blob: 0eb3128f5b6c736dc80a0d51ea4e3f41253cb937 [file] [log] [blame]
//===--- PCHReader.cpp - Precompiled Headers Reader -------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the PCHReader class, which reads a precompiled header.
//
//===----------------------------------------------------------------------===//
#include "clang/Frontend/PCHReader.h"
#include "clang/Frontend/FrontendDiagnostic.h"
#include "../Sema/Sema.h" // FIXME: move Sema headers elsewhere
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Expr.h"
#include "clang/AST/Type.h"
#include "clang/Lex/MacroInfo.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/HeaderSearch.h"
#include "clang/Basic/OnDiskHashTable.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/SourceManagerInternals.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/Bitcode/BitstreamReader.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/MemoryBuffer.h"
#include <algorithm>
#include <cstdio>
using namespace clang;
namespace {
/// \brief Helper class that saves the current stream position and
/// then restores it when destroyed.
struct VISIBILITY_HIDDEN SavedStreamPosition {
explicit SavedStreamPosition(llvm::BitstreamCursor &Cursor)
: Cursor(Cursor), Offset(Cursor.GetCurrentBitNo()) { }
~SavedStreamPosition() {
Cursor.JumpToBit(Offset);
}
private:
llvm::BitstreamCursor &Cursor;
uint64_t Offset;
};
}
//===----------------------------------------------------------------------===//
// PCH reader implementation
//===----------------------------------------------------------------------===//
PCHReader::PCHReader(Preprocessor &PP, ASTContext &Context)
: SemaObj(0), PP(PP), Context(Context), Consumer(0),
IdentifierTableData(0), IdentifierLookupTable(0),
IdentifierOffsets(0),
MethodPoolLookupTable(0), MethodPoolLookupTableData(0),
TotalSelectorsInMethodPool(0), SelectorOffsets(0),
TotalNumSelectors(0), NumStatementsRead(0), NumMacrosRead(0),
NumMethodPoolSelectorsRead(0), NumMethodPoolMisses(0),
NumLexicalDeclContextsRead(0), NumVisibleDeclContextsRead(0) { }
PCHReader::~PCHReader() {}
Expr *PCHReader::ReadExpr() {
return dyn_cast_or_null<Expr>(ReadStmt());
}
namespace {
class VISIBILITY_HIDDEN PCHMethodPoolLookupTrait {
PCHReader &Reader;
public:
typedef std::pair<ObjCMethodList, ObjCMethodList> data_type;
typedef Selector external_key_type;
typedef external_key_type internal_key_type;
explicit PCHMethodPoolLookupTrait(PCHReader &Reader) : Reader(Reader) { }
static bool EqualKey(const internal_key_type& a,
const internal_key_type& b) {
return a == b;
}
static unsigned ComputeHash(Selector Sel) {
unsigned N = Sel.getNumArgs();
if (N == 0)
++N;
unsigned R = 5381;
for (unsigned I = 0; I != N; ++I)
if (IdentifierInfo *II = Sel.getIdentifierInfoForSlot(I))
R = clang::BernsteinHashPartial(II->getName(), II->getLength(), R);
return R;
}
// This hopefully will just get inlined and removed by the optimizer.
static const internal_key_type&
GetInternalKey(const external_key_type& x) { return x; }
static std::pair<unsigned, unsigned>
ReadKeyDataLength(const unsigned char*& d) {
using namespace clang::io;
unsigned KeyLen = ReadUnalignedLE16(d);
unsigned DataLen = ReadUnalignedLE16(d);
return std::make_pair(KeyLen, DataLen);
}
internal_key_type ReadKey(const unsigned char* d, unsigned) {
using namespace clang::io;
SelectorTable &SelTable = Reader.getContext().Selectors;
unsigned N = ReadUnalignedLE16(d);
IdentifierInfo *FirstII
= Reader.DecodeIdentifierInfo(ReadUnalignedLE32(d));
if (N == 0)
return SelTable.getNullarySelector(FirstII);
else if (N == 1)
return SelTable.getUnarySelector(FirstII);
llvm::SmallVector<IdentifierInfo *, 16> Args;
Args.push_back(FirstII);
for (unsigned I = 1; I != N; ++I)
Args.push_back(Reader.DecodeIdentifierInfo(ReadUnalignedLE32(d)));
return SelTable.getSelector(N, &Args[0]);
}
data_type ReadData(Selector, const unsigned char* d, unsigned DataLen) {
using namespace clang::io;
unsigned NumInstanceMethods = ReadUnalignedLE16(d);
unsigned NumFactoryMethods = ReadUnalignedLE16(d);
data_type Result;
// Load instance methods
ObjCMethodList *Prev = 0;
for (unsigned I = 0; I != NumInstanceMethods; ++I) {
ObjCMethodDecl *Method
= cast<ObjCMethodDecl>(Reader.GetDecl(ReadUnalignedLE32(d)));
if (!Result.first.Method) {
// This is the first method, which is the easy case.
Result.first.Method = Method;
Prev = &Result.first;
continue;
}
Prev->Next = new ObjCMethodList(Method, 0);
Prev = Prev->Next;
}
// Load factory methods
Prev = 0;
for (unsigned I = 0; I != NumFactoryMethods; ++I) {
ObjCMethodDecl *Method
= cast<ObjCMethodDecl>(Reader.GetDecl(ReadUnalignedLE32(d)));
if (!Result.second.Method) {
// This is the first method, which is the easy case.
Result.second.Method = Method;
Prev = &Result.second;
continue;
}
Prev->Next = new ObjCMethodList(Method, 0);
Prev = Prev->Next;
}
return Result;
}
};
} // end anonymous namespace
/// \brief The on-disk hash table used for the global method pool.
typedef OnDiskChainedHashTable<PCHMethodPoolLookupTrait>
PCHMethodPoolLookupTable;
namespace {
class VISIBILITY_HIDDEN PCHIdentifierLookupTrait {
PCHReader &Reader;
// If we know the IdentifierInfo in advance, it is here and we will
// not build a new one. Used when deserializing information about an
// identifier that was constructed before the PCH file was read.
IdentifierInfo *KnownII;
public:
typedef IdentifierInfo * data_type;
typedef const std::pair<const char*, unsigned> external_key_type;
typedef external_key_type internal_key_type;
explicit PCHIdentifierLookupTrait(PCHReader &Reader, IdentifierInfo *II = 0)
: Reader(Reader), KnownII(II) { }
static bool EqualKey(const internal_key_type& a,
const internal_key_type& b) {
return (a.second == b.second) ? memcmp(a.first, b.first, a.second) == 0
: false;
}
static unsigned ComputeHash(const internal_key_type& a) {
return BernsteinHash(a.first, a.second);
}
// This hopefully will just get inlined and removed by the optimizer.
static const internal_key_type&
GetInternalKey(const external_key_type& x) { return x; }
static std::pair<unsigned, unsigned>
ReadKeyDataLength(const unsigned char*& d) {
using namespace clang::io;
unsigned DataLen = ReadUnalignedLE16(d);
unsigned KeyLen = ReadUnalignedLE16(d);
return std::make_pair(KeyLen, DataLen);
}
static std::pair<const char*, unsigned>
ReadKey(const unsigned char* d, unsigned n) {
assert(n >= 2 && d[n-1] == '\0');
return std::make_pair((const char*) d, n-1);
}
IdentifierInfo *ReadData(const internal_key_type& k,
const unsigned char* d,
unsigned DataLen) {
using namespace clang::io;
uint32_t Bits = ReadUnalignedLE32(d);
bool CPlusPlusOperatorKeyword = Bits & 0x01;
Bits >>= 1;
bool Poisoned = Bits & 0x01;
Bits >>= 1;
bool ExtensionToken = Bits & 0x01;
Bits >>= 1;
bool hasMacroDefinition = Bits & 0x01;
Bits >>= 1;
unsigned ObjCOrBuiltinID = Bits & 0x3FF;
Bits >>= 10;
unsigned TokenID = Bits & 0xFF;
Bits >>= 8;
pch::IdentID ID = ReadUnalignedLE32(d);
assert(Bits == 0 && "Extra bits in the identifier?");
DataLen -= 8;
// Build the IdentifierInfo itself and link the identifier ID with
// the new IdentifierInfo.
IdentifierInfo *II = KnownII;
if (!II)
II = &Reader.getIdentifierTable().CreateIdentifierInfo(
k.first, k.first + k.second);
Reader.SetIdentifierInfo(ID, II);
// Set or check the various bits in the IdentifierInfo structure.
// FIXME: Load token IDs lazily, too?
assert((unsigned)II->getTokenID() == TokenID &&
"Incorrect token ID loaded");
(void)TokenID;
II->setObjCOrBuiltinID(ObjCOrBuiltinID);
assert(II->isExtensionToken() == ExtensionToken &&
"Incorrect extension token flag");
(void)ExtensionToken;
II->setIsPoisoned(Poisoned);
assert(II->isCPlusPlusOperatorKeyword() == CPlusPlusOperatorKeyword &&
"Incorrect C++ operator keyword flag");
(void)CPlusPlusOperatorKeyword;
// If this identifier is a macro, deserialize the macro
// definition.
if (hasMacroDefinition) {
uint32_t Offset = ReadUnalignedLE64(d);
Reader.ReadMacroRecord(Offset);
DataLen -= 8;
}
// Read all of the declarations visible at global scope with this
// name.
