| //===--- Expr.cpp - Expression AST Node Implementation --------------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file was developed by Chris Lattner and is distributed under | 
 | // the University of Illinois Open Source License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements the Expr class and subclasses. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "clang/AST/Expr.h" | 
 | #include "clang/AST/ASTContext.h" | 
 | #include "clang/AST/StmtVisitor.h" | 
 | #include "clang/Lex/IdentifierTable.h" | 
 | using namespace clang; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Primary Expressions. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | StringLiteral::StringLiteral(const char *strData, unsigned byteLength,  | 
 |                              bool Wide, QualType t, SourceLocation firstLoc, | 
 |                              SourceLocation lastLoc) :  | 
 |   Expr(StringLiteralClass, t) { | 
 |   // OPTIMIZE: could allocate this appended to the StringLiteral. | 
 |   char *AStrData = new char[byteLength]; | 
 |   memcpy(AStrData, strData, byteLength); | 
 |   StrData = AStrData; | 
 |   ByteLength = byteLength; | 
 |   IsWide = Wide; | 
 |   firstTokLoc = firstLoc; | 
 |   lastTokLoc = lastLoc; | 
 | } | 
 |  | 
 | StringLiteral::~StringLiteral() { | 
 |   delete[] StrData; | 
 | } | 
 |  | 
 | bool UnaryOperator::isPostfix(Opcode Op) { | 
 |   switch (Op) { | 
 |   case PostInc: | 
 |   case PostDec: | 
 |     return true; | 
 |   default: | 
 |     return false; | 
 |   } | 
 | } | 
 |  | 
 | /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it | 
 | /// corresponds to, e.g. "sizeof" or "[pre]++". | 
 | const char *UnaryOperator::getOpcodeStr(Opcode Op) { | 
 |   switch (Op) { | 
 |   default: assert(0 && "Unknown unary operator"); | 
 |   case PostInc: return "++"; | 
 |   case PostDec: return "--"; | 
 |   case PreInc:  return "++"; | 
 |   case PreDec:  return "--"; | 
 |   case AddrOf:  return "&"; | 
 |   case Deref:   return "*"; | 
 |   case Plus:    return "+"; | 
 |   case Minus:   return "-"; | 
 |   case Not:     return "~"; | 
 |   case LNot:    return "!"; | 
 |   case Real:    return "__real"; | 
 |   case Imag:    return "__imag"; | 
 |   case SizeOf:  return "sizeof"; | 
 |   case AlignOf: return "alignof"; | 
 |   case Extension: return "__extension__"; | 
 |   } | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Postfix Operators. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | CallExpr::CallExpr(Expr *fn, Expr **args, unsigned numargs, QualType t, | 
 |                    SourceLocation rparenloc) | 
 |   : Expr(CallExprClass, t), NumArgs(numargs) { | 
 |   SubExprs = new Expr*[numargs+1]; | 
 |   SubExprs[FN] = fn; | 
 |   for (unsigned i = 0; i != numargs; ++i) | 
 |     SubExprs[i+ARGS_START] = args[i]; | 
 |   RParenLoc = rparenloc; | 
 | } | 
 |  | 
 | bool CallExpr::isBuiltinClassifyType(llvm::APSInt &Result) const { | 
 |   // The following enum mimics gcc's internal "typeclass.h" file. | 
 |   enum gcc_type_class { | 
 |     no_type_class = -1, | 
 |     void_type_class, integer_type_class, char_type_class, | 
 |     enumeral_type_class, boolean_type_class, | 
 |     pointer_type_class, reference_type_class, offset_type_class, | 
 |     real_type_class, complex_type_class, | 
 |     function_type_class, method_type_class, | 
 |     record_type_class, union_type_class, | 
 |     array_type_class, string_type_class, | 
 |     lang_type_class | 
 |   }; | 
 |   Result.setIsSigned(true); | 
 |    | 
 |   // All simple function calls (e.g. func()) are implicitly cast to pointer to | 
 |   // function. As a result, we try and obtain the DeclRefExpr from the  | 
 |   // ImplicitCastExpr. | 
 |   const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee()); | 
 |   if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()). | 
