| //=-- GRExprEngine.cpp - Path-Sensitive Expression-Level Dataflow ---*- C++ -*-= | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | //  This file defines a meta-engine for path-sensitive dataflow analysis that | 
 | //  is built on GREngine, but provides the boilerplate to execute transfer | 
 | //  functions and build the ExplodedGraph at the expression level. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "clang/Analysis/PathSensitive/GRExprEngine.h" | 
 | #include "clang/Analysis/PathSensitive/GRExprEngineBuilders.h" | 
 | #include "clang/Analysis/PathSensitive/Checker.h" | 
 | #include "clang/AST/ParentMap.h" | 
 | #include "clang/AST/StmtObjC.h" | 
 | #include "clang/Basic/Builtins.h" | 
 | #include "clang/Basic/SourceManager.h" | 
 | #include "clang/Basic/SourceManager.h" | 
 | #include "clang/Basic/PrettyStackTrace.h" | 
 | #include "llvm/Support/Streams.h" | 
 | #include "llvm/ADT/ImmutableList.h" | 
 | #include "llvm/Support/Compiler.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 |  | 
 | #ifndef NDEBUG | 
 | #include "llvm/Support/GraphWriter.h" | 
 | #endif | 
 |  | 
 | using namespace clang; | 
 | using llvm::dyn_cast; | 
 | using llvm::cast; | 
 | using llvm::APSInt; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Batch auditor.  DEPRECATED. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | namespace { | 
 |  | 
 | class VISIBILITY_HIDDEN MappedBatchAuditor : public GRSimpleAPICheck { | 
 |   typedef llvm::ImmutableList<GRSimpleAPICheck*> Checks; | 
 |   typedef llvm::DenseMap<void*,Checks> MapTy; | 
 |    | 
 |   MapTy M; | 
 |   Checks::Factory F; | 
 |   Checks AllStmts; | 
 |  | 
 | public: | 
 |   MappedBatchAuditor(llvm::BumpPtrAllocator& Alloc) : | 
 |     F(Alloc), AllStmts(F.GetEmptyList()) {} | 
 |    | 
 |   virtual ~MappedBatchAuditor() { | 
 |     llvm::DenseSet<GRSimpleAPICheck*> AlreadyVisited; | 
 |      | 
 |     for (MapTy::iterator MI = M.begin(), ME = M.end(); MI != ME; ++MI) | 
 |       for (Checks::iterator I=MI->second.begin(), E=MI->second.end(); I!=E;++I){ | 
 |  | 
 |         GRSimpleAPICheck* check = *I; | 
 |          | 
 |         if (AlreadyVisited.count(check)) | 
 |           continue; | 
 |          | 
 |         AlreadyVisited.insert(check); | 
 |         delete check; | 
 |       } | 
 |   } | 
 |  | 
 |   void AddCheck(GRSimpleAPICheck *A, Stmt::StmtClass C) { | 
 |     assert (A && "Check cannot be null."); | 
 |     void* key = reinterpret_cast<void*>((uintptr_t) C); | 
 |     MapTy::iterator I = M.find(key); | 
 |     M[key] = F.Concat(A, I == M.end() ? F.GetEmptyList() : I->second); | 
 |   } | 
 |    | 
 |   void AddCheck(GRSimpleAPICheck *A) { | 
 |     assert (A && "Check cannot be null."); | 
 |     AllStmts = F.Concat(A, AllStmts);     | 
 |   } | 
 |  | 
 |   virtual bool Audit(NodeTy* N, GRStateManager& VMgr) { | 
 |     // First handle the auditors that accept all statements. | 
 |     bool isSink = false; | 
 |     for (Checks::iterator I = AllStmts.begin(), E = AllStmts.end(); I!=E; ++I) | 
 |       isSink |= (*I)->Audit(N, VMgr); | 
 |      | 
 |     // Next handle the auditors that accept only specific statements. | 
 |     const Stmt* S = cast<PostStmt>(N->getLocation()).getStmt(); | 
 |     void* key = reinterpret_cast<void*>((uintptr_t) S->getStmtClass()); | 
 |     MapTy::iterator MI = M.find(key); | 
 |     if (MI != M.end()) {     | 
 |       for (Checks::iterator I=MI->second.begin(), E=MI->second.end(); I!=E; ++I) | 
 |         isSink |= (*I)->Audit(N, VMgr); | 
 |     } | 
 |      | 
 |     return isSink;     | 
 |   } | 
 | }; | 
 |  | 
 | } // end anonymous namespace | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Checker worklist routines. | 
 | //===----------------------------------------------------------------------===// | 
 |    | 
 | void GRExprEngine::CheckerVisit(Stmt *S, NodeSet &Dst, NodeSet &Src, | 
 |                                 bool isPrevisit) { | 
 |    | 
 |   if (Checkers.empty()) { | 
 |     Dst = Src; | 
 |     return; | 
 |   } | 
 |    | 
 |   NodeSet Tmp; | 
 |   NodeSet *PrevSet = &Src; | 
 |    | 
 |   for (std::vector<Checker*>::iterator I = Checkers.begin(), E = Checkers.end(); | 
 |        I != E; ++I) { | 
 |  | 
 |     NodeSet *CurrSet = (I+1 == E) ? &Dst : (PrevSet == &Tmp) ? &Src : &Tmp; | 
 |     CurrSet->clear(); | 
 |     Checker *checker = *I; | 
 |      | 
 |     for (NodeSet::iterator NI = PrevSet->begin(), NE = PrevSet->end(); | 
 |          NI != NE; ++NI) | 
 |       checker->GR_Visit(*CurrSet, *Builder, *this, S, *NI, isPrevisit); | 
 |      | 
 |     // Update which NodeSet is the current one. | 
 |     PrevSet = CurrSet; | 
 |   } | 
 |  | 
 |   // Don't autotransition.  The CheckerContext objects should do this | 
 |   // automatically. | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Engine construction and deletion. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | static inline Selector GetNullarySelector(const char* name, ASTContext& Ctx) { | 
 |   IdentifierInfo* II = &Ctx.Idents.get(name); | 
 |   return Ctx.Selectors.getSelector(0, &II); | 
 | } | 
 |  | 
 |  | 
 | GRExprEngine::GRExprEngine(CFG& cfg, Decl& CD, ASTContext& Ctx, | 
 |                            LiveVariables& L, BugReporterData& BRD, | 
 |                            bool purgeDead, bool eagerlyAssume, | 
 |                            StoreManagerCreator SMC, | 
 |                            ConstraintManagerCreator CMC) | 
 |   : CoreEngine(cfg, CD, Ctx, *this),  | 
 |     G(CoreEngine.getGraph()), | 
 |     Liveness(L), | 
 |     Builder(NULL), | 
 |     StateMgr(G.getContext(), SMC, CMC, G.getAllocator(), cfg, CD, L), | 
 |     SymMgr(StateMgr.getSymbolManager()), | 
 |     ValMgr(StateMgr.getValueManager()), | 
 |     SVator(ValMgr.getSValuator()), | 
 |     CurrentStmt(NULL), | 
 |     NSExceptionII(NULL), NSExceptionInstanceRaiseSelectors(NULL), | 
 |     RaiseSel(GetNullarySelector("raise", G.getContext())),  | 
 |     PurgeDead(purgeDead), | 
 |     BR(BRD, *this), | 
 |     EagerlyAssume(eagerlyAssume) {} | 
 |  | 
 | GRExprEngine::~GRExprEngine() {     | 
 |   BR.FlushReports(); | 
 |   delete [] NSExceptionInstanceRaiseSelectors; | 
 |   for (std::vector<Checker*>::iterator I=Checkers.begin(), E=Checkers.end(); | 
 |        I!=E; ++I) | 
 |     delete *I; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Utility methods. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 |  | 
 | void GRExprEngine::setTransferFunctions(GRTransferFuncs* tf) { | 
 |   StateMgr.TF = tf; | 
 |   tf->RegisterChecks(getBugReporter()); | 
 |   tf->RegisterPrinters(getStateManager().Printers); | 
 | } | 
 |  | 
 | void GRExprEngine::AddCheck(GRSimpleAPICheck* A, Stmt::StmtClass C) { | 
 |   if (!BatchAuditor) | 
 |     BatchAuditor.reset(new MappedBatchAuditor(getGraph().getAllocator())); | 
 |    | 
 |   ((MappedBatchAuditor*) BatchAuditor.get())->AddCheck(A, C); | 
 | } | 
 |  | 
 | void GRExprEngine::AddCheck(GRSimpleAPICheck *A) { | 
 |   if (!BatchAuditor) | 
 |     BatchAuditor.reset(new MappedBatchAuditor(getGraph().getAllocator())); | 
 |  | 
 |   ((MappedBatchAuditor*) BatchAuditor.get())->AddCheck(A); | 
 | } | 
 |  | 
 | const GRState* GRExprEngine::getInitialState() { | 
 |   const GRState *state = StateMgr.getInitialState(); | 
 |    | 
 |   // Precondition: the first argument of 'main' is an integer guaranteed | 
 |   //  to be > 0. | 
 |   // FIXME: It would be nice if we had a more general mechanism to add | 
 |   // such preconditions.  Some day. | 
 |   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(&StateMgr.getCodeDecl())) | 
 |     if (strcmp(FD->getIdentifier()->getName(), "main") == 0 && | 
 |         FD->getNumParams() > 0) { | 
 |       const ParmVarDecl *PD = FD->getParamDecl(0); | 
 |       QualType T = PD->getType(); | 
 |       if (T->isIntegerType()) | 
 |         if (const MemRegion *R = state->getRegion(PD)) { | 
 |           SVal V = state->getSVal(loc::MemRegionVal(R)); | 
 |           SVal Constraint = EvalBinOp(state, BinaryOperator::GT, V, | 
 |                                       ValMgr.makeZeroVal(T), | 
 |                                       getContext().IntTy);           | 
 |  | 
 |           if (const GRState *newState = state->assume(Constraint, true)) | 
 |             state = newState; | 
 |         } | 
 |     } | 
 |    | 
 |   return state; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Top-level transfer function logic (Dispatcher). | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | void GRExprEngine::ProcessStmt(Stmt* S, StmtNodeBuilder& builder) { | 
 |    | 
 |   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), | 
 |                                 S->getLocStart(), | 
 |                                 "Error evaluating statement"); | 
 |    | 
 |   Builder = &builder; | 
 |   EntryNode = builder.getLastNode(); | 
 |    | 
 |   // FIXME: Consolidate. | 
 |   CurrentStmt = S; | 
 |   StateMgr.CurrentStmt = S; | 
 |    | 
 |   // Set up our simple checks. | 
 |   if (BatchAuditor) | 
 |     Builder->setAuditor(BatchAuditor.get()); | 
 |      | 
 |   // Create the cleaned state.   | 
 |   SymbolReaper SymReaper(Liveness, SymMgr);   | 
 |   CleanedState = PurgeDead ? StateMgr.RemoveDeadBindings(EntryNode->getState(),  | 
 |                                                          CurrentStmt, SymReaper) | 
 |                            : EntryNode->getState(); | 
 |  | 
 |   // Process any special transfer function for dead symbols. | 
 |   NodeSet Tmp; | 
 |    | 
 |   if (!SymReaper.hasDeadSymbols()) | 
 |     Tmp.Add(EntryNode); | 
 |   else { | 
 |     SaveAndRestore<bool> OldSink(Builder->BuildSinks); | 
 |     SaveOr OldHasGen(Builder->HasGeneratedNode); | 
 |  | 
 |     SaveAndRestore<bool> OldPurgeDeadSymbols(Builder->PurgingDeadSymbols); | 
 |     Builder->PurgingDeadSymbols = true; | 
 |      | 
 |     getTF().EvalDeadSymbols(Tmp, *this, *Builder, EntryNode, S,  | 
 |                             CleanedState, SymReaper); | 
 |  | 
 |     if (!Builder->BuildSinks && !Builder->HasGeneratedNode) | 
 |       Tmp.Add(EntryNode); | 
 |   } | 
 |    | 
 |   bool HasAutoGenerated = false; | 
 |  | 
 |   for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { | 
 |  | 
 |     NodeSet Dst; | 
 |      | 
 |     // Set the cleaned state.   | 
 |     Builder->SetCleanedState(*I == EntryNode ? CleanedState : GetState(*I)); | 
 |      | 
 |     // Visit the statement.   | 
 |     Visit(S, *I, Dst); | 
 |  | 
 |     // Do we need to auto-generate a node?  We only need to do this to generate | 
 |     // a node with a "cleaned" state; GRCoreEngine will actually handle | 
 |     // auto-transitions for other cases.     | 
 |     if (Dst.size() == 1 && *Dst.begin() == EntryNode | 
 |         && !Builder->HasGeneratedNode && !HasAutoGenerated) { | 
 |       HasAutoGenerated = true; | 
 |       builder.generateNode(S, GetState(EntryNode), *I); | 
 |     } | 
 |   } | 
 |    | 
 |   // NULL out these variables to cleanup. | 
 |   CleanedState = NULL; | 
 |   EntryNode = NULL; | 
 |  | 
 |   // FIXME: Consolidate. | 
 |   StateMgr.CurrentStmt = 0; | 
 |   CurrentStmt = 0; | 
 |    | 
 |   Builder = NULL; | 
 | } | 
 |  | 
 | void GRExprEngine::Visit(Stmt* S, NodeTy* Pred, NodeSet& Dst) {   | 
 |   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), | 
 |                                 S->getLocStart(), | 
 |                                 "Error evaluating statement"); | 
 |  | 
 |   // FIXME: add metadata to the CFG so that we can disable | 
 |   //  this check when we KNOW that there is no block-level subexpression. | 
 |   //  The motivation is that this check requires a hashtable lookup. | 
 |    | 
 |   if (S != CurrentStmt && getCFG().isBlkExpr(S)) { | 
 |     Dst.Add(Pred); | 
 |     return; | 
 |   } | 
 |    | 
 |   switch (S->getStmtClass()) { | 
 |        | 
 |     default: | 
 |       // Cases we intentionally have "default" handle: | 
 |       //   AddrLabelExpr, IntegerLiteral, CharacterLiteral | 
 |        | 
 |       Dst.Add(Pred); // No-op. Simply propagate the current state unchanged. | 
 |       break; | 
 |      | 
 |     case Stmt::ArraySubscriptExprClass: | 
 |       VisitArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Pred, Dst, false); | 
 |       break; | 
 |        | 
 |     case Stmt::AsmStmtClass: | 
 |       VisitAsmStmt(cast<AsmStmt>(S), Pred, Dst); | 
 |       break; | 
 |        | 
 |     case Stmt::BinaryOperatorClass: { | 
 |       BinaryOperator* B = cast<BinaryOperator>(S); | 
 |        | 
 |       if (B->isLogicalOp()) { | 
 |         VisitLogicalExpr(B, Pred, Dst); | 
 |         break; | 
 |       } | 
 |       else if (B->getOpcode() == BinaryOperator::Comma) { | 
 |         const GRState* state = GetState(Pred); | 
 |         MakeNode(Dst, B, Pred, state->bindExpr(B, state->getSVal(B->getRHS()))); | 
 |         break; | 
 |       } | 
 |  | 
 |       if (EagerlyAssume && (B->isRelationalOp() || B->isEqualityOp())) { | 
 |         NodeSet Tmp; | 
 |         VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Tmp); | 
 |         EvalEagerlyAssume(Dst, Tmp, cast<Expr>(S));         | 
 |       } | 
 |       else | 
 |         VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst); | 
 |  | 
 |       break; | 
 |     } | 
 |  | 
 |     case Stmt::CallExprClass: | 
 |     case Stmt::CXXOperatorCallExprClass: { | 
 |       CallExpr* C = cast<CallExpr>(S); | 
 |       VisitCall(C, Pred, C->arg_begin(), C->arg_end(), Dst); | 
 |       break; | 
 |     } | 
 |  | 
 |       // FIXME: ChooseExpr is really a constant.  We need to fix | 
 |       //        the CFG do not model them as explicit control-flow. | 
 |        | 
 |     case Stmt::ChooseExprClass: { // __builtin_choose_expr | 
 |       ChooseExpr* C = cast<ChooseExpr>(S); | 
 |       VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst); | 
 |       break; | 
 |     } | 
 |        | 
 |     case Stmt::CompoundAssignOperatorClass: | 
 |       VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst); | 
 |       break; | 
 |  | 
 |     case Stmt::CompoundLiteralExprClass: | 
 |       VisitCompoundLiteralExpr(cast<CompoundLiteralExpr>(S), Pred, Dst, false); | 
 |       break; | 
 |        | 
 |     case Stmt::ConditionalOperatorClass: { // '?' operator | 
 |       ConditionalOperator* C = cast<ConditionalOperator>(S); | 
 |       VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst); | 
 |       break; | 
 |     } | 
 |        | 
 |     case Stmt::DeclRefExprClass: | 
 |     case Stmt::QualifiedDeclRefExprClass: | 
 |       VisitDeclRefExpr(cast<DeclRefExpr>(S), Pred, Dst, false); | 
 |       break; | 
 |        | 
 |     case Stmt::DeclStmtClass: | 
 |       VisitDeclStmt(cast<DeclStmt>(S), Pred, Dst); | 
 |       break; | 
 |        | 
 |     case Stmt::ImplicitCastExprClass: | 
 |     case Stmt::CStyleCastExprClass: { | 
 |       CastExpr* C = cast<CastExpr>(S); | 
 |       VisitCast(C, C->getSubExpr(), Pred, Dst); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Stmt::InitListExprClass: | 
 |       VisitInitListExpr(cast<InitListExpr>(S), Pred, Dst); | 
 |       break; | 
 |        | 
 |     case Stmt::MemberExprClass: | 
 |       VisitMemberExpr(cast<MemberExpr>(S), Pred, Dst, false); | 
 |       break; | 
 |        | 
 |     case Stmt::ObjCIvarRefExprClass: | 
 |       VisitObjCIvarRefExpr(cast<ObjCIvarRefExpr>(S), Pred, Dst, false); | 
 |       break; | 
 |  | 
 |     case Stmt::ObjCForCollectionStmtClass: | 
 |       VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S), Pred, Dst); | 
 |       break; | 
 |        | 
 |     case Stmt::ObjCMessageExprClass: { | 
 |       VisitObjCMessageExpr(cast<ObjCMessageExpr>(S), Pred, Dst); | 
 |       break; | 
 |     } | 
 |        | 
 |     case Stmt::ObjCAtThrowStmtClass: { | 
 |       // FIXME: This is not complete.  We basically treat @throw as | 
 |       // an abort. | 
 |       SaveAndRestore<bool> OldSink(Builder->BuildSinks); | 
 |       Builder->BuildSinks = true; | 
