blob: 8c8d6a18318e23eb3d15156bb311f726441d5c1a [file] [log] [blame]
//===---- CodeCompleteConsumer.h - Code Completion Interface ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the CodeCompleteConsumer class.
//
//===----------------------------------------------------------------------===//
#include "clang/Sema/CodeCompleteConsumer.h"
#include "clang/AST/DeclCXX.h"
#include "clang/Parse/Scope.h"
#include "clang/Lex/Preprocessor.h"
#include "Sema.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cstring>
#include <functional>
using namespace clang;
//===----------------------------------------------------------------------===//
// Code completion string implementation
//===----------------------------------------------------------------------===//
CodeCompletionString::Chunk
CodeCompletionString::Chunk::CreateText(const char *Text) {
Chunk Result;
Result.Kind = CK_Text;
char *New = new char [std::strlen(Text) + 1];
std::strcpy(New, Text);
Result.Text = New;
return Result;
}
CodeCompletionString::Chunk
CodeCompletionString::Chunk::CreateOptional(
std::auto_ptr<CodeCompletionString> Optional) {
Chunk Result;
Result.Kind = CK_Optional;
Result.Optional = Optional.release();
return Result;
}
CodeCompletionString::Chunk
CodeCompletionString::Chunk::CreatePlaceholder(const char *Placeholder) {
Chunk Result;
Result.Kind = CK_Placeholder;
char *New = new char [std::strlen(Placeholder) + 1];
std::strcpy(New, Placeholder);
Result.Placeholder = New;
return Result;
}
void
CodeCompletionString::Chunk::Destroy() {
switch (Kind) {
case CK_Text: delete [] Text; break;
case CK_Optional: delete Optional; break;
case CK_Placeholder: delete [] Placeholder; break;
}
}
CodeCompletionString::~CodeCompletionString() {
std::for_each(Chunks.begin(), Chunks.end(),
std::mem_fun_ref(&Chunk::Destroy));
}
std::string CodeCompletionString::getAsString() const {
std::string Result;
llvm::raw_string_ostream OS(Result);
for (iterator C = begin(), CEnd = end(); C != CEnd; ++C) {
switch (C->Kind) {
case CK_Text: OS << C->Text; break;
case CK_Optional: OS << "{#" << C->Optional->getAsString() << "#}"; break;
case CK_Placeholder: OS << "<#" << C->Placeholder << "#>"; break;
}
}
return Result;
}
//===----------------------------------------------------------------------===//
// Code completion consumer implementation
//===----------------------------------------------------------------------===//
CodeCompleteConsumer::CodeCompleteConsumer(Sema &S) : SemaRef(S) {
SemaRef.setCodeCompleteConsumer(this);
}
CodeCompleteConsumer::~CodeCompleteConsumer() {
SemaRef.setCodeCompleteConsumer(0);
}
void
CodeCompleteConsumer::CodeCompleteMemberReferenceExpr(Scope *S,
QualType BaseType,
bool IsArrow) {
if (IsArrow) {
if (const PointerType *Ptr = BaseType->getAs<PointerType>())
BaseType = Ptr->getPointeeType();
else if (BaseType->isObjCObjectPointerType())
/*Do nothing*/ ;
else
return;
}
ResultSet Results(*this);
unsigned NextRank = 0;
if (const RecordType *Record = BaseType->getAs<RecordType>()) {
NextRank = CollectMemberLookupResults(Record->getDecl(), NextRank, Results);
if (getSema().getLangOptions().CPlusPlus) {
if (!Results.empty())
// The "template" keyword can follow "->" or "." in the grammar.
Results.MaybeAddResult(Result("template", NextRank++));
// We could have the start of a nested-name-specifier. Add those
// results as well.
Results.setFilter(&CodeCompleteConsumer::IsNestedNameSpecifier);
CollectLookupResults(S, NextRank, Results);
}
// Hand off the results found for code completion.