 |     return false; | 
 |   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()); | 
 |   if (!DRE) | 
 |     return false; | 
 |  | 
 |   // We have a DeclRefExpr. | 
 |   if (strcmp(DRE->getDecl()->getName(), "__builtin_classify_type") == 0) { | 
 |     // If no argument was supplied, default to "no_type_class". This isn't  | 
 |     // ideal, however it's what gcc does. | 
 |     Result = static_cast<uint64_t>(no_type_class); | 
 |     if (NumArgs >= 1) { | 
 |       QualType argType = getArg(0)->getType(); | 
 |        | 
 |       if (argType->isVoidType()) | 
 |         Result = void_type_class; | 
 |       else if (argType->isEnumeralType()) | 
 |         Result = enumeral_type_class; | 
 |       else if (argType->isBooleanType()) | 
 |         Result = boolean_type_class; | 
 |       else if (argType->isCharType()) | 
 |         Result = string_type_class; // gcc doesn't appear to use char_type_class | 
 |       else if (argType->isIntegerType()) | 
 |         Result = integer_type_class; | 
 |       else if (argType->isPointerType()) | 
 |         Result = pointer_type_class; | 
 |       else if (argType->isReferenceType()) | 
 |         Result = reference_type_class; | 
 |       else if (argType->isRealType()) | 
 |         Result = real_type_class; | 
 |       else if (argType->isComplexType()) | 
 |         Result = complex_type_class; | 
 |       else if (argType->isFunctionType()) | 
 |         Result = function_type_class; | 
 |       else if (argType->isStructureType()) | 
 |         Result = record_type_class; | 
 |       else if (argType->isUnionType()) | 
 |         Result = union_type_class; | 
 |       else if (argType->isArrayType()) | 
 |         Result = array_type_class; | 
 |       else if (argType->isUnionType()) | 
 |         Result = union_type_class; | 
 |       else  // FIXME: offset_type_class, method_type_class, & lang_type_class? | 
 |         assert(1 && "CallExpr::isBuiltinClassifyType(): unimplemented type"); | 
 |     } | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it | 
 | /// corresponds to, e.g. "<<=". | 
 | const char *BinaryOperator::getOpcodeStr(Opcode Op) { | 
 |   switch (Op) { | 
 |   default: assert(0 && "Unknown binary operator"); | 
 |   case Mul:       return "*"; | 
 |   case Div:       return "/"; | 
 |   case Rem:       return "%"; | 
 |   case Add:       return "+"; | 
 |   case Sub:       return "-"; | 
 |   case Shl:       return "<<"; | 
 |   case Shr:       return ">>"; | 
 |   case LT:        return "<"; | 
 |   case GT:        return ">"; | 
 |   case LE:        return "<="; | 
 |   case GE:        return ">="; | 
 |   case EQ:        return "=="; | 
 |   case NE:        return "!="; | 
 |   case And:       return "&"; | 
 |   case Xor:       return "^"; | 
 |   case Or:        return "|"; | 
 |   case LAnd:      return "&&"; | 
 |   case LOr:       return "||"; | 
 |   case Assign:    return "="; | 
 |   case MulAssign: return "*="; | 
 |   case DivAssign: return "/="; | 
 |   case RemAssign: return "%="; | 
 |   case AddAssign: return "+="; | 
 |   case SubAssign: return "-="; | 
 |   case ShlAssign: return "<<="; | 
 |   case ShrAssign: return ">>="; | 
 |   case AndAssign: return "&="; | 
 |   case XorAssign: return "^="; | 
 |   case OrAssign:  return "|="; | 
 |   case Comma:     return ","; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Generic Expression Routines | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// hasLocalSideEffect - Return true if this immediate expression has side | 
 | /// effects, not counting any sub-expressions. | 
 | bool Expr::hasLocalSideEffect() const { | 
 |   switch (getStmtClass()) { | 
 |   default: | 
 |     return false; | 
 |   case ParenExprClass: | 
 |     return cast<ParenExpr>(this)->getSubExpr()->hasLocalSideEffect(); | 