 |       MakeNode(Dst, S, Pred, GetState(Pred)); | 
 |       break; | 
 |     } | 
 |        | 
 |     case Stmt::ParenExprClass: | 
 |       Visit(cast<ParenExpr>(S)->getSubExpr()->IgnoreParens(), Pred, Dst); | 
 |       break; | 
 |        | 
 |     case Stmt::ReturnStmtClass: | 
 |       VisitReturnStmt(cast<ReturnStmt>(S), Pred, Dst); | 
 |       break; | 
 |        | 
 |     case Stmt::SizeOfAlignOfExprClass: | 
 |       VisitSizeOfAlignOfExpr(cast<SizeOfAlignOfExpr>(S), Pred, Dst); | 
 |       break; | 
 |        | 
 |     case Stmt::StmtExprClass: { | 
 |       StmtExpr* SE = cast<StmtExpr>(S); | 
 |  | 
 |       if (SE->getSubStmt()->body_empty()) { | 
 |         // Empty statement expression. | 
 |         assert(SE->getType() == getContext().VoidTy | 
 |                && "Empty statement expression must have void type."); | 
 |         Dst.Add(Pred); | 
 |         break; | 
 |       } | 
 |                 | 
 |       if (Expr* LastExpr = dyn_cast<Expr>(*SE->getSubStmt()->body_rbegin())) { | 
 |         const GRState* state = GetState(Pred); | 
 |         MakeNode(Dst, SE, Pred, state->bindExpr(SE, state->getSVal(LastExpr))); | 
 |       } | 
 |       else | 
 |         Dst.Add(Pred); | 
 |        | 
 |       break; | 
 |     } | 
 |  | 
 |     case Stmt::StringLiteralClass: | 
 |       VisitLValue(cast<StringLiteral>(S), Pred, Dst); | 
 |       break; | 
 |        | 
 |     case Stmt::UnaryOperatorClass: { | 
 |       UnaryOperator *U = cast<UnaryOperator>(S); | 
 |       if (EagerlyAssume && (U->getOpcode() == UnaryOperator::LNot)) { | 
 |         NodeSet Tmp; | 
 |         VisitUnaryOperator(U, Pred, Tmp, false); | 
 |         EvalEagerlyAssume(Dst, Tmp, U); | 
 |       } | 
 |       else | 
 |         VisitUnaryOperator(U, Pred, Dst, false); | 
 |       break; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void GRExprEngine::VisitLValue(Expr* Ex, NodeTy* Pred, NodeSet& Dst) { | 
 |    | 
 |   Ex = Ex->IgnoreParens(); | 
 |    | 
 |   if (Ex != CurrentStmt && getCFG().isBlkExpr(Ex)) { | 
 |     Dst.Add(Pred); | 
 |     return; | 
 |   } | 
 |    | 
 |   switch (Ex->getStmtClass()) { | 
 |        | 
 |     case Stmt::ArraySubscriptExprClass: | 
 |       VisitArraySubscriptExpr(cast<ArraySubscriptExpr>(Ex), Pred, Dst, true); | 
 |       return; | 
 |        | 
 |     case Stmt::DeclRefExprClass: | 
 |     case Stmt::QualifiedDeclRefExprClass: | 
 |       VisitDeclRefExpr(cast<DeclRefExpr>(Ex), Pred, Dst, true); | 
 |       return; | 
 |        | 
 |     case Stmt::ObjCIvarRefExprClass: | 
 |       VisitObjCIvarRefExpr(cast<ObjCIvarRefExpr>(Ex), Pred, Dst, true); | 
 |       return; | 
 |        | 
 |     case Stmt::UnaryOperatorClass: | 
 |       VisitUnaryOperator(cast<UnaryOperator>(Ex), Pred, Dst, true); | 
 |       return; | 
 |        | 
 |     case Stmt::MemberExprClass: | 
 |       VisitMemberExpr(cast<MemberExpr>(Ex), Pred, Dst, true); | 
 |       return; | 
 |        | 
 |     case Stmt::CompoundLiteralExprClass: | 
 |       VisitCompoundLiteralExpr(cast<CompoundLiteralExpr>(Ex), Pred, Dst, true); | 
 |       return; | 
 |        | 
 |     case Stmt::ObjCPropertyRefExprClass: | 
 |     case Stmt::ObjCKVCRefExprClass: | 
 |       // FIXME: Property assignments are lvalues, but not really "locations". | 
 |       //  e.g.:  self.x = something; | 
 |       //  Here the "self.x" really can translate to a method call (setter) when | 
 |       //  the assignment is made.  Moreover, the entire assignment expression | 
 |       //  evaluate to whatever "something" is, not calling the "getter" for | 
 |       //  the property (which would make sense since it can have side effects). | 
 |       //  We'll probably treat this as a location, but not one that we can | 
 |       //  take the address of.  Perhaps we need a new SVal class for cases | 
 |       //  like thsis? | 
 |       //  Note that we have a similar problem for bitfields, since they don't | 
 |       //  have "locations" in the sense that we can take their address. | 
 |       Dst.Add(Pred); | 
 |       return; | 
 |  | 
 |     case Stmt::StringLiteralClass: { | 
 |       const GRState* state = GetState(Pred); | 
 |       SVal V = state->getLValue(cast<StringLiteral>(Ex)); | 
 |       MakeNode(Dst, Ex, Pred, state->bindExpr(Ex, V)); | 
 |       return; | 
 |     } | 
 |        | 
 |     default: | 
 |       // Arbitrary subexpressions can return aggregate temporaries that | 
 |       // can be used in a lvalue context.  We need to enhance our support | 
 |       // of such temporaries in both the environment and the store, so right | 
 |       // now we just do a regular visit. | 
 |       assert ((Ex->getType()->isAggregateType()) && | 
 |               "Other kinds of expressions with non-aggregate/union types do" | 
 |               " not have lvalues."); | 
 |        | 
 |       Visit(Ex, Pred, Dst); | 
 |   } | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Block entrance.  (Update counters). | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | bool GRExprEngine::ProcessBlockEntrance(CFGBlock* B, const GRState*, | 
 |                                         GRBlockCounter BC) { | 
 |    | 
 |   return BC.getNumVisited(B->getBlockID()) < 3; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Generic node creation. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | GRExprEngine::NodeTy* GRExprEngine::MakeNode(NodeSet& Dst, Stmt* S, | 
 |                                              NodeTy* Pred, | 
 |                                              const GRState* St, | 
 |                                              ProgramPoint::Kind K, | 
 |                                              const void *tag) { | 
 |    | 
 |   assert (Builder && "GRStmtNodeBuilder not present."); | 
 |   SaveAndRestore<const void*> OldTag(Builder->Tag); | 
 |   Builder->Tag = tag; | 
 |   return Builder->MakeNode(Dst, S, Pred, St, K); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Branch processing. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | const GRState* GRExprEngine::MarkBranch(const GRState* state, | 
 |                                            Stmt* Terminator, | 
 |                                            bool branchTaken) { | 
 |    | 
 |   switch (Terminator->getStmtClass()) { | 
 |     default: | 
 |       return state; | 
 |        | 
 |     case Stmt::BinaryOperatorClass: { // '&&' and '||' | 
 |        | 
 |       BinaryOperator* B = cast<BinaryOperator>(Terminator); | 
 |       BinaryOperator::Opcode Op = B->getOpcode(); | 
 |        | 
 |       assert (Op == BinaryOperator::LAnd || Op == BinaryOperator::LOr); | 
 |        | 
 |       // For &&, if we take the true branch, then the value of the whole | 
 |       // expression is that of the RHS expression. | 
 |       // | 
 |       // For ||, if we take the false branch, then the value of the whole | 
 |       // expression is that of the RHS expression. | 
 |        | 
 |       Expr* Ex = (Op == BinaryOperator::LAnd && branchTaken) || | 
 |                  (Op == BinaryOperator::LOr && !branchTaken)   | 
 |                ? B->getRHS() : B->getLHS(); | 
 |          | 
 |       return state->bindBlkExpr(B, UndefinedVal(Ex)); | 
 |     } | 
 |        | 
 |     case Stmt::ConditionalOperatorClass: { // ?: | 
 |        | 
 |       ConditionalOperator* C = cast<ConditionalOperator>(Terminator); | 
 |        | 
 |       // For ?, if branchTaken == true then the value is either the LHS or | 
 |       // the condition itself. (GNU extension). | 
 |        | 
 |       Expr* Ex;       | 
 |        | 
 |       if (branchTaken) | 
 |         Ex = C->getLHS() ? C->getLHS() : C->getCond();         | 
 |       else | 
 |         Ex = C->getRHS(); | 
 |        | 
 |       return state->bindBlkExpr(C, UndefinedVal(Ex)); | 
 |     } | 
 |        | 
 |     case Stmt::ChooseExprClass: { // ?: | 
 |        | 
 |       ChooseExpr* C = cast<ChooseExpr>(Terminator); | 
 |        | 
 |       Expr* Ex = branchTaken ? C->getLHS() : C->getRHS();       | 
 |       return state->bindBlkExpr(C, UndefinedVal(Ex)); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// RecoverCastedSymbol - A helper function for ProcessBranch that is used | 
 | /// to try to recover some path-sensitivity for casts of symbolic | 
 | /// integers that promote their values (which are currently not tracked well). | 
 | /// This function returns the SVal bound to Condition->IgnoreCasts if all the | 
 | //  cast(s) did was sign-extend the original value. | 
 | static SVal RecoverCastedSymbol(GRStateManager& StateMgr, const GRState* state, | 
 |                                 Stmt* Condition, ASTContext& Ctx) { | 
 |  | 
 |   Expr *Ex = dyn_cast<Expr>(Condition); | 
 |   if (!Ex) | 
 |     return UnknownVal(); | 
 |  | 
 |   uint64_t bits = 0; | 
 |   bool bitsInit = false; | 
 |      | 
 |   while (CastExpr *CE = dyn_cast<CastExpr>(Ex)) { | 
 |     QualType T = CE->getType(); | 
 |  | 
 |     if (!T->isIntegerType()) | 
 |       return UnknownVal(); | 
 |      | 
 |     uint64_t newBits = Ctx.getTypeSize(T); | 
 |     if (!bitsInit || newBits < bits) { | 
 |       bitsInit = true; | 
 |       bits = newBits; | 
 |     } | 
 |        | 
 |     Ex = CE->getSubExpr(); | 
 |   } | 
 |  | 
 |   // We reached a non-cast.  Is it a symbolic value? | 
 |   QualType T = Ex->getType(); | 
 |  | 
 |   if (!bitsInit || !T->isIntegerType() || Ctx.getTypeSize(T) > bits) | 
 |     return UnknownVal(); | 
 |    | 
 |   return state->getSVal(Ex); | 
 | } | 
 |  | 
 | void GRExprEngine::ProcessBranch(Stmt* Condition, Stmt* Term, | 
 |                                  BranchNodeBuilder& builder) { | 
 |    | 
 |   // Remove old bindings for subexpressions. | 
 |   const GRState* PrevState = | 
 |     StateMgr.RemoveSubExprBindings(builder.getState()); | 
 |    | 
 |   // Check for NULL conditions; e.g. "for(;;)" | 
 |   if (!Condition) {  | 
 |     builder.markInfeasible(false); | 
 |     return; | 
 |   } | 
 |    | 
 |   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), | 
 |                                 Condition->getLocStart(), | 
 |                                 "Error evaluating branch"); | 
 |    | 
 |   SVal V = PrevState->getSVal(Condition); | 
 |    | 
 |   switch (V.getBaseKind()) { | 
 |     default: | 
 |       break; | 
 |  | 
 |     case SVal::UnknownKind: { | 
 |       if (Expr *Ex = dyn_cast<Expr>(Condition)) { | 
 |           if (Ex->getType()->isIntegerType()) { | 
 |           // Try to recover some path-sensitivity.  Right now casts of symbolic | 
 |           // integers that promote their values are currently not tracked well. | 
 |           // If 'Condition' is such an expression, try and recover the | 
 |           // underlying value and use that instead. | 
 |           SVal recovered = RecoverCastedSymbol(getStateManager(), | 
 |                                                builder.getState(), Condition, | 
 |                                                getContext()); | 
 |              | 
 |           if (!recovered.isUnknown()) { | 
 |             V = recovered; | 
 |             break; | 
 |           } | 
 |         } | 
 |       } | 
 |      | 
 |       builder.generateNode(MarkBranch(PrevState, Term, true), true); | 
 |       builder.generateNode(MarkBranch(PrevState, Term, false), false); | 
 |       return; | 
 |     } | 
 |        | 
 |     case SVal::UndefinedKind: {       | 
 |       NodeTy* N = builder.generateNode(PrevState, true); | 
 |  | 
 |       if (N) { | 
 |         N->markAsSink(); | 
 |         UndefBranches.insert(N); | 
 |       } | 
 |        | 
 |       builder.markInfeasible(false); | 
 |       return; | 
 |     }       | 
 |   } | 
 |      | 
 |   // Process the true branch. | 
 |   if (builder.isFeasible(true)) { | 
 |     if (const GRState *state = PrevState->assume(V, true)) | 
 |       builder.generateNode(MarkBranch(state, Term, true), true); | 
 |     else | 
 |       builder.markInfeasible(true); | 
 |   } | 
 |        | 
 |   // Process the false branch.   | 
 |   if (builder.isFeasible(false)) { | 
 |     if (const GRState *state = PrevState->assume(V, false)) | 
 |       builder.generateNode(MarkBranch(state, Term, false), false); | 
 |     else | 
 |       builder.markInfeasible(false); | 
 |   } | 
 | } | 
 |  | 
 | /// ProcessIndirectGoto - Called by GRCoreEngine.  Used to generate successor | 
 | ///  nodes by processing the 'effects' of a computed goto jump. | 
 | void GRExprEngine::ProcessIndirectGoto(IndirectGotoNodeBuilder& builder) { | 
 |  | 
 |   const GRState *state = builder.getState();   | 
 |   SVal V = state->getSVal(builder.getTarget()); | 
 |    | 
 |   // Three possibilities: | 
 |   // | 
 |   //   (1) We know the computed label. | 
 |   //   (2) The label is NULL (or some other constant), or Undefined. | 
 |   //   (3) We have no clue about the label.  Dispatch to all targets. | 
 |   // | 
 |    | 
 |   typedef IndirectGotoNodeBuilder::iterator iterator; | 
 |  | 
 |   if (isa<loc::GotoLabel>(V)) { | 
 |     LabelStmt* L = cast<loc::GotoLabel>(V).getLabel(); | 
 |      | 
 |     for (iterator I=builder.begin(), E=builder.end(); I != E; ++I) { | 
 |       if (I.getLabel() == L) { | 
 |         builder.generateNode(I, state); | 
 |         return; | 
 |       } | 
 |     } | 
 |      | 
 |     assert (false && "No block with label."); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (isa<loc::ConcreteInt>(V) || isa<UndefinedVal>(V)) { | 
 |     // Dispatch to the first target and mark it as a sink. | 
 |     NodeTy* N = builder.generateNode(builder.begin(), state, true); | 
 |     UndefBranches.insert(N); | 
 |     return; | 
 |   } | 
 |    | 
 |   // This is really a catch-all.  We don't support symbolics yet. | 
 |   // FIXME: Implement dispatch for symbolic pointers. | 
 |    | 
 |   for (iterator I=builder.begin(), E=builder.end(); I != E; ++I) | 
 |     builder.generateNode(I, state); | 
 | } | 
 |  | 
 |  | 
 | void GRExprEngine::VisitGuardedExpr(Expr* Ex, Expr* L, Expr* R, | 
 |                                     NodeTy* Pred, NodeSet& Dst) { | 
 |    | 
 |   assert (Ex == CurrentStmt && getCFG().isBlkExpr(Ex)); | 
 |    | 
 |   const GRState* state = GetState(Pred); | 
 |   SVal X = state->getBlkExprSVal(Ex); | 
 |    | 
 |   assert (X.isUndef()); | 
 |    | 
 |   Expr *SE = (Expr*) cast<UndefinedVal>(X).getData(); | 
 |   assert(SE);   | 
 |   X = state->getBlkExprSVal(SE); | 
 |    | 
 |   // Make sure that we invalidate the previous binding. | 
 |   MakeNode(Dst, Ex, Pred, state->bindExpr(Ex, X, true, true)); | 
 | } | 
 |  | 
 | /// ProcessSwitch - Called by GRCoreEngine.  Used to generate successor | 
 | ///  nodes by processing the 'effects' of a switch statement. | 
 | void GRExprEngine::ProcessSwitch(SwitchNodeBuilder& builder) {   | 
 |   typedef SwitchNodeBuilder::iterator iterator;   | 
 |   const GRState* state = builder.getState();   | 
 |   Expr* CondE = builder.getCondition(); | 
 |   SVal  CondV = state->getSVal(CondE); | 
 |  | 
 |   if (CondV.isUndef()) { | 
 |     NodeTy* N = builder.generateDefaultCaseNode(state, true); | 
 |     UndefBranches.insert(N); | 
 |     return; | 
 |   } | 
 |  | 
 |   const GRState*  DefaultSt = state;   | 
 |   bool defaultIsFeasible = false; | 
 |    | 
 |   for (iterator I = builder.begin(), EI = builder.end(); I != EI; ++I) { | 
 |     CaseStmt* Case = cast<CaseStmt>(I.getCase()); | 
 |  | 
 |     // Evaluate the LHS of the case value. | 
 |     Expr::EvalResult V1; | 
 |     bool b = Case->getLHS()->Evaluate(V1, getContext());     | 
 |      | 
 |     // Sanity checks.  These go away in Release builds. | 
 |     assert(b && V1.Val.isInt() && !V1.HasSideEffects  | 
 |              && "Case condition must evaluate to an integer constant."); | 
 |     b = b; // silence unused variable warning     | 
 |     assert(V1.Val.getInt().getBitWidth() ==  | 
 |            getContext().getTypeSize(CondE->getType())); | 
 |             | 
 |     // Get the RHS of the case, if it exists. | 