Sema *SemaObj = Reader.getSema();
while (DataLen > 0) {
NamedDecl *D = cast<NamedDecl>(Reader.GetDecl(ReadUnalignedLE32(d)));
if (SemaObj) {
// Introduce this declaration into the translation-unit scope
// and add it to the declaration chain for this identifier, so
// that (unqualified) name lookup will find it.
SemaObj->TUScope->AddDecl(Action::DeclPtrTy::make(D));
SemaObj->IdResolver.AddDeclToIdentifierChain(II, D);
} else {
// Queue this declaration so that it will be added to the
// translation unit scope and identifier's declaration chain
// once a Sema object is known.
Reader.PreloadedDecls.push_back(D);
}
DataLen -= 4;
}
return II;
}
};
} // end anonymous namespace
/// \brief The on-disk hash table used to contain information about
/// all of the identifiers in the program.
typedef OnDiskChainedHashTable<PCHIdentifierLookupTrait>
PCHIdentifierLookupTable;
// FIXME: use the diagnostics machinery
static bool Error(const char *Str) {
std::fprintf(stderr, "%s\n", Str);
return true;
}
/// \brief Check the contents of the predefines buffer against the
/// contents of the predefines buffer used to build the PCH file.
///
/// The contents of the two predefines buffers should be the same. If
/// not, then some command-line option changed the preprocessor state
/// and we must reject the PCH file.
///
/// \param PCHPredef The start of the predefines buffer in the PCH
/// file.
///
/// \param PCHPredefLen The length of the predefines buffer in the PCH
/// file.
///
/// \param PCHBufferID The FileID for the PCH predefines buffer.
///
/// \returns true if there was a mismatch (in which case the PCH file
/// should be ignored), or false otherwise.
bool PCHReader::CheckPredefinesBuffer(const char *PCHPredef,
unsigned PCHPredefLen,
FileID PCHBufferID) {
const char *Predef = PP.getPredefines().c_str();
unsigned PredefLen = PP.getPredefines().size();
// If the two predefines buffers compare equal, we're done!.
if (PredefLen == PCHPredefLen &&
strncmp(Predef, PCHPredef, PCHPredefLen) == 0)
return false;
// The predefines buffers are different. Produce a reasonable
// diagnostic showing where they are different.
// The source locations (potentially in the two different predefines
// buffers)
SourceLocation Loc1, Loc2;
SourceManager &SourceMgr = PP.getSourceManager();
// Create a source buffer for our predefines string, so
// that we can build a diagnostic that points into that
// source buffer.
FileID BufferID;
if (Predef && Predef[0]) {
llvm::MemoryBuffer *Buffer
= llvm::MemoryBuffer::getMemBuffer(Predef, Predef + PredefLen,
"<built-in>");
BufferID = SourceMgr.createFileIDForMemBuffer(Buffer);
}
unsigned MinLen = std::min(PredefLen, PCHPredefLen);
std::pair<const char *, const char *> Locations
= std::mismatch(Predef, Predef + MinLen, PCHPredef);
if (Locations.first != Predef + MinLen) {
// We found the location in the two buffers where there is a
// difference. Form source locations to point there (in both
// buffers).
unsigned Offset = Locations.first - Predef;
Loc1 = SourceMgr.getLocForStartOfFile(BufferID)
.getFileLocWithOffset(Offset);
Loc2 = SourceMgr.getLocForStartOfFile(PCHBufferID)
.getFileLocWithOffset(Offset);
} else if (PredefLen > PCHPredefLen) {
Loc1 = SourceMgr.getLocForStartOfFile(BufferID)
.getFileLocWithOffset(MinLen);
} else {
Loc1 = SourceMgr.getLocForStartOfFile(PCHBufferID)
.getFileLocWithOffset(MinLen);
}
Diag(Loc1, diag::warn_pch_preprocessor);
if (Loc2.isValid())
Diag(Loc2, diag::note_predef_in_pch);
Diag(diag::note_ignoring_pch) << FileName;
return true;
}
/// \brief Read the line table in the source manager block.
/// \returns true if ther was an error.
static bool ParseLineTable(SourceManager &SourceMgr,
llvm::SmallVectorImpl<uint64_t> &Record) {
unsigned Idx = 0;
LineTableInfo &LineTable = SourceMgr.getLineTable();
// Parse the file names
std::map<int, int> FileIDs;
for (int I = 0, N = Record[Idx++]; I != N; ++I) {
// Extract the file name
unsigned FilenameLen = Record[Idx++];
std::string Filename(&Record[Idx], &Record[Idx] + FilenameLen);
Idx += FilenameLen;
FileIDs[I] = LineTable.getLineTableFilenameID(Filename.c_str(),
Filename.size());
}
// Parse the line entries
std::vector<LineEntry> Entries;
while (Idx < Record.size()) {
int FID = FileIDs[Record[Idx++]];
// Extract the line entries
unsigned NumEntries = Record[Idx++];
Entries.clear();
Entries.reserve(NumEntries);
for (unsigned I = 0; I != NumEntries; ++I) {
unsigned FileOffset = Record[Idx++];
unsigned LineNo = Record[Idx++];
int FilenameID = Record[Idx++];
SrcMgr::CharacteristicKind FileKind
= (SrcMgr::CharacteristicKind)Record[Idx++];
unsigned IncludeOffset = Record[Idx++];
Entries.push_back(LineEntry::get(FileOffset, LineNo, FilenameID,
FileKind, IncludeOffset));
}
LineTable.AddEntry(FID, Entries);
}
return false;
}
/// \brief Read the source manager block
PCHReader::PCHReadResult PCHReader::ReadSourceManagerBlock() {
using namespace SrcMgr;
if (Stream.EnterSubBlock(pch::SOURCE_MANAGER_BLOCK_ID)) {
Error("Malformed source manager block record");
return Failure;
}
SourceManager &SourceMgr = Context.getSourceManager();
RecordData Record;
unsigned NumHeaderInfos = 0;
while (true) {
unsigned Code = Stream.ReadCode();
if (Code == llvm::bitc::END_BLOCK) {
if (Stream.ReadBlockEnd()) {
Error("Error at end of Source Manager block");
return Failure;
}
return Success;
}
if (Code == llvm::bitc::ENTER_SUBBLOCK) {
// No known subblocks, always skip them.
Stream.ReadSubBlockID();
if (Stream.SkipBlock()) {
Error("Malformed block record");
return Failure;
}
continue;
}
if (Code == llvm::bitc::DEFINE_ABBREV) {
Stream.ReadAbbrevRecord();
continue;
}
// Read a record.
const char *BlobStart;
unsigned BlobLen;
Record.clear();
switch (Stream.ReadRecord(Code, Record, &BlobStart, &BlobLen)) {
default: // Default behavior: ignore.
break;
case pch::SM_SLOC_FILE_ENTRY: {
// FIXME: We would really like to delay the creation of this
// FileEntry until it is actually required, e.g., when producing
// a diagnostic with a source location in this file.
const FileEntry *File
= PP.getFileManager().getFile(BlobStart, BlobStart + BlobLen);
// FIXME: Error recovery if file cannot be found.
FileID ID = SourceMgr.createFileID(File,
SourceLocation::getFromRawEncoding(Record[1]),
(CharacteristicKind)Record[2]);
if (Record[3])
const_cast<SrcMgr::FileInfo&>(SourceMgr.getSLocEntry(ID).getFile())
.setHasLineDirectives();
break;
}
case pch::SM_SLOC_BUFFER_ENTRY: {
const char *Name = BlobStart;
unsigned Code = Stream.ReadCode();
Record.clear();
unsigned RecCode = Stream.ReadRecord(Code, Record, &BlobStart, &BlobLen);
assert(RecCode == pch::SM_SLOC_BUFFER_BLOB && "Ill-formed PCH file");
(void)RecCode;
llvm::MemoryBuffer *Buffer
= llvm::MemoryBuffer::getMemBuffer(BlobStart,
BlobStart + BlobLen - 1,
Name);
FileID BufferID = SourceMgr.createFileIDForMemBuffer(Buffer);
if (strcmp(Name, "<built-in>") == 0
&& CheckPredefinesBuffer(BlobStart, BlobLen - 1, BufferID))
return IgnorePCH;
break;
}
case pch::SM_SLOC_INSTANTIATION_ENTRY: {
SourceLocation SpellingLoc
= SourceLocation::getFromRawEncoding(Record[1]);
SourceMgr.createInstantiationLoc(
SpellingLoc,
SourceLocation::getFromRawEncoding(Record[2]),
SourceLocation::getFromRawEncoding(Record[3]),
Record[4]);
break;
}
case pch::SM_LINE_TABLE:
if (ParseLineTable(SourceMgr, Record))
return Failure;
break;
case pch::SM_HEADER_FILE_INFO: {
HeaderFileInfo HFI;
HFI.isImport = Record[0];
HFI.DirInfo = Record[1];
HFI.NumIncludes = Record[2];
HFI.ControllingMacroID = Record[3];
PP.getHeaderSearchInfo().setHeaderFileInfoForUID(HFI, NumHeaderInfos++);
break;
}
}
}
}
/// ReadBlockAbbrevs - Enter a subblock of the specified BlockID with the
/// specified cursor. Read the abbreviations that are at the top of the block
/// and then leave the cursor pointing into the block.
bool PCHReader::ReadBlockAbbrevs(llvm::BitstreamCursor &Cursor,
unsigned BlockID) {
if (Cursor.EnterSubBlock(BlockID)) {
Error("Malformed block record");
return Failure;
}
while (true) {
unsigned Code = Cursor.ReadCode();
// We expect all abbrevs to be at the start of the block.
if (Code != llvm::bitc::DEFINE_ABBREV)
return false;
Cursor.ReadAbbrevRecord();
}
}
void PCHReader::ReadMacroRecord(uint64_t Offset) {
// Keep track of where we are in the stream, then jump back there
// after reading this macro.
