blob: 36ffe33c6f007c51a2d9a38ffc43d5ceeb2a7baf [file] [log] [blame]
// GRSimpleVals.cpp - Transfer functions for tracking simple values -*- C++ -*--
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines GRSimpleVals, a sub-class of GRTransferFuncs that
// provides transfer functions for performing simple value tracking with
// limited support for symbolics.
//
//===----------------------------------------------------------------------===//
#include "GRSimpleVals.h"
#include "BasicObjCFoundationChecks.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Analysis/PathDiagnostic.h"
#include "clang/Analysis/PathSensitive/ValueState.h"
#include "clang/Analysis/PathSensitive/BugReporter.h"
#include "llvm/Support/Compiler.h"
#include <sstream>
using namespace clang;
//===----------------------------------------------------------------------===//
// Bug Descriptions.
//===----------------------------------------------------------------------===//
namespace {
class VISIBILITY_HIDDEN NullDeref : public BugDescription {
public:
virtual const char* getName() const {
return "null dereference";
}
virtual const char* getDescription() const {
return "Dereference of null pointer.";
}
};
class VISIBILITY_HIDDEN UndefDeref : public BugDescription {
public:
virtual const char* getName() const {
return "bad dereference";
}
virtual const char* getDescription() const {
return "Dereference of undefined value.";
}
};
class VISIBILITY_HIDDEN UndefBranch : public BugDescription {
public:
virtual const char* getName() const {
return "uninitialized value";
}
virtual const char* getDescription() const {
return "Branch condition evaluates to an uninitialized value.";
}
};
class VISIBILITY_HIDDEN DivZero : public BugDescription {
public:
virtual const char* getName() const {
return "divide-by-zero";
}
virtual const char* getDescription() const {
return "Division by zero/undefined value.";
}
};
class VISIBILITY_HIDDEN UndefResult : public BugDescription {
public:
virtual const char* getName() const {
return "undefined result";
}
virtual const char* getDescription() const {
return "Result of operation is undefined.";
}
};
class VISIBILITY_HIDDEN BadCall : public BugDescription {
public:
virtual const char* getName() const {
return "invalid function call";
}
virtual const char* getDescription() const {
return "Called function is a NULL or undefined function pointer value.";
}
};
class VISIBILITY_HIDDEN BadArg : public BugDescription {
public:
virtual const char* getName() const {
return "bad argument";
}
virtual const char* getDescription() const {
return "Pass-by-value argument in function is undefined.";
}
};
class VISIBILITY_HIDDEN BadMsgExprArg : public BugDescription {
public:
virtual const char* getName() const {
return "bad argument";
}
virtual const char* getDescription() const {
return "Pass-by-value argument in message expression is undefined.";
}
};
class VISIBILITY_HIDDEN BadReceiver : public BugDescription {
public:
virtual const char* getName() const {
return "invalid message expression";
}
virtual const char* getDescription() const {
return "Receiver in message expression is an uninitialized value.";
}
};
class VISIBILITY_HIDDEN RetStack : public BugDescription {
public:
virtual const char* getName() const {
return "return of stack address";
}
virtual const char* getDescription() const {
return "Address of stack-allocated variable returned.";
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Utility functions.
//===----------------------------------------------------------------------===//
template <typename ITERATOR> static inline
ExplodedNode<ValueState>* GetNode(ITERATOR I) {
return *I;
}
template <> static inline
ExplodedNode<ValueState>* GetNode(GRExprEngine::undef_arg_iterator I) {
return I->first;
}
//===----------------------------------------------------------------------===//
// Analysis Driver.
