
bool CXXMethodDecl::isCopyAssignmentOperator() const {
// C++0x [class.copy]p17:
// A user-declared copy assignment operator X::operator= is a non-static
// non-template member function of class X with exactly one parameter of
// type X, X&, const X&, volatile X& or const volatile X&.
if (/*operator=*/getOverloadedOperator() != OO_Equal ||
/*non-static*/ isStatic() ||
/*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate())
return false;
QualType ParamType = getParamDecl(0)->getType();
if (const LValueReferenceType *Ref = ParamType->getAs<LValueReferenceType>())
ParamType = Ref->getPointeeType();
ASTContext &Context = getASTContext();
QualType ClassType
= Context.getCanonicalType(Context.getTypeDeclType(getParent()));
return Context.hasSameUnqualifiedType(ClassType, ParamType);
}
bool CXXMethodDecl::isMoveAssignmentOperator() const {
// C++0x [class.copy]p19:
// A user-declared move assignment operator X::operator= is a non-static
// non-template member function of class X with exactly one parameter of type
// X&&, const X&&, volatile X&&, or const volatile X&&.
if (getOverloadedOperator() != OO_Equal || isStatic() ||
getPrimaryTemplate() || getDescribedFunctionTemplate())
return false;
QualType ParamType = getParamDecl(0)->getType();
if (!isa<RValueReferenceType>(ParamType))
return false;
ParamType = ParamType->getPointeeType();
ASTContext &Context = getASTContext();
QualType ClassType
= Context.getCanonicalType(Context.getTypeDeclType(getParent()));
return Context.hasSameUnqualifiedType(ClassType, ParamType);
}
void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) {
assert(MD->isCanonicalDecl() && "Method is not canonical!");
assert(!MD->getParent()->isDependentContext() &&
"Can't add an overridden method to a class template!");
getASTContext().addOverriddenMethod(this, MD);
}
CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const {
return getASTContext().overridden_methods_begin(this);
}
CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const {
return getASTContext().overridden_methods_end(this);
}
unsigned CXXMethodDecl::size_overridden_methods() const {
return getASTContext().overridden_methods_size(this);
}
QualType CXXMethodDecl::getThisType(ASTContext &C) const {
// C++ 9.3.2p1: The type of this in a member function of a class X is X*.
// If the member function is declared const, the type of this is const X*,
// if the member function is declared volatile, the type of this is
// volatile X*, and if the member function is declared const volatile,
// the type of this is const volatile X*.
assert(isInstance() && "No 'this' for static methods!");
QualType ClassTy = C.getTypeDeclType(getParent());
ClassTy = C.getQualifiedType(ClassTy,
Qualifiers::fromCVRMask(getTypeQualifiers()));
return C.getPointerType(ClassTy);
}
bool CXXMethodDecl::hasInlineBody() const {
// If this function is a template instantiation, look at the template from
// which it was instantiated.