 |   case UnaryOperatorClass: { | 
 |     const UnaryOperator *UO = cast<UnaryOperator>(this); | 
 |      | 
 |     switch (UO->getOpcode()) { | 
 |     default: return false; | 
 |     case UnaryOperator::PostInc: | 
 |     case UnaryOperator::PostDec: | 
 |     case UnaryOperator::PreInc: | 
 |     case UnaryOperator::PreDec: | 
 |       return true;                     // ++/-- | 
 |  | 
 |     case UnaryOperator::Deref: | 
 |       // Dereferencing a volatile pointer is a side-effect. | 
 |       return getType().isVolatileQualified(); | 
 |     case UnaryOperator::Real: | 
 |     case UnaryOperator::Imag: | 
 |       // accessing a piece of a volatile complex is a side-effect. | 
 |       return UO->getSubExpr()->getType().isVolatileQualified(); | 
 |  | 
 |     case UnaryOperator::Extension: | 
 |       return UO->getSubExpr()->hasLocalSideEffect(); | 
 |     } | 
 |   } | 
 |   case BinaryOperatorClass: | 
 |     return cast<BinaryOperator>(this)->isAssignmentOp(); | 
 |   case CompoundAssignOperatorClass: | 
 |     return true; | 
 |  | 
 |   case MemberExprClass: | 
 |   case ArraySubscriptExprClass: | 
 |     // If the base pointer or element is to a volatile pointer/field, accessing | 
 |     // if is a side effect. | 
 |     return getType().isVolatileQualified(); | 
 |      | 
 |   case CallExprClass: | 
 |     // TODO: check attributes for pure/const.   "void foo() { strlen("bar"); }" | 
 |     // should warn. | 
 |     return true; | 
 |      | 
 |   case CastExprClass: | 
 |     // If this is a cast to void, check the operand.  Otherwise, the result of | 
 |     // the cast is unused. | 
 |     if (getType()->isVoidType()) | 
 |       return cast<CastExpr>(this)->getSubExpr()->hasLocalSideEffect(); | 
 |     return false; | 
 |   }      | 
 | } | 
 |  | 
 | /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an | 
 | /// incomplete type other than void. Nonarray expressions that can be lvalues: | 
 | ///  - name, where name must be a variable | 
 | ///  - e[i] | 
 | ///  - (e), where e must be an lvalue | 
 | ///  - e.name, where e must be an lvalue | 
 | ///  - e->name | 
 | ///  - *e, the type of e cannot be a function type | 
 | ///  - string-constant | 
 | ///  - reference type [C++ [expr]] | 
 | /// | 
 | Expr::isLvalueResult Expr::isLvalue() const { | 
 |   // first, check the type (C99 6.3.2.1) | 
 |   if (TR->isFunctionType()) // from isObjectType() | 
 |     return LV_NotObjectType; | 
 |  | 
 |   if (TR->isVoidType()) | 
 |     return LV_IncompleteVoidType; | 
 |  | 
 |   if (TR->isReferenceType()) // C++ [expr] | 
 |     return LV_Valid; | 
 |  | 
 |   // the type looks fine, now check the expression | 
 |   switch (getStmtClass()) { | 
 |   case StringLiteralClass: // C99 6.5.1p4 | 
 |   case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2)))) | 
 |     // For vectors, make sure base is an lvalue (i.e. not a function call). | 
 |     if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType()) | 
 |       return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue(); | 
 |     return LV_Valid; | 
 |   case DeclRefExprClass: // C99 6.5.1p2 | 
 |     if (isa<VarDecl>(cast<DeclRefExpr>(this)->getDecl())) | 
 |       return LV_Valid; | 
 |     break; | 
 |   case MemberExprClass: { // C99 6.5.2.3p4 | 
 |     const MemberExpr *m = cast<MemberExpr>(this); | 
 |     return m->isArrow() ? LV_Valid : m->getBase()->isLvalue(); | 
 |   } | 
 |   case UnaryOperatorClass: // C99 6.5.3p4 | 
 |     if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref) | 
 |       return LV_Valid; | 
 |     break; | 
 |   case ParenExprClass: // C99 6.5.1p5 | 
 |     return cast<ParenExpr>(this)->getSubExpr()->isLvalue(); | 
 |   case OCUVectorElementExprClass: | 
 |     if (cast<OCUVectorElementExpr>(this)->containsDuplicateElements()) | 
 |       return LV_DuplicateVectorComponents; | 