 |     Expr::EvalResult V2; | 
 |      | 
 |     if (Expr* E = Case->getRHS()) { | 
 |       b = E->Evaluate(V2, getContext()); | 
 |       assert(b && V2.Val.isInt() && !V2.HasSideEffects  | 
 |              && "Case condition must evaluate to an integer constant."); | 
 |       b = b; // silence unused variable warning | 
 |     } | 
 |     else | 
 |       V2 = V1; | 
 |      | 
 |     // FIXME: Eventually we should replace the logic below with a range | 
 |     //  comparison, rather than concretize the values within the range. | 
 |     //  This should be easy once we have "ranges" for NonLVals. | 
 |          | 
 |     do { | 
 |       nonloc::ConcreteInt CaseVal(getBasicVals().getValue(V1.Val.getInt()));       | 
 |       SVal Res = EvalBinOp(DefaultSt, BinaryOperator::EQ, CondV, CaseVal, | 
 |                            getContext().IntTy); | 
 |        | 
 |       // Now "assume" that the case matches.       | 
 |       if (const GRState* stateNew = state->assume(Res, true)) { | 
 |         builder.generateCaseStmtNode(I, stateNew); | 
 |         | 
 |         // If CondV evaluates to a constant, then we know that this | 
 |         // is the *only* case that we can take, so stop evaluating the | 
 |         // others. | 
 |         if (isa<nonloc::ConcreteInt>(CondV)) | 
 |           return; | 
 |       } | 
 |        | 
 |       // Now "assume" that the case doesn't match.  Add this state | 
 |       // to the default state (if it is feasible). | 
 |       if (const GRState *stateNew = DefaultSt->assume(Res, false)) { | 
 |         defaultIsFeasible = true; | 
 |         DefaultSt = stateNew; | 
 |       } | 
 |  | 
 |       // Concretize the next value in the range. | 
 |       if (V1.Val.getInt() == V2.Val.getInt()) | 
 |         break; | 
 |        | 
 |       ++V1.Val.getInt(); | 
 |       assert (V1.Val.getInt() <= V2.Val.getInt()); | 
 |        | 
 |     } while (true); | 
 |   } | 
 |    | 
 |   // If we reach here, than we know that the default branch is | 
 |   // possible.   | 
 |   if (defaultIsFeasible) builder.generateDefaultCaseNode(DefaultSt); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Transfer functions: logical operations ('&&', '||'). | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | void GRExprEngine::VisitLogicalExpr(BinaryOperator* B, NodeTy* Pred, | 
 |                                     NodeSet& Dst) { | 
 |    | 
 |   assert(B->getOpcode() == BinaryOperator::LAnd || | 
 |          B->getOpcode() == BinaryOperator::LOr); | 
 |    | 
 |   assert(B == CurrentStmt && getCFG().isBlkExpr(B)); | 
 |    | 
 |   const GRState* state = GetState(Pred); | 
 |   SVal X = state->getBlkExprSVal(B); | 
 |   assert(X.isUndef()); | 
 |    | 
 |   Expr* Ex = (Expr*) cast<UndefinedVal>(X).getData(); | 
 |    | 
 |   assert(Ex); | 
 |    | 
 |   if (Ex == B->getRHS()) { | 
 |      | 
 |     X = state->getBlkExprSVal(Ex); | 
 |      | 
 |     // Handle undefined values. | 
 |      | 
 |     if (X.isUndef()) { | 
 |       MakeNode(Dst, B, Pred, state->bindBlkExpr(B, X)); | 
 |       return; | 
 |     } | 
 |      | 
 |     // We took the RHS.  Because the value of the '&&' or '||' expression must | 
 |     // evaluate to 0 or 1, we must assume the value of the RHS evaluates to 0 | 
 |     // or 1.  Alternatively, we could take a lazy approach, and calculate this | 
 |     // value later when necessary.  We don't have the machinery in place for | 
 |     // this right now, and since most logical expressions are used for branches, | 
 |     // the payoff is not likely to be large.  Instead, we do eager evaluation.         | 
 |     if (const GRState *newState = state->assume(X, true)) | 
 |       MakeNode(Dst, B, Pred,  | 
 |                newState->bindBlkExpr(B, ValMgr.makeIntVal(1U, B->getType()))); | 
 |        | 
 |     if (const GRState *newState = state->assume(X, false)) | 
 |       MakeNode(Dst, B, Pred,  | 
 |                newState->bindBlkExpr(B, ValMgr.makeIntVal(0U, B->getType()))); | 
 |   } | 
 |   else { | 
 |     // We took the LHS expression.  Depending on whether we are '&&' or | 
 |     // '||' we know what the value of the expression is via properties of | 
 |     // the short-circuiting. | 
 |     X = ValMgr.makeIntVal(B->getOpcode() == BinaryOperator::LAnd ? 0U : 1U,  | 
 |                           B->getType()); | 
 |     MakeNode(Dst, B, Pred, state->bindBlkExpr(B, X)); | 
 |   } | 
 | } | 
 |   | 
 | //===----------------------------------------------------------------------===// | 
 | // Transfer functions: Loads and stores. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | void GRExprEngine::VisitDeclRefExpr(DeclRefExpr* Ex, NodeTy* Pred, NodeSet& Dst, | 
 |                                     bool asLValue) { | 
 |    | 
 |   const GRState* state = GetState(Pred); | 
 |  | 
 |   const NamedDecl* D = Ex->getDecl(); | 
 |  | 
 |   if (const VarDecl* VD = dyn_cast<VarDecl>(D)) { | 
 |  | 
 |     SVal V = state->getLValue(VD); | 
 |  | 
 |     if (asLValue) | 
 |       MakeNode(Dst, Ex, Pred, state->bindExpr(Ex, V), | 
 |                ProgramPoint::PostLValueKind); | 
 |     else | 
 |       EvalLoad(Dst, Ex, Pred, state, V); | 
 |     return; | 
 |  | 
 |   } else if (const EnumConstantDecl* ED = dyn_cast<EnumConstantDecl>(D)) { | 
 |     assert(!asLValue && "EnumConstantDecl does not have lvalue."); | 
 |  | 
 |     SVal V = ValMgr.makeIntVal(ED->getInitVal()); | 
 |     MakeNode(Dst, Ex, Pred, state->bindExpr(Ex, V)); | 
 |     return; | 
 |  | 
 |   } else if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(D)) { | 
 |     assert(asLValue); | 
 |     SVal V = ValMgr.getFunctionPointer(FD); | 
 |     MakeNode(Dst, Ex, Pred, state->bindExpr(Ex, V), | 
 |              ProgramPoint::PostLValueKind); | 
 |     return; | 
 |   } | 
 |    | 
 |   assert (false && | 
 |           "ValueDecl support for this ValueDecl not implemented."); | 
 | } | 
 |  | 
 | /// VisitArraySubscriptExpr - Transfer function for array accesses | 
 | void GRExprEngine::VisitArraySubscriptExpr(ArraySubscriptExpr* A, NodeTy* Pred, | 
 |                                            NodeSet& Dst, bool asLValue) { | 
 |    | 
 |   Expr* Base = A->getBase()->IgnoreParens(); | 
 |   Expr* Idx  = A->getIdx()->IgnoreParens(); | 
 |   NodeSet Tmp; | 
 |    | 
 |   if (Base->getType()->isVectorType()) { | 
 |     // For vector types get its lvalue. | 
 |     // FIXME: This may not be correct.  Is the rvalue of a vector its location? | 
 |     //  In fact, I think this is just a hack.  We need to get the right | 
 |     // semantics. | 
 |     VisitLValue(Base, Pred, Tmp); | 
 |   } | 
 |   else   | 
 |     Visit(Base, Pred, Tmp);   // Get Base's rvalue, which should be an LocVal. | 
 |    | 
 |   for (NodeSet::iterator I1=Tmp.begin(), E1=Tmp.end(); I1!=E1; ++I1) {     | 
 |     NodeSet Tmp2; | 
 |     Visit(Idx, *I1, Tmp2);     // Evaluate the index. | 
 |        | 
 |     for (NodeSet::iterator I2=Tmp2.begin(), E2=Tmp2.end(); I2!=E2; ++I2) { | 
 |       const GRState* state = GetState(*I2); | 
 |       SVal V = state->getLValue(A->getType(), state->getSVal(Base), | 
 |                                 state->getSVal(Idx)); | 
 |  | 
 |       if (asLValue) | 
 |         MakeNode(Dst, A, *I2, state->bindExpr(A, V), | 
 |                  ProgramPoint::PostLValueKind); | 
 |       else | 
 |         EvalLoad(Dst, A, *I2, state, V); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// VisitMemberExpr - Transfer function for member expressions. | 
 | void GRExprEngine::VisitMemberExpr(MemberExpr* M, NodeTy* Pred, | 
 |                                    NodeSet& Dst, bool asLValue) { | 
 |    | 
 |   Expr* Base = M->getBase()->IgnoreParens(); | 
 |   NodeSet Tmp; | 
 |    | 
 |   if (M->isArrow())  | 
 |     Visit(Base, Pred, Tmp);        // p->f = ...  or   ... = p->f | 
 |   else | 
 |     VisitLValue(Base, Pred, Tmp);  // x.f = ...   or   ... = x.f | 
 |      | 
 |   FieldDecl *Field = dyn_cast<FieldDecl>(M->getMemberDecl()); | 
 |   if (!Field) // FIXME: skipping member expressions for non-fields | 
 |     return; | 
 |  | 
 |   for (NodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E; ++I) { | 
 |     const GRState* state = GetState(*I); | 
 |     // FIXME: Should we insert some assumption logic in here to determine | 
 |     // if "Base" is a valid piece of memory?  Before we put this assumption | 
 |     // later when using FieldOffset lvals (which we no longer have). | 
 |     SVal L = state->getLValue(state->getSVal(Base), Field); | 
 |  | 
 |     if (asLValue) | 
 |       MakeNode(Dst, M, *I, state->bindExpr(M, L), | 
 |                ProgramPoint::PostLValueKind); | 
 |     else | 
 |       EvalLoad(Dst, M, *I, state, L); | 
 |   } | 
 | } | 
 |  | 
 | /// EvalBind - Handle the semantics of binding a value to a specific location. | 
 | ///  This method is used by EvalStore and (soon) VisitDeclStmt, and others. | 
 | void GRExprEngine::EvalBind(NodeSet& Dst, Expr* Ex, NodeTy* Pred, | 
 |                             const GRState* state, SVal location, SVal Val) { | 
 |  | 
 |   const GRState* newState = 0; | 
 |    | 
 |   if (location.isUnknown()) { | 
 |     // We know that the new state will be the same as the old state since | 
 |     // the location of the binding is "unknown".  Consequently, there | 
 |     // is no reason to just create a new node. | 
 |     newState = state; | 
 |   } | 
 |   else { | 
 |     // We are binding to a value other than 'unknown'.  Perform the binding | 
 |     // using the StoreManager. | 
 |     newState = state->bindLoc(cast<Loc>(location), Val); | 
 |   } | 
 |  | 
 |   // The next thing to do is check if the GRTransferFuncs object wants to | 
 |   // update the state based on the new binding.  If the GRTransferFunc object | 
 |   // doesn't do anything, just auto-propagate the current state. | 
 |   GRStmtNodeBuilderRef BuilderRef(Dst, *Builder, *this, Pred, newState, Ex, | 
 |                                   newState != state); | 
 |      | 
 |   getTF().EvalBind(BuilderRef, location, Val); | 
 | } | 
 |  | 
 | /// EvalStore - Handle the semantics of a store via an assignment. | 
 | ///  @param Dst The node set to store generated state nodes | 
 | ///  @param Ex The expression representing the location of the store | 
 | ///  @param state The current simulation state | 
 | ///  @param location The location to store the value | 
 | ///  @param Val The value to be stored | 
 | void GRExprEngine::EvalStore(NodeSet& Dst, Expr* Ex, NodeTy* Pred, | 
 |                              const GRState* state, SVal location, SVal Val, | 
 |                              const void *tag) { | 
 |    | 
 |   assert (Builder && "GRStmtNodeBuilder must be defined."); | 
 |    | 
 |   // Evaluate the location (checks for bad dereferences). | 
 |   Pred = EvalLocation(Ex, Pred, state, location, tag); | 
 |    | 
 |   if (!Pred) | 
 |     return; | 
 |  | 
 |   assert (!location.isUndef()); | 
 |   state = GetState(Pred); | 
 |  | 
 |   // Proceed with the store.   | 
 |   SaveAndRestore<ProgramPoint::Kind> OldSPointKind(Builder->PointKind); | 
 |   SaveAndRestore<const void*> OldTag(Builder->Tag); | 
 |   Builder->PointKind = ProgramPoint::PostStoreKind; | 
 |   Builder->Tag = tag; | 
 |   EvalBind(Dst, Ex, Pred, state, location, Val); | 
 | } | 
 |  | 
 | void GRExprEngine::EvalLoad(NodeSet& Dst, Expr* Ex, NodeTy* Pred, | 
 |                             const GRState* state, SVal location, | 
 |                             const void *tag) { | 
 |  | 
 |   // Evaluate the location (checks for bad dereferences).   | 
 |   Pred = EvalLocation(Ex, Pred, state, location, tag); | 
 |    | 
 |   if (!Pred) | 
 |     return; | 
 |    | 
 |   state = GetState(Pred); | 
 |    | 
 |   // Proceed with the load. | 
 |   ProgramPoint::Kind K = ProgramPoint::PostLoadKind; | 
 |  | 
 |   // FIXME: Currently symbolic analysis "generates" new symbols | 
 |   //  for the contents of values.  We need a better approach. | 
 |  | 
 |   if (location.isUnknown()) { | 
 |     // This is important.  We must nuke the old binding. | 
 |     MakeNode(Dst, Ex, Pred, state->bindExpr(Ex, UnknownVal()), K, tag); | 
 |   } | 
 |   else { | 
 |     SVal V = state->getSVal(cast<Loc>(location), Ex->getType()); | 
 |      | 
 |     // Casts can create weird scenarios where a location must be implicitly | 
 |     // converted to something else.  For example: | 
 |     // | 
 |     //  void *x; | 
 |     //  int *y = (int*) &x; // void** -> int* cast. | 
 |     //  invalidate(y);  // 'x' now binds to a symbolic region | 
 |     //  int z = *y; | 
 |     //     | 
 |     //if (isa<Loc>(V) && !Loc::IsLocType(Ex->getType())) { | 
 |     //  V = EvalCast(V, Ex->getType()); | 
 |     //} | 
 |      | 
 |     MakeNode(Dst, Ex, Pred, state->bindExpr(Ex, V), K, tag); | 
 |   } | 
 | } | 
 |  | 
 | void GRExprEngine::EvalStore(NodeSet& Dst, Expr* Ex, Expr* StoreE, NodeTy* Pred, | 
 |                              const GRState* state, SVal location, SVal Val, | 
 |                              const void *tag) { | 
 |   | 
 |   NodeSet TmpDst; | 
 |   EvalStore(TmpDst, StoreE, Pred, state, location, Val, tag); | 
 |  | 
 |   for (NodeSet::iterator I=TmpDst.begin(), E=TmpDst.end(); I!=E; ++I) | 
 |     MakeNode(Dst, Ex, *I, (*I)->getState(), ProgramPoint::PostStmtKind, tag); | 
 | } | 
 |  | 
 | GRExprEngine::NodeTy* GRExprEngine::EvalLocation(Stmt* Ex, NodeTy* Pred, | 
 |                                                  const GRState* state, | 
 |                                                  SVal location, | 
 |                                                  const void *tag) { | 
 |    | 
 |   SaveAndRestore<const void*> OldTag(Builder->Tag); | 
 |   Builder->Tag = tag; | 
 |    | 
 |   // Check for loads/stores from/to undefined values.   | 
 |   if (location.isUndef()) { | 
 |     NodeTy* N = | 
 |       Builder->generateNode(Ex, state, Pred, | 
 |                             ProgramPoint::PostUndefLocationCheckFailedKind); | 
 |      | 
 |     if (N) { | 
 |       N->markAsSink(); | 
 |       UndefDeref.insert(N); | 
 |     } | 
 |      | 
 |     return 0; | 
 |   } | 
 |    | 
 |   // Check for loads/stores from/to unknown locations.  Treat as No-Ops. | 
 |   if (location.isUnknown()) | 
 |     return Pred; | 
 |    | 
 |   // During a load, one of two possible situations arise: | 
 |   //  (1) A crash, because the location (pointer) was NULL. | 
 |   //  (2) The location (pointer) is not NULL, and the dereference works. | 
 |   //  | 
 |   // We add these assumptions. | 
 |    | 
 |   Loc LV = cast<Loc>(location);     | 
 |    | 
 |   // "Assume" that the pointer is not NULL. | 
 |   const GRState *StNotNull = state->assume(LV, true); | 
 |    | 
 |   // "Assume" that the pointer is NULL. | 
 |   const GRState *StNull = state->assume(LV, false); | 
 |  | 
 |   if (StNull) {     | 
 |     // Use the Generic Data Map to mark in the state what lval was null. | 
 |     const SVal* PersistentLV = getBasicVals().getPersistentSVal(LV); | 
 |     StNull = StNull->set<GRState::NullDerefTag>(PersistentLV); | 
 |      | 
 |     // We don't use "MakeNode" here because the node will be a sink | 
 |     // and we have no intention of processing it later. | 
 |     NodeTy* NullNode = | 
 |       Builder->generateNode(Ex, StNull, Pred,  | 
 |                             ProgramPoint::PostNullCheckFailedKind); | 
 |  | 
 |     if (NullNode) {       | 
 |       NullNode->markAsSink();       | 
 |       if (StNotNull) ImplicitNullDeref.insert(NullNode); | 
 |       else ExplicitNullDeref.insert(NullNode); | 
 |     } | 
 |   } | 
 |    | 
 |   if (!StNotNull) | 
 |     return NULL; | 
 |  | 
 |   // FIXME: Temporarily disable out-of-bounds checking until we make | 
 |   // the logic reflect recent changes to CastRegion and friends. | 
 | #if 0 | 
 |   // Check for out-of-bound array access. | 
 |   if (isa<loc::MemRegionVal>(LV)) { | 
 |     const MemRegion* R = cast<loc::MemRegionVal>(LV).getRegion(); | 
 |     if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) { | 
