blob: b626847d6251a86ea87604a23165d152a6e90c0d [file] [log] [blame]
//===---- CodeCompleteConsumer.h - Code Completion Interface ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the CodeCompleteConsumer class.
//
//===----------------------------------------------------------------------===//
#include "clang/Sema/CodeCompleteConsumer.h"
#include "clang/AST/DeclCXX.h"
#include "clang/Parse/Scope.h"
#include "clang/Lex/Preprocessor.h"
#include "Sema.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <string.h>
using namespace clang;
CodeCompleteConsumer::CodeCompleteConsumer(Sema &S) : SemaRef(S) {
SemaRef.setCodeCompleteConsumer(this);
}
CodeCompleteConsumer::~CodeCompleteConsumer() {
SemaRef.setCodeCompleteConsumer(0);
}
void
CodeCompleteConsumer::CodeCompleteMemberReferenceExpr(Scope *S,
QualType BaseType,
bool IsArrow) {
if (IsArrow) {
if (const PointerType *Ptr = BaseType->getAs<PointerType>())
BaseType = Ptr->getPointeeType();
else if (BaseType->isObjCObjectPointerType())
/*Do nothing*/ ;
else
return;
}
ResultSet Results(*this);
unsigned NextRank = 0;
if (const RecordType *Record = BaseType->getAs<RecordType>()) {
NextRank = CollectMemberLookupResults(Record->getDecl(), NextRank, Results);
if (getSema().getLangOptions().CPlusPlus) {
if (!Results.empty())
// The "template" keyword can follow "->" or "." in the grammar.
Results.MaybeAddResult(Result("template", NextRank++));
// We could have the start of a nested-name-specifier. Add those
// results as well.
Results.setFilter(&CodeCompleteConsumer::IsNestedNameSpecifier);
CollectLookupResults(S, NextRank, Results);
}
// Hand off the results found for code completion.
ProcessCodeCompleteResults(Results.data(), Results.size());
// We're done!
return;
}
}
void CodeCompleteConsumer::CodeCompleteTag(Scope *S, ElaboratedType::TagKind TK) {
ResultSet::LookupFilter Filter = 0;
switch (TK) {
case ElaboratedType::TK_enum:
Filter = &CodeCompleteConsumer::IsEnum;
break;
case ElaboratedType::TK_class:
case ElaboratedType::TK_struct:
Filter = &CodeCompleteConsumer::IsClassOrStruct;
break;
case ElaboratedType::TK_union:
Filter = &CodeCompleteConsumer::IsUnion;
break;
}
ResultSet Results(*this, Filter);
unsigned NextRank = CollectLookupResults(S, 0, Results);
if (getSema().getLangOptions().CPlusPlus) {
// We could have the start of a nested-name-specifier. Add those
// results as well.
Results.setFilter(&CodeCompleteConsumer::IsNestedNameSpecifier);
CollectLookupResults(S, NextRank, Results);
}
ProcessCodeCompleteResults(Results.data(), Results.size());
}
void
CodeCompleteConsumer::CodeCompleteQualifiedId(Scope *S,
NestedNameSpecifier *NNS,
bool EnteringContext) {
CXXScopeSpec SS;
SS.setScopeRep(NNS);
DeclContext *Ctx = getSema().computeDeclContext(SS, EnteringContext);
if (!Ctx)
return;
ResultSet Results(*this);
unsigned NextRank = CollectMemberLookupResults(Ctx, 0, Results);
// The "template" keyword can follow "::" in the grammar
if (!Results.empty())
Results.MaybeAddResult(Result("template", NextRank));
ProcessCodeCompleteResults(Results.data(), Results.size());
}
void CodeCompleteConsumer::ResultSet::MaybeAddResult(Result R) {
if (R.Kind != Result::RK_Declaration) {
// For non-declaration results, just add the result.