ProcessCodeCompleteResults(Results.data(), Results.size());
// We're done!
return;
}
}
void CodeCompleteConsumer::CodeCompleteTag(Scope *S, ElaboratedType::TagKind TK) {
ResultSet::LookupFilter Filter = 0;
switch (TK) {
case ElaboratedType::TK_enum:
Filter = &CodeCompleteConsumer::IsEnum;
break;
case ElaboratedType::TK_class:
case ElaboratedType::TK_struct:
Filter = &CodeCompleteConsumer::IsClassOrStruct;
break;
case ElaboratedType::TK_union:
Filter = &CodeCompleteConsumer::IsUnion;
break;
}
ResultSet Results(*this, Filter);
unsigned NextRank = CollectLookupResults(S, 0, Results);
if (getSema().getLangOptions().CPlusPlus) {
// We could have the start of a nested-name-specifier. Add those
// results as well.
Results.setFilter(&CodeCompleteConsumer::IsNestedNameSpecifier);
CollectLookupResults(S, NextRank, Results);
}
ProcessCodeCompleteResults(Results.data(), Results.size());
}
void
CodeCompleteConsumer::CodeCompleteQualifiedId(Scope *S,
NestedNameSpecifier *NNS,
bool EnteringContext) {
CXXScopeSpec SS;
SS.setScopeRep(NNS);
DeclContext *Ctx = getSema().computeDeclContext(SS, EnteringContext);
if (!Ctx)
return;
ResultSet Results(*this);
unsigned NextRank = CollectMemberLookupResults(Ctx, 0, Results);
// The "template" keyword can follow "::" in the grammar
if (!Results.empty())
Results.MaybeAddResult(Result("template", NextRank));
ProcessCodeCompleteResults(Results.data(), Results.size());
}
void CodeCompleteConsumer::CodeCompleteUsing(Scope *S) {
ResultSet Results(*this, &CodeCompleteConsumer::IsNestedNameSpecifier);
// If we aren't in class scope, we could see the "namespace" keyword.
if (!S->isClassScope())
Results.MaybeAddResult(Result("namespace", 0));
// After "using", we can see anything that would start a
// nested-name-specifier.
CollectLookupResults(S, 0, Results);
ProcessCodeCompleteResults(Results.data(), Results.size());
}
void CodeCompleteConsumer::CodeCompleteUsingDirective(Scope *S) {
// After "using namespace", we expect to see a namespace name or namespace
// alias.
ResultSet Results(*this, &CodeCompleteConsumer::IsNamespaceOrAlias);
CollectLookupResults(S, 0, Results);
ProcessCodeCompleteResults(Results.data(), Results.size());
}
void CodeCompleteConsumer::CodeCompleteNamespaceDecl(Scope *S) {
ResultSet Results(*this, &CodeCompleteConsumer::IsNamespace);
DeclContext *Ctx = (DeclContext *)S->getEntity();
if (!S->getParent())
Ctx = getSema().Context.getTranslationUnitDecl();
if (Ctx && Ctx->isFileContext()) {
// We only want to see those namespaces that have already been defined
// within this scope, because its likely that the user is creating an
// extended namespace declaration. Keep track of the most recent
// definition of each namespace.
std::map<NamespaceDecl *, NamespaceDecl *> OrigToLatest;
for (DeclContext::specific_decl_iterator<NamespaceDecl>
NS(Ctx->decls_begin()), NSEnd(Ctx->decls_end());
NS != NSEnd; ++NS)
OrigToLatest[NS->getOriginalNamespace()] = *NS;
// Add the most recent definition (or extended definition) of each
// namespace to the list of results.
for (std::map<NamespaceDecl *, NamespaceDecl *>::iterator
NS = OrigToLatest.begin(), NSEnd = OrigToLatest.end();
NS != NSEnd; ++NS)
Results.MaybeAddResult(Result(NS->second, 0));
}
ProcessCodeCompleteResults(Results.data(), Results.size());
}
void CodeCompleteConsumer::CodeCompleteNamespaceAliasDecl(Scope *S) {
// After "namespace", we expect to see a namespace or alias.