SavedStreamPosition SavedPosition(Stream);
Stream.JumpToBit(Offset);
RecordData Record;
llvm::SmallVector<IdentifierInfo*, 16> MacroArgs;
MacroInfo *Macro = 0;
while (true) {
unsigned Code = Stream.ReadCode();
switch (Code) {
case llvm::bitc::END_BLOCK:
return;
case llvm::bitc::ENTER_SUBBLOCK:
// No known subblocks, always skip them.
Stream.ReadSubBlockID();
if (Stream.SkipBlock()) {
Error("Malformed block record");
return;
}
continue;
case llvm::bitc::DEFINE_ABBREV:
Stream.ReadAbbrevRecord();
continue;
default: break;
}
// Read a record.
Record.clear();
pch::PreprocessorRecordTypes RecType =
(pch::PreprocessorRecordTypes)Stream.ReadRecord(Code, Record);
switch (RecType) {
case pch::PP_MACRO_OBJECT_LIKE:
case pch::PP_MACRO_FUNCTION_LIKE: {
// If we already have a macro, that means that we've hit the end
// of the definition of the macro we were looking for. We're
// done.
if (Macro)
return;
IdentifierInfo *II = DecodeIdentifierInfo(Record[0]);
if (II == 0) {
Error("Macro must have a name");
return;
}
SourceLocation Loc = SourceLocation::getFromRawEncoding(Record[1]);
bool isUsed = Record[2];
MacroInfo *MI = PP.AllocateMacroInfo(Loc);
MI->setIsUsed(isUsed);
if (RecType == pch::PP_MACRO_FUNCTION_LIKE) {
// Decode function-like macro info.
bool isC99VarArgs = Record[3];
bool isGNUVarArgs = Record[4];
MacroArgs.clear();
unsigned NumArgs = Record[5];
for (unsigned i = 0; i != NumArgs; ++i)
MacroArgs.push_back(DecodeIdentifierInfo(Record[6+i]));
// Install function-like macro info.
MI->setIsFunctionLike();
if (isC99VarArgs) MI->setIsC99Varargs();
if (isGNUVarArgs) MI->setIsGNUVarargs();
MI->setArgumentList(&MacroArgs[0], MacroArgs.size(),
PP.getPreprocessorAllocator());
}
// Finally, install the macro.
PP.setMacroInfo(II, MI);
// Remember that we saw this macro last so that we add the tokens that
// form its body to it.
Macro = MI;
++NumMacrosRead;
break;
}
case pch::PP_TOKEN: {
// If we see a TOKEN before a PP_MACRO_*, then the file is
// erroneous, just pretend we didn't see this.
if (Macro == 0) break;
Token Tok;
Tok.startToken();
Tok.setLocation(SourceLocation::getFromRawEncoding(Record[0]));
Tok.setLength(Record[1]);
if (IdentifierInfo *II = DecodeIdentifierInfo(Record[2]))
Tok.setIdentifierInfo(II);
Tok.setKind((tok::TokenKind)Record[3]);
Tok.setFlag((Token::TokenFlags)Record[4]);
Macro->AddTokenToBody(Tok);
break;
}
}
}
}
PCHReader::PCHReadResult
PCHReader::ReadPCHBlock() {
if (Stream.EnterSubBlock(pch::PCH_BLOCK_ID)) {
Error("Malformed block record");
return Failure;
}
// Read all of the records and blocks for the PCH file.
RecordData Record;
while (!Stream.AtEndOfStream()) {
unsigned Code = Stream.ReadCode();
if (Code == llvm::bitc::END_BLOCK) {
if (Stream.ReadBlockEnd()) {
Error("Error at end of module block");
return Failure;
}
return Success;
}
if (Code == llvm::bitc::ENTER_SUBBLOCK) {
switch (Stream.ReadSubBlockID()) {
case pch::TYPES_BLOCK_ID: // Skip types block (lazily loaded)
default: // Skip unknown content.
if (Stream.SkipBlock()) {
Error("Malformed block record");
return Failure;
}
break;
case pch::DECLS_BLOCK_ID:
// We lazily load the decls block, but we want to set up the
// DeclsCursor cursor to point into it. Clone our current bitcode
// cursor to it, enter the block and read the abbrevs in that block.
// With the main cursor, we just skip over it.
DeclsCursor = Stream;
if (Stream.SkipBlock() || // Skip with the main cursor.
// Read the abbrevs.
ReadBlockAbbrevs(DeclsCursor, pch::DECLS_BLOCK_ID)) {
Error("Malformed block record");
return Failure;
}
break;
case pch::PREPROCESSOR_BLOCK_ID:
if (Stream.SkipBlock()) {
Error("Malformed block record");
return Failure;
}
break;
case pch::SOURCE_MANAGER_BLOCK_ID:
switch (ReadSourceManagerBlock()) {
case Success:
break;
case Failure:
Error("Malformed source manager block");
return Failure;
case IgnorePCH:
return IgnorePCH;
}
break;
}
continue;
}
if (Code == llvm::bitc::DEFINE_ABBREV) {
Stream.ReadAbbrevRecord();
continue;
}
// Read and process a record.
Record.clear();
const char *BlobStart = 0;
unsigned BlobLen = 0;
switch ((pch::PCHRecordTypes)Stream.ReadRecord(Code, Record,
&BlobStart, &BlobLen)) {
default: // Default behavior: ignore.
break;
case pch::TYPE_OFFSET:
if (!TypesLoaded.empty()) {
Error("Duplicate TYPE_OFFSET record in PCH file");
return Failure;
}
TypeOffsets = (const uint64_t *)BlobStart;
TypesLoaded.resize(Record[0]);
break;
case pch::DECL_OFFSET:
if (!DeclsLoaded.empty()) {
Error("Duplicate DECL_OFFSET record in PCH file");
return Failure;
}
DeclOffsets = (const uint64_t *)BlobStart;
DeclsLoaded.resize(Record[0]);
break;
case pch::LANGUAGE_OPTIONS:
if (ParseLanguageOptions(Record))
return IgnorePCH;
break;
case pch::TARGET_TRIPLE: {
std::string TargetTriple(BlobStart, BlobLen);
if (TargetTriple != Context.Target.getTargetTriple()) {
Diag(diag::warn_pch_target_triple)
<< TargetTriple << Context.Target.getTargetTriple();
Diag(diag::note_ignoring_pch) << FileName;
return IgnorePCH;
}
break;
}
case pch::IDENTIFIER_TABLE:
IdentifierTableData = BlobStart;
if (Record[0]) {
IdentifierLookupTable
= PCHIdentifierLookupTable::Create(
(const unsigned char *)IdentifierTableData + Record[0],
(const unsigned char *)IdentifierTableData,
PCHIdentifierLookupTrait(*this));
PP.getIdentifierTable().setExternalIdentifierLookup(this);
}
break;
case pch::IDENTIFIER_OFFSET:
if (!IdentifiersLoaded.empty()) {
Error("Duplicate IDENTIFIER_OFFSET record in PCH file");
return Failure;
}
IdentifierOffsets = (const uint32_t *)BlobStart;
IdentifiersLoaded.resize(Record[0]);
PP.getHeaderSearchInfo().SetExternalLookup(this);
break;
case pch::EXTERNAL_DEFINITIONS:
if (!ExternalDefinitions.empty()) {
Error("Duplicate EXTERNAL_DEFINITIONS record in PCH file");
return Failure;
}
ExternalDefinitions.swap(Record);
break;
case pch::SPECIAL_TYPES:
SpecialTypes.swap(Record);
break;
case pch::STATISTICS:
TotalNumStatements = Record[0];
TotalNumMacros = Record[1];
TotalLexicalDeclContexts = Record[2];
TotalVisibleDeclContexts = Record[3];
break;
case pch::TENTATIVE_DEFINITIONS:
if (!TentativeDefinitions.empty()) {
Error("Duplicate TENTATIVE_DEFINITIONS record in PCH file");
return Failure;
}
TentativeDefinitions.swap(Record);
break;
case pch::LOCALLY_SCOPED_EXTERNAL_DECLS:
if (!LocallyScopedExternalDecls.empty()) {
Error("Duplicate LOCALLY_SCOPED_EXTERNAL_DECLS record in PCH file");
return Failure;
}
LocallyScopedExternalDecls.swap(Record);
break;
case pch::SELECTOR_OFFSETS:
SelectorOffsets = (const uint32_t *)BlobStart;
TotalNumSelectors = Record[0];
SelectorsLoaded.resize(TotalNumSelectors);
break;
case pch::METHOD_POOL:
MethodPoolLookupTableData = (const unsigned char *)BlobStart;
if (Record[0])
MethodPoolLookupTable
= PCHMethodPoolLookupTable::Create(
MethodPoolLookupTableData + Record[0],
MethodPoolLookupTableData,
PCHMethodPoolLookupTrait(*this));
TotalSelectorsInMethodPool = Record[1];
break;
case pch::PP_COUNTER_VALUE:
if (!Record.empty())
PP.setCounterValue(Record[0]);
break;
}
}
Error("Premature end of bitstream");
return Failure;
}
PCHReader::PCHReadResult PCHReader::ReadPCH(const std::string &FileName) {
// Set the PCH file name.
