blob: d6412a745eac1ba1d5be3fd1954a78a6fa4eeeb2 [file] [log] [blame]
//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This coordinates the per-module state used while generating code.
//
//===----------------------------------------------------------------------===//
#include "CodeGenModule.h"
#include "CodeGenFunction.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/Intrinsics.h"
#include <algorithm>
using namespace clang;
using namespace CodeGen;
CodeGenModule::CodeGenModule(ASTContext &C, const LangOptions &LO,
llvm::Module &M, const llvm::TargetData &TD,
Diagnostic &diags)
: Context(C), Features(LO), TheModule(M), TheTargetData(TD), Diags(diags),
Types(C, M, TD), MemCpyFn(0), CFConstantStringClassRef(0) {}
/// WarnUnsupported - Print out a warning that codegen doesn't support the
/// specified stmt yet.
void CodeGenModule::WarnUnsupported(const Stmt *S, const char *Type) {
unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Warning,
"cannot codegen this %0 yet");
SourceRange Range = S->getSourceRange();
std::string Msg = Type;
getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID,
&Msg, 1, &Range, 1);
}
/// ReplaceMapValuesWith - This is a really slow and bad function that
/// searches for any entries in GlobalDeclMap that point to OldVal, changing
/// them to point to NewVal. This is badbadbad, FIXME!
void CodeGenModule::ReplaceMapValuesWith(llvm::Constant *OldVal,
llvm::Constant *NewVal) {
for (llvm::DenseMap<const Decl*, llvm::Constant*>::iterator
I = GlobalDeclMap.begin(), E = GlobalDeclMap.end(); I != E; ++I)
if (I->second == OldVal) I->second = NewVal;
}
llvm::Constant *CodeGenModule::GetAddrOfFunctionDecl(const FunctionDecl *D,
bool isDefinition) {
// See if it is already in the map. If so, just return it.
llvm::Constant *&Entry = GlobalDeclMap[D];
if (Entry) return Entry;
const llvm::Type *Ty = getTypes().ConvertType(D->getType());
// Check to see if the function already exists.
llvm::Function *F = getModule().getFunction(D->getName());
const llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
// If it doesn't already exist, just create and return an entry.
if (F == 0) {
// FIXME: param attributes for sext/zext etc.
return Entry = new llvm::Function(FTy, llvm::Function::ExternalLinkage,
D->getName(), &getModule());
}
// If the pointer type matches, just return it.
llvm::Type *PFTy = llvm::PointerType::getUnqual(Ty);
if (PFTy == F->getType()) return Entry = F;
// If this isn't a definition, just return it casted to the right type.
if (!isDefinition)
return Entry = llvm::ConstantExpr::getBitCast(F, PFTy);
// Otherwise, we have a definition after a prototype with the wrong type.
// F is the Function* for the one with the wrong type, we must make a new
// Function* and update everything that used F (a declaration) with the new
// Function* (which will be a definition).
//
// This happens if there is a prototype for a function (e.g. "int f()") and
// then a definition of a different type (e.g. "int f(int x)"). Start by
// making a new function of the correct type, RAUW, then steal the name.
llvm::Function *NewFn = new llvm::Function(FTy,
llvm::Function::ExternalLinkage,
"", &getModule());
NewFn->takeName(F);
// Replace uses of F with the Function we will endow with a body.
llvm::Constant *NewPtrForOldDecl =
llvm::ConstantExpr::getBitCast(NewFn, F->getType());
F->replaceAllUsesWith(NewPtrForOldDecl);
// FIXME: Update the globaldeclmap for the previous decl of this name. We
// really want a way to walk all of these, but we don't have it yet. This
// is incredibly slow!