//===----------------------------------------------------------------------===//
template <typename ITERATOR>
static void EmitWarning(Diagnostic& Diag, PathDiagnosticClient* PD,
ASTContext& Ctx, BugReporter& BR,
const BugDescription& Desc,
ExplodedGraph<GRExprEngine>& G,
ITERATOR I, ITERATOR E) {
for (; I != E; ++I)
BR.EmitPathWarning(Diag, PD, Ctx, Desc, G, GetNode(I));
}
namespace clang {
unsigned RunGRSimpleVals(CFG& cfg, Decl& CD, ASTContext& Ctx,
Diagnostic& Diag, PathDiagnosticClient* PD,
bool Visualize, bool TrimGraph) {
GRCoreEngine<GRExprEngine> Eng(cfg, CD, Ctx);
GRExprEngine* CS = &Eng.getCheckerState();
// Set base transfer functions.
GRSimpleVals GRSV;
CS->setTransferFunctions(GRSV);
// Add extra checkers.
llvm::OwningPtr<GRSimpleAPICheck> FoundationCheck(
CreateBasicObjCFoundationChecks(Ctx, &CS->getStateManager()));
CS->AddObjCMessageExprCheck(FoundationCheck.get());
// Execute the worklist algorithm.
Eng.ExecuteWorkList(120000);
BugReporter BR;
ExplodedGraph<GRExprEngine>& G = Eng.getGraph();
EmitWarning(Diag, PD, Ctx, BR, NullDeref(), G,
CS->null_derefs_begin(), CS->null_derefs_end());
EmitWarning(Diag, PD, Ctx, BR, UndefDeref(), G,
CS->undef_derefs_begin(), CS->undef_derefs_end());
EmitWarning(Diag, PD, Ctx, BR, UndefBranch(), G,
CS->undef_branches_begin(), CS->undef_branches_end());
EmitWarning(Diag, PD, Ctx, BR, DivZero(), G,
CS->explicit_bad_divides_begin(), CS->explicit_bad_divides_end());
EmitWarning(Diag, PD, Ctx, BR, UndefResult(), G,
CS->undef_results_begin(), CS->undef_results_end());
EmitWarning(Diag, PD, Ctx, BR, BadCall(), G,
CS->bad_calls_begin(), CS->bad_calls_end());
EmitWarning(Diag, PD, Ctx, BR, BadArg(), G,
CS->undef_arg_begin(), CS->undef_arg_end());
EmitWarning(Diag, PD, Ctx, BR, BadMsgExprArg(), G,
CS->msg_expr_undef_arg_begin(), CS->msg_expr_undef_arg_end());
EmitWarning(Diag, PD, Ctx, BR, BadReceiver(), G,
CS->undef_receivers_begin(), CS->undef_receivers_end());
EmitWarning(Diag, PD, Ctx, BR, RetStack(), G,
CS->ret_stackaddr_begin(), CS->ret_stackaddr_end());
FoundationCheck.get()->ReportResults(Diag);
#ifndef NDEBUG
if (Visualize) CS->ViewGraph(TrimGraph);
#endif
return Eng.getGraph().size();
}
} // end clang namespace
//===----------------------------------------------------------------------===//
// Transfer function for Casts.
//===----------------------------------------------------------------------===//
RVal GRSimpleVals::EvalCast(GRExprEngine& Eng, NonLVal X, QualType T) {
if (!isa<nonlval::ConcreteInt>(X))
return UnknownVal();
BasicValueFactory& BasicVals = Eng.getBasicVals();
llvm::APSInt V = cast<nonlval::ConcreteInt>(X).getValue();
V.setIsUnsigned(T->isUnsignedIntegerType() || T->isPointerType()
|| T->isObjCQualifiedIdType());
V.extOrTrunc(Eng.getContext().getTypeSize(T));
if (T->isPointerType())
return lval::ConcreteInt(BasicVals.getValue(V));
else
return nonlval::ConcreteInt(BasicVals.getValue(V));
}
// Casts.