ResultSet Results(*this, &CodeCompleteConsumer::IsNamespaceOrAlias);
CollectLookupResults(S, 0, Results);
ProcessCodeCompleteResults(Results.data(), Results.size());
}
void CodeCompleteConsumer::CodeCompleteOperatorName(Scope *S) {
ResultSet Results(*this, &CodeCompleteConsumer::IsType);
// Add the names of overloadable operators.
#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
if (std::strcmp(Spelling, "?")) \
Results.MaybeAddResult(Result(Spelling, 0));
#include "clang/Basic/OperatorKinds.def"
// Add any type names visible from the current scope
unsigned NextRank = CollectLookupResults(S, 0, Results);
// Add any type specifiers
AddTypeSpecifierResults(0, Results);
// Add any nested-name-specifiers
Results.setFilter(&CodeCompleteConsumer::IsNestedNameSpecifier);
CollectLookupResults(S, NextRank + 1, Results);
ProcessCodeCompleteResults(Results.data(), Results.size());
}
void CodeCompleteConsumer::ResultSet::MaybeAddResult(Result R) {
if (R.Kind != Result::RK_Declaration) {
// For non-declaration results, just add the result.
Results.push_back(R);
return;
}
// Look through using declarations.
if (UsingDecl *Using = dyn_cast<UsingDecl>(R.Declaration))
return MaybeAddResult(Result(Using->getTargetDecl(), R.Rank));
// Handle each declaration in an overload set separately.
if (OverloadedFunctionDecl *Ovl
= dyn_cast<OverloadedFunctionDecl>(R.Declaration)) {
for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
FEnd = Ovl->function_end();
F != FEnd; ++F)
MaybeAddResult(Result(*F, R.Rank));
return;
}
Decl *CanonDecl = R.Declaration->getCanonicalDecl();
unsigned IDNS = CanonDecl->getIdentifierNamespace();
// Friend declarations and declarations introduced due to friends are never
// added as results.
if (isa<FriendDecl>(CanonDecl) ||
(IDNS & (Decl::IDNS_OrdinaryFriend | Decl::IDNS_TagFriend)))
return;
if (const IdentifierInfo *Id = R.Declaration->getIdentifier()) {
// __va_list_tag is a freak of nature. Find it and skip it.
if (Id->isStr("__va_list_tag") || Id->isStr("__builtin_va_list"))
return;
// FIXME: Should we filter out other names in the implementation's
// namespace, e.g., those containing a __ or that start with _[A-Z]?
}
// C++ constructors are never found by name lookup.
if (isa<CXXConstructorDecl>(CanonDecl))
return;
// Filter out any unwanted results.
if (Filter && !(Completer.*Filter)(R.Declaration))
return;
ShadowMap &SMap = ShadowMaps.back();
ShadowMap::iterator I, IEnd;
for (llvm::tie(I, IEnd) = SMap.equal_range(R.Declaration->getDeclName());
I != IEnd; ++I) {
NamedDecl *ND = I->second.first;
unsigned Index = I->second.second;
if (ND->getCanonicalDecl() == CanonDecl) {
// This is a redeclaration. Always pick the newer declaration.
I->second.first = R.Declaration;
Results[Index].Declaration = R.Declaration;
// Pick the best rank of the two.
Results[Index].Rank = std::min(Results[Index].Rank, R.Rank);
// We're done.
return;
}
}
// This is a new declaration in this scope. However, check whether this
// declaration name is hidden by a similarly-named declaration in an outer
// scope.
std::list<ShadowMap>::iterator SM, SMEnd = ShadowMaps.end();
--SMEnd;
for (SM = ShadowMaps.begin(); SM != SMEnd; ++SM) {
for (llvm::tie(I, IEnd) = SM->equal_range(R.Declaration->getDeclName());
I != IEnd; ++I) {
// A tag declaration does not hide a non-tag declaration.
if (I->second.first->getIdentifierNamespace() == Decl::IDNS_Tag &&
(IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
Decl::IDNS_ObjCProtocol)))
continue;
// Protocols are in distinct namespaces from everything else.
if (((I->second.first->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
|| (IDNS & Decl::IDNS_ObjCProtocol)) &&
I->second.first->getIdentifierNamespace() != IDNS)
continue;
// The newly-added result is hidden by an entry in the shadow map.
if (Completer.canHiddenResultBeFound(R.Declaration, I->second.first)) {
// Note that this result was hidden.