 |     return LV_Valid; | 
 |   default: | 
 |     break; | 
 |   } | 
 |   return LV_InvalidExpression; | 
 | } | 
 |  | 
 | /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type, | 
 | /// does not have an incomplete type, does not have a const-qualified type, and | 
 | /// if it is a structure or union, does not have any member (including,  | 
 | /// recursively, any member or element of all contained aggregates or unions) | 
 | /// with a const-qualified type. | 
 | Expr::isModifiableLvalueResult Expr::isModifiableLvalue() const { | 
 |   isLvalueResult lvalResult = isLvalue(); | 
 |      | 
 |   switch (lvalResult) { | 
 |   case LV_Valid: break; | 
 |   case LV_NotObjectType: return MLV_NotObjectType; | 
 |   case LV_IncompleteVoidType: return MLV_IncompleteVoidType; | 
 |   case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents; | 
 |   case LV_InvalidExpression: return MLV_InvalidExpression; | 
 |   } | 
 |   if (TR.isConstQualified()) | 
 |     return MLV_ConstQualified; | 
 |   if (TR->isArrayType()) | 
 |     return MLV_ArrayType; | 
 |   if (TR->isIncompleteType()) | 
 |     return MLV_IncompleteType; | 
 |      | 
 |   if (const RecordType *r = dyn_cast<RecordType>(TR.getCanonicalType())) { | 
 |     if (r->hasConstFields())  | 
 |       return MLV_ConstQualified; | 
 |   } | 
 |   return MLV_Valid;     | 
 | } | 
 |  | 
 | /// isIntegerConstantExpr - this recursive routine will test if an expression is | 
 | /// an integer constant expression. Note: With the introduction of VLA's in | 
 | /// C99 the result of the sizeof operator is no longer always a constant | 
 | /// expression. The generalization of the wording to include any subexpression | 
 | /// that is not evaluated (C99 6.6p3) means that nonconstant subexpressions | 
 | /// can appear as operands to other operators (e.g. &&, ||, ?:). For instance, | 
 | /// "0 || f()" can be treated as a constant expression. In C90 this expression, | 
 | /// occurring in a context requiring a constant, would have been a constraint | 
 | /// violation. FIXME: This routine currently implements C90 semantics. | 
 | /// To properly implement C99 semantics this routine will need to evaluate | 
 | /// expressions involving operators previously mentioned. | 
 |  | 
 | /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero, | 
 | /// comma, etc | 
 | /// | 
 | /// FIXME: This should ext-warn on overflow during evaluation!  ISO C does not | 
 | /// permit this. | 
 | /// | 
 | /// FIXME: Handle offsetof.  Two things to do:  Handle GCC's __builtin_offsetof | 
 | /// to support gcc 4.0+  and handle the idiom GCC recognizes with a null pointer | 
 | /// cast+dereference. | 
 | bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx, | 
 |                                  SourceLocation *Loc, bool isEvaluated) const { | 
 |   switch (getStmtClass()) { | 
 |   default: | 
 |     if (Loc) *Loc = getLocStart(); | 
 |     return false; | 
 |   case ParenExprClass: | 
 |     return cast<ParenExpr>(this)->getSubExpr()-> | 
 |                      isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated); | 
 |   case IntegerLiteralClass: | 
 |     Result = cast<IntegerLiteral>(this)->getValue(); | 
 |     break; | 
 |   case CharacterLiteralClass: { | 
 |     const CharacterLiteral *CL = cast<CharacterLiteral>(this); | 
 |     Result.zextOrTrunc(Ctx.getTypeSize(getType(), CL->getLoc()));                               | 
 |     Result = CL->getValue(); | 
 |     Result.setIsUnsigned(!getType()->isSignedIntegerType()); | 
 |     break; | 
 |   } | 
 |   case TypesCompatibleExprClass: { | 
 |     const TypesCompatibleExpr *TCE = cast<TypesCompatibleExpr>(this); | 
 |     Result.zextOrTrunc(Ctx.getTypeSize(getType(), TCE->getLocStart()));                               | 
 |     Result = TCE->typesAreCompatible(); | 