this->FileName = FileName;
// Open the PCH file.
std::string ErrStr;
Buffer.reset(llvm::MemoryBuffer::getFile(FileName.c_str(), &ErrStr));
if (!Buffer) {
Error(ErrStr.c_str());
return IgnorePCH;
}
// Initialize the stream
StreamFile.init((const unsigned char *)Buffer->getBufferStart(),
(const unsigned char *)Buffer->getBufferEnd());
Stream.init(StreamFile);
// Sniff for the signature.
if (Stream.Read(8) != 'C' ||
Stream.Read(8) != 'P' ||
Stream.Read(8) != 'C' ||
Stream.Read(8) != 'H') {
Error("Not a PCH file");
return IgnorePCH;
}
while (!Stream.AtEndOfStream()) {
unsigned Code = Stream.ReadCode();
if (Code != llvm::bitc::ENTER_SUBBLOCK) {
Error("Invalid record at top-level");
return Failure;
}
unsigned BlockID = Stream.ReadSubBlockID();
// We only know the PCH subblock ID.
switch (BlockID) {
case llvm::bitc::BLOCKINFO_BLOCK_ID:
if (Stream.ReadBlockInfoBlock()) {
Error("Malformed BlockInfoBlock");
return Failure;
}
break;
case pch::PCH_BLOCK_ID:
switch (ReadPCHBlock()) {
case Success:
break;
case Failure:
return Failure;
case IgnorePCH:
// FIXME: We could consider reading through to the end of this
// PCH block, skipping subblocks, to see if there are other
// PCH blocks elsewhere.
return IgnorePCH;
}
break;
default:
if (Stream.SkipBlock()) {
Error("Malformed block record");
return Failure;
}
break;
}
}
// Load the translation unit declaration
ReadDeclRecord(DeclOffsets[0], 0);
// Initialization of builtins and library builtins occurs before the
// PCH file is read, so there may be some identifiers that were
// loaded into the IdentifierTable before we intercepted the
// creation of identifiers. Iterate through the list of known
// identifiers and determine whether we have to establish
// preprocessor definitions or top-level identifier declaration
// chains for those identifiers.
//
// We copy the IdentifierInfo pointers to a small vector first,
// since de-serializing declarations or macro definitions can add
// new entries into the identifier table, invalidating the
// iterators.
llvm::SmallVector<IdentifierInfo *, 128> Identifiers;
for (IdentifierTable::iterator Id = PP.getIdentifierTable().begin(),
IdEnd = PP.getIdentifierTable().end();
Id != IdEnd; ++Id)
Identifiers.push_back(Id->second);
PCHIdentifierLookupTable *IdTable
= (PCHIdentifierLookupTable *)IdentifierLookupTable;
for (unsigned I = 0, N = Identifiers.size(); I != N; ++I) {
IdentifierInfo *II = Identifiers[I];
// Look in the on-disk hash table for an entry for
PCHIdentifierLookupTrait Info(*this, II);
std::pair<const char*, unsigned> Key(II->getName(), II->getLength());
PCHIdentifierLookupTable::iterator Pos = IdTable->find(Key, &Info);
if (Pos == IdTable->end())
continue;
// Dereferencing the iterator has the effect of populating the
// IdentifierInfo node with the various declarations it needs.
(void)*Pos;
}
// Load the special types.
Context.setBuiltinVaListType(
GetType(SpecialTypes[pch::SPECIAL_TYPE_BUILTIN_VA_LIST]));
if (unsigned Id = SpecialTypes[pch::SPECIAL_TYPE_OBJC_ID])
Context.setObjCIdType(GetType(Id));
if (unsigned Sel = SpecialTypes[pch::SPECIAL_TYPE_OBJC_SELECTOR])
Context.setObjCSelType(GetType(Sel));
if (unsigned Proto = SpecialTypes[pch::SPECIAL_TYPE_OBJC_PROTOCOL])
Context.setObjCProtoType(GetType(Proto));
if (unsigned Class = SpecialTypes[pch::SPECIAL_TYPE_OBJC_CLASS])
Context.setObjCClassType(GetType(Class));
if (unsigned String = SpecialTypes[pch::SPECIAL_TYPE_CF_CONSTANT_STRING])
Context.setCFConstantStringType(GetType(String));
if (unsigned FastEnum
= SpecialTypes[pch::SPECIAL_TYPE_OBJC_FAST_ENUMERATION_STATE])
Context.setObjCFastEnumerationStateType(GetType(FastEnum));
return Success;
}
/// \brief Parse the record that corresponds to a LangOptions data
/// structure.
///
/// This routine compares the language options used to generate the
/// PCH file against the language options set for the current
/// compilation. For each option, we classify differences between the
/// two compiler states as either "benign" or "important". Benign
/// differences don't matter, and we accept them without complaint
/// (and without modifying the language options). Differences between
/// the states for important options cause the PCH file to be
/// unusable, so we emit a warning and return true to indicate that
/// there was an error.
///
/// \returns true if the PCH file is unacceptable, false otherwise.
bool PCHReader::ParseLanguageOptions(
const llvm::SmallVectorImpl<uint64_t> &Record) {
const LangOptions &LangOpts = Context.getLangOptions();
#define PARSE_LANGOPT_BENIGN(Option) ++Idx
#define PARSE_LANGOPT_IMPORTANT(Option, DiagID) \
if (Record[Idx] != LangOpts.Option) { \
Diag(DiagID) << (unsigned)Record[Idx] << LangOpts.Option; \
Diag(diag::note_ignoring_pch) << FileName; \
return true; \
} \
++Idx
unsigned Idx = 0;
PARSE_LANGOPT_BENIGN(Trigraphs);
PARSE_LANGOPT_BENIGN(BCPLComment);
PARSE_LANGOPT_BENIGN(DollarIdents);
PARSE_LANGOPT_BENIGN(AsmPreprocessor);
PARSE_LANGOPT_IMPORTANT(GNUMode, diag::warn_pch_gnu_extensions);
PARSE_LANGOPT_BENIGN(ImplicitInt);
PARSE_LANGOPT_BENIGN(Digraphs);
PARSE_LANGOPT_BENIGN(HexFloats);
PARSE_LANGOPT_IMPORTANT(C99, diag::warn_pch_c99);
PARSE_LANGOPT_IMPORTANT(Microsoft, diag::warn_pch_microsoft_extensions);
PARSE_LANGOPT_IMPORTANT(CPlusPlus, diag::warn_pch_cplusplus);
PARSE_LANGOPT_IMPORTANT(CPlusPlus0x, diag::warn_pch_cplusplus0x);
PARSE_LANGOPT_IMPORTANT(NoExtensions, diag::warn_pch_extensions);
PARSE_LANGOPT_BENIGN(CXXOperatorName);
PARSE_LANGOPT_IMPORTANT(ObjC1, diag::warn_pch_objective_c);
PARSE_LANGOPT_IMPORTANT(ObjC2, diag::warn_pch_objective_c2);
PARSE_LANGOPT_IMPORTANT(ObjCNonFragileABI, diag::warn_pch_nonfragile_abi);
PARSE_LANGOPT_BENIGN(PascalStrings);
PARSE_LANGOPT_BENIGN(Boolean);
PARSE_LANGOPT_BENIGN(WritableStrings);
PARSE_LANGOPT_IMPORTANT(LaxVectorConversions,
diag::warn_pch_lax_vector_conversions);
PARSE_LANGOPT_IMPORTANT(Exceptions, diag::warn_pch_exceptions);
PARSE_LANGOPT_IMPORTANT(NeXTRuntime, diag::warn_pch_objc_runtime);
PARSE_LANGOPT_IMPORTANT(Freestanding, diag::warn_pch_freestanding);
PARSE_LANGOPT_IMPORTANT(NoBuiltin, diag::warn_pch_builtins);
PARSE_LANGOPT_IMPORTANT(ThreadsafeStatics,
diag::warn_pch_thread_safe_statics);
PARSE_LANGOPT_IMPORTANT(Blocks, diag::warn_pch_blocks);
PARSE_LANGOPT_BENIGN(EmitAllDecls);
PARSE_LANGOPT_IMPORTANT(MathErrno, diag::warn_pch_math_errno);
PARSE_LANGOPT_IMPORTANT(OverflowChecking, diag::warn_pch_overflow_checking);
PARSE_LANGOPT_IMPORTANT(HeinousExtensions,
diag::warn_pch_heinous_extensions);
// FIXME: Most of the options below are benign if the macro wasn't
// used. Unfortunately, this means that a PCH compiled without
// optimization can't be used with optimization turned on, even
// though the only thing that changes is whether __OPTIMIZE__ was
// defined... but if __OPTIMIZE__ never showed up in the header, it
// doesn't matter. We could consider making this some special kind
// of check.