 |       // Get the index of the accessed element. | 
 |       SVal Idx = ER->getIndex(); | 
 |       // Get the extent of the array. | 
 |       SVal NumElements = getStoreManager().getSizeInElements(StNotNull, | 
 |                                                           ER->getSuperRegion()); | 
 |  | 
 |       const GRState * StInBound = StNotNull->assumeInBound(Idx, NumElements,  | 
 |                                                            true); | 
 |       const GRState* StOutBound = StNotNull->assumeInBound(Idx, NumElements,  | 
 |                                                            false); | 
 |  | 
 |       if (StOutBound) { | 
 |         // Report warning.  Make sink node manually. | 
 |         NodeTy* OOBNode = | 
 |           Builder->generateNode(Ex, StOutBound, Pred, | 
 |                                 ProgramPoint::PostOutOfBoundsCheckFailedKind); | 
 |  | 
 |         if (OOBNode) { | 
 |           OOBNode->markAsSink(); | 
 |  | 
 |           if (StInBound) | 
 |             ImplicitOOBMemAccesses.insert(OOBNode); | 
 |           else | 
 |             ExplicitOOBMemAccesses.insert(OOBNode); | 
 |         } | 
 |       } | 
 |  | 
 |       if (!StInBound) | 
 |         return NULL; | 
 |  | 
 |       StNotNull = StInBound; | 
 |     } | 
 |   } | 
 | #endif | 
 |    | 
 |   // Generate a new node indicating the checks succeed. | 
 |   return Builder->generateNode(Ex, StNotNull, Pred, | 
 |                                ProgramPoint::PostLocationChecksSucceedKind); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Transfer function: OSAtomics. | 
 | // | 
 | // FIXME: Eventually refactor into a more "plugin" infrastructure. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | // Mac OS X: | 
 | // http://developer.apple.com/documentation/Darwin/Reference/Manpages/man3 | 
 | // atomic.3.html | 
 | // | 
 | static bool EvalOSAtomicCompareAndSwap(ExplodedNodeSet<GRState>& Dst, | 
 |                                        GRExprEngine& Engine, | 
 |                                        GRStmtNodeBuilder<GRState>& Builder, | 
 |                                        CallExpr* CE, SVal L,                  | 
 |                                        ExplodedNode<GRState>* Pred) { | 
 |  | 
 |   // Not enough arguments to match OSAtomicCompareAndSwap? | 
 |   if (CE->getNumArgs() != 3) | 
 |     return false; | 
 |    | 
 |   ASTContext &C = Engine.getContext(); | 
 |   Expr *oldValueExpr = CE->getArg(0); | 
 |   QualType oldValueType = C.getCanonicalType(oldValueExpr->getType()); | 
 |  | 
 |   Expr *newValueExpr = CE->getArg(1); | 
 |   QualType newValueType = C.getCanonicalType(newValueExpr->getType()); | 
 |    | 
 |   // Do the types of 'oldValue' and 'newValue' match? | 
 |   if (oldValueType != newValueType) | 
 |     return false; | 
 |    | 
 |   Expr *theValueExpr = CE->getArg(2); | 
 |   const PointerType *theValueType = | 
 |     theValueExpr->getType()->getAs<PointerType>(); | 
 |    | 
 |   // theValueType not a pointer? | 
 |   if (!theValueType) | 
 |     return false; | 
 |    | 
 |   QualType theValueTypePointee = | 
 |     C.getCanonicalType(theValueType->getPointeeType()).getUnqualifiedType(); | 
 |    | 
 |   // The pointee must match newValueType and oldValueType. | 
 |   if (theValueTypePointee != newValueType) | 
 |     return false; | 
 |    | 
 |   static unsigned magic_load = 0; | 
 |   static unsigned magic_store = 0; | 
 |  | 
 |   const void *OSAtomicLoadTag = &magic_load; | 
 |   const void *OSAtomicStoreTag = &magic_store; | 
 |    | 
 |   // Load 'theValue'. | 
 |   const GRState *state = Pred->getState(); | 
 |   ExplodedNodeSet<GRState> Tmp; | 
 |   SVal location = state->getSVal(theValueExpr); | 
 |   Engine.EvalLoad(Tmp, theValueExpr, Pred, state, location, OSAtomicLoadTag); | 
 |  | 
 |   for (ExplodedNodeSet<GRState>::iterator I = Tmp.begin(), E = Tmp.end(); | 
 |        I != E; ++I) { | 
 |    | 
 |     ExplodedNode<GRState> *N = *I; | 
 |     const GRState *stateLoad = N->getState(); | 
 |     SVal theValueVal = stateLoad->getSVal(theValueExpr); | 
 |     SVal oldValueVal = stateLoad->getSVal(oldValueExpr); | 
 |      | 
 |     // FIXME: Issue an error. | 
 |     if (theValueVal.isUndef() || oldValueVal.isUndef()) { | 
 |       return false;       | 
 |     } | 
 |          | 
 |     // Perform the comparison. | 
 |     SVal Cmp = Engine.EvalBinOp(stateLoad, BinaryOperator::EQ, theValueVal, | 
 |                                 oldValueVal, Engine.getContext().IntTy); | 
 |  | 
 |     const GRState *stateEqual = stateLoad->assume(Cmp, true); | 
 |      | 
 |     // Were they equal? | 
 |     if (stateEqual) { | 
 |       // Perform the store. | 
 |       ExplodedNodeSet<GRState> TmpStore; | 
 |       SVal val = stateEqual->getSVal(newValueExpr); | 
 |        | 
 |       // Handle implicit value casts. | 
 |       if (const TypedRegion *R = | 
 |           dyn_cast_or_null<TypedRegion>(location.getAsRegion())) { | 
 |         llvm::tie(state, val) = | 
 |           Engine.getSValuator().EvalCast(val, state, R->getValueType(C), | 
 |                                          newValueExpr->getType()); | 
 |       }       | 
 |        | 
 |       Engine.EvalStore(TmpStore, theValueExpr, N, stateEqual, location,  | 
 |                        val, OSAtomicStoreTag); | 
 |        | 
 |       // Now bind the result of the comparison. | 
 |       for (ExplodedNodeSet<GRState>::iterator I2 = TmpStore.begin(), | 
 |            E2 = TmpStore.end(); I2 != E2; ++I2) { | 
 |         ExplodedNode<GRState> *predNew = *I2; | 
 |         const GRState *stateNew = predNew->getState(); | 
 |         SVal Res = Engine.getValueManager().makeTruthVal(true, CE->getType()); | 
 |         Engine.MakeNode(Dst, CE, predNew, stateNew->bindExpr(CE, Res)); | 
 |       } | 
 |     } | 
 |      | 
 |     // Were they not equal? | 
 |     if (const GRState *stateNotEqual = stateLoad->assume(Cmp, false)) { | 
 |       SVal Res = Engine.getValueManager().makeTruthVal(false, CE->getType()); | 
 |       Engine.MakeNode(Dst, CE, N, stateNotEqual->bindExpr(CE, Res)); | 
 |     } | 
 |   } | 
 |        | 
 |   return true; | 
 | } | 
 |  | 
 | static bool EvalOSAtomic(ExplodedNodeSet<GRState>& Dst, | 
 |                          GRExprEngine& Engine, | 
 |                          GRStmtNodeBuilder<GRState>& Builder, | 
 |                          CallExpr* CE, SVal L, | 
 |                          ExplodedNode<GRState>* Pred) { | 
 |   const FunctionDecl* FD = L.getAsFunctionDecl(); | 
 |   if (!FD) | 
 |     return false; | 
 |  | 
 |   const char *FName = FD->getNameAsCString(); | 
 |    | 
 |   // Check for compare and swap. | 
 |   if (strncmp(FName, "OSAtomicCompareAndSwap", 22) == 0 || | 
 |       strncmp(FName, "objc_atomicCompareAndSwap", 25) == 0) | 
 |     return EvalOSAtomicCompareAndSwap(Dst, Engine, Builder, CE, L, Pred); | 
 |  | 
 |   // FIXME: Other atomics. | 
 |   return false; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Transfer function: Function calls. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | void GRExprEngine::EvalCall(NodeSet& Dst, CallExpr* CE, SVal L, NodeTy* Pred) { | 
 |   assert (Builder && "GRStmtNodeBuilder must be defined."); | 
 |    | 
 |   // FIXME: Allow us to chain together transfer functions. | 
 |   if (EvalOSAtomic(Dst, *this, *Builder, CE, L, Pred)) | 
 |       return; | 
 |        | 
 |   getTF().EvalCall(Dst, *this, *Builder, CE, L, Pred); | 
 | } | 
 |  | 
 | void GRExprEngine::VisitCall(CallExpr* CE, NodeTy* Pred, | 
 |                              CallExpr::arg_iterator AI, | 
 |                              CallExpr::arg_iterator AE, | 
 |                              NodeSet& Dst) | 
 | { | 
 |   // Determine the type of function we're calling (if available). | 
 |   const FunctionProtoType *Proto = NULL; | 
 |   QualType FnType = CE->getCallee()->IgnoreParens()->getType(); | 
 |   if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) | 
 |     Proto = FnTypePtr->getPointeeType()->getAsFunctionProtoType(); | 
 |  | 
 |   VisitCallRec(CE, Pred, AI, AE, Dst, Proto, /*ParamIdx=*/0); | 
 | } | 
 |  | 
 | void GRExprEngine::VisitCallRec(CallExpr* CE, NodeTy* Pred, | 
 |                                 CallExpr::arg_iterator AI, | 
 |                                 CallExpr::arg_iterator AE, | 
 |                                 NodeSet& Dst, const FunctionProtoType *Proto, | 
 |                                 unsigned ParamIdx) { | 
 |    | 
 |   // Process the arguments. | 
 |   if (AI != AE) { | 
 |     // If the call argument is being bound to a reference parameter, | 
 |     // visit it as an lvalue, not an rvalue. | 
 |     bool VisitAsLvalue = false; | 
 |     if (Proto && ParamIdx < Proto->getNumArgs()) | 
 |       VisitAsLvalue = Proto->getArgType(ParamIdx)->isReferenceType(); | 
 |  | 
 |     NodeSet DstTmp;   | 
 |     if (VisitAsLvalue) | 
 |       VisitLValue(*AI, Pred, DstTmp);     | 
 |     else | 
 |       Visit(*AI, Pred, DstTmp);     | 
 |     ++AI; | 
 |      | 
 |     for (NodeSet::iterator DI=DstTmp.begin(), DE=DstTmp.end(); DI != DE; ++DI) | 
 |       VisitCallRec(CE, *DI, AI, AE, Dst, Proto, ParamIdx + 1); | 
 |      | 
 |     return; | 
 |   } | 
 |  | 
 |   // If we reach here we have processed all of the arguments.  Evaluate | 
 |   // the callee expression. | 
 |   NodeSet DstTmp; | 
 |   Expr* Callee = CE->getCallee()->IgnoreParens(); | 
 |    | 
 |   { // Enter new scope to make the lifetime of 'DstTmp2' bounded. | 
 |     NodeSet DstTmp2; | 
 |     Visit(Callee, Pred, DstTmp2); | 
 |      | 
 |     // Perform the previsit of the CallExpr, storing the results in DstTmp. | 
 |     CheckerVisit(CE, DstTmp, DstTmp2, true); | 
 |   } | 
 |    | 
 |   // Finally, evaluate the function call. | 
 |   for (NodeSet::iterator DI = DstTmp.begin(), DE = DstTmp.end(); DI!=DE; ++DI) { | 
 |  | 
 |     const GRState* state = GetState(*DI); | 
 |     SVal L = state->getSVal(Callee); | 
 |  | 
 |     // FIXME: Add support for symbolic function calls (calls involving | 
 |     //  function pointer values that are symbolic). | 
 |      | 
 |     // Check for undefined control-flow or calls to NULL. | 
 |      | 
 |     if (L.isUndef() || isa<loc::ConcreteInt>(L)) {       | 
 |       NodeTy* N = Builder->generateNode(CE, state, *DI); | 
 |        | 
 |       if (N) { | 
 |         N->markAsSink(); | 
 |         BadCalls.insert(N); | 
 |       } | 
 |        | 
 |       continue; | 
 |     } | 
 |      | 
 |     // Check for the "noreturn" attribute. | 
 |      | 
 |     SaveAndRestore<bool> OldSink(Builder->BuildSinks); | 
 |     const FunctionDecl* FD = L.getAsFunctionDecl(); | 
 |     if (FD) {       | 
 |       if (FD->getAttr<NoReturnAttr>() ||  | 
 |           FD->getAttr<AnalyzerNoReturnAttr>()) | 
 |         Builder->BuildSinks = true; | 
 |       else { | 
 |         // HACK: Some functions are not marked noreturn, and don't return. | 
 |         //  Here are a few hardwired ones.  If this takes too long, we can | 
 |         //  potentially cache these results. | 
 |         const char* s = FD->getIdentifier()->getName(); | 
 |         unsigned n = strlen(s); | 
 |          | 
 |         switch (n) { | 
 |           default: | 
 |             break; | 
 |              | 
 |           case 4: | 
 |             if (!memcmp(s, "exit", 4)) Builder->BuildSinks = true; | 
 |             break; | 
 |  | 
 |           case 5: | 
 |             if (!memcmp(s, "panic", 5)) Builder->BuildSinks = true; | 
 |             else if (!memcmp(s, "error", 5)) { | 
 |               if (CE->getNumArgs() > 0) { | 
 |                 SVal X = state->getSVal(*CE->arg_begin()); | 
 |                 // FIXME: use Assume to inspect the possible symbolic value of | 
 |                 // X. Also check the specific signature of error(). | 
 |                 nonloc::ConcreteInt* CI = dyn_cast<nonloc::ConcreteInt>(&X); | 
 |                 if (CI && CI->getValue() != 0) | 
 |                   Builder->BuildSinks = true; | 
 |               } | 
 |             } | 
 |             break; | 
 |  | 
 |           case 6: | 
 |             if (!memcmp(s, "Assert", 6)) { | 
 |               Builder->BuildSinks = true; | 
 |               break; | 
 |             } | 
 |              | 
 |             // FIXME: This is just a wrapper around throwing an exception. | 
 |             //  Eventually inter-procedural analysis should handle this easily. | 
 |             if (!memcmp(s, "ziperr", 6)) Builder->BuildSinks = true; | 
 |  | 
 |             break; | 
 |            | 
 |           case 7: | 
 |             if (!memcmp(s, "assfail", 7)) Builder->BuildSinks = true; | 
 |             break; | 
 |              | 
 |           case 8: | 
 |             if (!memcmp(s ,"db_error", 8) ||  | 
 |                 !memcmp(s, "__assert", 8)) | 
 |               Builder->BuildSinks = true; | 
 |             break; | 
 |            | 
 |           case 12: | 
 |             if (!memcmp(s, "__assert_rtn", 12)) Builder->BuildSinks = true; | 
 |             break; | 
 |              | 
 |           case 13: | 
 |             if (!memcmp(s, "__assert_fail", 13)) Builder->BuildSinks = true; | 
 |             break; | 
 |              | 
 |           case 14: | 
 |             if (!memcmp(s, "dtrace_assfail", 14) || | 
 |                 !memcmp(s, "yy_fatal_error", 14)) | 
 |               Builder->BuildSinks = true; | 
 |             break; | 
 |              | 
 |           case 26: | 
 |             if (!memcmp(s, "_XCAssertionFailureHandler", 26) || | 
 |                 !memcmp(s, "_DTAssertionFailureHandler", 26) || | 
 |                 !memcmp(s, "_TSAssertionFailureHandler", 26)) | 
 |               Builder->BuildSinks = true; | 
 |  | 
 |             break; | 
 |         } | 
 |          | 
 |       } | 
 |     } | 
 |      | 
 |     // Evaluate the call. | 
 |  | 
 |     if (FD) { | 
 |        | 
 |       if (unsigned id = FD->getBuiltinID(getContext())) | 
 |         switch (id) { | 
 |           case Builtin::BI__builtin_expect: { | 
 |             // For __builtin_expect, just return the value of the subexpression. | 
 |             assert (CE->arg_begin() != CE->arg_end());             | 
 |             SVal X = state->getSVal(*(CE->arg_begin())); | 
 |             MakeNode(Dst, CE, *DI, state->bindExpr(CE, X)); | 
 |             continue;             | 
 |           } | 
 |              | 
 |           case Builtin::BI__builtin_alloca: { | 
 |             // FIXME: Refactor into StoreManager itself? | 
 |             MemRegionManager& RM = getStateManager().getRegionManager(); | 
 |             const MemRegion* R = | 
 |               RM.getAllocaRegion(CE, Builder->getCurrentBlockCount()); | 
 |  | 
 |             // Set the extent of the region in bytes. This enables us to use the | 
 |             // SVal of the argument directly. If we save the extent in bits, we | 
 |             // cannot represent values like symbol*8. | 
 |             SVal Extent = state->getSVal(*(CE->arg_begin())); | 
 |             state = getStoreManager().setExtent(state, R, Extent); | 
 |  | 
 |             MakeNode(Dst, CE, *DI, state->bindExpr(CE, loc::MemRegionVal(R))); | 
 |             continue;             | 
 |           } | 
 |              | 
 |           default: | 
 |             break; | 
 |         } | 
 |     } | 
 |  | 
 |     // Check any arguments passed-by-value against being undefined. | 
 |  | 
 |     bool badArg = false; | 
 |      | 
 |     for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end(); | 
 |          I != E; ++I) { | 
 |  | 
 |       if (GetState(*DI)->getSVal(*I).isUndef()) {         | 
 |         NodeTy* N = Builder->generateNode(CE, GetState(*DI), *DI); | 
 |        | 
 |         if (N) { | 
 |           N->markAsSink(); | 
 |           UndefArgs[N] = *I; | 
 |         } | 
 |          | 
 |         badArg = true; | 
 |         break; | 
 |       } | 
 |     } | 
 |      | 
 |     if (badArg) | 