ReplaceMapValuesWith(F, NewPtrForOldDecl);
// Ok, delete the old function now, which is dead.
assert(F->isDeclaration() && "Shouldn't replace non-declaration");
F->eraseFromParent();
// Return the new function which has the right type.
return Entry = NewFn;
}
llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
bool isDefinition) {
assert(D->hasGlobalStorage() && "Not a global variable");
// See if it is already in the map.
llvm::Constant *&Entry = GlobalDeclMap[D];
if (Entry) return Entry;
const llvm::Type *Ty = getTypes().ConvertType(D->getType());
// Check to see if the global already exists.
llvm::GlobalVariable *GV = getModule().getGlobalVariable(D->getName());
// If it doesn't already exist, just create and return an entry.
if (GV == 0) {
return Entry = new llvm::GlobalVariable(Ty, false,
llvm::GlobalValue::ExternalLinkage,
0, D->getName(), &getModule());
}
// If the pointer type matches, just return it.
llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
if (PTy == GV->getType()) return Entry = GV;
// If this isn't a definition, just return it casted to the right type.
if (!isDefinition)
return Entry = llvm::ConstantExpr::getBitCast(GV, PTy);
// Otherwise, we have a definition after a prototype with the wrong type.
// GV is the GlobalVariable* for the one with the wrong type, we must make a
/// new GlobalVariable* and update everything that used GV (a declaration)
// with the new GlobalVariable* (which will be a definition).
//
// This happens if there is a prototype for a global (e.g. "extern int x[];")
// and then a definition of a different type (e.g. "int x[10];"). Start by
// making a new global of the correct type, RAUW, then steal the name.
llvm::GlobalVariable *NewGV =
new llvm::GlobalVariable(Ty, false, llvm::GlobalValue::ExternalLinkage,
0, D->getName(), &getModule());
NewGV->takeName(GV);
// Replace uses of GV with the globalvalue we will endow with a body.
llvm::Constant *NewPtrForOldDecl =
llvm::ConstantExpr::getBitCast(NewGV, GV->getType());
GV->replaceAllUsesWith(NewPtrForOldDecl);
// FIXME: Update the globaldeclmap for the previous decl of this name. We
// really want a way to walk all of these, but we don't have it yet. This
// is incredibly slow!
ReplaceMapValuesWith(GV, NewPtrForOldDecl);
// Ok, delete the old global now, which is dead.
assert(GV->isDeclaration() && "Shouldn't replace non-declaration");
GV->eraseFromParent();
// Return the new global which has the right type.
return Entry = NewGV;
}
void CodeGenModule::EmitFunction(const FunctionDecl *FD) {
// If this is not a prototype, emit the body.
if (FD->getBody())
CodeGenFunction(*this).GenerateCode(FD);
}
static llvm::Constant *GenerateConstantExpr(const Expr *Expression,
CodeGenModule &CGM);
/// GenerateConversionToBool - Generate comparison to zero for conversion to
/// bool
static llvm::Constant *GenerateConversionToBool(llvm::Constant *Expression,
QualType Source) {
if (Source->isRealFloatingType()) {
// Compare against 0.0 for fp scalars.
llvm::Constant *Zero = llvm::Constant::getNullValue(Expression->getType());
return llvm::ConstantExpr::getFCmp(llvm::FCmpInst::FCMP_UNE, Expression,
Zero);
}
assert((Source->isIntegerType() || Source->isPointerType()) &&
"Unknown scalar type to convert");
// Compare against an integer or pointer null.
llvm::Constant *Zero = llvm::Constant::getNullValue(Expression->getType());
return llvm::ConstantExpr::getICmp(llvm::ICmpInst::ICMP_NE, Expression, Zero);
}
/// GenerateConstantCast - Generates a constant cast to convert the Expression
/// into the Target type.
static llvm::Constant *GenerateConstantCast(const Expr *Expression,
QualType Target,
CodeGenModule &CGM) {
CodeGenTypes& Types = CGM.getTypes();
QualType Source = Expression->getType().getCanonicalType();
Target = Target.getCanonicalType();
assert (!Target->isVoidType());
llvm::Constant *SubExpr = GenerateConstantExpr(Expression, CGM);
if (Source == Target)
return SubExpr;
// Handle conversions to bool first, they are special: comparisons against 0.
if (Target->isBooleanType())
return GenerateConversionToBool(SubExpr, Source);
const llvm::Type *SourceType = Types.ConvertType(Source);
const llvm::Type *TargetType = Types.ConvertType(Target);
// Ignore conversions like int -> uint.
if (SubExpr->getType() == TargetType)
return SubExpr;
// Handle pointer conversions next: pointers can only be converted to/from
// other pointers and integers.
if (isa<llvm::PointerType>(TargetType)) {
// The source value may be an integer, or a pointer.