R.Hidden = true;
} else {
// This result was hidden and cannot be found; don't bother adding
// it.
return;
}
break;
}
}
// Make sure that any given declaration only shows up in the result set once.
if (!AllDeclsFound.insert(CanonDecl))
return;
// Insert this result into the set of results and into the current shadow
// map.
SMap.insert(std::make_pair(R.Declaration->getDeclName(),
std::make_pair(R.Declaration, Results.size())));
Results.push_back(R);
}
/// \brief Enter into a new scope.
void CodeCompleteConsumer::ResultSet::EnterNewScope() {
ShadowMaps.push_back(ShadowMap());
}
/// \brief Exit from the current scope.
void CodeCompleteConsumer::ResultSet::ExitScope() {
ShadowMaps.pop_back();
}
// Find the next outer declaration context corresponding to this scope.
static DeclContext *findOuterContext(Scope *S) {
for (S = S->getParent(); S; S = S->getParent())
if (S->getEntity())
return static_cast<DeclContext *>(S->getEntity())->getPrimaryContext();
return 0;
}
/// \brief Collect the results of searching for declarations within the given
/// scope and its parent scopes.
///
/// \param S the scope in which we will start looking for declarations.
///
/// \param InitialRank the initial rank given to results in this scope.
/// Larger rank values will be used for results found in parent scopes.
unsigned CodeCompleteConsumer::CollectLookupResults(Scope *S,
unsigned InitialRank,
ResultSet &Results) {
if (!S)
return InitialRank;
// FIXME: Using directives!
unsigned NextRank = InitialRank;
Results.EnterNewScope();
if (S->getEntity() &&
!((DeclContext *)S->getEntity())->isFunctionOrMethod()) {
// Look into this scope's declaration context, along with any of its
// parent lookup contexts (e.g., enclosing classes), up to the point
// where we hit the context stored in the next outer scope.
DeclContext *Ctx = (DeclContext *)S->getEntity();
DeclContext *OuterCtx = findOuterContext(S);
for (; Ctx && Ctx->getPrimaryContext() != OuterCtx;
Ctx = Ctx->getLookupParent()) {
if (Ctx->isFunctionOrMethod())
continue;
NextRank = CollectMemberLookupResults(Ctx, NextRank + 1, Results);
}
} else if (!S->getParent()) {
// Look into the translation unit scope. We walk through the translation
// unit's declaration context, because the Scope itself won't have all of
// the declarations if
NextRank = CollectMemberLookupResults(
getSema().Context.getTranslationUnitDecl(),
NextRank + 1, Results);
} else {
// Walk through the declarations in this Scope.
for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
D != DEnd; ++D) {
if (NamedDecl *ND = dyn_cast<NamedDecl>((Decl *)((*D).get())))
Results.MaybeAddResult(Result(ND, NextRank));
}
NextRank = NextRank + 1;
}
// Lookup names in the parent scope.
NextRank = CollectLookupResults(S->getParent(), NextRank, Results);
Results.ExitScope();
return NextRank;
}
/// \brief Collect the results of searching for members within the given
/// declaration context.
///
/// \param Ctx the declaration context from which we will gather results.
///
/// \param InitialRank the initial rank given to results in this declaration
/// context. Larger rank values will be used for, e.g., members found in
/// base classes.
///
/// \param Results the result set that will be extended with any results
/// found within this declaration context (and, for a C++ class, its bases).
///
/// \returns the next higher rank value, after considering all of the
/// names within this declaration context.
unsigned CodeCompleteConsumer::CollectMemberLookupResults(DeclContext *Ctx,
unsigned InitialRank,
ResultSet &Results) {
llvm::SmallPtrSet<DeclContext *, 16> Visited;
return CollectMemberLookupResults(Ctx, InitialRank, Visited, Results);
}
/// \brief Collect the results of searching for members within the given
/// declaration context.
///
/// \param Ctx the declaration context from which we will gather results.