 |       continue;         | 
 |  | 
 |     // Dispatch to the plug-in transfer function.       | 
 |      | 
 |     unsigned size = Dst.size(); | 
 |     SaveOr OldHasGen(Builder->HasGeneratedNode); | 
 |     EvalCall(Dst, CE, L, *DI); | 
 |      | 
 |     // Handle the case where no nodes where generated.  Auto-generate that | 
 |     // contains the updated state if we aren't generating sinks. | 
 |      | 
 |     if (!Builder->BuildSinks && Dst.size() == size && | 
 |         !Builder->HasGeneratedNode) | 
 |       MakeNode(Dst, CE, *DI, state); | 
 |   } | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Transfer function: Objective-C ivar references. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | static std::pair<const void*,const void*> EagerlyAssumeTag | 
 |   = std::pair<const void*,const void*>(&EagerlyAssumeTag,0); | 
 |  | 
 | void GRExprEngine::EvalEagerlyAssume(NodeSet &Dst, NodeSet &Src, Expr *Ex) { | 
 |   for (NodeSet::iterator I=Src.begin(), E=Src.end(); I!=E; ++I) { | 
 |     NodeTy *Pred = *I; | 
 |      | 
 |     // Test if the previous node was as the same expression.  This can happen | 
 |     // when the expression fails to evaluate to anything meaningful and | 
 |     // (as an optimization) we don't generate a node. | 
 |     ProgramPoint P = Pred->getLocation();     | 
 |     if (!isa<PostStmt>(P) || cast<PostStmt>(P).getStmt() != Ex) { | 
 |       Dst.Add(Pred);       | 
 |       continue; | 
 |     }     | 
 |  | 
 |     const GRState* state = Pred->getState();     | 
 |     SVal V = state->getSVal(Ex);     | 
 |     if (isa<nonloc::SymExprVal>(V)) { | 
 |       // First assume that the condition is true. | 
 |       if (const GRState *stateTrue = state->assume(V, true)) { | 
 |         stateTrue = stateTrue->bindExpr(Ex,  | 
 |                                         ValMgr.makeIntVal(1U, Ex->getType())); | 
 |         Dst.Add(Builder->generateNode(PostStmtCustom(Ex, &EagerlyAssumeTag), | 
 |                                       stateTrue, Pred)); | 
 |       } | 
 |          | 
 |       // Next, assume that the condition is false. | 
 |       if (const GRState *stateFalse = state->assume(V, false)) { | 
 |         stateFalse = stateFalse->bindExpr(Ex,  | 
 |                                           ValMgr.makeIntVal(0U, Ex->getType())); | 
 |         Dst.Add(Builder->generateNode(PostStmtCustom(Ex, &EagerlyAssumeTag), | 
 |                                       stateFalse, Pred)); | 
 |       } | 
 |     } | 
 |     else | 
 |       Dst.Add(Pred); | 
 |   } | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Transfer function: Objective-C ivar references. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | void GRExprEngine::VisitObjCIvarRefExpr(ObjCIvarRefExpr* Ex, | 
 |                                             NodeTy* Pred, NodeSet& Dst, | 
 |                                             bool asLValue) { | 
 |    | 
 |   Expr* Base = cast<Expr>(Ex->getBase()); | 
 |   NodeSet Tmp; | 
 |   Visit(Base, Pred, Tmp); | 
 |    | 
 |   for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { | 
 |     const GRState* state = GetState(*I); | 
 |     SVal BaseVal = state->getSVal(Base); | 
 |     SVal location = state->getLValue(Ex->getDecl(), BaseVal); | 
 |      | 
 |     if (asLValue) | 
 |       MakeNode(Dst, Ex, *I, state->bindExpr(Ex, location)); | 
 |     else | 
 |       EvalLoad(Dst, Ex, *I, state, location); | 
 |   } | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Transfer function: Objective-C fast enumeration 'for' statements. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | void GRExprEngine::VisitObjCForCollectionStmt(ObjCForCollectionStmt* S, | 
 |                                               NodeTy* Pred, NodeSet& Dst) { | 
 |      | 
 |   // ObjCForCollectionStmts are processed in two places.  This method | 
 |   // handles the case where an ObjCForCollectionStmt* occurs as one of the | 
 |   // statements within a basic block.  This transfer function does two things: | 
 |   // | 
 |   //  (1) binds the next container value to 'element'.  This creates a new | 
 |   //      node in the ExplodedGraph. | 
 |   // | 
 |   //  (2) binds the value 0/1 to the ObjCForCollectionStmt* itself, indicating | 
 |   //      whether or not the container has any more elements.  This value | 
 |   //      will be tested in ProcessBranch.  We need to explicitly bind | 
 |   //      this value because a container can contain nil elements. | 
 |   //   | 
 |   // FIXME: Eventually this logic should actually do dispatches to | 
 |   //   'countByEnumeratingWithState:objects:count:' (NSFastEnumeration). | 
 |   //   This will require simulating a temporary NSFastEnumerationState, either | 
 |   //   through an SVal or through the use of MemRegions.  This value can | 
 |   //   be affixed to the ObjCForCollectionStmt* instead of 0/1; when the loop | 
 |   //   terminates we reclaim the temporary (it goes out of scope) and we | 
 |   //   we can test if the SVal is 0 or if the MemRegion is null (depending | 
 |   //   on what approach we take). | 
 |   // | 
 |   //  For now: simulate (1) by assigning either a symbol or nil if the | 
 |   //    container is empty.  Thus this transfer function will by default | 
 |   //    result in state splitting. | 
 |    | 
 |   Stmt* elem = S->getElement(); | 
 |   SVal ElementV; | 
 |      | 
 |   if (DeclStmt* DS = dyn_cast<DeclStmt>(elem)) { | 
 |     VarDecl* ElemD = cast<VarDecl>(DS->getSingleDecl()); | 
 |     assert (ElemD->getInit() == 0); | 
 |     ElementV = GetState(Pred)->getLValue(ElemD); | 
 |     VisitObjCForCollectionStmtAux(S, Pred, Dst, ElementV); | 
 |     return; | 
 |   } | 
 |  | 
 |   NodeSet Tmp; | 
 |   VisitLValue(cast<Expr>(elem), Pred, Tmp); | 
 |    | 
 |   for (NodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I!=E; ++I) { | 
 |     const GRState* state = GetState(*I); | 
 |     VisitObjCForCollectionStmtAux(S, *I, Dst, state->getSVal(elem)); | 
 |   } | 
 | } | 
 |  | 
 | void GRExprEngine::VisitObjCForCollectionStmtAux(ObjCForCollectionStmt* S, | 
 |                                                  NodeTy* Pred, NodeSet& Dst, | 
 |                                                  SVal ElementV) { | 
 |      | 
 |  | 
 |    | 
 |   // Get the current state.  Use 'EvalLocation' to determine if it is a null | 
 |   // pointer, etc. | 
 |   Stmt* elem = S->getElement(); | 
 |    | 
 |   Pred = EvalLocation(elem, Pred, GetState(Pred), ElementV); | 
 |   if (!Pred) | 
 |     return; | 
 |      | 
 |   const GRState *state = GetState(Pred); | 
 |  | 
 |   // Handle the case where the container still has elements. | 
 |   SVal TrueV = ValMgr.makeTruthVal(1); | 
 |   const GRState *hasElems = state->bindExpr(S, TrueV); | 
 |    | 
 |   // Handle the case where the container has no elements. | 
 |   SVal FalseV = ValMgr.makeTruthVal(0); | 
 |   const GRState *noElems = state->bindExpr(S, FalseV); | 
 |    | 
 |   if (loc::MemRegionVal* MV = dyn_cast<loc::MemRegionVal>(&ElementV)) | 
 |     if (const TypedRegion* R = dyn_cast<TypedRegion>(MV->getRegion())) { | 
 |       // FIXME: The proper thing to do is to really iterate over the | 
 |       //  container.  We will do this with dispatch logic to the store. | 
 |       //  For now, just 'conjure' up a symbolic value. | 
 |       QualType T = R->getValueType(getContext()); | 
 |       assert (Loc::IsLocType(T)); | 
 |       unsigned Count = Builder->getCurrentBlockCount(); | 
 |       SymbolRef Sym = SymMgr.getConjuredSymbol(elem, T, Count); | 
 |       SVal V = ValMgr.makeLoc(Sym); | 
 |       hasElems = hasElems->bindLoc(ElementV, V); | 
 |  | 
 |       // Bind the location to 'nil' on the false branch. | 
 |       SVal nilV = ValMgr.makeIntVal(0, T);       | 
 |       noElems = noElems->bindLoc(ElementV, nilV);       | 
 |     } | 
 |    | 
 |   // Create the new nodes. | 
 |   MakeNode(Dst, S, Pred, hasElems); | 
 |   MakeNode(Dst, S, Pred, noElems); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Transfer function: Objective-C message expressions. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | void GRExprEngine::VisitObjCMessageExpr(ObjCMessageExpr* ME, NodeTy* Pred, | 
 |                                         NodeSet& Dst){ | 
 |    | 
 |   VisitObjCMessageExprArgHelper(ME, ME->arg_begin(), ME->arg_end(), | 
 |                                 Pred, Dst); | 
 | }   | 
 |  | 
 | void GRExprEngine::VisitObjCMessageExprArgHelper(ObjCMessageExpr* ME, | 
 |                                               ObjCMessageExpr::arg_iterator AI, | 
 |                                               ObjCMessageExpr::arg_iterator AE, | 
 |                                               NodeTy* Pred, NodeSet& Dst) { | 
 |   if (AI == AE) { | 
 |      | 
 |     // Process the receiver. | 
 |      | 
 |     if (Expr* Receiver = ME->getReceiver()) { | 
 |       NodeSet Tmp; | 
 |       Visit(Receiver, Pred, Tmp); | 
 |        | 
 |       for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI) | 
 |         VisitObjCMessageExprDispatchHelper(ME, *NI, Dst); | 
 |        | 
 |       return; | 
 |     } | 
 |      | 
 |     VisitObjCMessageExprDispatchHelper(ME, Pred, Dst); | 
 |     return; | 
 |   } | 
 |    | 
 |   NodeSet Tmp; | 
 |   Visit(*AI, Pred, Tmp); | 
 |    | 
 |   ++AI; | 
 |    | 
 |   for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI) | 
 |     VisitObjCMessageExprArgHelper(ME, AI, AE, *NI, Dst); | 
 | } | 
 |  | 
 | void GRExprEngine::VisitObjCMessageExprDispatchHelper(ObjCMessageExpr* ME, | 
 |                                                       NodeTy* Pred, | 
 |                                                       NodeSet& Dst) { | 
 |    | 
 |   // FIXME: More logic for the processing the method call.  | 
 |    | 
 |   const GRState* state = GetState(Pred); | 
 |   bool RaisesException = false; | 
 |    | 
 |    | 
 |   if (Expr* Receiver = ME->getReceiver()) { | 
 |      | 
 |     SVal L = state->getSVal(Receiver); | 
 |      | 
 |     // Check for undefined control-flow.     | 
 |     if (L.isUndef()) { | 
 |       NodeTy* N = Builder->generateNode(ME, state, Pred); | 
 |        | 
 |       if (N) { | 
 |         N->markAsSink(); | 
 |         UndefReceivers.insert(N); | 
 |       } | 
 |        | 
 |       return; | 
 |     } | 
 |      | 
 |     // "Assume" that the receiver is not NULL.     | 
 |     const GRState *StNotNull = state->assume(L, true); | 
 |      | 
 |     // "Assume" that the receiver is NULL.     | 
 |     const GRState *StNull = state->assume(L, false); | 
 |      | 
 |     if (StNull) { | 
 |       QualType RetTy = ME->getType(); | 
 |        | 
 |       // Check if the receiver was nil and the return value a struct. | 
 |       if(RetTy->isRecordType()) { | 
 |         if (BR.getParentMap().isConsumedExpr(ME)) { | 
 |           // The [0 ...] expressions will return garbage.  Flag either an | 
 |           // explicit or implicit error.  Because of the structure of this | 
 |           // function we currently do not bifurfacte the state graph at | 
 |           // this point. | 
 |           // FIXME: We should bifurcate and fill the returned struct with | 
 |           //  garbage.                 | 
 |           if (NodeTy* N = Builder->generateNode(ME, StNull, Pred)) { | 
 |             N->markAsSink(); | 
 |             if (StNotNull) | 
 |               NilReceiverStructRetImplicit.insert(N); | 
 |             else | 
 |               NilReceiverStructRetExplicit.insert(N);             | 
 |           } | 
 |         } | 
 |       } | 
 |       else { | 
 |         ASTContext& Ctx = getContext(); | 
 |         if (RetTy != Ctx.VoidTy) { | 
 |           if (BR.getParentMap().isConsumedExpr(ME)) { | 
 |             // sizeof(void *) | 
 |             const uint64_t voidPtrSize = Ctx.getTypeSize(Ctx.VoidPtrTy); | 
 |             // sizeof(return type) | 
 |             const uint64_t returnTypeSize = Ctx.getTypeSize(ME->getType()); | 
 |  | 
 |             if(voidPtrSize < returnTypeSize) { | 
 |               if (NodeTy* N = Builder->generateNode(ME, StNull, Pred)) { | 
 |                 N->markAsSink(); | 
 |                 if(StNotNull) | 
 |                   NilReceiverLargerThanVoidPtrRetImplicit.insert(N); | 
 |                 else | 
 |                   NilReceiverLargerThanVoidPtrRetExplicit.insert(N);             | 
 |               } | 
 |             } | 
 |             else if (!StNotNull) { | 
 |               // Handle the safe cases where the return value is 0 if the | 
 |               // receiver is nil. | 
 |               // | 
 |               // FIXME: For now take the conservative approach that we only | 
 |               // return null values if we *know* that the receiver is nil. | 
 |               // This is because we can have surprises like: | 
 |               // | 
 |               //   ... = [[NSScreens screens] objectAtIndex:0]; | 
 |               // | 
 |               // What can happen is that [... screens] could return nil, but | 
 |               // it most likely isn't nil.  We should assume the semantics | 
 |               // of this case unless we have *a lot* more knowledge. | 
 |               // | 
 |               SVal V = ValMgr.makeZeroVal(ME->getType()); | 
 |               MakeNode(Dst, ME, Pred, StNull->bindExpr(ME, V)); | 
 |               return; | 
 |             } | 
 |           } | 
 |         } | 
 |       } | 
 |       // We have handled the cases where the receiver is nil.  The remainder | 
 |       // of this method should assume that the receiver is not nil. | 
 |       if (!StNotNull) | 
 |         return; | 
 |         | 
 |       state = StNotNull; | 
 |     } | 
 |      | 
 |     // Check if the "raise" message was sent. | 
 |     if (ME->getSelector() == RaiseSel) | 
 |       RaisesException = true; | 
 |   } | 
 |   else { | 
 |      | 
 |     IdentifierInfo* ClsName = ME->getClassName(); | 
 |     Selector S = ME->getSelector(); | 
 |      | 
 |     // Check for special instance methods. | 
 |          | 
 |     if (!NSExceptionII) {       | 
 |       ASTContext& Ctx = getContext(); | 
 |        | 
 |       NSExceptionII = &Ctx.Idents.get("NSException"); | 
 |     } | 
 |      | 
 |     if (ClsName == NSExceptionII) { | 
 |          | 
 |       enum { NUM_RAISE_SELECTORS = 2 }; | 
 |        | 
 |       // Lazily create a cache of the selectors. | 
 |  | 
 |       if (!NSExceptionInstanceRaiseSelectors) { | 
 |          | 
 |         ASTContext& Ctx = getContext(); | 
 |          | 
 |         NSExceptionInstanceRaiseSelectors = new Selector[NUM_RAISE_SELECTORS]; | 
 |        | 
 |         llvm::SmallVector<IdentifierInfo*, NUM_RAISE_SELECTORS> II; | 
 |         unsigned idx = 0; | 
 |          | 
 |         // raise:format:       | 
 |         II.push_back(&Ctx.Idents.get("raise")); | 
 |         II.push_back(&Ctx.Idents.get("format"));       | 
 |         NSExceptionInstanceRaiseSelectors[idx++] = | 
 |           Ctx.Selectors.getSelector(II.size(), &II[0]);       | 
 |          | 
 |         // raise:format::arguments:       | 
 |         II.push_back(&Ctx.Idents.get("arguments")); | 
 |         NSExceptionInstanceRaiseSelectors[idx++] = | 
 |           Ctx.Selectors.getSelector(II.size(), &II[0]); | 
 |       } | 
 |        | 
 |       for (unsigned i = 0; i < NUM_RAISE_SELECTORS; ++i) | 
 |         if (S == NSExceptionInstanceRaiseSelectors[i]) { | 
 |           RaisesException = true; break; | 
 |         } | 
 |     } | 
 |   } | 
 |    | 
 |   // Check for any arguments that are uninitialized/undefined. | 
 |    | 
 |   for (ObjCMessageExpr::arg_iterator I = ME->arg_begin(), E = ME->arg_end(); | 
 |        I != E; ++I) { | 
 |      | 
 |     if (state->getSVal(*I).isUndef()) { | 
 |        | 
 |       // Generate an error node for passing an uninitialized/undefined value | 
 |       // as an argument to a message expression.  This node is a sink. | 
 |       NodeTy* N = Builder->generateNode(ME, state, Pred); | 
 |        | 
 |       if (N) { | 