const FunctionDecl *CheckFn = getTemplateInstantiationPattern();
if (!CheckFn)
CheckFn = this;
const FunctionDecl *fn;
return CheckFn->hasBody(fn) && !fn->isOutOfLine();
}
CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
TypeSourceInfo *TInfo, bool IsVirtual,
SourceLocation L, Expr *Init,
SourceLocation R,
SourceLocation EllipsisLoc)
: Initializee(TInfo), MemberOrEllipsisLocation(EllipsisLoc), Init(Init),
LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual),
IsWritten(false), SourceOrderOrNumArrayIndices(0)
{
}
CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
FieldDecl *Member,
SourceLocation MemberLoc,
SourceLocation L, Expr *Init,
SourceLocation R)
: Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
IsWritten(false), SourceOrderOrNumArrayIndices(0)
{
}
CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
IndirectFieldDecl *Member,
SourceLocation MemberLoc,
SourceLocation L, Expr *Init,
SourceLocation R)
: Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
IsWritten(false), SourceOrderOrNumArrayIndices(0)
{
}
CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
TypeSourceInfo *TInfo,
SourceLocation L, Expr *Init,
SourceLocation R)
: Initializee(TInfo), MemberOrEllipsisLocation(), Init(Init),
LParenLoc(L), RParenLoc(R), IsDelegating(true), IsVirtual(false),
IsWritten(false), SourceOrderOrNumArrayIndices(0)
{
}
CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
FieldDecl *Member,
SourceLocation MemberLoc,
SourceLocation L, Expr *Init,
SourceLocation R,
VarDecl **Indices,
unsigned NumIndices)
: Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
LParenLoc(L), RParenLoc(R), IsVirtual(false),
IsWritten(false), SourceOrderOrNumArrayIndices(NumIndices)
{
VarDecl **MyIndices = reinterpret_cast<VarDecl **> (this + 1);
memcpy(MyIndices, Indices, NumIndices * sizeof(VarDecl *));
}
CXXCtorInitializer *CXXCtorInitializer::Create(ASTContext &Context,
FieldDecl *Member,
SourceLocation MemberLoc,
SourceLocation L, Expr *Init,
SourceLocation R,
VarDecl **Indices,
unsigned NumIndices) {
void *Mem = Context.Allocate(sizeof(CXXCtorInitializer) +
sizeof(VarDecl *) * NumIndices,
llvm::alignOf<CXXCtorInitializer>());
return new (Mem) CXXCtorInitializer(Context, Member, MemberLoc, L, Init, R,
Indices, NumIndices);
}
TypeLoc CXXCtorInitializer::getBaseClassLoc() const {
if (isBaseInitializer())
return Initializee.get<TypeSourceInfo*>()->getTypeLoc();
else
return TypeLoc();
}
const Type *CXXCtorInitializer::getBaseClass() const {
if (isBaseInitializer())
return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr();
else
return 0;
}
SourceLocation CXXCtorInitializer::getSourceLocation() const {
if (isAnyMemberInitializer())
return getMemberLocation();
if (isInClassMemberInitializer())
return getAnyMember()->getLocation();
if (TypeSourceInfo *TSInfo = Initializee.get<TypeSourceInfo*>())
return TSInfo->getTypeLoc().getLocalSourceRange().getBegin();
return SourceLocation();
}
SourceRange CXXCtorInitializer::getSourceRange() const {
if (isInClassMemberInitializer()) {
FieldDecl *D = getAnyMember();
if (Expr *I = D->getInClassInitializer())
return I->getSourceRange();
return SourceRange();
}
return SourceRange(getSourceLocation(), getRParenLoc());
}
void CXXConstructorDecl::anchor() { }
CXXConstructorDecl *
CXXConstructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXConstructorDecl));
return new (Mem) CXXConstructorDecl(0, SourceLocation(),DeclarationNameInfo(),
QualType(), 0, false, false, false,false);
}
CXXConstructorDecl *
CXXConstructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo,
QualType T, TypeSourceInfo *TInfo,
bool isExplicit, bool isInline,
bool isImplicitlyDeclared, bool isConstexpr) {
assert(NameInfo.getName().getNameKind()
== DeclarationName::CXXConstructorName &&
"Name must refer to a constructor");
return new (C) CXXConstructorDecl(RD, StartLoc, NameInfo, T, TInfo,
isExplicit, isInline, isImplicitlyDeclared,
isConstexpr);
}
CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const {
assert(isDelegatingConstructor() && "Not a delegating constructor!");
Expr *E = (*init_begin())->getInit()->IgnoreImplicit();
if (CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(E))
return Construct->getConstructor();
return 0;
}
bool CXXConstructorDecl::isDefaultConstructor() const {
// C++ [class.ctor]p5:
// A default constructor for a class X is a constructor of class
// X that can be called without an argument.
return (getNumParams() == 0) ||
(getNumParams() > 0 && getParamDecl(0)->hasDefaultArg());
}
bool
CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const {
return isCopyOrMoveConstructor(TypeQuals) &&
getParamDecl(0)->getType()->isLValueReferenceType();
}
bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const {
return isCopyOrMoveConstructor(TypeQuals) &&
getParamDecl(0)->getType()->isRValueReferenceType();
}
/// \brief Determine whether this is a copy or move constructor.
bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const {
// C++ [class.copy]p2:
// A non-template constructor for class X is a copy constructor
// if its first parameter is of type X&, const X&, volatile X& or
// const volatile X&, and either there are no other parameters
// or else all other parameters have default arguments (8.3.6).