PARSE_LANGOPT_IMPORTANT(Optimize, diag::warn_pch_optimize);
PARSE_LANGOPT_IMPORTANT(OptimizeSize, diag::warn_pch_optimize_size);
PARSE_LANGOPT_IMPORTANT(Static, diag::warn_pch_static);
PARSE_LANGOPT_IMPORTANT(PICLevel, diag::warn_pch_pic_level);
PARSE_LANGOPT_IMPORTANT(GNUInline, diag::warn_pch_gnu_inline);
PARSE_LANGOPT_IMPORTANT(NoInline, diag::warn_pch_no_inline);
if ((LangOpts.getGCMode() != 0) != (Record[Idx] != 0)) {
Diag(diag::warn_pch_gc_mode)
<< (unsigned)Record[Idx] << LangOpts.getGCMode();
Diag(diag::note_ignoring_pch) << FileName;
return true;
}
++Idx;
PARSE_LANGOPT_BENIGN(getVisibilityMode());
PARSE_LANGOPT_BENIGN(InstantiationDepth);
#undef PARSE_LANGOPT_IRRELEVANT
#undef PARSE_LANGOPT_BENIGN
return false;
}
/// \brief Read and return the type at the given offset.
///
/// This routine actually reads the record corresponding to the type
/// at the given offset in the bitstream. It is a helper routine for
/// GetType, which deals with reading type IDs.
QualType PCHReader::ReadTypeRecord(uint64_t Offset) {
// Keep track of where we are in the stream, then jump back there
// after reading this type.
SavedStreamPosition SavedPosition(Stream);
Stream.JumpToBit(Offset);
RecordData Record;
unsigned Code = Stream.ReadCode();
switch ((pch::TypeCode)Stream.ReadRecord(Code, Record)) {
case pch::TYPE_EXT_QUAL: {
assert(Record.size() == 3 &&
"Incorrect encoding of extended qualifier type");
QualType Base = GetType(Record[0]);
QualType::GCAttrTypes GCAttr = (QualType::GCAttrTypes)Record[1];
unsigned AddressSpace = Record[2];
QualType T = Base;
if (GCAttr != QualType::GCNone)
T = Context.getObjCGCQualType(T, GCAttr);
if (AddressSpace)
T = Context.getAddrSpaceQualType(T, AddressSpace);
return T;
}
case pch::TYPE_FIXED_WIDTH_INT: {
assert(Record.size() == 2 && "Incorrect encoding of fixed-width int type");
return Context.getFixedWidthIntType(Record[0], Record[1]);
}
case pch::TYPE_COMPLEX: {
assert(Record.size() == 1 && "Incorrect encoding of complex type");
QualType ElemType = GetType(Record[0]);
return Context.getComplexType(ElemType);
}
case pch::TYPE_POINTER: {
assert(Record.size() == 1 && "Incorrect encoding of pointer type");
QualType PointeeType = GetType(Record[0]);
return Context.getPointerType(PointeeType);
}
case pch::TYPE_BLOCK_POINTER: {
assert(Record.size() == 1 && "Incorrect encoding of block pointer type");
QualType PointeeType = GetType(Record[0]);
return Context.getBlockPointerType(PointeeType);
}
case pch::TYPE_LVALUE_REFERENCE: {
assert(Record.size() == 1 && "Incorrect encoding of lvalue reference type");
QualType PointeeType = GetType(Record[0]);
return Context.getLValueReferenceType(PointeeType);
}
case pch::TYPE_RVALUE_REFERENCE: {
assert(Record.size() == 1 && "Incorrect encoding of rvalue reference type");
QualType PointeeType = GetType(Record[0]);
return Context.getRValueReferenceType(PointeeType);
}
case pch::TYPE_MEMBER_POINTER: {
assert(Record.size() == 1 && "Incorrect encoding of member pointer type");
QualType PointeeType = GetType(Record[0]);
QualType ClassType = GetType(Record[1]);
return Context.getMemberPointerType(PointeeType, ClassType.getTypePtr());
}
case pch::TYPE_CONSTANT_ARRAY: {
QualType ElementType = GetType(Record[0]);
ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[1];
unsigned IndexTypeQuals = Record[2];
unsigned Idx = 3;
llvm::APInt Size = ReadAPInt(Record, Idx);
return Context.getConstantArrayType(ElementType, Size, ASM, IndexTypeQuals);
}
case pch::TYPE_INCOMPLETE_ARRAY: {
QualType ElementType = GetType(Record[0]);
ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[1];
unsigned IndexTypeQuals = Record[2];
return Context.getIncompleteArrayType(ElementType, ASM, IndexTypeQuals);
}
case pch::TYPE_VARIABLE_ARRAY: {
QualType ElementType = GetType(Record[0]);
ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[1];
unsigned IndexTypeQuals = Record[2];
return Context.getVariableArrayType(ElementType, ReadExpr(),
ASM, IndexTypeQuals);
}
case pch::TYPE_VECTOR: {
if (Record.size() != 2) {
Error("Incorrect encoding of vector type in PCH file");
return QualType();
}
QualType ElementType = GetType(Record[0]);
unsigned NumElements = Record[1];
return Context.getVectorType(ElementType, NumElements);
}
case pch::TYPE_EXT_VECTOR: {
if (Record.size() != 2) {
Error("Incorrect encoding of extended vector type in PCH file");
return QualType();
}
QualType ElementType = GetType(Record[0]);
unsigned NumElements = Record[1];
return Context.getExtVectorType(ElementType, NumElements);
}
case pch::TYPE_FUNCTION_NO_PROTO: {
if (Record.size() != 1) {
Error("Incorrect encoding of no-proto function type");
return QualType();
}
QualType ResultType = GetType(Record[0]);
return Context.getFunctionNoProtoType(ResultType);
}
case pch::TYPE_FUNCTION_PROTO: {
QualType ResultType = GetType(Record[0]);
unsigned Idx = 1;
unsigned NumParams = Record[Idx++];
llvm::SmallVector<QualType, 16> ParamTypes;
for (unsigned I = 0; I != NumParams; ++I)
ParamTypes.push_back(GetType(Record[Idx++]));
bool isVariadic = Record[Idx++];
unsigned Quals = Record[Idx++];
return Context.getFunctionType(ResultType, &ParamTypes[0], NumParams,
isVariadic, Quals);
}
case pch::TYPE_TYPEDEF:
assert(Record.size() == 1 && "Incorrect encoding of typedef type");
return Context.getTypeDeclType(cast<TypedefDecl>(GetDecl(Record[0])));
case pch::TYPE_TYPEOF_EXPR:
return Context.getTypeOfExprType(ReadExpr());
case pch::TYPE_TYPEOF: {
if (Record.size() != 1) {
Error("Incorrect encoding of typeof(type) in PCH file");
return QualType();
}
QualType UnderlyingType = GetType(Record[0]);
return Context.getTypeOfType(UnderlyingType);
}
case pch::TYPE_RECORD:
assert(Record.size() == 1 && "Incorrect encoding of record type");
return Context.getTypeDeclType(cast<RecordDecl>(GetDecl(Record[0])));
case pch::TYPE_ENUM:
assert(Record.size() == 1 && "Incorrect encoding of enum type");
return Context.getTypeDeclType(cast<EnumDecl>(GetDecl(Record[0])));
case pch::TYPE_OBJC_INTERFACE:
assert(Record.size() == 1 && "Incorrect encoding of objc interface type");
return Context.getObjCInterfaceType(
cast<ObjCInterfaceDecl>(GetDecl(Record[0])));
case pch::TYPE_OBJC_QUALIFIED_INTERFACE: {
unsigned Idx = 0;
ObjCInterfaceDecl *ItfD = cast<ObjCInterfaceDecl>(GetDecl(Record[Idx++]));
unsigned NumProtos = Record[Idx++];
llvm::SmallVector<ObjCProtocolDecl*, 4> Protos;
for (unsigned I = 0; I != NumProtos; ++I)
Protos.push_back(cast<ObjCProtocolDecl>(GetDecl(Record[Idx++])));
return Context.getObjCQualifiedInterfaceType(ItfD, &Protos[0], NumProtos);
}
case pch::TYPE_OBJC_QUALIFIED_ID: {
unsigned Idx = 0;
unsigned NumProtos = Record[Idx++];
llvm::SmallVector<ObjCProtocolDecl*, 4> Protos;
for (unsigned I = 0; I != NumProtos; ++I)
Protos.push_back(cast<ObjCProtocolDecl>(GetDecl(Record[Idx++])));
return Context.getObjCQualifiedIdType(&Protos[0], NumProtos);
}
}
// Suppress a GCC warning
return QualType();
}
QualType PCHReader::GetType(pch::TypeID ID) {
unsigned Quals = ID & 0x07;
unsigned Index = ID >> 3;
if (Index < pch::NUM_PREDEF_TYPE_IDS) {
QualType T;
switch ((pch::PredefinedTypeIDs)Index) {
case pch::PREDEF_TYPE_NULL_ID: return QualType();
case pch::PREDEF_TYPE_VOID_ID: T = Context.VoidTy; break;
case pch::PREDEF_TYPE_BOOL_ID: T = Context.BoolTy; break;
case pch::PREDEF_TYPE_CHAR_U_ID:
case pch::PREDEF_TYPE_CHAR_S_ID:
// FIXME: Check that the signedness of CharTy is correct!