 |         N->markAsSink(); | 
 |         MsgExprUndefArgs[N] = *I; | 
 |       } | 
 |        | 
 |       return; | 
 |     }     | 
 |   } | 
 |    | 
 |   // Check if we raise an exception.  For now treat these as sinks.  Eventually | 
 |   // we will want to handle exceptions properly. | 
 |    | 
 |   SaveAndRestore<bool> OldSink(Builder->BuildSinks); | 
 |  | 
 |   if (RaisesException) | 
 |     Builder->BuildSinks = true; | 
 |    | 
 |   // Dispatch to plug-in transfer function. | 
 |    | 
 |   unsigned size = Dst.size(); | 
 |   SaveOr OldHasGen(Builder->HasGeneratedNode); | 
 |   | 
 |   EvalObjCMessageExpr(Dst, ME, Pred); | 
 |    | 
 |   // Handle the case where no nodes where generated.  Auto-generate that | 
 |   // contains the updated state if we aren't generating sinks. | 
 |    | 
 |   if (!Builder->BuildSinks && Dst.size() == size && !Builder->HasGeneratedNode) | 
 |     MakeNode(Dst, ME, Pred, state); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Transfer functions: Miscellaneous statements. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | void GRExprEngine::VisitCast(Expr* CastE, Expr* Ex, NodeTy* Pred, NodeSet& Dst){ | 
 |   NodeSet S1; | 
 |   QualType T = CastE->getType(); | 
 |   QualType ExTy = Ex->getType(); | 
 |  | 
 |   if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE)) | 
 |     T = ExCast->getTypeAsWritten(); | 
 |  | 
 |   if (ExTy->isArrayType() || ExTy->isFunctionType() || T->isReferenceType()) | 
 |     VisitLValue(Ex, Pred, S1); | 
 |   else | 
 |     Visit(Ex, Pred, S1); | 
 |    | 
 |   // Check for casting to "void". | 
 |   if (T->isVoidType()) {     | 
 |     for (NodeSet::iterator I1 = S1.begin(), E1 = S1.end(); I1 != E1; ++I1) | 
 |       Dst.Add(*I1); | 
 |  | 
 |     return; | 
 |   } | 
 |  | 
 |   for (NodeSet::iterator I1 = S1.begin(), E1 = S1.end(); I1 != E1; ++I1) { | 
 |     NodeTy* N = *I1; | 
 |     const GRState* state = GetState(N); | 
 |     SVal V = state->getSVal(Ex); | 
 |     const SValuator::CastResult &Res = SVator.EvalCast(V, state, T, ExTy); | 
 |     state = Res.getState()->bindExpr(CastE, Res.getSVal()); | 
 |     MakeNode(Dst, CastE, N, state); | 
 |   } | 
 | } | 
 |  | 
 | void GRExprEngine::VisitCompoundLiteralExpr(CompoundLiteralExpr* CL, | 
 |                                             NodeTy* Pred, NodeSet& Dst,  | 
 |                                             bool asLValue) { | 
 |   InitListExpr* ILE = cast<InitListExpr>(CL->getInitializer()->IgnoreParens()); | 
 |   NodeSet Tmp; | 
 |   Visit(ILE, Pred, Tmp); | 
 |    | 
 |   for (NodeSet::iterator I = Tmp.begin(), EI = Tmp.end(); I!=EI; ++I) { | 
 |     const GRState* state = GetState(*I); | 
 |     SVal ILV = state->getSVal(ILE); | 
 |     state = state->bindCompoundLiteral(CL, ILV); | 
 |  | 
 |     if (asLValue) | 
 |       MakeNode(Dst, CL, *I, state->bindExpr(CL, state->getLValue(CL))); | 
 |     else | 
 |       MakeNode(Dst, CL, *I, state->bindExpr(CL, ILV)); | 
 |   } | 
 | } | 
 |  | 
 | void GRExprEngine::VisitDeclStmt(DeclStmt* DS, NodeTy* Pred, NodeSet& Dst) {   | 
 |  | 
 |   // The CFG has one DeclStmt per Decl.   | 
 |   Decl* D = *DS->decl_begin(); | 
 |    | 
 |   if (!D || !isa<VarDecl>(D)) | 
 |     return; | 
 |    | 
 |   const VarDecl* VD = dyn_cast<VarDecl>(D);     | 
 |   Expr* InitEx = const_cast<Expr*>(VD->getInit()); | 
 |  | 
 |   // FIXME: static variables may have an initializer, but the second | 
 |   //  time a function is called those values may not be current. | 
 |   NodeSet Tmp; | 
 |  | 
 |   if (InitEx) | 
 |     Visit(InitEx, Pred, Tmp); | 
 |   else | 
 |     Tmp.Add(Pred); | 
 |    | 
 |   for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { | 
 |     const GRState* state = GetState(*I); | 
 |     unsigned Count = Builder->getCurrentBlockCount(); | 
 |  | 
 |     // Check if 'VD' is a VLA and if so check if has a non-zero size. | 
 |     QualType T = getContext().getCanonicalType(VD->getType()); | 
 |     if (VariableArrayType* VLA = dyn_cast<VariableArrayType>(T)) { | 
 |       // FIXME: Handle multi-dimensional VLAs. | 
 |        | 
 |       Expr* SE = VLA->getSizeExpr(); | 
 |       SVal Size = state->getSVal(SE); | 
 |        | 
 |       if (Size.isUndef()) { | 
 |         if (NodeTy* N = Builder->generateNode(DS, state, Pred)) { | 
 |           N->markAsSink();           | 
 |           ExplicitBadSizedVLA.insert(N); | 
 |         } | 
 |         continue; | 
 |       } | 
 |        | 
 |       const GRState* zeroState =  state->assume(Size, false);       | 
 |       state = state->assume(Size, true); | 
 |        | 
 |       if (zeroState) { | 
 |         if (NodeTy* N = Builder->generateNode(DS, zeroState, Pred)) { | 
 |           N->markAsSink();           | 
 |           if (state) | 
 |             ImplicitBadSizedVLA.insert(N); | 
 |           else | 
 |             ExplicitBadSizedVLA.insert(N); | 
 |         } | 
 |       } | 
 |        | 
 |       if (!state) | 
 |         continue;       | 
 |     } | 
 |      | 
 |     // Decls without InitExpr are not initialized explicitly. | 
 |     if (InitEx) { | 
 |       SVal InitVal = state->getSVal(InitEx); | 
 |       QualType T = VD->getType(); | 
 |        | 
 |       // Recover some path-sensitivity if a scalar value evaluated to | 
 |       // UnknownVal. | 
 |       if (InitVal.isUnknown() ||  | 
 |           !getConstraintManager().canReasonAbout(InitVal)) { | 
 |         InitVal = ValMgr.getConjuredSymbolVal(InitEx, Count); | 
 |       }         | 
 |        | 
 |       state = state->bindDecl(VD, InitVal); | 
 |        | 
 |       // The next thing to do is check if the GRTransferFuncs object wants to | 
 |       // update the state based on the new binding.  If the GRTransferFunc | 
 |       // object doesn't do anything, just auto-propagate the current state. | 
 |       GRStmtNodeBuilderRef BuilderRef(Dst, *Builder, *this, *I, state, DS,true); | 
 |       getTF().EvalBind(BuilderRef, loc::MemRegionVal(state->getRegion(VD)), | 
 |                        InitVal);       | 
 |     }  | 
 |     else { | 
 |       state = state->bindDeclWithNoInit(VD); | 
 |       MakeNode(Dst, DS, *I, state); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | namespace { | 
 |   // This class is used by VisitInitListExpr as an item in a worklist | 
 |   // for processing the values contained in an InitListExpr. | 
 | class VISIBILITY_HIDDEN InitListWLItem { | 
 | public: | 
 |   llvm::ImmutableList<SVal> Vals; | 
 |   GRExprEngine::NodeTy* N; | 
 |   InitListExpr::reverse_iterator Itr; | 
 |    | 
 |   InitListWLItem(GRExprEngine::NodeTy* n, llvm::ImmutableList<SVal> vals, | 
 |          InitListExpr::reverse_iterator itr) | 
 |   : Vals(vals), N(n), Itr(itr) {} | 
 | }; | 
 | } | 
 |  | 
 |  | 
 | void GRExprEngine::VisitInitListExpr(InitListExpr* E, NodeTy* Pred,  | 
 |                                      NodeSet& Dst) { | 
 |  | 
 |   const GRState* state = GetState(Pred); | 
 |   QualType T = getContext().getCanonicalType(E->getType()); | 
 |   unsigned NumInitElements = E->getNumInits();   | 
 |  | 
 |   if (T->isArrayType() || T->isStructureType() || | 
 |       T->isUnionType() || T->isVectorType()) { | 
 |  | 
 |     llvm::ImmutableList<SVal> StartVals = getBasicVals().getEmptySValList(); | 
 |      | 
 |     // Handle base case where the initializer has no elements. | 
 |     // e.g: static int* myArray[] = {}; | 
 |     if (NumInitElements == 0) { | 
 |       SVal V = ValMgr.makeCompoundVal(T, StartVals); | 
 |       MakeNode(Dst, E, Pred, state->bindExpr(E, V)); | 
 |       return; | 
 |     }       | 
 |      | 
 |     // Create a worklist to process the initializers. | 
 |     llvm::SmallVector<InitListWLItem, 10> WorkList; | 
 |     WorkList.reserve(NumInitElements);   | 
 |     WorkList.push_back(InitListWLItem(Pred, StartVals, E->rbegin()));     | 
 |     InitListExpr::reverse_iterator ItrEnd = E->rend(); | 
 |      | 
 |     // Process the worklist until it is empty. | 
 |     while (!WorkList.empty()) { | 
 |       InitListWLItem X = WorkList.back(); | 
 |       WorkList.pop_back(); | 
 |        | 
 |       NodeSet Tmp; | 
 |       Visit(*X.Itr, X.N, Tmp); | 
 |        | 
 |       InitListExpr::reverse_iterator NewItr = X.Itr + 1; | 
 |  | 
 |       for (NodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) { | 
 |         // Get the last initializer value. | 
 |         state = GetState(*NI); | 
 |         SVal InitV = state->getSVal(cast<Expr>(*X.Itr)); | 
 |          | 
 |         // Construct the new list of values by prepending the new value to | 
 |         // the already constructed list. | 
 |         llvm::ImmutableList<SVal> NewVals = | 
 |           getBasicVals().consVals(InitV, X.Vals); | 
 |          | 
 |         if (NewItr == ItrEnd) { | 
 |           // Now we have a list holding all init values. Make CompoundValData. | 
 |           SVal V = ValMgr.makeCompoundVal(T, NewVals); | 
 |  | 
 |           // Make final state and node. | 
 |           MakeNode(Dst, E, *NI, state->bindExpr(E, V)); | 
 |         } | 
 |         else { | 
 |           // Still some initializer values to go.  Push them onto the worklist. | 
 |           WorkList.push_back(InitListWLItem(*NI, NewVals, NewItr)); | 
 |         } | 
 |       } | 
 |     } | 
 |      | 
 |     return; | 
 |   } | 
 |  | 
 |   if (Loc::IsLocType(T) || T->isIntegerType()) { | 
 |     assert (E->getNumInits() == 1); | 
 |     NodeSet Tmp; | 
 |     Expr* Init = E->getInit(0); | 
 |     Visit(Init, Pred, Tmp); | 
 |     for (NodeSet::iterator I = Tmp.begin(), EI = Tmp.end(); I != EI; ++I) { | 
 |       state = GetState(*I); | 
 |       MakeNode(Dst, E, *I, state->bindExpr(E, state->getSVal(Init))); | 
 |     } | 
 |     return; | 
 |   } | 
 |  | 
 |  | 
 |   printf("InitListExpr type = %s\n", T.getAsString().c_str()); | 
 |   assert(0 && "unprocessed InitListExpr type"); | 
 | } | 
 |  | 
 | /// VisitSizeOfAlignOfExpr - Transfer function for sizeof(type). | 
 | void GRExprEngine::VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr* Ex, | 
 |                                           NodeTy* Pred, | 
 |                                           NodeSet& Dst) { | 
 |   QualType T = Ex->getTypeOfArgument(); | 
 |   uint64_t amt;   | 
 |    | 
 |   if (Ex->isSizeOf()) { | 
 |     if (T == getContext().VoidTy) {           | 
 |       // sizeof(void) == 1 byte. | 
 |       amt = 1; | 
 |     } | 
 |     else if (!T.getTypePtr()->isConstantSizeType()) { | 
 |       // FIXME: Add support for VLAs. | 
 |       return; | 
 |     } | 
 |     else if (T->isObjCInterfaceType()) { | 
 |       // Some code tries to take the sizeof an ObjCInterfaceType, relying that | 
 |       // the compiler has laid out its representation.  Just report Unknown | 
 |       // for these.       | 
 |       return; | 
 |     } | 
 |     else { | 
 |       // All other cases. | 
 |       amt = getContext().getTypeSize(T) / 8; | 
 |     }     | 
 |   } | 
 |   else  // Get alignment of the type. | 
 |     amt = getContext().getTypeAlign(T) / 8; | 
 |    | 
 |   MakeNode(Dst, Ex, Pred, | 
 |            GetState(Pred)->bindExpr(Ex, ValMgr.makeIntVal(amt, Ex->getType()))); | 
 | } | 
 |  | 
 |  | 
 | void GRExprEngine::VisitUnaryOperator(UnaryOperator* U, NodeTy* Pred, | 
 |                                       NodeSet& Dst, bool asLValue) { | 
 |  | 
 |   switch (U->getOpcode()) { | 
 |        | 
 |     default: | 
 |       break; | 
 |            | 
 |     case UnaryOperator::Deref: { | 
 |        | 
 |       Expr* Ex = U->getSubExpr()->IgnoreParens(); | 
 |       NodeSet Tmp; | 
 |       Visit(Ex, Pred, Tmp); | 
 |        | 
 |       for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { | 
 |          | 
 |         const GRState* state = GetState(*I); | 
 |         SVal location = state->getSVal(Ex); | 
 |          | 
 |         if (asLValue) | 
 |           MakeNode(Dst, U, *I, state->bindExpr(U, location), | 
 |                    ProgramPoint::PostLValueKind); | 
 |         else | 
 |           EvalLoad(Dst, U, *I, state, location); | 
 |       }  | 
 |  | 
 |       return; | 
 |     } | 
 |        | 
 |     case UnaryOperator::Real: { | 
 |        | 
 |       Expr* Ex = U->getSubExpr()->IgnoreParens(); | 
 |       NodeSet Tmp; | 
 |       Visit(Ex, Pred, Tmp); | 
 |        | 
 |       for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { | 
 |          | 
 |         // FIXME: We don't have complex SValues yet. | 
 |         if (Ex->getType()->isAnyComplexType()) { | 
 |           // Just report "Unknown." | 
 |           Dst.Add(*I); | 
 |           continue; | 
 |         } | 
 |          | 
 |         // For all other types, UnaryOperator::Real is an identity operation. | 
 |         assert (U->getType() == Ex->getType()); | 
 |         const GRState* state = GetState(*I); | 
 |         MakeNode(Dst, U, *I, state->bindExpr(U, state->getSVal(Ex))); | 
 |       }  | 
 |        | 
 |       return; | 
 |     } | 
 |        | 
 |     case UnaryOperator::Imag: { | 
 |        | 
 |       Expr* Ex = U->getSubExpr()->IgnoreParens(); | 
 |       NodeSet Tmp; | 
 |       Visit(Ex, Pred, Tmp); | 
 |        | 
 |       for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { | 
 |         // FIXME: We don't have complex SValues yet. | 
 |         if (Ex->getType()->isAnyComplexType()) { | 
 |           // Just report "Unknown." | 
 |           Dst.Add(*I); | 
 |           continue; | 
 |         } | 
 |          | 
 |         // For all other types, UnaryOperator::Float returns 0. | 
 |         assert (Ex->getType()->isIntegerType()); | 
 |         const GRState* state = GetState(*I); | 
 |         SVal X = ValMgr.makeZeroVal(Ex->getType()); | 
 |         MakeNode(Dst, U, *I, state->bindExpr(U, X)); | 
 |       } | 
 |        | 
 |       return; | 
 |     } | 
 |        | 
 |       // FIXME: Just report "Unknown" for OffsetOf.       | 
 |     case UnaryOperator::OffsetOf: | 
 |       Dst.Add(Pred); | 
 |       return; | 
 |        | 
 |     case UnaryOperator::Plus: assert (!asLValue);  // FALL-THROUGH. | 
 |     case UnaryOperator::Extension: { | 
 |        | 
 |       // Unary "+" is a no-op, similar to a parentheses.  We still have places | 
 |       // where it may be a block-level expression, so we need to | 
 |       // generate an extra node that just propagates the value of the | 
 |       // subexpression. | 
 |  | 
 |       Expr* Ex = U->getSubExpr()->IgnoreParens(); | 
 |       NodeSet Tmp; | 
 |       Visit(Ex, Pred, Tmp); | 
 |        | 
 |       for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {         | 
 |         const GRState* state = GetState(*I); | 
 |         MakeNode(Dst, U, *I, state->bindExpr(U, state->getSVal(Ex))); | 
 |       } | 
 |        | 
 |       return; | 
 |     } | 
 |      | 
 |     case UnaryOperator::AddrOf: { | 
 |        | 
 |       assert(!asLValue); | 
 |       Expr* Ex = U->getSubExpr()->IgnoreParens(); | 
 |       NodeSet Tmp; | 
 |       VisitLValue(Ex, Pred, Tmp); | 
 |       | 
 |       for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {         | 
 |         const GRState* state = GetState(*I); | 
 |         SVal V = state->getSVal(Ex); | 
 |         state = state->bindExpr(U, V); | 
 |         MakeNode(Dst, U, *I, state); | 
 |       } | 
 |  | 
 |       return;  | 
 |     } | 
 |        | 
 |     case UnaryOperator::LNot: | 
 |     case UnaryOperator::Minus: | 
 |     case UnaryOperator::Not: { | 
 |        | 
 |       assert (!asLValue); | 
 |       Expr* Ex = U->getSubExpr()->IgnoreParens(); | 
 |       NodeSet Tmp; | 
 |       Visit(Ex, Pred, Tmp); | 
 |        | 
 |       for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {         | 
 |         const GRState* state = GetState(*I); | 
 |          | 
 |         // Get the value of the subexpression. | 
 |         SVal V = state->getSVal(Ex); | 
 |  | 
 |         if (V.isUnknownOrUndef()) { | 
 |           MakeNode(Dst, U, *I, state->bindExpr(U, V)); | 
 |           continue; | 
 |         } | 
 |          | 