 |     break; | 
 |   } | 
 |   case CallExprClass: { | 
 |     const CallExpr *CE = cast<CallExpr>(this); | 
 |     Result.zextOrTrunc(Ctx.getTypeSize(getType(), CE->getLocStart())); | 
 |     if (CE->isBuiltinClassifyType(Result)) | 
 |       break; | 
 |     if (Loc) *Loc = getLocStart(); | 
 |     return false; | 
 |   } | 
 |   case DeclRefExprClass: | 
 |     if (const EnumConstantDecl *D =  | 
 |           dyn_cast<EnumConstantDecl>(cast<DeclRefExpr>(this)->getDecl())) { | 
 |       Result = D->getInitVal(); | 
 |       break; | 
 |     } | 
 |     if (Loc) *Loc = getLocStart(); | 
 |     return false; | 
 |   case UnaryOperatorClass: { | 
 |     const UnaryOperator *Exp = cast<UnaryOperator>(this); | 
 |      | 
 |     // Get the operand value.  If this is sizeof/alignof, do not evalute the | 
 |     // operand.  This affects C99 6.6p3. | 
 |     if (!Exp->isSizeOfAlignOfOp() && | 
 |         !Exp->getSubExpr()->isIntegerConstantExpr(Result, Ctx, Loc,isEvaluated)) | 
 |       return false; | 
 |  | 
 |     switch (Exp->getOpcode()) { | 
 |     // Address, indirect, pre/post inc/dec, etc are not valid constant exprs. | 
 |     // See C99 6.6p3. | 
 |     default: | 
 |       if (Loc) *Loc = Exp->getOperatorLoc(); | 
 |       return false; | 
 |     case UnaryOperator::Extension: | 
 |       return true;  // FIXME: this is wrong. | 
 |     case UnaryOperator::SizeOf: | 
 |     case UnaryOperator::AlignOf: | 
 |       // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2. | 
 |       if (!Exp->getSubExpr()->getType()->isConstantSizeType(Ctx, Loc)) | 
 |         return false; | 
 |        | 
 |       // Return the result in the right width. | 
 |       Result.zextOrTrunc(Ctx.getTypeSize(getType(), Exp->getOperatorLoc())); | 
 |  | 
 |       // Get information about the size or align. | 
 |       if (Exp->getOpcode() == UnaryOperator::SizeOf) | 
 |         Result = Ctx.getTypeSize(Exp->getSubExpr()->getType(), | 
 |                                  Exp->getOperatorLoc()); | 
 |       else | 
 |         Result = Ctx.getTypeAlign(Exp->getSubExpr()->getType(), | 
 |                                   Exp->getOperatorLoc()); | 
 |       break; | 
 |     case UnaryOperator::LNot: { | 
 |       bool Val = Result != 0; | 
 |       Result.zextOrTrunc(Ctx.getTypeSize(getType(), Exp->getOperatorLoc())); | 
 |       Result = Val; | 
 |       break; | 
 |     } | 
 |     case UnaryOperator::Plus: | 
 |       break; | 
 |     case UnaryOperator::Minus: | 
 |       Result = -Result; | 
 |       break; | 
 |     case UnaryOperator::Not: | 
 |       Result = ~Result; | 
 |       break; | 
 |     } | 
 |     break; | 
 |   } | 
 |   case SizeOfAlignOfTypeExprClass: { | 
 |     const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(this); | 
 |     // alignof always evaluates to a constant. | 
 |     if (Exp->isSizeOf() && !Exp->getArgumentType()->isConstantSizeType(Ctx,Loc)) | 
 |       return false; | 
 |  | 
 |     // Return the result in the right width. | 
 |     Result.zextOrTrunc(Ctx.getTypeSize(getType(), Exp->getOperatorLoc())); | 
 |      | 
 |     // Get information about the size or align. | 
 |     if (Exp->isSizeOf()) | 
 |       Result = Ctx.getTypeSize(Exp->getArgumentType(), Exp->getOperatorLoc()); | 
 |     else | 
 |       Result = Ctx.getTypeAlign(Exp->getArgumentType(), Exp->getOperatorLoc()); | 
 |     break; | 
 |   } | 
 |   case BinaryOperatorClass: { | 
 |     const BinaryOperator *Exp = cast<BinaryOperator>(this); | 
 |      | 
 |     // The LHS of a constant expr is always evaluated and needed. | 
 |     if (!Exp->getLHS()->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated)) | 
 |       return false; | 
 |      | 
 |     llvm::APSInt RHS(Result); | 
 |      | 
 |     // The short-circuiting &&/|| operators don't necessarily evaluate their | 