T = Context.CharTy;
break;
case pch::PREDEF_TYPE_UCHAR_ID: T = Context.UnsignedCharTy; break;
case pch::PREDEF_TYPE_USHORT_ID: T = Context.UnsignedShortTy; break;
case pch::PREDEF_TYPE_UINT_ID: T = Context.UnsignedIntTy; break;
case pch::PREDEF_TYPE_ULONG_ID: T = Context.UnsignedLongTy; break;
case pch::PREDEF_TYPE_ULONGLONG_ID: T = Context.UnsignedLongLongTy; break;
case pch::PREDEF_TYPE_SCHAR_ID: T = Context.SignedCharTy; break;
case pch::PREDEF_TYPE_WCHAR_ID: T = Context.WCharTy; break;
case pch::PREDEF_TYPE_SHORT_ID: T = Context.ShortTy; break;
case pch::PREDEF_TYPE_INT_ID: T = Context.IntTy; break;
case pch::PREDEF_TYPE_LONG_ID: T = Context.LongTy; break;
case pch::PREDEF_TYPE_LONGLONG_ID: T = Context.LongLongTy; break;
case pch::PREDEF_TYPE_FLOAT_ID: T = Context.FloatTy; break;
case pch::PREDEF_TYPE_DOUBLE_ID: T = Context.DoubleTy; break;
case pch::PREDEF_TYPE_LONGDOUBLE_ID: T = Context.LongDoubleTy; break;
case pch::PREDEF_TYPE_OVERLOAD_ID: T = Context.OverloadTy; break;
case pch::PREDEF_TYPE_DEPENDENT_ID: T = Context.DependentTy; break;
}
assert(!T.isNull() && "Unknown predefined type");
return T.getQualifiedType(Quals);
}
Index -= pch::NUM_PREDEF_TYPE_IDS;
assert(Index < TypesLoaded.size() && "Type index out-of-range");
if (!TypesLoaded[Index])
TypesLoaded[Index] = ReadTypeRecord(TypeOffsets[Index]).getTypePtr();
return QualType(TypesLoaded[Index], Quals);
}
Decl *PCHReader::GetDecl(pch::DeclID ID) {
if (ID == 0)
return 0;
if (ID > DeclsLoaded.size()) {
Error("Declaration ID out-of-range for PCH file");
return 0;
}
unsigned Index = ID - 1;
if (!DeclsLoaded[Index])
ReadDeclRecord(DeclOffsets[Index], Index);
return DeclsLoaded[Index];
}
Stmt *PCHReader::GetStmt(uint64_t Offset) {
// Keep track of where we are in the stream, then jump back there
// after reading this declaration.
SavedStreamPosition SavedPosition(Stream);
Stream.JumpToBit(Offset);
return ReadStmt();
}
bool PCHReader::ReadDeclsLexicallyInContext(DeclContext *DC,
llvm::SmallVectorImpl<pch::DeclID> &Decls) {
assert(DC->hasExternalLexicalStorage() &&
"DeclContext has no lexical decls in storage");
uint64_t Offset = DeclContextOffsets[DC].first;
assert(Offset && "DeclContext has no lexical decls in storage");
// Keep track of where we are in the stream, then jump back there
// after reading this context.
SavedStreamPosition SavedPosition(Stream);
// Load the record containing all of the declarations lexically in
// this context.
Stream.JumpToBit(Offset);
RecordData Record;
unsigned Code = Stream.ReadCode();
unsigned RecCode = Stream.ReadRecord(Code, Record);
(void)RecCode;
assert(RecCode == pch::DECL_CONTEXT_LEXICAL && "Expected lexical block");
// Load all of the declaration IDs
Decls.clear();
Decls.insert(Decls.end(), Record.begin(), Record.end());
++NumLexicalDeclContextsRead;
return false;
}
bool PCHReader::ReadDeclsVisibleInContext(DeclContext *DC,
llvm::SmallVectorImpl<VisibleDeclaration> & Decls) {
assert(DC->hasExternalVisibleStorage() &&
"DeclContext has no visible decls in storage");
uint64_t Offset = DeclContextOffsets[DC].second;
assert(Offset && "DeclContext has no visible decls in storage");
// Keep track of where we are in the stream, then jump back there
// after reading this context.
SavedStreamPosition SavedPosition(Stream);
// Load the record containing all of the declarations visible in
// this context.
Stream.JumpToBit(Offset);
RecordData Record;
unsigned Code = Stream.ReadCode();
unsigned RecCode = Stream.ReadRecord(Code, Record);
(void)RecCode;
assert(RecCode == pch::DECL_CONTEXT_VISIBLE && "Expected visible block");
if (Record.size() == 0)
return false;
Decls.clear();
unsigned Idx = 0;
while (Idx < Record.size()) {
Decls.push_back(VisibleDeclaration());
Decls.back().Name = ReadDeclarationName(Record, Idx);
unsigned Size = Record[Idx++];
llvm::SmallVector<unsigned, 4> & LoadedDecls
= Decls.back().Declarations;
LoadedDecls.reserve(Size);
for (unsigned I = 0; I < Size; ++I)
LoadedDecls.push_back(Record[Idx++]);
}
++NumVisibleDeclContextsRead;
return false;
}
void PCHReader::StartTranslationUnit(ASTConsumer *Consumer) {
this->Consumer = Consumer;
if (!Consumer)
return;
for (unsigned I = 0, N = ExternalDefinitions.size(); I != N; ++I) {
Decl *D = GetDecl(ExternalDefinitions[I]);
DeclGroupRef DG(D);
Consumer->HandleTopLevelDecl(DG);
}
for (unsigned I = 0, N = InterestingDecls.size(); I != N; ++I) {
DeclGroupRef DG(InterestingDecls[I]);
Consumer->HandleTopLevelDecl(DG);
}
}
void PCHReader::PrintStats() {
std::fprintf(stderr, "*** PCH Statistics:\n");
unsigned NumTypesLoaded
= TypesLoaded.size() - std::count(TypesLoaded.begin(), TypesLoaded.end(),
(Type *)0);
unsigned NumDeclsLoaded
= DeclsLoaded.size() - std::count(DeclsLoaded.begin(), DeclsLoaded.end(),
(Decl *)0);
unsigned NumIdentifiersLoaded
= IdentifiersLoaded.size() - std::count(IdentifiersLoaded.begin(),
IdentifiersLoaded.end(),
(IdentifierInfo *)0);
unsigned NumSelectorsLoaded
= SelectorsLoaded.size() - std::count(SelectorsLoaded.begin(),
SelectorsLoaded.end(),
Selector());
if (!TypesLoaded.empty())
std::fprintf(stderr, " %u/%u types read (%f%%)\n",
NumTypesLoaded, (unsigned)TypesLoaded.size(),
((float)NumTypesLoaded/TypesLoaded.size() * 100));
if (!DeclsLoaded.empty())
std::fprintf(stderr, " %u/%u declarations read (%f%%)\n",
NumDeclsLoaded, (unsigned)DeclsLoaded.size(),
((float)NumDeclsLoaded/DeclsLoaded.size() * 100));
if (!IdentifiersLoaded.empty())
std::fprintf(stderr, " %u/%u identifiers read (%f%%)\n",
NumIdentifiersLoaded, (unsigned)IdentifiersLoaded.size(),
((float)NumIdentifiersLoaded/IdentifiersLoaded.size() * 100));
if (TotalNumSelectors)
std::fprintf(stderr, " %u/%u selectors read (%f%%)\n",
NumSelectorsLoaded, TotalNumSelectors,
((float)NumSelectorsLoaded/TotalNumSelectors * 100));
if (TotalNumStatements)
std::fprintf(stderr, " %u/%u statements read (%f%%)\n",
NumStatementsRead, TotalNumStatements,
((float)NumStatementsRead/TotalNumStatements * 100));
if (TotalNumMacros)
std::fprintf(stderr, " %u/%u macros read (%f%%)\n",
NumMacrosRead, TotalNumMacros,
((float)NumMacrosRead/TotalNumMacros * 100));
if (TotalLexicalDeclContexts)
std::fprintf(stderr, " %u/%u lexical declcontexts read (%f%%)\n",
NumLexicalDeclContextsRead, TotalLexicalDeclContexts,
((float)NumLexicalDeclContextsRead/TotalLexicalDeclContexts
* 100));
if (TotalVisibleDeclContexts)
std::fprintf(stderr, " %u/%u visible declcontexts read (%f%%)\n",
NumVisibleDeclContextsRead, TotalVisibleDeclContexts,
((float)NumVisibleDeclContextsRead/TotalVisibleDeclContexts
* 100));
if (TotalSelectorsInMethodPool) {
std::fprintf(stderr, " %u/%u method pool entries read (%f%%)\n",
NumMethodPoolSelectorsRead, TotalSelectorsInMethodPool,
((float)NumMethodPoolSelectorsRead/TotalSelectorsInMethodPool
* 100));
std::fprintf(stderr, " %u method pool misses\n", NumMethodPoolMisses);
}
std::fprintf(stderr, "\n");
}
void PCHReader::InitializeSema(Sema &S) {
SemaObj = &S;
S.ExternalSource = this;
// Makes sure any declarations that were deserialized "too early"
// still get added to the identifier's declaration chains.