///
/// \param InitialRank the initial rank given to results in this declaration
/// context. Larger rank values will be used for, e.g., members found in
/// base classes.
///
/// \param Visited the set of declaration contexts that have already been
/// visited. Declaration contexts will only be visited once.
///
/// \param Results the result set that will be extended with any results
/// found within this declaration context (and, for a C++ class, its bases).
///
/// \returns the next higher rank value, after considering all of the
/// names within this declaration context.
unsigned CodeCompleteConsumer::CollectMemberLookupResults(DeclContext *Ctx,
unsigned InitialRank,
llvm::SmallPtrSet<DeclContext *, 16> &Visited,
ResultSet &Results) {
// Make sure we don't visit the same context twice.
if (!Visited.insert(Ctx->getPrimaryContext()))
return InitialRank;
// Enumerate all of the results in this context.
Results.EnterNewScope();
for (DeclContext *CurCtx = Ctx->getPrimaryContext(); CurCtx;
CurCtx = CurCtx->getNextContext()) {
for (DeclContext::decl_iterator D = CurCtx->decls_begin(),
DEnd = CurCtx->decls_end();
D != DEnd; ++D) {
if (NamedDecl *ND = dyn_cast<NamedDecl>(*D))
Results.MaybeAddResult(Result(ND, InitialRank));
}
}
// Traverse the contexts of inherited classes.
unsigned NextRank = InitialRank;
if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(),
BEnd = Record->bases_end();
B != BEnd; ++B) {
QualType BaseType = B->getType();
// Don't look into dependent bases, because name lookup can't look
// there anyway.
if (BaseType->isDependentType())
continue;
const RecordType *Record = BaseType->getAs<RecordType>();
if (!Record)
continue;
// FIXME: It would be nice to be able to determine whether referencing
// a particular member would be ambiguous. For example, given
//
// struct A { int member; };
// struct B { int member; };
// struct C : A, B { };
//
// void f(C *c) { c->### }
// accessing 'member' would result in an ambiguity. However, code
// completion could be smart enough to qualify the member with the
// base class, e.g.,
//
// c->B::member
//
// or
//
// c->A::member
// Collect results from this base class (and its bases).
NextRank = std::max(NextRank,
CollectMemberLookupResults(Record->getDecl(),
InitialRank + 1,
Visited,
Results));
}
}
// FIXME: Look into base classes in Objective-C!
Results.ExitScope();
return NextRank;
}
/// \brief Determines whether the given declaration is suitable as the
/// start of a C++ nested-name-specifier, e.g., a class or namespace.
bool CodeCompleteConsumer::IsNestedNameSpecifier(NamedDecl *ND) const {
// Allow us to find class templates, too.
if (ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(ND))
ND = ClassTemplate->getTemplatedDecl();
return getSema().isAcceptableNestedNameSpecifier(ND);
}
/// \brief Determines whether the given declaration is an enumeration.
bool CodeCompleteConsumer::IsEnum(NamedDecl *ND) const {
return isa<EnumDecl>(ND);
}
/// \brief Determines whether the given declaration is a class or struct.
bool CodeCompleteConsumer::IsClassOrStruct(NamedDecl *ND) const {
// Allow us to find class templates, too.
if (ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(ND))
ND = ClassTemplate->getTemplatedDecl();
if (RecordDecl *RD = dyn_cast<RecordDecl>(ND))
return RD->getTagKind() == TagDecl::TK_class ||
RD->getTagKind() == TagDecl::TK_struct;
return false;
}
/// \brief Determines whether the given declaration is a union.
bool CodeCompleteConsumer::IsUnion(NamedDecl *ND) const {
// Allow us to find class templates, too.
if (ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(ND))
ND = ClassTemplate->getTemplatedDecl();
if (RecordDecl *RD = dyn_cast<RecordDecl>(ND))
return RD->getTagKind() == TagDecl::TK_union;
return false;
}
/// \brief Determines whether the given declaration is a namespace.
bool CodeCompleteConsumer::IsNamespace(NamedDecl *ND) const {
return isa<NamespaceDecl>(ND);
}
/// \brief Determines whether the given declaration is a namespace or
/// namespace alias.