// C++0x [class.copy]p3:
// A non-template constructor for class X is a move constructor if its
// first parameter is of type X&&, const X&&, volatile X&&, or
// const volatile X&&, and either there are no other parameters or else
// all other parameters have default arguments.
if ((getNumParams() < 1) ||
(getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
(getPrimaryTemplate() != 0) ||
(getDescribedFunctionTemplate() != 0))
return false;
const ParmVarDecl *Param = getParamDecl(0);
// Do we have a reference type?
const ReferenceType *ParamRefType = Param->getType()->getAs<ReferenceType>();
if (!ParamRefType)
return false;
// Is it a reference to our class type?
ASTContext &Context = getASTContext();
CanQualType PointeeType
= Context.getCanonicalType(ParamRefType->getPointeeType());
CanQualType ClassTy
= Context.getCanonicalType(Context.getTagDeclType(getParent()));
if (PointeeType.getUnqualifiedType() != ClassTy)
return false;
// FIXME: other qualifiers?
// We have a copy or move constructor.
TypeQuals = PointeeType.getCVRQualifiers();
return true;
}
bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
// C++ [class.conv.ctor]p1:
// A constructor declared without the function-specifier explicit
// that can be called with a single parameter specifies a
// conversion from the type of its first parameter to the type of
// its class. Such a constructor is called a converting
// constructor.
if (isExplicit() && !AllowExplicit)
return false;
return (getNumParams() == 0 &&
getType()->getAs<FunctionProtoType>()->isVariadic()) ||
(getNumParams() == 1) ||
(getNumParams() > 1 && getParamDecl(1)->hasDefaultArg());
}
bool CXXConstructorDecl::isSpecializationCopyingObject() const {
if ((getNumParams() < 1) ||
(getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
(getPrimaryTemplate() == 0) ||
(getDescribedFunctionTemplate() != 0))
return false;
const ParmVarDecl *Param = getParamDecl(0);
ASTContext &Context = getASTContext();
CanQualType ParamType = Context.getCanonicalType(Param->getType());
// Is it the same as our our class type?
CanQualType ClassTy
= Context.getCanonicalType(Context.getTagDeclType(getParent()));
if (ParamType.getUnqualifiedType() != ClassTy)
return false;
return true;
}
const CXXConstructorDecl *CXXConstructorDecl::getInheritedConstructor() const {
// Hack: we store the inherited constructor in the overridden method table
method_iterator It = begin_overridden_methods();
if (It == end_overridden_methods())
return 0;
return cast<CXXConstructorDecl>(*It);
}
void
CXXConstructorDecl::setInheritedConstructor(const CXXConstructorDecl *BaseCtor){
// Hack: we store the inherited constructor in the overridden method table
assert(size_overridden_methods() == 0 && "Base ctor already set.");
addOverriddenMethod(BaseCtor);
}
void CXXDestructorDecl::anchor() { }
CXXDestructorDecl *
CXXDestructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXDestructorDecl));
return new (Mem) CXXDestructorDecl(0, SourceLocation(), DeclarationNameInfo(),
QualType(), 0, false, false);
}
CXXDestructorDecl *
CXXDestructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo,
QualType T, TypeSourceInfo *TInfo,
bool isInline, bool isImplicitlyDeclared) {
assert(NameInfo.getName().getNameKind()
== DeclarationName::CXXDestructorName &&
"Name must refer to a destructor");
return new (C) CXXDestructorDecl(RD, StartLoc, NameInfo, T, TInfo, isInline,
isImplicitlyDeclared);
}
void CXXConversionDecl::anchor() { }
CXXConversionDecl *
CXXConversionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXConversionDecl));
return new (Mem) CXXConversionDecl(0, SourceLocation(), DeclarationNameInfo(),
QualType(), 0, false, false, false,
SourceLocation());
}
CXXConversionDecl *
CXXConversionDecl::Create(ASTContext &C, CXXRecordDecl *RD,
SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo,
QualType T, TypeSourceInfo *TInfo,
bool isInline, bool isExplicit,
bool isConstexpr, SourceLocation EndLocation) {
assert(NameInfo.getName().getNameKind()
== DeclarationName::CXXConversionFunctionName &&
"Name must refer to a conversion function");