 |     // RHS.  Make sure to pass isEvaluated down correctly. | 
 |     if (Exp->isLogicalOp()) { | 
 |       bool RHSEval; | 
 |       if (Exp->getOpcode() == BinaryOperator::LAnd) | 
 |         RHSEval = Result != 0; | 
 |       else { | 
 |         assert(Exp->getOpcode() == BinaryOperator::LOr &&"Unexpected logical"); | 
 |         RHSEval = Result == 0; | 
 |       } | 
 |        | 
 |       if (!Exp->getRHS()->isIntegerConstantExpr(RHS, Ctx, Loc, | 
 |                                                 isEvaluated & RHSEval)) | 
 |         return false; | 
 |     } else { | 
 |       if (!Exp->getRHS()->isIntegerConstantExpr(RHS, Ctx, Loc, isEvaluated)) | 
 |         return false; | 
 |     } | 
 |      | 
 |     switch (Exp->getOpcode()) { | 
 |     default: | 
 |       if (Loc) *Loc = getLocStart(); | 
 |       return false; | 
 |     case BinaryOperator::Mul: | 
 |       Result *= RHS; | 
 |       break; | 
 |     case BinaryOperator::Div: | 
 |       if (RHS == 0) { | 
 |         if (!isEvaluated) break; | 
 |         if (Loc) *Loc = getLocStart(); | 
 |         return false; | 
 |       } | 
 |       Result /= RHS; | 
 |       break; | 
 |     case BinaryOperator::Rem: | 
 |       if (RHS == 0) { | 
 |         if (!isEvaluated) break; | 
 |         if (Loc) *Loc = getLocStart(); | 
 |         return false; | 
 |       } | 
 |       Result %= RHS; | 
 |       break; | 
 |     case BinaryOperator::Add: Result += RHS; break; | 
 |     case BinaryOperator::Sub: Result -= RHS; break; | 
 |     case BinaryOperator::Shl: | 
 |       Result <<= RHS.getLimitedValue(Result.getBitWidth()-1); | 
 |       break; | 
 |     case BinaryOperator::Shr: | 
 |       Result >>= RHS.getLimitedValue(Result.getBitWidth()-1); | 
 |       break; | 
 |     case BinaryOperator::LT:  Result = Result < RHS; break; | 
 |     case BinaryOperator::GT:  Result = Result > RHS; break; | 
 |     case BinaryOperator::LE:  Result = Result <= RHS; break; | 
 |     case BinaryOperator::GE:  Result = Result >= RHS; break; | 
 |     case BinaryOperator::EQ:  Result = Result == RHS; break; | 
 |     case BinaryOperator::NE:  Result = Result != RHS; break; | 
 |     case BinaryOperator::And: Result &= RHS; break; | 
 |     case BinaryOperator::Xor: Result ^= RHS; break; | 
 |     case BinaryOperator::Or:  Result |= RHS; break; | 
 |     case BinaryOperator::LAnd: | 
 |       Result = Result != 0 && RHS != 0; | 
 |       break; | 
 |     case BinaryOperator::LOr: | 
 |       Result = Result != 0 || RHS != 0; | 
 |       break; | 
 |        | 
 |     case BinaryOperator::Comma: | 
 |       // C99 6.6p3: "shall not contain assignment, ..., or comma operators, | 
 |       // *except* when they are contained within a subexpression that is not | 
 |       // evaluated".  Note that Assignment can never happen due to constraints | 
 |       // on the LHS subexpr, so we don't need to check it here. | 
 |       if (isEvaluated) { | 
 |         if (Loc) *Loc = getLocStart(); | 
 |         return false; | 
 |       } | 
 |        | 
 |       // The result of the constant expr is the RHS. | 
 |       Result = RHS; | 
 |       return true; | 
 |     } | 
 |      | 
 |     assert(!Exp->isAssignmentOp() && "LHS can't be a constant expr!"); | 
 |     break; | 
 |   } | 
 |   case ImplicitCastExprClass: | 
 |   case CastExprClass: { | 
 |     const Expr *SubExpr; | 
 |     SourceLocation CastLoc; | 
 |     if (const CastExpr *C = dyn_cast<CastExpr>(this)) { | 
 |       SubExpr = C->getSubExpr(); | 
 |       CastLoc = C->getLParenLoc(); | 
 |     } else { | 
 |       SubExpr = cast<ImplicitCastExpr>(this)->getSubExpr(); | 
 |       CastLoc = getLocStart(); | 
 |     } | 
 |      | 
 |     // C99 6.6p6: shall only convert arithmetic types to integer types. | 
 |     if (!SubExpr->getType()->isArithmeticType() || | 
 |         !getType()->isIntegerType()) { | 