bool CodeCompleteConsumer::IsNamespaceOrAlias(NamedDecl *ND) const {
return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
}
/// \brief Brief determines whether the given declaration is a namespace or
/// namespace alias.
bool CodeCompleteConsumer::IsType(NamedDecl *ND) const {
return isa<TypeDecl>(ND);
}
namespace {
struct VISIBILITY_HIDDEN SortCodeCompleteResult {
typedef CodeCompleteConsumer::Result Result;
bool operator()(const Result &X, const Result &Y) const {
// Sort first by rank.
if (X.Rank < Y.Rank)
return true;
else if (X.Rank > Y.Rank)
return false;
// Result kinds are ordered by decreasing importance.
if (X.Kind < Y.Kind)
return true;
else if (X.Kind > Y.Kind)
return false;
// Non-hidden names precede hidden names.
if (X.Hidden != Y.Hidden)
return !X.Hidden;
// Ordering depends on the kind of result.
switch (X.Kind) {
case Result::RK_Declaration:
// Order based on the declaration names.
return X.Declaration->getDeclName() < Y.Declaration->getDeclName();
case Result::RK_Keyword:
return strcmp(X.Keyword, Y.Keyword) == -1;
}
// If only our C++ compiler did control-flow warnings properly.
return false;
}
};
}
/// \brief Determines whether the given hidden result could be found with
/// some extra work, e.g., by qualifying the name.
///
/// \param Hidden the declaration that is hidden by the currenly \p Visible
/// declaration.
///
/// \param Visible the declaration with the same name that is already visible.
///
/// \returns true if the hidden result can be found by some mechanism,
/// false otherwise.
bool CodeCompleteConsumer::canHiddenResultBeFound(NamedDecl *Hidden,
NamedDecl *Visible) {
// In C, there is no way to refer to a hidden name.
if (!getSema().getLangOptions().CPlusPlus)
return false;
DeclContext *HiddenCtx = Hidden->getDeclContext()->getLookupContext();
// There is no way to qualify a name declared in a function or method.
if (HiddenCtx->isFunctionOrMethod())
return false;
// If the hidden and visible declarations are in different name-lookup
// contexts, then we can qualify the name of the hidden declaration.
// FIXME: Optionally compute the string needed to refer to the hidden
// name.
return HiddenCtx != Visible->getDeclContext()->getLookupContext();
}
/// \brief Add type specifiers for the current language as keyword results.
void CodeCompleteConsumer::AddTypeSpecifierResults(unsigned Rank,
ResultSet &Results) {
Results.MaybeAddResult(Result("short", Rank));
Results.MaybeAddResult(Result("long", Rank));
Results.MaybeAddResult(Result("signed", Rank));
Results.MaybeAddResult(Result("unsigned", Rank));
Results.MaybeAddResult(Result("void", Rank));
Results.MaybeAddResult(Result("char", Rank));
Results.MaybeAddResult(Result("int", Rank));
Results.MaybeAddResult(Result("float", Rank));
Results.MaybeAddResult(Result("double", Rank));
Results.MaybeAddResult(Result("enum", Rank));
Results.MaybeAddResult(Result("struct", Rank));
Results.MaybeAddResult(Result("union", Rank));
if (getSema().getLangOptions().C99) {
// C99-specific
Results.MaybeAddResult(Result("_Complex", Rank));
Results.MaybeAddResult(Result("_Imaginary", Rank));
Results.MaybeAddResult(Result("_Bool", Rank));
}
if (getSema().getLangOptions().CPlusPlus) {
// C++-specific
Results.MaybeAddResult(Result("bool", Rank));
Results.MaybeAddResult(Result("class", Rank));
Results.MaybeAddResult(Result("typename", Rank));
Results.MaybeAddResult(Result("wchar_t", Rank));
if (getSema().getLangOptions().CPlusPlus0x) {
Results.MaybeAddResult(Result("char16_t", Rank));
Results.MaybeAddResult(Result("char32_t", Rank));
Results.MaybeAddResult(Result("decltype", Rank));
}
}
// GNU extensions
if (getSema().getLangOptions().GNUMode) {
// FIXME: Enable when we actually support decimal floating point.