return new (C) CXXConversionDecl(RD, StartLoc, NameInfo, T, TInfo,
isInline, isExplicit, isConstexpr,
EndLocation);
}
void LinkageSpecDecl::anchor() { }
LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C,
DeclContext *DC,
SourceLocation ExternLoc,
SourceLocation LangLoc,
LanguageIDs Lang,
SourceLocation RBraceLoc) {
return new (C) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, RBraceLoc);
}
LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(LinkageSpecDecl));
return new (Mem) LinkageSpecDecl(0, SourceLocation(), SourceLocation(),
lang_c, SourceLocation());
}
void UsingDirectiveDecl::anchor() { }
UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation L,
SourceLocation NamespaceLoc,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation IdentLoc,
NamedDecl *Used,
DeclContext *CommonAncestor) {
if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Used))
Used = NS->getOriginalNamespace();
return new (C) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc,
IdentLoc, Used, CommonAncestor);
}
UsingDirectiveDecl *
UsingDirectiveDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(UsingDirectiveDecl));
return new (Mem) UsingDirectiveDecl(0, SourceLocation(), SourceLocation(),
NestedNameSpecifierLoc(),
SourceLocation(), 0, 0);
}
NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() {
if (NamespaceAliasDecl *NA =
dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace))
return NA->getNamespace();
return cast_or_null<NamespaceDecl>(NominatedNamespace);
}
void NamespaceDecl::anchor() { }
NamespaceDecl::NamespaceDecl(DeclContext *DC, bool Inline,
SourceLocation StartLoc,
SourceLocation IdLoc, IdentifierInfo *Id,
NamespaceDecl *PrevDecl)
: NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace),
LocStart(StartLoc), RBraceLoc(), AnonOrFirstNamespaceAndInline(0, Inline)
{
setPreviousDeclaration(PrevDecl);
if (PrevDecl)
AnonOrFirstNamespaceAndInline.setPointer(PrevDecl->getOriginalNamespace());
}
NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC,
bool Inline, SourceLocation StartLoc,
SourceLocation IdLoc, IdentifierInfo *Id,
NamespaceDecl *PrevDecl) {
return new (C) NamespaceDecl(DC, Inline, StartLoc, IdLoc, Id, PrevDecl);
}
NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(NamespaceDecl));
return new (Mem) NamespaceDecl(0, false, SourceLocation(), SourceLocation(),
0, 0);
}
void NamespaceAliasDecl::anchor() { }
NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation UsingLoc,
SourceLocation AliasLoc,
IdentifierInfo *Alias,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation IdentLoc,
NamedDecl *Namespace) {
if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Namespace))
Namespace = NS->getOriginalNamespace();
return new (C) NamespaceAliasDecl(DC, UsingLoc, AliasLoc, Alias,
QualifierLoc, IdentLoc, Namespace);
}
NamespaceAliasDecl *
NamespaceAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(NamespaceAliasDecl));
return new (Mem) NamespaceAliasDecl(0, SourceLocation(), SourceLocation(), 0,
NestedNameSpecifierLoc(),
SourceLocation(), 0);
}
void UsingShadowDecl::anchor() { }
UsingShadowDecl *
UsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(UsingShadowDecl));
return new (Mem) UsingShadowDecl(0, SourceLocation(), 0, 0);
}
UsingDecl *UsingShadowDecl::getUsingDecl() const {
const UsingShadowDecl *Shadow = this;
while (const UsingShadowDecl *NextShadow =
dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow))
Shadow = NextShadow;
return cast<UsingDecl>(Shadow->UsingOrNextShadow);
}
void UsingDecl::anchor() { }
void UsingDecl::addShadowDecl(UsingShadowDecl *S) {
assert(std::find(shadow_begin(), shadow_end(), S) == shadow_end() &&
"declaration already in set");
assert(S->getUsingDecl() == this);
if (FirstUsingShadow.getPointer())
S->UsingOrNextShadow = FirstUsingShadow.getPointer();
FirstUsingShadow.setPointer(S);
}
void UsingDecl::removeShadowDecl(UsingShadowDecl *S) {
assert(std::find(shadow_begin(), shadow_end(), S) != shadow_end() &&
"declaration not in set");
assert(S->getUsingDecl() == this);
// Remove S from the shadow decl chain. This is O(n) but hopefully rare.