if (isa<llvm::PointerType>(SubExpr->getType()))
return llvm::ConstantExpr::getBitCast(SubExpr, TargetType);
assert(Source->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
return llvm::ConstantExpr::getIntToPtr(SubExpr, TargetType);
}
if (isa<llvm::PointerType>(SourceType)) {
// Must be an ptr to int cast.
assert(isa<llvm::IntegerType>(TargetType) && "not ptr->int?");
return llvm::ConstantExpr::getPtrToInt(SubExpr, TargetType);
}
if (Source->isRealFloatingType() && Target->isRealFloatingType()) {
return llvm::ConstantExpr::getFPCast(SubExpr, TargetType);
}
// Finally, we have the arithmetic types: real int/float.
if (isa<llvm::IntegerType>(SourceType)) {
bool InputSigned = Source->isSignedIntegerType();
if (isa<llvm::IntegerType>(TargetType))
return llvm::ConstantExpr::getIntegerCast(SubExpr, TargetType,
InputSigned);
else if (InputSigned)
return llvm::ConstantExpr::getSIToFP(SubExpr, TargetType);
else
return llvm::ConstantExpr::getUIToFP(SubExpr, TargetType);
}
assert(SubExpr->getType()->isFloatingPoint() && "Unknown real conversion");
if (isa<llvm::IntegerType>(TargetType)) {
if (Target->isSignedIntegerType())
return llvm::ConstantExpr::getFPToSI(SubExpr, TargetType);
else
return llvm::ConstantExpr::getFPToUI(SubExpr, TargetType);
}
assert(TargetType->isFloatingPoint() && "Unknown real conversion");
if (TargetType->getTypeID() < SubExpr->getType()->getTypeID())
return llvm::ConstantExpr::getFPTrunc(SubExpr, TargetType);
else
return llvm::ConstantExpr::getFPExtend(SubExpr, TargetType);
assert (!"Unsupported cast type in global intialiser.");
return 0;
}
/// GenerateAggregateInit - Generate a Constant initaliser for global array or
/// struct typed variables.
static llvm::Constant *GenerateAggregateInit(const InitListExpr *ILE,
CodeGenModule &CGM) {
if (ILE->getType()->isVoidType()) {
// FIXME: Remove this when sema of initializers is finished (and the code
// below).
CGM.WarnUnsupported(ILE, "initializer");
return 0;
}
assert((ILE->getType()->isArrayType() || ILE->getType()->isStructureType()) &&
"Bad type for init list!");
CodeGenTypes& Types = CGM.getTypes();
unsigned NumInitElements = ILE->getNumInits();
unsigned NumInitableElts = NumInitElements;
const llvm::CompositeType *CType =
cast<llvm::CompositeType>(Types.ConvertType(ILE->getType()));
assert(CType);
std::vector<llvm::Constant*> Elts;
// Initialising an array requires us to automatically initialise any
// elements that have not been initialised explicitly
const llvm::ArrayType *AType = 0;
const llvm::Type *AElemTy = 0;
unsigned NumArrayElements = 0;
// If this is an array, we may have to truncate the initializer
if ((AType = dyn_cast<llvm::ArrayType>(CType))) {
NumArrayElements = AType->getNumElements();
AElemTy = AType->getElementType();
NumInitableElts = std::min(NumInitableElts, NumArrayElements);
}
// Copy initializer elements.
unsigned i = 0;
for (i = 0; i < NumInitableElts; ++i) {
llvm::Constant *C = GenerateConstantExpr(ILE->getInit(i), CGM);
// FIXME: Remove this when sema of initializers is finished (and the code
// above).
if (C == 0 && ILE->getInit(i)->getType()->isVoidType()) {
if (ILE->getType()->isVoidType()) return 0;
return llvm::UndefValue::get(CType);
}
assert (C && "Failed to create initialiser expression");
Elts.push_back(C);
}
if (ILE->getType()->isStructureType())
return llvm::ConstantStruct::get(cast<llvm::StructType>(CType), Elts);
// Make sure we have an array at this point
assert(AType);
// Initialize remaining array elements.
for (; i < NumArrayElements; ++i)
Elts.push_back(llvm::Constant::getNullValue(AElemTy));
return llvm::ConstantArray::get(AType, Elts);
}
/// GenerateConstantExpr - Recursively builds a constant initialiser for the
/// given expression.