// Results.MaybeAddResult(Result("_Decimal32", Rank));
// Results.MaybeAddResult(Result("_Decimal64", Rank));
// Results.MaybeAddResult(Result("_Decimal128", Rank));
Results.MaybeAddResult(Result("typeof", Rank));
}
}
/// \brief Add function parameter chunks to the given code completion string.
static void AddFunctionParameterChunks(ASTContext &Context,
FunctionDecl *Function,
CodeCompletionString *Result) {
CodeCompletionString *CCStr = Result;
for (unsigned P = 0, N = Function->getNumParams(); P != N; ++P) {
ParmVarDecl *Param = Function->getParamDecl(P);
if (Param->hasDefaultArg()) {
// When we see an optional default argument, put that argument and
// the remaining default arguments into a new, optional string.
CodeCompletionString *Opt = new CodeCompletionString;
CCStr->AddOptionalChunk(std::auto_ptr<CodeCompletionString>(Opt));
CCStr = Opt;
}
if (P != 0)
CCStr->AddTextChunk(", ");
// Format the placeholder string.
std::string PlaceholderStr;
if (Param->getIdentifier())
PlaceholderStr = Param->getIdentifier()->getName();
Param->getType().getAsStringInternal(PlaceholderStr,
Context.PrintingPolicy);
// Add the placeholder string.
CCStr->AddPlaceholderChunk(PlaceholderStr.c_str());
}
}
/// \brief Add template parameter chunks to the given code completion string.
static void AddTemplateParameterChunks(ASTContext &Context,
TemplateDecl *Template,
CodeCompletionString *Result,
unsigned MaxParameters = 0) {
CodeCompletionString *CCStr = Result;
bool FirstParameter = true;
TemplateParameterList *Params = Template->getTemplateParameters();
TemplateParameterList::iterator PEnd = Params->end();
if (MaxParameters)
PEnd = Params->begin() + MaxParameters;
for (TemplateParameterList::iterator P = Params->begin(); P != PEnd; ++P) {
bool HasDefaultArg = false;
std::string PlaceholderStr;
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
if (TTP->wasDeclaredWithTypename())
PlaceholderStr = "typename";
else
PlaceholderStr = "class";
if (TTP->getIdentifier()) {
PlaceholderStr += ' ';
PlaceholderStr += TTP->getIdentifier()->getName();
}
HasDefaultArg = TTP->hasDefaultArgument();
} else if (NonTypeTemplateParmDecl *NTTP
= dyn_cast<NonTypeTemplateParmDecl>(*P)) {
if (NTTP->getIdentifier())
PlaceholderStr = NTTP->getIdentifier()->getName();
NTTP->getType().getAsStringInternal(PlaceholderStr,
Context.PrintingPolicy);
HasDefaultArg = NTTP->hasDefaultArgument();
} else {
assert(isa<TemplateTemplateParmDecl>(*P));
TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
// Since putting the template argument list into the placeholder would
// be very, very long, we just use an abbreviation.
PlaceholderStr = "template<...> class";
if (TTP->getIdentifier()) {
PlaceholderStr += ' ';
PlaceholderStr += TTP->getIdentifier()->getName();
}
HasDefaultArg = TTP->hasDefaultArgument();
}
if (HasDefaultArg) {
// When we see an optional default argument, put that argument and
// the remaining default arguments into a new, optional string.
CodeCompletionString *Opt = new CodeCompletionString;
CCStr->AddOptionalChunk(std::auto_ptr<CodeCompletionString>(Opt));
CCStr = Opt;
}
if (FirstParameter)
FirstParameter = false;
else
CCStr->AddTextChunk(", ");
// Add the placeholder string.
CCStr->AddPlaceholderChunk(PlaceholderStr.c_str());
}
}
/// \brief If possible, create a new code completion string for the given
/// result.