if (FirstUsingShadow.getPointer() == S) {
FirstUsingShadow.setPointer(
dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow));
S->UsingOrNextShadow = this;
return;
}
UsingShadowDecl *Prev = FirstUsingShadow.getPointer();
while (Prev->UsingOrNextShadow != S)
Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow);
Prev->UsingOrNextShadow = S->UsingOrNextShadow;
S->UsingOrNextShadow = this;
}
UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL,
NestedNameSpecifierLoc QualifierLoc,
const DeclarationNameInfo &NameInfo,
bool IsTypeNameArg) {
return new (C) UsingDecl(DC, UL, QualifierLoc, NameInfo, IsTypeNameArg);
}
UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(UsingDecl));
return new (Mem) UsingDecl(0, SourceLocation(), NestedNameSpecifierLoc(),
DeclarationNameInfo(), false);
}
void UnresolvedUsingValueDecl::anchor() { }
UnresolvedUsingValueDecl *
UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation UsingLoc,
NestedNameSpecifierLoc QualifierLoc,
const DeclarationNameInfo &NameInfo) {
return new (C) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc,
QualifierLoc, NameInfo);
}
UnresolvedUsingValueDecl *
UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(UnresolvedUsingValueDecl));
return new (Mem) UnresolvedUsingValueDecl(0, QualType(), SourceLocation(),
NestedNameSpecifierLoc(),
DeclarationNameInfo());
}
void UnresolvedUsingTypenameDecl::anchor() { }
UnresolvedUsingTypenameDecl *
UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation UsingLoc,
SourceLocation TypenameLoc,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TargetNameLoc,
DeclarationName TargetName) {
return new (C) UnresolvedUsingTypenameDecl(DC, UsingLoc, TypenameLoc,
QualifierLoc, TargetNameLoc,
TargetName.getAsIdentifierInfo());
}
UnresolvedUsingTypenameDecl *
UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID,
sizeof(UnresolvedUsingTypenameDecl));
return new (Mem) UnresolvedUsingTypenameDecl(0, SourceLocation(),
SourceLocation(),
NestedNameSpecifierLoc(),
SourceLocation(),
0);
}
void StaticAssertDecl::anchor() { }
StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation StaticAssertLoc,
Expr *AssertExpr,
StringLiteral *Message,
SourceLocation RParenLoc) {
return new (C) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message,
RParenLoc);
}
StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C,
unsigned ID) {
void *Mem = AllocateDeserializedDecl(C, ID, sizeof(StaticAssertDecl));
return new (Mem) StaticAssertDecl(0, SourceLocation(), 0, 0,SourceLocation());
}
static const char *getAccessName(AccessSpecifier AS) {
switch (AS) {
case AS_none:
llvm_unreachable("Invalid access specifier!");
case AS_public:
return "public";
case AS_private:
return "private";
case AS_protected:
return "protected";
}
llvm_unreachable("Invalid access specifier!");
}
const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB,
AccessSpecifier AS) {
return DB << getAccessName(AS);
}
const PartialDiagnostic &clang::operator<<(const PartialDiagnostic &DB,
AccessSpecifier AS) {
return DB << getAccessName(AS);
}