RVal GRSimpleVals::EvalCast(GRExprEngine& Eng, LVal X, QualType T) {
if (T->isPointerLikeType() || T->isObjCQualifiedIdType())
return X;
assert (T->isIntegerType());
if (!isa<lval::ConcreteInt>(X))
return UnknownVal();
BasicValueFactory& BasicVals = Eng.getBasicVals();
llvm::APSInt V = cast<lval::ConcreteInt>(X).getValue();
V.setIsUnsigned(T->isUnsignedIntegerType() || T->isPointerType());
V.extOrTrunc(Eng.getContext().getTypeSize(T));
return nonlval::ConcreteInt(BasicVals.getValue(V));
}
// Unary operators.
RVal GRSimpleVals::EvalMinus(GRExprEngine& Eng, UnaryOperator* U, NonLVal X){
switch (X.getSubKind()) {
case nonlval::ConcreteIntKind:
return cast<nonlval::ConcreteInt>(X).EvalMinus(Eng.getBasicVals(), U);
default:
return UnknownVal();
}
}
RVal GRSimpleVals::EvalComplement(GRExprEngine& Eng, NonLVal X) {
switch (X.getSubKind()) {
case nonlval::ConcreteIntKind:
return cast<nonlval::ConcreteInt>(X).EvalComplement(Eng.getBasicVals());
default:
return UnknownVal();
}
}
// Binary operators.
RVal GRSimpleVals::EvalBinOp(GRExprEngine& Eng, BinaryOperator::Opcode Op,
NonLVal L, NonLVal R) {
BasicValueFactory& BasicVals = Eng.getBasicVals();
while (1) {
switch (L.getSubKind()) {
default:
return UnknownVal();
case nonlval::ConcreteIntKind:
if (isa<nonlval::ConcreteInt>(R)) {
const nonlval::ConcreteInt& L_CI = cast<nonlval::ConcreteInt>(L);
const nonlval::ConcreteInt& R_CI = cast<nonlval::ConcreteInt>(R);
return L_CI.EvalBinOp(BasicVals, Op, R_CI);
}
else {
NonLVal tmp = R;
R = L;
L = tmp;
continue;
}
case nonlval::SymbolValKind: {
if (isa<nonlval::ConcreteInt>(R)) {
const SymIntConstraint& C =
BasicVals.getConstraint(cast<nonlval::SymbolVal>(L).getSymbol(), Op,
cast<nonlval::ConcreteInt>(R).getValue());
return nonlval::SymIntConstraintVal(C);
}
else
return UnknownVal();
}
}
}
}
// Binary Operators (except assignments and comma).
RVal GRSimpleVals::EvalBinOp(GRExprEngine& Eng, BinaryOperator::Opcode Op,
LVal L, LVal R) {
switch (Op) {
default:
return UnknownVal();
case BinaryOperator::EQ:
return EvalEQ(Eng, L, R);
case BinaryOperator::NE:
return EvalNE(Eng, L, R);
}
}
// Pointer arithmetic.
RVal GRSimpleVals::EvalBinOp(GRExprEngine& Eng, BinaryOperator::Opcode Op,
LVal L, NonLVal R) {
return UnknownVal();
}
// Equality operators for LVals.
RVal GRSimpleVals::EvalEQ(GRExprEngine& Eng, LVal L, LVal R) {
BasicValueFactory& BasicVals = Eng.getBasicVals();
switch (L.getSubKind()) {
default:
assert(false && "EQ not implemented for this LVal.");
return UnknownVal();
case lval::ConcreteIntKind:
if (isa<lval::ConcreteInt>(R)) {
bool b = cast<lval::ConcreteInt>(L).getValue() ==
cast<lval::ConcreteInt>(R).getValue();
return NonLVal::MakeIntTruthVal(BasicVals, b);
}
else if (isa<lval::SymbolVal>(R)) {
const SymIntConstraint& C =
BasicVals.getConstraint(cast<lval::SymbolVal>(R).getSymbol(),
BinaryOperator::EQ,
cast<lval::ConcreteInt>(L).getValue());
return nonlval::SymIntConstraintVal(C);
}
break;
case lval::SymbolValKind: {
if (isa<lval::ConcreteInt>(R)) {
const SymIntConstraint& C =
BasicVals.getConstraint(cast<lval::SymbolVal>(L).getSymbol(),
BinaryOperator::EQ,
cast<lval::ConcreteInt>(R).getValue());
return nonlval::SymIntConstraintVal(C);
}
// FIXME: Implement == for lval Symbols. This is mainly useful
// in iterator loops when traversing a buffer, e.g. while(z != zTerm).