static llvm::Constant *GenerateConstantExpr(const Expr *Expression,
CodeGenModule &CGM) {
CodeGenTypes& Types = CGM.getTypes();
ASTContext& Context = CGM.getContext();
assert ((Expression->isConstantExpr(Context, 0) ||
Expression->getStmtClass() == Stmt::InitListExprClass) &&
"Only constant global initialisers are supported.");
QualType type = Expression->getType().getCanonicalType();
if (type->isIntegerType()) {
llvm::APSInt
Value(static_cast<uint32_t>(Context.getTypeSize(type, SourceLocation())));
if (Expression->isIntegerConstantExpr(Value, Context)) {
return llvm::ConstantInt::get(Value);
}
}
switch (Expression->getStmtClass()) {
default: break; // default emits a warning and returns bogus value.
case Stmt::DeclRefExprClass: {
const ValueDecl *Decl = cast<DeclRefExpr>(Expression)->getDecl();
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Decl))
return CGM.GetAddrOfFunctionDecl(FD, false);
break;
}
// Generate constant for floating point literal values.
case Stmt::FloatingLiteralClass: {
const FloatingLiteral *FLiteral = cast<FloatingLiteral>(Expression);
return llvm::ConstantFP::get(Types.ConvertType(type), FLiteral->getValue());
}
// Generate constant for string literal values.
case Stmt::StringLiteralClass: {
const StringLiteral *String = cast<StringLiteral>(Expression);
const char *StrData = String->getStrData();
unsigned Len = String->getByteLength();
// If the string has a pointer type, emit it as a global and use the pointer
// to the global as its value.
if (String->getType()->isPointerType())
return CGM.GetAddrOfConstantString(std::string(StrData, StrData + Len));
// Otherwise this must be a string initializing an array in a static
// initializer. Don't emit it as the address of the string, emit the string
// data itself as an inline array.
const ConstantArrayType *CAT = String->getType()->getAsConstantArrayType();
assert(CAT && "String isn't pointer or array!");
std::string Str(StrData, StrData + Len);
// Null terminate the string before potentially truncating it.
// FIXME: What about wchar_t strings?
Str.push_back(0);
uint64_t RealLen = CAT->getSize().getZExtValue();
// String or grow the initializer to the required size.
if (RealLen != Str.size())
Str.resize(RealLen);
return llvm::ConstantArray::get(Str, false);
}
// Elide parenthesis.
case Stmt::ParenExprClass:
return GenerateConstantExpr(cast<ParenExpr>(Expression)->getSubExpr(), CGM);
// Generate constant for sizeof operator.
// FIXME: Need to support AlignOf
case Stmt::SizeOfAlignOfTypeExprClass: {
const SizeOfAlignOfTypeExpr *SOExpr =
cast<SizeOfAlignOfTypeExpr>(Expression);
assert (SOExpr->isSizeOf());
return llvm::ConstantExpr::getSizeOf(Types.ConvertType(type));
}
// Generate constant cast expressions.
case Stmt::CastExprClass:
return GenerateConstantCast(cast<CastExpr>(Expression)->getSubExpr(), type,
CGM);
case Stmt::ImplicitCastExprClass: {
const ImplicitCastExpr *ICExpr = cast<ImplicitCastExpr>(Expression);
// If this is due to array->pointer conversion, emit the array expression as
// an l-value.
if (ICExpr->getSubExpr()->getType()->isArrayType()) {
// Note that VLAs can't exist for global variables.
// The only thing that can have array type like this is a
// DeclRefExpr(FileVarDecl)?
const DeclRefExpr *DRE = cast<DeclRefExpr>(ICExpr->getSubExpr());
const VarDecl *VD = cast<VarDecl>(DRE->getDecl());
llvm::Constant *C = CGM.GetAddrOfGlobalVar(VD, false);
assert(isa<llvm::PointerType>(C->getType()) &&
isa<llvm::ArrayType>(cast<llvm::PointerType>(C->getType())
->getElementType()));
llvm::Constant *Idx0 = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
llvm::Constant *Ops[] = {Idx0, Idx0};
C = llvm::ConstantExpr::getGetElementPtr(C, Ops, 2);
// The resultant pointer type can be implicitly casted to other pointer
// types as well, for example void*.