///
/// \returns Either a new, heap-allocated code completion string describing
/// how to use this result, or NULL to indicate that the string or name of the
/// result is all that is needed.
CodeCompletionString *
CodeCompleteConsumer::CreateCodeCompletionString(Result R) {
if (R.Kind != Result::RK_Declaration)
return 0;
NamedDecl *ND = R.Declaration;
if (FunctionDecl *Function = dyn_cast<FunctionDecl>(ND)) {
CodeCompletionString *Result = new CodeCompletionString;
Result->AddTextChunk(Function->getNameAsString().c_str());
Result->AddTextChunk("(");
AddFunctionParameterChunks(getSema().Context, Function, Result);
Result->AddTextChunk(")");
return Result;
}
if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(ND)) {
CodeCompletionString *Result = new CodeCompletionString;
FunctionDecl *Function = FunTmpl->getTemplatedDecl();
Result->AddTextChunk(Function->getNameAsString().c_str());
// Figure out which template parameters are deduced (or have default
// arguments).
llvm::SmallVector<bool, 16> Deduced;
getSema().MarkDeducedTemplateParameters(FunTmpl, Deduced);
unsigned LastDeducibleArgument;
for (LastDeducibleArgument = Deduced.size(); LastDeducibleArgument > 0;
--LastDeducibleArgument) {
if (!Deduced[LastDeducibleArgument - 1]) {
// C++0x: Figure out if the template argument has a default. If so,
// the user doesn't need to type this argument.
// FIXME: We need to abstract template parameters better!
bool HasDefaultArg = false;
NamedDecl *Param = FunTmpl->getTemplateParameters()->getParam(
LastDeducibleArgument - 1);
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
HasDefaultArg = TTP->hasDefaultArgument();
else if (NonTypeTemplateParmDecl *NTTP
= dyn_cast<NonTypeTemplateParmDecl>(Param))
HasDefaultArg = NTTP->hasDefaultArgument();
else {
assert(isa<TemplateTemplateParmDecl>(Param));
HasDefaultArg
= cast<TemplateTemplateParmDecl>(Param)->hasDefaultArgument();
}
if (!HasDefaultArg)
break;
}
}
if (LastDeducibleArgument) {
// Some of the function template arguments cannot be deduced from a
// function call, so we introduce an explicit template argument list
// containing all of the arguments up to the first deducible argument.
Result->AddTextChunk("<");
AddTemplateParameterChunks(getSema().Context, FunTmpl, Result,
LastDeducibleArgument);
Result->AddTextChunk(">");
}
// Add the function parameters
Result->AddTextChunk("(");
AddFunctionParameterChunks(getSema().Context, Function, Result);
Result->AddTextChunk(")");
return Result;
}
if (TemplateDecl *Template = dyn_cast<TemplateDecl>(ND)) {
CodeCompletionString *Result = new CodeCompletionString;
Result->AddTextChunk(Template->getNameAsString().c_str());
Result->AddTextChunk("<");
AddTemplateParameterChunks(getSema().Context, Template, Result);
Result->AddTextChunk(">");
return Result;
}
return 0;
}
void
PrintingCodeCompleteConsumer::ProcessCodeCompleteResults(Result *Results,
unsigned NumResults) {
// Sort the results by rank/kind/etc.
std::stable_sort(Results, Results + NumResults, SortCodeCompleteResult());
// Print the results.
for (unsigned I = 0; I != NumResults; ++I) {
switch (Results[I].Kind) {
case Result::RK_Declaration:
OS << Results[I].Declaration->getNameAsString() << " : "
<< Results[I].Rank;
if (Results[I].Hidden)
OS << " (Hidden)";
if (CodeCompletionString *CCS = CreateCodeCompletionString(Results[I])) {
OS << " : " << CCS->getAsString();
delete CCS;
}
OS << '\n';
break;
case Result::RK_Keyword:
OS << Results[I].Keyword << " : " << Results[I].Rank << '\n';
break;
}
}
// Once we've printed the code-completion results, suppress remaining
// diagnostics.
// FIXME: Move this somewhere else!
getSema().PP.getDiagnostics().setSuppressAllDiagnostics();
}