Results.push_back(R);
return;
}
// Look through using declarations.
if (UsingDecl *Using = dyn_cast<UsingDecl>(R.Declaration))
return MaybeAddResult(Result(Using->getTargetDecl(), R.Rank));
// Handle each declaration in an overload set separately.
if (OverloadedFunctionDecl *Ovl
= dyn_cast<OverloadedFunctionDecl>(R.Declaration)) {
for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
FEnd = Ovl->function_end();
F != FEnd; ++F)
MaybeAddResult(Result(*F, R.Rank));
return;
}
Decl *CanonDecl = R.Declaration->getCanonicalDecl();
unsigned IDNS = CanonDecl->getIdentifierNamespace();
// Friend declarations and declarations introduced due to friends are never
// added as results.
if (isa<FriendDecl>(CanonDecl) ||
(IDNS & (Decl::IDNS_OrdinaryFriend | Decl::IDNS_TagFriend)))
return;
if (const IdentifierInfo *Id = R.Declaration->getIdentifier()) {
// __va_list_tag is a freak of nature. Find it and skip it.
if (Id->isStr("__va_list_tag"))
return;
// FIXME: Should we filter out other names in the implementation's
// namespace, e.g., those containing a __ or that start with _[A-Z]?
}
// C++ constructors are never found by name lookup.
if (isa<CXXConstructorDecl>(CanonDecl))
return;
// Filter out any unwanted results.
if (Filter && !(Completer.*Filter)(R.Declaration))
return;
ShadowMap &SMap = ShadowMaps.back();
ShadowMap::iterator I, IEnd;
for (llvm::tie(I, IEnd) = SMap.equal_range(R.Declaration->getDeclName());
I != IEnd; ++I) {
NamedDecl *ND = I->second.first;
unsigned Index = I->second.second;
if (ND->getCanonicalDecl() == CanonDecl) {
// This is a redeclaration. Always pick the newer declaration.
I->second.first = R.Declaration;
Results[Index].Declaration = R.Declaration;
// Pick the best rank of the two.
Results[Index].Rank = std::min(Results[Index].Rank, R.Rank);
// We're done.
return;
}
}
// This is a new declaration in this scope. However, check whether this
// declaration name is hidden by a similarly-named declaration in an outer
// scope.
std::list<ShadowMap>::iterator SM, SMEnd = ShadowMaps.end();
--SMEnd;
for (SM = ShadowMaps.begin(); SM != SMEnd; ++SM) {
for (llvm::tie(I, IEnd) = SM->equal_range(R.Declaration->getDeclName());
I != IEnd; ++I) {
// A tag declaration does not hide a non-tag declaration.
if (I->second.first->getIdentifierNamespace() == Decl::IDNS_Tag &&
(IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
Decl::IDNS_ObjCProtocol)))
continue;
// Protocols are in distinct namespaces from everything else.
if (((I->second.first->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
|| (IDNS & Decl::IDNS_ObjCProtocol)) &&
I->second.first->getIdentifierNamespace() != IDNS)
continue;
// The newly-added result is hidden by an entry in the shadow map.
if (Completer.canHiddenResultBeFound(R.Declaration, I->second.first)) {
// Note that this result was hidden.
R.Hidden = true;
} else {
// This result was hidden and cannot be found; don't bother adding
// it.
return;
}
break;
}
}
// Make sure that any given declaration only shows up in the result set once.
if (!AllDeclsFound.insert(CanonDecl))
return;
// Insert this result into the set of results and into the current shadow
// map.
SMap.insert(std::make_pair(R.Declaration->getDeclName(),
std::make_pair(R.Declaration, Results.size())));
Results.push_back(R);
}
/// \brief Enter into a new scope.
void CodeCompleteConsumer::ResultSet::EnterNewScope() {
ShadowMaps.push_back(ShadowMap());
}
/// \brief Exit from the current scope.
void CodeCompleteConsumer::ResultSet::ExitScope() {
ShadowMaps.pop_back();
}
// Find the next outer declaration context corresponding to this scope.
static DeclContext *findOuterContext(Scope *S) {
for (S = S->getParent(); S; S = S->getParent())
if (S->getEntity())
return static_cast<DeclContext *>(S->getEntity())->getPrimaryContext();
return 0;
}
/// \brief Collect the results of searching for declarations within the given
/// scope and its parent scopes.
///
/// \param S the scope in which we will start looking for declarations.
///
/// \param InitialRank the initial rank given to results in this scope.