const llvm::Type *DestPTy = Types.ConvertType(type);
assert(isa<llvm::PointerType>(DestPTy) &&
"Only expect implicit cast to pointer");
return llvm::ConstantExpr::getBitCast(C, DestPTy);
}
return GenerateConstantCast(ICExpr->getSubExpr(), type, CGM);
}
// Generate a constant array access expression
// FIXME: Clang's semantic analysis incorrectly prevents array access in
// global initialisers, preventing us from testing this.
case Stmt::ArraySubscriptExprClass: {
const ArraySubscriptExpr* ASExpr = cast<ArraySubscriptExpr>(Expression);
llvm::Constant *Base = GenerateConstantExpr(ASExpr->getBase(), CGM);
llvm::Constant *Index = GenerateConstantExpr(ASExpr->getIdx(), CGM);
return llvm::ConstantExpr::getExtractElement(Base, Index);
}
// Generate a constant expression to initialise an aggregate type, such as
// an array or struct.
case Stmt::InitListExprClass:
return GenerateAggregateInit(cast<InitListExpr>(Expression), CGM);
}
CGM.WarnUnsupported(Expression, "initializer");
return llvm::UndefValue::get(Types.ConvertType(type));
}
llvm::Constant *CodeGenModule::EmitGlobalInit(const Expr *Expression) {
return GenerateConstantExpr(Expression, *this);
}
void CodeGenModule::EmitGlobalVar(const FileVarDecl *D) {
// If this is just a forward declaration of the variable, don't emit it now,
// allow it to be emitted lazily on its first use.
if (D->getStorageClass() == VarDecl::Extern && D->getInit() == 0)
return;
// Get the global, forcing it to be a direct reference.
llvm::GlobalVariable *GV =
cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, true));
// Convert the initializer, or use zero if appropriate.
llvm::Constant *Init = 0;
if (D->getInit() == 0) {
Init = llvm::Constant::getNullValue(GV->getType()->getElementType());
} else if (D->getType()->isIntegerType()) {
llvm::APSInt Value(static_cast<uint32_t>(
getContext().getTypeSize(D->getInit()->getType(), SourceLocation())));
if (D->getInit()->isIntegerConstantExpr(Value, Context))
Init = llvm::ConstantInt::get(Value);
}
if (!Init)
Init = EmitGlobalInit(D->getInit());
assert(GV->getType()->getElementType() == Init->getType() &&
"Initializer codegen type mismatch!");
GV->setInitializer(Init);
// Set the llvm linkage type as appropriate.
// FIXME: This isn't right. This should handle common linkage and other
// stuff.
switch (D->getStorageClass()) {
case VarDecl::Auto:
case VarDecl::Register:
assert(0 && "Can't have auto or register globals");
case VarDecl::None:
case VarDecl::Extern:
// todo: common
break;
case VarDecl::Static:
GV->setLinkage(llvm::GlobalVariable::InternalLinkage);
break;
}
}
/// EmitGlobalVarDeclarator - Emit all the global vars attached to the specified
/// declarator chain.
void CodeGenModule::EmitGlobalVarDeclarator(const FileVarDecl *D) {
for (; D; D = cast_or_null<FileVarDecl>(D->getNextDeclarator()))
EmitGlobalVar(D);
}
/// getBuiltinLibFunction
llvm::Function *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
if (BuiltinID > BuiltinFunctions.size())
BuiltinFunctions.resize(BuiltinID);
// Cache looked up functions. Since builtin id #0 is invalid we don't reserve
// a slot for it.
assert(BuiltinID && "Invalid Builtin ID");
llvm::Function *&FunctionSlot = BuiltinFunctions[BuiltinID-1];
if (FunctionSlot)
return FunctionSlot;
assert(Context.BuiltinInfo.isLibFunction(BuiltinID) && "isn't a lib fn");
// Get the name, skip over the __builtin_ prefix.
const char *Name = Context.BuiltinInfo.GetName(BuiltinID)+10;
// Get the type for the builtin.
QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context);
const llvm::FunctionType *Ty =
cast<llvm::FunctionType>(getTypes().ConvertType(Type));
// FIXME: This has a serious problem with code like this:
// void abs() {}
// ... __builtin_abs(x);
// The two versions of abs will collide. The fix is for the builtin to win,
// and for the existing one to be turned into a constantexpr cast of the
// builtin. In the case where the existing one is a static function, it
// should just be renamed.
if (llvm::Function *Existing = getModule().getFunction(Name)) {
if (Existing->getFunctionType() == Ty && Existing->hasExternalLinkage())
return FunctionSlot = Existing;
assert(Existing == 0 && "FIXME: Name collision");
}
// FIXME: param attributes for sext/zext etc.
return FunctionSlot = new llvm::Function(Ty, llvm::Function::ExternalLinkage,
Name, &getModule());
}
llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
unsigned NumTys) {
return llvm::Intrinsic::getDeclaration(&getModule(),
(llvm::Intrinsic::ID)IID, Tys, NumTys);
}
llvm::Function *CodeGenModule::getMemCpyFn() {
if (MemCpyFn) return MemCpyFn;
llvm::Intrinsic::ID IID;
uint64_t Size; unsigned Align;
Context.Target.getPointerInfo(Size, Align, FullSourceLoc());
switch (Size) {
default: assert(0 && "Unknown ptr width");
case 32: IID = llvm::Intrinsic::memcpy_i32; break;
case 64: IID = llvm::Intrinsic::memcpy_i64; break;
}
return MemCpyFn = getIntrinsic(IID);
}
llvm::Constant *CodeGenModule::
GetAddrOfConstantCFString(const std::string &str) {
llvm::StringMapEntry<llvm::Constant *> &Entry =
CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
if (Entry.getValue())
return Entry.getValue();
std::vector<llvm::Constant*> Fields;
if (!CFConstantStringClassRef) {
const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
Ty = llvm::ArrayType::get(Ty, 0);
CFConstantStringClassRef =
new llvm::GlobalVariable(Ty, false,
llvm::GlobalVariable::ExternalLinkage, 0,
"__CFConstantStringClassReference",
&getModule());
}
// Class pointer.
llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
llvm::Constant *Zeros[] = { Zero, Zero };
llvm::Constant *C =
llvm::ConstantExpr::getGetElementPtr(CFConstantStringClassRef, Zeros, 2);
Fields.push_back(C);
// Flags.
const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
Fields.push_back(llvm::ConstantInt::get(Ty, 1992));
// String pointer.
C = llvm::ConstantArray::get(str);
C = new llvm::GlobalVariable(C->getType(), true,
llvm::GlobalValue::InternalLinkage,
C, ".str", &getModule());
C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2);
Fields.push_back(C);
// String length.
Ty = getTypes().ConvertType(getContext().LongTy);
Fields.push_back(llvm::ConstantInt::get(Ty, str.length()));
// The struct.
Ty = getTypes().ConvertType(getContext().getCFConstantStringType());
C = llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Fields);
llvm::GlobalVariable *GV =
new llvm::GlobalVariable(C->getType(), true,
llvm::GlobalVariable::InternalLinkage,
C, "", &getModule());
GV->setSection("__DATA,__cfstring");
Entry.setValue(GV);
return GV;
}
/// GenerateWritableString -- Creates storage for a string literal
static llvm::Constant *GenerateStringLiteral(const std::string &str,
bool constant,
CodeGenModule &CGM) {
// Create Constant for this string literal
llvm::Constant *C=llvm::ConstantArray::get(str);
// Create a global variable for this string
C = new llvm::GlobalVariable(C->getType(), constant,
llvm::GlobalValue::InternalLinkage,
C, ".str", &CGM.getModule());
llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
llvm::Constant *Zeros[] = { Zero, Zero };
C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2);
return C;
}
/// CodeGenModule::GetAddrOfConstantString -- returns a pointer to the first
/// element of a character array containing the literal.
llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str) {
// Don't share any string literals if writable-strings is turned on.
if (Features.WritableStrings)
return GenerateStringLiteral(str, false, *this);
llvm::StringMapEntry<llvm::Constant *> &Entry =
ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
if (Entry.getValue())
return Entry.getValue();
// Create a global variable for this.
llvm::Constant *C = GenerateStringLiteral(str, true, *this);
Entry.setValue(C);
return C;
}