for (unsigned I = 0, N = PreloadedDecls.size(); I != N; ++I) {
SemaObj->TUScope->AddDecl(Action::DeclPtrTy::make(PreloadedDecls[I]));
SemaObj->IdResolver.AddDecl(PreloadedDecls[I]);
}
PreloadedDecls.clear();
// If there were any tentative definitions, deserialize them and add
// them to Sema's table of tentative definitions.
for (unsigned I = 0, N = TentativeDefinitions.size(); I != N; ++I) {
VarDecl *Var = cast<VarDecl>(GetDecl(TentativeDefinitions[I]));
SemaObj->TentativeDefinitions[Var->getDeclName()] = Var;
}
// If there were any locally-scoped external declarations,
// deserialize them and add them to Sema's table of locally-scoped
// external declarations.
for (unsigned I = 0, N = LocallyScopedExternalDecls.size(); I != N; ++I) {
NamedDecl *D = cast<NamedDecl>(GetDecl(LocallyScopedExternalDecls[I]));
SemaObj->LocallyScopedExternalDecls[D->getDeclName()] = D;
}
}
IdentifierInfo* PCHReader::get(const char *NameStart, const char *NameEnd) {
// Try to find this name within our on-disk hash table
PCHIdentifierLookupTable *IdTable
= (PCHIdentifierLookupTable *)IdentifierLookupTable;
std::pair<const char*, unsigned> Key(NameStart, NameEnd - NameStart);
PCHIdentifierLookupTable::iterator Pos = IdTable->find(Key);
if (Pos == IdTable->end())
return 0;
// Dereferencing the iterator has the effect of building the
// IdentifierInfo node and populating it with the various
// declarations it needs.
return *Pos;
}
std::pair<ObjCMethodList, ObjCMethodList>
PCHReader::ReadMethodPool(Selector Sel) {
if (!MethodPoolLookupTable)
return std::pair<ObjCMethodList, ObjCMethodList>();
// Try to find this selector within our on-disk hash table.
PCHMethodPoolLookupTable *PoolTable
= (PCHMethodPoolLookupTable*)MethodPoolLookupTable;
PCHMethodPoolLookupTable::iterator Pos = PoolTable->find(Sel);
if (Pos == PoolTable->end()) {
++NumMethodPoolMisses;
return std::pair<ObjCMethodList, ObjCMethodList>();;
}
++NumMethodPoolSelectorsRead;
return *Pos;
}
void PCHReader::SetIdentifierInfo(unsigned ID, IdentifierInfo *II) {
assert(ID && "Non-zero identifier ID required");
assert(ID <= IdentifiersLoaded.size() && "Identifier ID out of range");
IdentifiersLoaded[ID - 1] = II;
}
IdentifierInfo *PCHReader::DecodeIdentifierInfo(unsigned ID) {
if (ID == 0)
return 0;
if (!IdentifierTableData || IdentifiersLoaded.empty()) {
Error("No identifier table in PCH file");
return 0;
}
if (!IdentifiersLoaded[ID - 1]) {
uint32_t Offset = IdentifierOffsets[ID - 1];
const char *Str = IdentifierTableData + Offset;
// If there is an identifier lookup table, but the offset of this
// string is after the identifier table itself, then we know that
// this string is not in the on-disk hash table. Therefore,
// disable lookup into the hash table when looking for this
// identifier.
PCHIdentifierLookupTable *IdTable
= (PCHIdentifierLookupTable *)IdentifierLookupTable;
if (!IdTable ||
Offset >= uint32_t(IdTable->getBuckets() - IdTable->getBase())) {
// Turn off lookup into the on-disk hash table. We know that
// this identifier is not there.
if (IdTable)
PP.getIdentifierTable().setExternalIdentifierLookup(0);
// All of the strings in the PCH file are preceded by a 16-bit
// length. Extract that 16-bit length to avoid having to execute
// strlen().
const char *StrLenPtr = Str - 2;
unsigned StrLen = (((unsigned) StrLenPtr[0])
| (((unsigned) StrLenPtr[1]) << 8)) - 1;
IdentifiersLoaded[ID - 1] = &Context.Idents.get(Str, Str + StrLen);
// Turn on lookup into the on-disk hash table, if we have an
// on-disk hash table.
if (IdTable)
PP.getIdentifierTable().setExternalIdentifierLookup(this);
} else {
// The identifier is a key in our on-disk hash table. Since we
// know where the hash table entry starts, just read in this
// (key, value) pair.
PCHIdentifierLookupTrait Trait(const_cast<PCHReader &>(*this));
const unsigned char *Pos = (const unsigned char *)Str - 4;
std::pair<unsigned, unsigned> KeyDataLengths
= Trait.ReadKeyDataLength(Pos);
PCHIdentifierLookupTrait::internal_key_type InternalKey
= Trait.ReadKey(Pos, KeyDataLengths.first);
Pos = (const unsigned char *)Str + KeyDataLengths.first;
IdentifiersLoaded[ID - 1] = Trait.ReadData(InternalKey, Pos,
KeyDataLengths.second);
}
}
return IdentifiersLoaded[ID - 1];
}
Selector PCHReader::DecodeSelector(unsigned ID) {
if (ID == 0)
return Selector();
if (!MethodPoolLookupTableData) {
Error("No selector table in PCH file");
return Selector();
}
if (ID > TotalNumSelectors) {
Error("Selector ID out of range");
return Selector();
}
unsigned Index = ID - 1;
if (SelectorsLoaded[Index].getAsOpaquePtr() == 0) {
// Load this selector from the selector table.
// FIXME: endianness portability issues with SelectorOffsets table
PCHMethodPoolLookupTrait Trait(*this);
SelectorsLoaded[Index]
= Trait.ReadKey(MethodPoolLookupTableData + SelectorOffsets[Index], 0);
}
return SelectorsLoaded[Index];
}
DeclarationName
PCHReader::ReadDeclarationName(const RecordData &Record, unsigned &Idx) {
DeclarationName::NameKind Kind = (DeclarationName::NameKind)Record[Idx++];
switch (Kind) {
case DeclarationName::Identifier:
return DeclarationName(GetIdentifierInfo(Record, Idx));
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
return DeclarationName(GetSelector(Record, Idx));
case DeclarationName::CXXConstructorName:
return Context.DeclarationNames.getCXXConstructorName(
GetType(Record[Idx++]));
case DeclarationName::CXXDestructorName:
return Context.DeclarationNames.getCXXDestructorName(
GetType(Record[Idx++]));
case DeclarationName::CXXConversionFunctionName:
return Context.DeclarationNames.getCXXConversionFunctionName(
GetType(Record[Idx++]));
case DeclarationName::CXXOperatorName:
return Context.DeclarationNames.getCXXOperatorName(
(OverloadedOperatorKind)Record[Idx++]);
case DeclarationName::CXXUsingDirective:
return DeclarationName::getUsingDirectiveName();
}
// Required to silence GCC warning
return DeclarationName();
}
/// \brief Read an integral value
llvm::APInt PCHReader::ReadAPInt(const RecordData &Record, unsigned &Idx) {
unsigned BitWidth = Record[Idx++];
unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
llvm::APInt Result(BitWidth, NumWords, &Record[Idx]);
Idx += NumWords;
return Result;
}
/// \brief Read a signed integral value
llvm::APSInt PCHReader::ReadAPSInt(const RecordData &Record, unsigned &Idx) {
bool isUnsigned = Record[Idx++];
return llvm::APSInt(ReadAPInt(Record, Idx), isUnsigned);
}
/// \brief Read a floating-point value
llvm::APFloat PCHReader::ReadAPFloat(const RecordData &Record, unsigned &Idx) {
return llvm::APFloat(ReadAPInt(Record, Idx));
}
// \brief Read a string
std::string PCHReader::ReadString(const RecordData &Record, unsigned &Idx) {
unsigned Len = Record[Idx++];
std::string Result(&Record[Idx], &Record[Idx] + Len);
Idx += Len;
return Result;
}
/// \brief Reads attributes from the current stream position.