/// Larger rank values will be used for results found in parent scopes.
unsigned CodeCompleteConsumer::CollectLookupResults(Scope *S,
unsigned InitialRank,
ResultSet &Results) {
if (!S)
return InitialRank;
// FIXME: Using directives!
unsigned NextRank = InitialRank;
Results.EnterNewScope();
if (S->getEntity() &&
!((DeclContext *)S->getEntity())->isFunctionOrMethod()) {
// Look into this scope's declaration context, along with any of its
// parent lookup contexts (e.g., enclosing classes), up to the point
// where we hit the context stored in the next outer scope.
DeclContext *Ctx = (DeclContext *)S->getEntity();
DeclContext *OuterCtx = findOuterContext(S);
for (; Ctx && Ctx->getPrimaryContext() != OuterCtx;
Ctx = Ctx->getLookupParent()) {
if (Ctx->isFunctionOrMethod())
continue;
NextRank = CollectMemberLookupResults(Ctx, NextRank + 1, Results);
}
} else if (!S->getParent()) {
// Look into the translation unit scope. We walk through the translation
// unit's declaration context, because the Scope itself won't have all of
// the declarations if
NextRank = CollectMemberLookupResults(
getSema().Context.getTranslationUnitDecl(),
NextRank + 1, Results);
} else {
// Walk through the declarations in this Scope.
for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
D != DEnd; ++D) {
if (NamedDecl *ND = dyn_cast<NamedDecl>((Decl *)((*D).get())))
Results.MaybeAddResult(Result(ND, NextRank));
}
NextRank = NextRank + 1;
}
// Lookup names in the parent scope.
NextRank = CollectLookupResults(S->getParent(), NextRank, Results);
Results.ExitScope();
return NextRank;
}
/// \brief Collect the results of searching for members within the given
/// declaration context.
///
/// \param Ctx the declaration context from which we will gather results.
///
/// \param InitialRank the initial rank given to results in this declaration
/// context. Larger rank values will be used for, e.g., members found in
/// base classes.
///
/// \param Results the result set that will be extended with any results
/// found within this declaration context (and, for a C++ class, its bases).
///
/// \returns the next higher rank value, after considering all of the
/// names within this declaration context.
unsigned CodeCompleteConsumer::CollectMemberLookupResults(DeclContext *Ctx,
unsigned InitialRank,
ResultSet &Results) {
// Enumerate all of the results in this context.
Results.EnterNewScope();
for (DeclContext *CurCtx = Ctx->getPrimaryContext(); CurCtx;
CurCtx = CurCtx->getNextContext()) {
for (DeclContext::decl_iterator D = CurCtx->decls_begin(),
DEnd = CurCtx->decls_end();
D != DEnd; ++D) {
if (NamedDecl *ND = dyn_cast<NamedDecl>(*D))
Results.MaybeAddResult(Result(ND, InitialRank));
}
}
// Traverse the contexts of inherited classes.
unsigned NextRank = InitialRank;
if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(),
BEnd = Record->bases_end();
B != BEnd; ++B) {
QualType BaseType = B->getType();
// Don't look into dependent bases, because name lookup can't look
// there anyway.
if (BaseType->isDependentType())
continue;
const RecordType *Record = BaseType->getAs<RecordType>();
if (!Record)
continue;
// FIXME: We should keep track of the virtual bases we visit, so
// that we don't visit them more than once.
// FIXME: It would be nice to be able to determine whether referencing
// a particular member would be ambiguous. For example, given
//
// struct A { int member; };
// struct B { int member; };
// struct C : A, B { };
//
// void f(C *c) { c->### }
// accessing 'member' would result in an ambiguity. However, code
// completion could be smart enough to qualify the member with the
// base class, e.g.,
//
// c->B::member
//
// or
//
// c->A::member
// Collect results from this base class (and its bases).
NextRank = std::max(NextRank,
CollectMemberLookupResults(Record->getDecl(),
InitialRank + 1,
Results));
}
}
// FIXME: Look into base classes in Objective-C!