 | //        QualType DstT = getContext().getCanonicalType(U->getType()); | 
 | //        QualType SrcT = getContext().getCanonicalType(Ex->getType()); | 
 | //         | 
 | //        if (DstT != SrcT) // Perform promotions. | 
 | //          V = EvalCast(V, DstT);  | 
 | //         | 
 | //        if (V.isUnknownOrUndef()) { | 
 | //          MakeNode(Dst, U, *I, BindExpr(St, U, V)); | 
 | //          continue; | 
 | //        } | 
 |          | 
 |         switch (U->getOpcode()) { | 
 |           default: | 
 |             assert(false && "Invalid Opcode."); | 
 |             break; | 
 |              | 
 |           case UnaryOperator::Not: | 
 |             // FIXME: Do we need to handle promotions? | 
 |             state = state->bindExpr(U, EvalComplement(cast<NonLoc>(V))); | 
 |             break;             | 
 |              | 
 |           case UnaryOperator::Minus: | 
 |             // FIXME: Do we need to handle promotions? | 
 |             state = state->bindExpr(U, EvalMinus(cast<NonLoc>(V))); | 
 |             break;    | 
 |              | 
 |           case UnaryOperator::LNot:    | 
 |              | 
 |             // C99 6.5.3.3: "The expression !E is equivalent to (0==E)." | 
 |             // | 
 |             //  Note: technically we do "E == 0", but this is the same in the | 
 |             //    transfer functions as "0 == E". | 
 |             SVal Result; | 
 |              | 
 |             if (isa<Loc>(V)) { | 
 |               Loc X = ValMgr.makeNull(); | 
 |               Result = EvalBinOp(state, BinaryOperator::EQ, cast<Loc>(V), X, | 
 |                                  U->getType()); | 
 |             } | 
 |             else { | 
 |               nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType())); | 
 |               Result = EvalBinOp(BinaryOperator::EQ, cast<NonLoc>(V), X, | 
 |                                  U->getType()); | 
 |             } | 
 |              | 
 |             state = state->bindExpr(U, Result); | 
 |              | 
 |             break; | 
 |         } | 
 |          | 
 |         MakeNode(Dst, U, *I, state); | 
 |       } | 
 |        | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   // Handle ++ and -- (both pre- and post-increment). | 
 |  | 
 |   assert (U->isIncrementDecrementOp()); | 
 |   NodeSet Tmp; | 
 |   Expr* Ex = U->getSubExpr()->IgnoreParens(); | 
 |   VisitLValue(Ex, Pred, Tmp); | 
 |    | 
 |   for (NodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I!=E; ++I) { | 
 |      | 
 |     const GRState* state = GetState(*I); | 
 |     SVal V1 = state->getSVal(Ex); | 
 |      | 
 |     // Perform a load.       | 
 |     NodeSet Tmp2; | 
 |     EvalLoad(Tmp2, Ex, *I, state, V1); | 
 |  | 
 |     for (NodeSet::iterator I2 = Tmp2.begin(), E2 = Tmp2.end(); I2!=E2; ++I2) { | 
 |          | 
 |       state = GetState(*I2); | 
 |       SVal V2 = state->getSVal(Ex); | 
 |          | 
 |       // Propagate unknown and undefined values.       | 
 |       if (V2.isUnknownOrUndef()) { | 
 |         MakeNode(Dst, U, *I2, state->bindExpr(U, V2)); | 
 |         continue; | 
 |       } | 
 |        | 
 |       // Handle all other values.       | 
 |       BinaryOperator::Opcode Op = U->isIncrementOp() ? BinaryOperator::Add | 
 |                                                      : BinaryOperator::Sub; | 
 |  | 
 |       // If the UnaryOperator has non-location type, use its type to create the | 
 |       // constant value. If the UnaryOperator has location type, create the | 
 |       // constant with int type and pointer width. | 
 |       SVal RHS; | 
 |  | 
 |       if (U->getType()->isAnyPointerType()) | 
 |         RHS = ValMgr.makeIntValWithPtrWidth(1, false); | 
 |       else | 
 |         RHS = ValMgr.makeIntVal(1, U->getType()); | 
 |  | 
 |       SVal Result = EvalBinOp(state, Op, V2, RHS, U->getType());     | 
 |        | 
 |       // Conjure a new symbol if necessary to recover precision. | 
 |       if (Result.isUnknown() || !getConstraintManager().canReasonAbout(Result)){ | 
 |         Result = ValMgr.getConjuredSymbolVal(Ex, | 
 |                                              Builder->getCurrentBlockCount()); | 
 |          | 
 |         // If the value is a location, ++/-- should always preserve | 
 |         // non-nullness.  Check if the original value was non-null, and if so | 
 |         // propagate that constraint.         | 
 |         if (Loc::IsLocType(U->getType())) { | 
 |           SVal Constraint = EvalBinOp(state, BinaryOperator::EQ, V2, | 
 |                                       ValMgr.makeZeroVal(U->getType()), | 
 |                                       getContext().IntTy);           | 
 |            | 
 |           if (!state->assume(Constraint, true)) { | 
 |             // It isn't feasible for the original value to be null. | 
 |             // Propagate this constraint. | 
 |             Constraint = EvalBinOp(state, BinaryOperator::EQ, Result, | 
 |                                    ValMgr.makeZeroVal(U->getType()), | 
 |                                    getContext().IntTy); | 
 |              | 
 |             state = state->assume(Constraint, false); | 
 |             assert(state); | 
 |           }             | 
 |         }         | 
 |       } | 
 |        | 
 |       state = state->bindExpr(U, U->isPostfix() ? V2 : Result); | 
 |  | 
 |       // Perform the store.       | 
 |       EvalStore(Dst, U, *I2, state, V1, Result); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void GRExprEngine::VisitAsmStmt(AsmStmt* A, NodeTy* Pred, NodeSet& Dst) { | 
 |   VisitAsmStmtHelperOutputs(A, A->begin_outputs(), A->end_outputs(), Pred, Dst); | 
 | }   | 
 |  | 
 | void GRExprEngine::VisitAsmStmtHelperOutputs(AsmStmt* A, | 
 |                                              AsmStmt::outputs_iterator I, | 
 |                                              AsmStmt::outputs_iterator E, | 
 |                                              NodeTy* Pred, NodeSet& Dst) { | 
 |   if (I == E) { | 
 |     VisitAsmStmtHelperInputs(A, A->begin_inputs(), A->end_inputs(), Pred, Dst); | 
 |     return; | 
 |   } | 
 |    | 
 |   NodeSet Tmp; | 
 |   VisitLValue(*I, Pred, Tmp); | 
 |    | 
 |   ++I; | 
 |    | 
 |   for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI) | 
 |     VisitAsmStmtHelperOutputs(A, I, E, *NI, Dst); | 
 | } | 
 |  | 
 | void GRExprEngine::VisitAsmStmtHelperInputs(AsmStmt* A, | 
 |                                             AsmStmt::inputs_iterator I, | 
 |                                             AsmStmt::inputs_iterator E, | 
 |                                             NodeTy* Pred, NodeSet& Dst) { | 
 |   if (I == E) { | 
 |      | 
 |     // We have processed both the inputs and the outputs.  All of the outputs | 
 |     // should evaluate to Locs.  Nuke all of their values. | 
 |      | 
 |     // FIXME: Some day in the future it would be nice to allow a "plug-in" | 
 |     // which interprets the inline asm and stores proper results in the | 
 |     // outputs. | 
 |      | 
 |     const GRState* state = GetState(Pred); | 
 |      | 
 |     for (AsmStmt::outputs_iterator OI = A->begin_outputs(), | 
 |                                    OE = A->end_outputs(); OI != OE; ++OI) { | 
 |        | 
 |       SVal X = state->getSVal(*OI);       | 
 |       assert (!isa<NonLoc>(X));  // Should be an Lval, or unknown, undef. | 
 |        | 
 |       if (isa<Loc>(X)) | 
 |         state = state->bindLoc(cast<Loc>(X), UnknownVal()); | 
 |     } | 
 |      | 
 |     MakeNode(Dst, A, Pred, state); | 
 |     return; | 
 |   } | 
 |    | 
 |   NodeSet Tmp; | 
 |   Visit(*I, Pred, Tmp); | 
 |    | 
 |   ++I; | 
 |    | 
 |   for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI) | 
 |     VisitAsmStmtHelperInputs(A, I, E, *NI, Dst); | 
 | } | 
 |  | 
 | void GRExprEngine::EvalReturn(NodeSet& Dst, ReturnStmt* S, NodeTy* Pred) { | 
 |   assert (Builder && "GRStmtNodeBuilder must be defined."); | 
 |    | 
 |   unsigned size = Dst.size();   | 
 |  | 
 |   SaveAndRestore<bool> OldSink(Builder->BuildSinks); | 
 |   SaveOr OldHasGen(Builder->HasGeneratedNode); | 
 |  | 
 |   getTF().EvalReturn(Dst, *this, *Builder, S, Pred); | 
 |    | 
 |   // Handle the case where no nodes where generated. | 
 |    | 
 |   if (!Builder->BuildSinks && Dst.size() == size && !Builder->HasGeneratedNode) | 
 |     MakeNode(Dst, S, Pred, GetState(Pred)); | 
 | } | 
 |  | 
 | void GRExprEngine::VisitReturnStmt(ReturnStmt* S, NodeTy* Pred, NodeSet& Dst) { | 
 |  | 
 |   Expr* R = S->getRetValue(); | 
 |    | 
 |   if (!R) { | 
 |     EvalReturn(Dst, S, Pred); | 
 |     return; | 
 |   } | 
 |  | 
 |   NodeSet Tmp; | 
 |   Visit(R, Pred, Tmp); | 
 |  | 
 |   for (NodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E; ++I) { | 
 |     SVal X = (*I)->getState()->getSVal(R); | 
 |      | 
 |     // Check if we return the address of a stack variable. | 
 |     if (isa<loc::MemRegionVal>(X)) { | 
 |       // Determine if the value is on the stack. | 
 |       const MemRegion* R = cast<loc::MemRegionVal>(&X)->getRegion(); | 
 |        | 
 |       if (R && R->hasStackStorage()) { | 
 |         // Create a special node representing the error. | 
 |         if (NodeTy* N = Builder->generateNode(S, GetState(*I), *I)) { | 
 |           N->markAsSink(); | 
 |           RetsStackAddr.insert(N); | 
 |         } | 
 |         continue; | 
 |       } | 
 |     } | 
 |     // Check if we return an undefined value. | 
 |     else if (X.isUndef()) { | 
 |       if (NodeTy* N = Builder->generateNode(S, GetState(*I), *I)) { | 
 |         N->markAsSink(); | 
 |         RetsUndef.insert(N); | 
 |       } | 
 |       continue; | 
 |     } | 
 |      | 
 |     EvalReturn(Dst, S, *I); | 
 |   } | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Transfer functions: Binary operators. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | const GRState* GRExprEngine::CheckDivideZero(Expr* Ex, const GRState* state, | 
 |                                              NodeTy* Pred, SVal Denom) { | 
 |    | 
 |   // Divide by undefined? (potentially zero) | 
 |    | 
 |   if (Denom.isUndef()) { | 
 |     NodeTy* DivUndef = Builder->generateNode(Ex, state, Pred); | 
 |      | 
 |     if (DivUndef) { | 
 |       DivUndef->markAsSink(); | 
 |       ExplicitBadDivides.insert(DivUndef); | 
 |     } | 
 |      | 
 |     return 0; | 
 |   } | 
 |    | 
 |   // Check for divide/remainder-by-zero. | 
 |   // First, "assume" that the denominator is 0 or undefined.             | 
 |   const GRState* zeroState =  state->assume(Denom, false); | 
 |    | 
 |   // Second, "assume" that the denominator cannot be 0.             | 
 |   state = state->assume(Denom, true); | 
 |    | 
 |   // Create the node for the divide-by-zero (if it occurred).   | 
 |   if (zeroState) | 
 |     if (NodeTy* DivZeroNode = Builder->generateNode(Ex, zeroState, Pred)) { | 
 |       DivZeroNode->markAsSink(); | 
 |        | 
 |       if (state) | 
 |         ImplicitBadDivides.insert(DivZeroNode); | 
 |       else | 
 |         ExplicitBadDivides.insert(DivZeroNode); | 
 |        | 
 |     } | 
 |    | 
 |   return state; | 
 | } | 
 |  | 
 | void GRExprEngine::VisitBinaryOperator(BinaryOperator* B, | 
 |                                        GRExprEngine::NodeTy* Pred, | 
 |                                        GRExprEngine::NodeSet& Dst) { | 
 |  | 
 |   NodeSet Tmp1; | 
 |   Expr* LHS = B->getLHS()->IgnoreParens(); | 
 |   Expr* RHS = B->getRHS()->IgnoreParens(); | 
 |    | 
 |   // FIXME: Add proper support for ObjCKVCRefExpr. | 
 |   if (isa<ObjCKVCRefExpr>(LHS)) { | 
 |     Visit(RHS, Pred, Dst);    | 
 |     return; | 
 |   } | 
 |    | 
 |   if (B->isAssignmentOp()) | 
 |     VisitLValue(LHS, Pred, Tmp1); | 
 |   else | 
 |     Visit(LHS, Pred, Tmp1); | 
 |  | 
 |   for (NodeSet::iterator I1=Tmp1.begin(), E1=Tmp1.end(); I1 != E1; ++I1) { | 
 |  | 
 |     SVal LeftV = (*I1)->getState()->getSVal(LHS); | 
 |      | 
 |     // Process the RHS. | 
 |      | 
 |     NodeSet Tmp2; | 
 |     Visit(RHS, *I1, Tmp2); | 
 |      | 
 |     // With both the LHS and RHS evaluated, process the operation itself. | 
 |      | 
 |     for (NodeSet::iterator I2=Tmp2.begin(), E2=Tmp2.end(); I2 != E2; ++I2) { | 
 |  | 
 |       const GRState* state = GetState(*I2); | 
 |       const GRState* OldSt = state; | 
 |  | 
 |       SVal RightV = state->getSVal(RHS); | 
 |       BinaryOperator::Opcode Op = B->getOpcode(); | 
 |        | 
 |       switch (Op) { | 
 |            | 
 |         case BinaryOperator::Assign: { | 
 |            | 
 |           // EXPERIMENTAL: "Conjured" symbols. | 
 |           // FIXME: Handle structs. | 
 |           QualType T = RHS->getType(); | 
 |            | 
 |           if ((RightV.isUnknown() ||  | 
 |                !getConstraintManager().canReasonAbout(RightV))               | 
 |               && (Loc::IsLocType(T) ||  | 
 |                   (T->isScalarType() && T->isIntegerType()))) { | 
 |             unsigned Count = Builder->getCurrentBlockCount();             | 
 |             RightV = ValMgr.getConjuredSymbolVal(B->getRHS(), Count); | 
 |           } | 
 |            | 
 |           // Simulate the effects of a "store":  bind the value of the RHS | 
 |           // to the L-Value represented by the LHS.           | 
 |           EvalStore(Dst, B, LHS, *I2, state->bindExpr(B, RightV), LeftV, | 
 |                     RightV); | 
 |           continue; | 
 |         } | 
 |            | 
 |         case BinaryOperator::Div: | 
 |         case BinaryOperator::Rem: | 
 |            | 
 |           // Special checking for integer denominators.           | 
 |           if (RHS->getType()->isIntegerType() &&  | 
 |               RHS->getType()->isScalarType()) { | 
 |              | 
 |             state = CheckDivideZero(B, state, *I2, RightV); | 
 |             if (!state) continue; | 
 |           } | 
 |            | 
 |           // FALL-THROUGH. | 
 |  | 
 |         default: { | 
 |        | 
 |           if (B->isAssignmentOp()) | 
 |             break; | 
 |            | 
 |           // Process non-assignments except commas or short-circuited | 
 |           // logical expressions (LAnd and LOr).           | 
 |           SVal Result = EvalBinOp(state, Op, LeftV, RightV, B->getType()); | 
 |            | 
 |           if (Result.isUnknown()) { | 
 |             if (OldSt != state) { | 
 |               // Generate a new node if we have already created a new state. | 
 |               MakeNode(Dst, B, *I2, state); | 
 |             } | 
 |             else | 
 |               Dst.Add(*I2); | 
 |              | 
 |             continue; | 
 |           } | 
 |            | 
 |           if (Result.isUndef() && !LeftV.isUndef() && !RightV.isUndef()) { | 
 |              | 
 |             // The operands were *not* undefined, but the result is undefined. | 
 |             // This is a special node that should be flagged as an error. | 
 |              | 
 |             if (NodeTy* UndefNode = Builder->generateNode(B, state, *I2)) { | 
 |               UndefNode->markAsSink();             | 
 |               UndefResults.insert(UndefNode); | 
 |             } | 
 |              | 
 |             continue; | 
 |           } | 
 |            | 
 |           // Otherwise, create a new node. | 
 |            | 
 |           MakeNode(Dst, B, *I2, state->bindExpr(B, Result)); | 
 |           continue; | 
 |         } | 
 |       } | 
 |      | 
 |       assert (B->isCompoundAssignmentOp()); | 
 |  | 
 |       switch (Op) { | 
 |         default: | 
 |           assert(0 && "Invalid opcode for compound assignment."); | 
 |         case BinaryOperator::MulAssign: Op = BinaryOperator::Mul; break; | 
 |         case BinaryOperator::DivAssign: Op = BinaryOperator::Div; break; | 
 |         case BinaryOperator::RemAssign: Op = BinaryOperator::Rem; break; | 
 |         case BinaryOperator::AddAssign: Op = BinaryOperator::Add; break; | 
 |         case BinaryOperator::SubAssign: Op = BinaryOperator::Sub; break; | 