Attr *PCHReader::ReadAttributes() {
unsigned Code = Stream.ReadCode();
assert(Code == llvm::bitc::UNABBREV_RECORD &&
"Expected unabbreviated record"); (void)Code;
RecordData Record;
unsigned Idx = 0;
unsigned RecCode = Stream.ReadRecord(Code, Record);
assert(RecCode == pch::DECL_ATTR && "Expected attribute record");
(void)RecCode;
#define SIMPLE_ATTR(Name) \
case Attr::Name: \
New = ::new (Context) Name##Attr(); \
break
#define STRING_ATTR(Name) \
case Attr::Name: \
New = ::new (Context) Name##Attr(ReadString(Record, Idx)); \
break
#define UNSIGNED_ATTR(Name) \
case Attr::Name: \
New = ::new (Context) Name##Attr(Record[Idx++]); \
break
Attr *Attrs = 0;
while (Idx < Record.size()) {
Attr *New = 0;
Attr::Kind Kind = (Attr::Kind)Record[Idx++];
bool IsInherited = Record[Idx++];
switch (Kind) {
STRING_ATTR(Alias);
UNSIGNED_ATTR(Aligned);
SIMPLE_ATTR(AlwaysInline);
SIMPLE_ATTR(AnalyzerNoReturn);
STRING_ATTR(Annotate);
STRING_ATTR(AsmLabel);
case Attr::Blocks:
New = ::new (Context) BlocksAttr(
(BlocksAttr::BlocksAttrTypes)Record[Idx++]);
break;
case Attr::Cleanup:
New = ::new (Context) CleanupAttr(
cast<FunctionDecl>(GetDecl(Record[Idx++])));
break;
SIMPLE_ATTR(Const);
UNSIGNED_ATTR(Constructor);
SIMPLE_ATTR(DLLExport);
SIMPLE_ATTR(DLLImport);
SIMPLE_ATTR(Deprecated);
UNSIGNED_ATTR(Destructor);
SIMPLE_ATTR(FastCall);
case Attr::Format: {
std::string Type = ReadString(Record, Idx);
unsigned FormatIdx = Record[Idx++];
unsigned FirstArg = Record[Idx++];
New = ::new (Context) FormatAttr(Type, FormatIdx, FirstArg);
break;
}
SIMPLE_ATTR(GNUInline);
case Attr::IBOutletKind:
New = ::new (Context) IBOutletAttr();
break;
SIMPLE_ATTR(NoReturn);
SIMPLE_ATTR(NoThrow);
SIMPLE_ATTR(Nodebug);
SIMPLE_ATTR(Noinline);
case Attr::NonNull: {
unsigned Size = Record[Idx++];
llvm::SmallVector<unsigned, 16> ArgNums;
ArgNums.insert(ArgNums.end(), &Record[Idx], &Record[Idx] + Size);
Idx += Size;
New = ::new (Context) NonNullAttr(&ArgNums[0], Size);
break;
}
SIMPLE_ATTR(ObjCException);
SIMPLE_ATTR(ObjCNSObject);
SIMPLE_ATTR(ObjCOwnershipRetain);
SIMPLE_ATTR(ObjCOwnershipReturns);
SIMPLE_ATTR(Overloadable);
UNSIGNED_ATTR(Packed);
SIMPLE_ATTR(Pure);
UNSIGNED_ATTR(Regparm);
STRING_ATTR(Section);
SIMPLE_ATTR(StdCall);
SIMPLE_ATTR(TransparentUnion);
SIMPLE_ATTR(Unavailable);
SIMPLE_ATTR(Unused);
SIMPLE_ATTR(Used);
case Attr::Visibility:
New = ::new (Context) VisibilityAttr(
(VisibilityAttr::VisibilityTypes)Record[Idx++]);
break;
SIMPLE_ATTR(WarnUnusedResult);
SIMPLE_ATTR(Weak);
SIMPLE_ATTR(WeakImport);
}
assert(New && "Unable to decode attribute?");
New->setInherited(IsInherited);
New->setNext(Attrs);
Attrs = New;
}
#undef UNSIGNED_ATTR
#undef STRING_ATTR
#undef SIMPLE_ATTR
// The list of attributes was built backwards. Reverse the list
// before returning it.
Attr *PrevAttr = 0, *NextAttr = 0;
while (Attrs) {
NextAttr = Attrs->getNext();
Attrs->setNext(PrevAttr);
PrevAttr = Attrs;
Attrs = NextAttr;
}
return PrevAttr;
}
DiagnosticBuilder PCHReader::Diag(unsigned DiagID) {
return Diag(SourceLocation(), DiagID);
}
DiagnosticBuilder PCHReader::Diag(SourceLocation Loc, unsigned DiagID) {
return PP.getDiagnostics().Report(FullSourceLoc(Loc,
Context.getSourceManager()),
DiagID);
}
/// \brief Retrieve the identifier table associated with the
/// preprocessor.
IdentifierTable &PCHReader::getIdentifierTable() {
return PP.getIdentifierTable();
}
/// \brief Record that the given ID maps to the given switch-case
/// statement.
void PCHReader::RecordSwitchCaseID(SwitchCase *SC, unsigned ID) {
assert(SwitchCaseStmts[ID] == 0 && "Already have a SwitchCase with this ID");
SwitchCaseStmts[ID] = SC;
}
/// \brief Retrieve the switch-case statement with the given ID.
SwitchCase *PCHReader::getSwitchCaseWithID(unsigned ID) {
assert(SwitchCaseStmts[ID] != 0 && "No SwitchCase with this ID");
return SwitchCaseStmts[ID];
}
/// \brief Record that the given label statement has been
/// deserialized and has the given ID.
void PCHReader::RecordLabelStmt(LabelStmt *S, unsigned ID) {
assert(LabelStmts.find(ID) == LabelStmts.end() &&
"Deserialized label twice");
LabelStmts[ID] = S;
// If we've already seen any goto statements that point to this
// label, resolve them now.
typedef std::multimap<unsigned, GotoStmt *>::iterator GotoIter;
std::pair<GotoIter, GotoIter> Gotos = UnresolvedGotoStmts.equal_range(ID);
for (GotoIter Goto = Gotos.first; Goto != Gotos.second; ++Goto)
Goto->second->setLabel(S);
UnresolvedGotoStmts.erase(Gotos.first, Gotos.second);
// If we've already seen any address-label statements that point to
// this label, resolve them now.
typedef std::multimap<unsigned, AddrLabelExpr *>::iterator AddrLabelIter;
std::pair<AddrLabelIter, AddrLabelIter> AddrLabels
= UnresolvedAddrLabelExprs.equal_range(ID);
for (AddrLabelIter AddrLabel = AddrLabels.first;
AddrLabel != AddrLabels.second; ++AddrLabel)
AddrLabel->second->setLabel(S);
UnresolvedAddrLabelExprs.erase(AddrLabels.first, AddrLabels.second);
}
/// \brief Set the label of the given statement to the label
/// identified by ID.
///
/// Depending on the order in which the label and other statements
/// referencing that label occur, this operation may complete
/// immediately (updating the statement) or it may queue the
/// statement to be back-patched later.
void PCHReader::SetLabelOf(GotoStmt *S, unsigned ID) {
std::map<unsigned, LabelStmt *>::iterator Label = LabelStmts.find(ID);
if (Label != LabelStmts.end()) {
// We've already seen this label, so set the label of the goto and
// we're done.
S->setLabel(Label->second);
} else {
// We haven't seen this label yet, so add this goto to the set of
// unresolved goto statements.
UnresolvedGotoStmts.insert(std::make_pair(ID, S));
}
}
/// \brief Set the label of the given expression to the label
/// identified by ID.
///
/// Depending on the order in which the label and other statements
/// referencing that label occur, this operation may complete
/// immediately (updating the statement) or it may queue the
/// statement to be back-patched later.
void PCHReader::SetLabelOf(AddrLabelExpr *S, unsigned ID) {
std::map<unsigned, LabelStmt *>::iterator Label = LabelStmts.find(ID);
if (Label != LabelStmts.end()) {
// We've already seen this label, so set the label of the
// label-address expression and we're done.
S->setLabel(Label->second);
} else {
// We haven't seen this label yet, so add this label-address
// expression to the set of unresolved label-address expressions.
UnresolvedAddrLabelExprs.insert(std::make_pair(ID, S));
}
}