Results.ExitScope();
return NextRank;
}
/// \brief Determines whether the given declaration is suitable as the
/// start of a C++ nested-name-specifier, e.g., a class or namespace.
bool CodeCompleteConsumer::IsNestedNameSpecifier(NamedDecl *ND) const {
// Allow us to find class templates, too.
if (ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(ND))
ND = ClassTemplate->getTemplatedDecl();
return getSema().isAcceptableNestedNameSpecifier(ND);
}
/// \brief Determines whether the given declaration is an enumeration.
bool CodeCompleteConsumer::IsEnum(NamedDecl *ND) const {
return isa<EnumDecl>(ND);
}
/// \brief Determines whether the given declaration is a class or struct.
bool CodeCompleteConsumer::IsClassOrStruct(NamedDecl *ND) const {
// Allow us to find class templates, too.
if (ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(ND))
ND = ClassTemplate->getTemplatedDecl();
if (RecordDecl *RD = dyn_cast<RecordDecl>(ND))
return RD->getTagKind() == TagDecl::TK_class ||
RD->getTagKind() == TagDecl::TK_struct;
return false;
}
/// \brief Determines whether the given declaration is a union.
bool CodeCompleteConsumer::IsUnion(NamedDecl *ND) const {
// Allow us to find class templates, too.
if (ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(ND))
ND = ClassTemplate->getTemplatedDecl();
if (RecordDecl *RD = dyn_cast<RecordDecl>(ND))
return RD->getTagKind() == TagDecl::TK_union;
return false;
}
namespace {
struct VISIBILITY_HIDDEN SortCodeCompleteResult {
typedef CodeCompleteConsumer::Result Result;
bool operator()(const Result &X, const Result &Y) const {
// Sort first by rank.
if (X.Rank < Y.Rank)
return true;
else if (X.Rank > Y.Rank)
return false;
// Result kinds are ordered by decreasing importance.
if (X.Kind < Y.Kind)
return true;
else if (X.Kind > Y.Kind)
return false;
// Non-hidden names precede hidden names.
if (X.Hidden != Y.Hidden)
return !X.Hidden;
// Ordering depends on the kind of result.
switch (X.Kind) {
case Result::RK_Declaration:
// Order based on the declaration names.
return X.Declaration->getDeclName() < Y.Declaration->getDeclName();
case Result::RK_Keyword:
return strcmp(X.Keyword, Y.Keyword) == -1;
}
// If only our C++ compiler did control-flow warnings properly.
return false;
}
};
}
/// \brief Determines whether the given hidden result could be found with
/// some extra work, e.g., by qualifying the name.
///
/// \param Hidden the declaration that is hidden by the currenly \p Visible
/// declaration.
///
/// \param Visible the declaration with the same name that is already visible.
///
/// \returns true if the hidden result can be found by some mechanism,
/// false otherwise.
bool CodeCompleteConsumer::canHiddenResultBeFound(NamedDecl *Hidden,
NamedDecl *Visible) {
// In C, there is no way to refer to a hidden name.
if (!getSema().getLangOptions().CPlusPlus)
return false;
DeclContext *HiddenCtx = Hidden->getDeclContext()->getLookupContext();
// There is no way to qualify a name declared in a function or method.
if (HiddenCtx->isFunctionOrMethod())
return false;
// If the hidden and visible declarations are in different name-lookup
// contexts, then we can qualify the name of the hidden declaration.
// FIXME: Optionally compute the string needed to refer to the hidden
// name.
return HiddenCtx != Visible->getDeclContext()->getLookupContext();
}
void
PrintingCodeCompleteConsumer::ProcessCodeCompleteResults(Result *Results,
unsigned NumResults) {
// Sort the results by rank/kind/etc.
std::stable_sort(Results, Results + NumResults, SortCodeCompleteResult());
// Print the results.
for (unsigned I = 0; I != NumResults; ++I) {
switch (Results[I].Kind) {
case Result::RK_Declaration:
OS << Results[I].Declaration->getNameAsString() << " : "
<< Results[I].Rank;
if (Results[I].Hidden)
OS << " (Hidden)";
OS << '\n';
break;
case Result::RK_Keyword:
OS << Results[I].Keyword << " : " << Results[I].Rank << '\n';
break;
}
}
// Once we've printed the code-completion results, suppress remaining
// diagnostics.
// FIXME: Move this somewhere else!
getSema().PP.getDiagnostics().setSuppressAllDiagnostics();
}