 |         case BinaryOperator::ShlAssign: Op = BinaryOperator::Shl; break; | 
 |         case BinaryOperator::ShrAssign: Op = BinaryOperator::Shr; break; | 
 |         case BinaryOperator::AndAssign: Op = BinaryOperator::And; break; | 
 |         case BinaryOperator::XorAssign: Op = BinaryOperator::Xor; break; | 
 |         case BinaryOperator::OrAssign:  Op = BinaryOperator::Or;  break; | 
 |       } | 
 |            | 
 |       // Perform a load (the LHS).  This performs the checks for | 
 |       // null dereferences, and so on. | 
 |       NodeSet Tmp3; | 
 |       SVal location = state->getSVal(LHS); | 
 |       EvalLoad(Tmp3, LHS, *I2, state, location); | 
 |        | 
 |       for (NodeSet::iterator I3=Tmp3.begin(), E3=Tmp3.end(); I3!=E3; ++I3) { | 
 |          | 
 |         state = GetState(*I3); | 
 |         SVal V = state->getSVal(LHS); | 
 |  | 
 |         // Check for divide-by-zero. | 
 |         if ((Op == BinaryOperator::Div || Op == BinaryOperator::Rem) | 
 |             && RHS->getType()->isIntegerType() | 
 |             && RHS->getType()->isScalarType()) { | 
 |            | 
 |           // CheckDivideZero returns a new state where the denominator | 
 |           // is assumed to be non-zero. | 
 |           state = CheckDivideZero(B, state, *I3, RightV); | 
 |            | 
 |           if (!state) | 
 |             continue; | 
 |         } | 
 |          | 
 |         // Propagate undefined values (left-side).           | 
 |         if (V.isUndef()) { | 
 |           EvalStore(Dst, B, LHS, *I3, state->bindExpr(B, V), location, V); | 
 |           continue; | 
 |         } | 
 |          | 
 |         // Propagate unknown values (left and right-side). | 
 |         if (RightV.isUnknown() || V.isUnknown()) { | 
 |           EvalStore(Dst, B, LHS, *I3, state->bindExpr(B, UnknownVal()), | 
 |                     location, UnknownVal()); | 
 |           continue; | 
 |         } | 
 |  | 
 |         // At this point: | 
 |         // | 
 |         //  The LHS is not Undef/Unknown. | 
 |         //  The RHS is not Unknown. | 
 |          | 
 |         // Get the computation type. | 
 |         QualType CTy = | 
 |           cast<CompoundAssignOperator>(B)->getComputationResultType(); | 
 |         CTy = getContext().getCanonicalType(CTy); | 
 |  | 
 |         QualType CLHSTy = | 
 |           cast<CompoundAssignOperator>(B)->getComputationLHSType(); | 
 |         CLHSTy = getContext().getCanonicalType(CLHSTy); | 
 |  | 
 |         QualType LTy = getContext().getCanonicalType(LHS->getType()); | 
 |         QualType RTy = getContext().getCanonicalType(RHS->getType()); | 
 |  | 
 |         // Promote LHS. | 
 |         llvm::tie(state, V) = SVator.EvalCast(V, state, CLHSTy, LTy); | 
 |  | 
 |         // Evaluate operands and promote to result type.                     | 
 |         if (RightV.isUndef()) {             | 
 |           // Propagate undefined values (right-side).           | 
 |           EvalStore(Dst, B, LHS, *I3, state->bindExpr(B, RightV), location, | 
 |                     RightV); | 
 |           continue; | 
 |         } | 
 |        | 
 |         // Compute the result of the operation.       | 
 |         SVal Result; | 
 |         llvm::tie(state, Result) = SVator.EvalCast(EvalBinOp(state, Op, V, | 
 |                                                              RightV, CTy), | 
 |                                                    state, B->getType(), CTy); | 
 |            | 
 |         if (Result.isUndef()) { | 
 |           // The operands were not undefined, but the result is undefined. | 
 |           if (NodeTy* UndefNode = Builder->generateNode(B, state, *I3)) { | 
 |             UndefNode->markAsSink();             | 
 |             UndefResults.insert(UndefNode); | 
 |           } | 
 |           continue; | 
 |         } | 
 |  | 
 |         // EXPERIMENTAL: "Conjured" symbols. | 
 |         // FIXME: Handle structs. | 
 |          | 
 |         SVal LHSVal; | 
 |          | 
 |         if ((Result.isUnknown() ||  | 
 |              !getConstraintManager().canReasonAbout(Result)) | 
 |             && (Loc::IsLocType(CTy)  | 
 |                 || (CTy->isScalarType() && CTy->isIntegerType()))) { | 
 |            | 
 |           unsigned Count = Builder->getCurrentBlockCount(); | 
 |            | 
 |           // The symbolic value is actually for the type of the left-hand side | 
 |           // expression, not the computation type, as this is the value the | 
 |           // LValue on the LHS will bind to. | 
 |           LHSVal = ValMgr.getConjuredSymbolVal(B->getRHS(), LTy, Count); | 
 |            | 
 |           // However, we need to convert the symbol to the computation type. | 
 |           llvm::tie(state, Result) = SVator.EvalCast(LHSVal, state, CTy, LTy); | 
 |         } | 
 |         else { | 
 |           // The left-hand side may bind to a different value then the | 
 |           // computation type. | 
 |           llvm::tie(state, LHSVal) = SVator.EvalCast(Result, state, LTy, CTy); | 
 |         } | 
 |            | 
 |         EvalStore(Dst, B, LHS, *I3, state->bindExpr(B, Result), location, | 
 |                   LHSVal); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Transfer-function Helpers. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | SVal GRExprEngine::EvalBinOp(const GRState* state, BinaryOperator::Opcode Op,  | 
 |                              SVal L, SVal R, QualType T) { | 
 |    | 
 |   if (L.isUndef() || R.isUndef()) | 
 |     return UndefinedVal(); | 
 |    | 
 |   if (L.isUnknown() || R.isUnknown()) | 
 |     return UnknownVal(); | 
 |    | 
 |   if (isa<Loc>(L)) { | 
 |     if (isa<Loc>(R)) | 
 |       return SVator.EvalBinOpLL(Op, cast<Loc>(L), cast<Loc>(R), T); | 
 |     else | 
 |       return SVator.EvalBinOpLN(state, Op, cast<Loc>(L), cast<NonLoc>(R), T); | 
 |   } | 
 |    | 
 |   if (isa<Loc>(R)) { | 
 |     // Support pointer arithmetic where the increment/decrement operand | 
 |     // is on the left and the pointer on the right. | 
 |      | 
 |     assert (Op == BinaryOperator::Add || Op == BinaryOperator::Sub); | 
 |      | 
 |     // Commute the operands. | 
 |     return SVator.EvalBinOpLN(state, Op, cast<Loc>(R), cast<NonLoc>(L), T); | 
 |   } | 
 |   else | 
 |     return SVator.EvalBinOpNN(Op, cast<NonLoc>(L), cast<NonLoc>(R), T); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Visualization. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #ifndef NDEBUG | 
 | static GRExprEngine* GraphPrintCheckerState; | 
 | static SourceManager* GraphPrintSourceManager; | 
 |  | 
 | namespace llvm { | 
 | template<> | 
 | struct VISIBILITY_HIDDEN DOTGraphTraits<GRExprEngine::NodeTy*> : | 
 |   public DefaultDOTGraphTraits { | 
 |      | 
 |   static std::string getNodeAttributes(const GRExprEngine::NodeTy* N, void*) { | 
 |      | 
 |     if (GraphPrintCheckerState->isImplicitNullDeref(N) || | 
 |         GraphPrintCheckerState->isExplicitNullDeref(N) || | 
 |         GraphPrintCheckerState->isUndefDeref(N) || | 
 |         GraphPrintCheckerState->isUndefStore(N) || | 
 |         GraphPrintCheckerState->isUndefControlFlow(N) || | 
 |         GraphPrintCheckerState->isExplicitBadDivide(N) || | 
 |         GraphPrintCheckerState->isImplicitBadDivide(N) || | 
 |         GraphPrintCheckerState->isUndefResult(N) || | 
 |         GraphPrintCheckerState->isBadCall(N) || | 
 |         GraphPrintCheckerState->isUndefArg(N)) | 
 |       return "color=\"red\",style=\"filled\""; | 
 |      | 
 |     if (GraphPrintCheckerState->isNoReturnCall(N)) | 
 |       return "color=\"blue\",style=\"filled\""; | 
 |      | 
 |     return ""; | 
 |   } | 
 |      | 
 |   static std::string getNodeLabel(const GRExprEngine::NodeTy* N, void*, | 
 |                                   bool ShortNames) { | 
 |      | 
 |     std::string sbuf; | 
 |     llvm::raw_string_ostream Out(sbuf); | 
 |  | 
 |     // Program Location. | 
 |     ProgramPoint Loc = N->getLocation(); | 
 |      | 
 |     switch (Loc.getKind()) { | 
 |       case ProgramPoint::BlockEntranceKind: | 
 |         Out << "Block Entrance: B"  | 
 |             << cast<BlockEntrance>(Loc).getBlock()->getBlockID(); | 
 |         break; | 
 |        | 
 |       case ProgramPoint::BlockExitKind: | 
 |         assert (false); | 
 |         break; | 
 |          | 
 |       default: { | 
 |         if (StmtPoint *L = dyn_cast<StmtPoint>(&Loc)) { | 
 |           const Stmt* S = L->getStmt(); | 
 |           SourceLocation SLoc = S->getLocStart(); | 
 |  | 
 |           Out << S->getStmtClassName() << ' ' << (void*) S << ' ';         | 
 |           LangOptions LO; // FIXME. | 
 |           S->printPretty(Out, 0, PrintingPolicy(LO)); | 
 |            | 
 |           if (SLoc.isFileID()) {         | 
 |             Out << "\\lline=" | 
 |               << GraphPrintSourceManager->getInstantiationLineNumber(SLoc) | 
 |               << " col=" | 
 |               << GraphPrintSourceManager->getInstantiationColumnNumber(SLoc) | 
 |               << "\\l"; | 
 |           } | 
 |            | 
 |           if (isa<PreStmt>(Loc)) | 
 |             Out << "\\lPreStmt\\l;";           | 
 |           else if (isa<PostLoad>(Loc)) | 
 |             Out << "\\lPostLoad\\l;"; | 
 |           else if (isa<PostStore>(Loc)) | 
 |             Out << "\\lPostStore\\l"; | 
 |           else if (isa<PostLValue>(Loc)) | 
 |             Out << "\\lPostLValue\\l"; | 
 |           else if (isa<PostLocationChecksSucceed>(Loc)) | 
 |             Out << "\\lPostLocationChecksSucceed\\l"; | 
 |           else if (isa<PostNullCheckFailed>(Loc)) | 
 |             Out << "\\lPostNullCheckFailed\\l"; | 
 |            | 
 |           if (GraphPrintCheckerState->isImplicitNullDeref(N)) | 
 |             Out << "\\|Implicit-Null Dereference.\\l"; | 
 |           else if (GraphPrintCheckerState->isExplicitNullDeref(N)) | 
 |             Out << "\\|Explicit-Null Dereference.\\l"; | 
 |           else if (GraphPrintCheckerState->isUndefDeref(N)) | 
 |             Out << "\\|Dereference of undefialied value.\\l"; | 
 |           else if (GraphPrintCheckerState->isUndefStore(N)) | 
 |             Out << "\\|Store to Undefined Loc."; | 
 |           else if (GraphPrintCheckerState->isExplicitBadDivide(N)) | 
 |             Out << "\\|Explicit divide-by zero or undefined value."; | 
 |           else if (GraphPrintCheckerState->isImplicitBadDivide(N)) | 
 |             Out << "\\|Implicit divide-by zero or undefined value."; | 
 |           else if (GraphPrintCheckerState->isUndefResult(N)) | 
 |             Out << "\\|Result of operation is undefined."; | 
 |           else if (GraphPrintCheckerState->isNoReturnCall(N)) | 
 |             Out << "\\|Call to function marked \"noreturn\"."; | 
 |           else if (GraphPrintCheckerState->isBadCall(N)) | 
 |             Out << "\\|Call to NULL/Undefined."; | 
 |           else if (GraphPrintCheckerState->isUndefArg(N)) | 
 |             Out << "\\|Argument in call is undefined"; | 
 |            | 
 |           break; | 
 |         } | 
 |  | 
 |         const BlockEdge& E = cast<BlockEdge>(Loc); | 
 |         Out << "Edge: (B" << E.getSrc()->getBlockID() << ", B" | 
 |             << E.getDst()->getBlockID()  << ')'; | 
 |          | 
 |         if (Stmt* T = E.getSrc()->getTerminator()) { | 
 |            | 
 |           SourceLocation SLoc = T->getLocStart(); | 
 |           | 
 |           Out << "\\|Terminator: "; | 
 |           LangOptions LO; // FIXME. | 
 |           E.getSrc()->printTerminator(Out, LO); | 
 |            | 
 |           if (SLoc.isFileID()) { | 
 |             Out << "\\lline=" | 
 |               << GraphPrintSourceManager->getInstantiationLineNumber(SLoc) | 
 |               << " col=" | 
 |               << GraphPrintSourceManager->getInstantiationColumnNumber(SLoc); | 
 |           } | 
 |              | 
 |           if (isa<SwitchStmt>(T)) { | 
 |             Stmt* Label = E.getDst()->getLabel(); | 
 |              | 
 |             if (Label) {                         | 
 |               if (CaseStmt* C = dyn_cast<CaseStmt>(Label)) { | 
 |                 Out << "\\lcase "; | 
 |                 LangOptions LO; // FIXME. | 
 |                 C->getLHS()->printPretty(Out, 0, PrintingPolicy(LO)); | 
 |                | 
 |                 if (Stmt* RHS = C->getRHS()) { | 
 |                   Out << " .. "; | 
 |                   RHS->printPretty(Out, 0, PrintingPolicy(LO)); | 
 |                 } | 
 |                  | 
 |                 Out << ":"; | 
 |               } | 
 |               else { | 
 |                 assert (isa<DefaultStmt>(Label)); | 
 |                 Out << "\\ldefault:"; | 
 |               } | 
 |             } | 
 |             else  | 
 |               Out << "\\l(implicit) default:"; | 
 |           } | 
 |           else if (isa<IndirectGotoStmt>(T)) { | 
 |             // FIXME | 
 |           } | 
 |           else { | 
 |             Out << "\\lCondition: "; | 
 |             if (*E.getSrc()->succ_begin() == E.getDst()) | 
 |               Out << "true"; | 
 |             else | 
 |               Out << "false";                         | 
 |           } | 
 |            | 
 |           Out << "\\l"; | 
 |         } | 
 |          | 
 |         if (GraphPrintCheckerState->isUndefControlFlow(N)) { | 
 |           Out << "\\|Control-flow based on\\lUndefined value.\\l"; | 
 |         } | 
 |       } | 
 |     } | 
 |      | 
 |     Out << "\\|StateID: " << (void*) N->getState() << "\\|"; | 
 |  | 
 |     const GRState *state = N->getState(); | 
 |     state->printDOT(Out); | 
 |        | 
 |     Out << "\\l"; | 
 |     return Out.str(); | 
 |   } | 
 | }; | 
 | } // end llvm namespace     | 
 | #endif | 
 |  | 
 | #ifndef NDEBUG | 
 | template <typename ITERATOR> | 
 | GRExprEngine::NodeTy* GetGraphNode(ITERATOR I) { return *I; } | 
 |  | 
 | template <> | 
 | GRExprEngine::NodeTy* | 
 | GetGraphNode<llvm::DenseMap<GRExprEngine::NodeTy*, Expr*>::iterator> | 
 |   (llvm::DenseMap<GRExprEngine::NodeTy*, Expr*>::iterator I) { | 
 |   return I->first; | 
 | } | 
 | #endif | 
 |  | 
 | void GRExprEngine::ViewGraph(bool trim) { | 
 | #ifndef NDEBUG   | 
 |   if (trim) { | 
 |     std::vector<NodeTy*> Src; | 
 |  | 
 |     // Flush any outstanding reports to make sure we cover all the nodes. | 
 |     // This does not cause them to get displayed. | 
 |     for (BugReporter::iterator I=BR.begin(), E=BR.end(); I!=E; ++I) | 
 |       const_cast<BugType*>(*I)->FlushReports(BR); | 
 |  | 
 |     // Iterate through the reports and get their nodes. | 
 |     for (BugReporter::iterator I=BR.begin(), E=BR.end(); I!=E; ++I) { | 
 |       for (BugType::const_iterator I2=(*I)->begin(), E2=(*I)->end(); I2!=E2; ++I2) {         | 
 |         const BugReportEquivClass& EQ = *I2; | 
 |         const BugReport &R = **EQ.begin(); | 
 |         NodeTy *N = const_cast<NodeTy*>(R.getEndNode()); | 
 |         if (N) Src.push_back(N); | 
 |       } | 
 |     } | 
 |      | 
 |     ViewGraph(&Src[0], &Src[0]+Src.size()); | 
 |   } | 
 |   else { | 
 |     GraphPrintCheckerState = this; | 
 |     GraphPrintSourceManager = &getContext().getSourceManager(); | 
 |  | 
 |     llvm::ViewGraph(*G.roots_begin(), "GRExprEngine"); | 
 |      | 
 |     GraphPrintCheckerState = NULL; | 
 |     GraphPrintSourceManager = NULL; | 
 |   } | 
 | #endif | 
 | } | 
 |  | 
 | void GRExprEngine::ViewGraph(NodeTy** Beg, NodeTy** End) { | 
 | #ifndef NDEBUG | 
 |   GraphPrintCheckerState = this; | 
 |   GraphPrintSourceManager = &getContext().getSourceManager(); | 
 |      | 
 |   std::auto_ptr<GRExprEngine::GraphTy> TrimmedG(G.Trim(Beg, End).first); | 
 |  | 
 |   if (!TrimmedG.get()) | 
 |     llvm::cerr << "warning: Trimmed ExplodedGraph is empty.\n"; | 
 |   else | 
 |     llvm::ViewGraph(*TrimmedG->roots_begin(), "TrimmedGRExprEngine");     | 
 |    | 
 |   GraphPrintCheckerState = NULL; | 
 |   GraphPrintSourceManager = NULL; | 
 | #endif | 
 | } |