// Since this is not useful for many checkers we'll punt on this for
// now.
return UnknownVal();
}
case lval::DeclValKind:
case lval::FuncValKind:
case lval::GotoLabelKind:
return NonLVal::MakeIntTruthVal(BasicVals, L == R);
}
return NonLVal::MakeIntTruthVal(BasicVals, false);
}
RVal GRSimpleVals::EvalNE(GRExprEngine& Eng, LVal L, LVal R) {
BasicValueFactory& BasicVals = Eng.getBasicVals();
switch (L.getSubKind()) {
default:
assert(false && "NE not implemented for this LVal.");
return UnknownVal();
case lval::ConcreteIntKind:
if (isa<lval::ConcreteInt>(R)) {
bool b = cast<lval::ConcreteInt>(L).getValue() !=
cast<lval::ConcreteInt>(R).getValue();
return NonLVal::MakeIntTruthVal(BasicVals, b);
}
else if (isa<lval::SymbolVal>(R)) {
const SymIntConstraint& C =
BasicVals.getConstraint(cast<lval::SymbolVal>(R).getSymbol(),
BinaryOperator::NE,
cast<lval::ConcreteInt>(L).getValue());
return nonlval::SymIntConstraintVal(C);
}
break;
case lval::SymbolValKind: {
if (isa<lval::ConcreteInt>(R)) {
const SymIntConstraint& C =
BasicVals.getConstraint(cast<lval::SymbolVal>(L).getSymbol(),
BinaryOperator::NE,
cast<lval::ConcreteInt>(R).getValue());
return nonlval::SymIntConstraintVal(C);
}
// FIXME: Implement != for lval Symbols. This is mainly useful
// in iterator loops when traversing a buffer, e.g. while(z != zTerm).
// Since this is not useful for many checkers we'll punt on this for
// now.
return UnknownVal();
break;
}
case lval::DeclValKind:
case lval::FuncValKind:
case lval::GotoLabelKind:
return NonLVal::MakeIntTruthVal(BasicVals, L != R);
}
return NonLVal::MakeIntTruthVal(BasicVals, true);
}
//===----------------------------------------------------------------------===//
// Transfer function for Function Calls.
//===----------------------------------------------------------------------===//
void GRSimpleVals::EvalCall(ExplodedNodeSet<ValueState>& Dst,
GRExprEngine& Eng,
GRStmtNodeBuilder<ValueState>& Builder,
CallExpr* CE, LVal L,
ExplodedNode<ValueState>* Pred) {
ValueStateManager& StateMgr = Eng.getStateManager();
ValueState* St = Builder.GetState(Pred);
// Invalidate all arguments passed in by reference (LVals).
for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end();
I != E; ++I) {
RVal V = StateMgr.GetRVal(St, *I);
if (isa<LVal>(V))
St = StateMgr.SetRVal(St, cast<LVal>(V), UnknownVal());
}
// Make up a symbol for the return value of this function.
if (CE->getType() != Eng.getContext().VoidTy) {
unsigned Count = Builder.getCurrentBlockCount();
SymbolID Sym = Eng.getSymbolManager().getConjuredSymbol(CE, Count);
RVal X = CE->getType()->isPointerType()
? cast<RVal>(lval::SymbolVal(Sym))
: cast<RVal>(nonlval::SymbolVal(Sym));
St = StateMgr.SetRVal(St, CE, X, Eng.getCFG().isBlkExpr(CE), false);
}
Builder.MakeNode(Dst, CE, Pred, St);
}