 |       if (Loc) *Loc = SubExpr->getLocStart(); | 
 |       return false; | 
 |     } | 
 |        | 
 |     // Handle simple integer->integer casts. | 
 |     if (SubExpr->getType()->isIntegerType()) { | 
 |       if (!SubExpr->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated)) | 
 |         return false; | 
 |        | 
 |       // Figure out if this is a truncate, extend or noop cast. | 
 |       unsigned DestWidth = Ctx.getTypeSize(getType(), CastLoc); | 
 |        | 
 |       // If the input is signed, do a sign extend, noop, or truncate. | 
 |       if (SubExpr->getType()->isSignedIntegerType()) | 
 |         Result.sextOrTrunc(DestWidth); | 
 |       else  // If the input is unsigned, do a zero extend, noop, or truncate. | 
 |         Result.zextOrTrunc(DestWidth); | 
 |       break; | 
 |     } | 
 |      | 
 |     // Allow floating constants that are the immediate operands of casts or that | 
 |     // are parenthesized. | 
 |     const Expr *Operand = SubExpr; | 
 |     while (const ParenExpr *PE = dyn_cast<ParenExpr>(Operand)) | 
 |       Operand = PE->getSubExpr(); | 
 |      | 
 |     if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(Operand)) { | 
 |       // FIXME: Evaluate this correctly! | 
 |       Result = (int)FL->getValue(); | 
 |       break; | 
 |     } | 
 |     if (Loc) *Loc = Operand->getLocStart(); | 
 |     return false; | 
 |   } | 
 |   case ConditionalOperatorClass: { | 
 |     const ConditionalOperator *Exp = cast<ConditionalOperator>(this); | 
 |      | 
 |     if (!Exp->getCond()->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated)) | 
 |       return false; | 
 |      | 
 |     const Expr *TrueExp  = Exp->getLHS(); | 
 |     const Expr *FalseExp = Exp->getRHS(); | 
 |     if (Result == 0) std::swap(TrueExp, FalseExp); | 
 |      | 
 |     // Evaluate the false one first, discard the result. | 
 |     if (!FalseExp->isIntegerConstantExpr(Result, Ctx, Loc, false)) | 
 |       return false; | 
 |     // Evalute the true one, capture the result. | 
 |     if (!TrueExp->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated)) | 
 |       return false; | 
 |     break; | 
 |   } | 
 |   } | 
 |  | 
 |   // Cases that are valid constant exprs fall through to here. | 
 |   Result.setIsUnsigned(getType()->isUnsignedIntegerType()); | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an | 
 | /// integer constant expression with the value zero, or if this is one that is | 
 | /// cast to void*. | 
 | bool Expr::isNullPointerConstant(ASTContext &Ctx) const { | 
 |   // Strip off a cast to void*, if it exists. | 
 |   if (const CastExpr *CE = dyn_cast<CastExpr>(this)) { | 
 |     // Check that it is a cast to void*. | 
 |     if (const PointerType *PT = dyn_cast<PointerType>(CE->getType())) { | 
 |       QualType Pointee = PT->getPointeeType(); | 
 |       if (Pointee.getQualifiers() == 0 && Pointee->isVoidType() && // to void* | 
 |           CE->getSubExpr()->getType()->isIntegerType())            // from int. | 
 |         return CE->getSubExpr()->isNullPointerConstant(Ctx); | 
 |     } | 
 |   } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) { | 
 |     // Accept ((void*)0) as a null pointer constant, as many other | 
 |     // implementations do. | 
 |     return PE->getSubExpr()->isNullPointerConstant(Ctx); | 
 |   } | 
 |    | 
 |   // This expression must be an integer type. | 
 |   if (!getType()->isIntegerType()) | 
 |     return false; | 
 |    | 
 |   // If we have an integer constant expression, we need to *evaluate* it and | 
 |   // test for the value 0. | 
 |   llvm::APSInt Val(32); | 
 |   return isIntegerConstantExpr(Val, Ctx, 0, true) && Val == 0; | 
 | } | 
 |  | 
 | unsigned OCUVectorElementExpr::getNumElements() const { | 
 |   return strlen(Accessor.getName()); | 
 | } | 
 |  | 
 |  | 
 | /// getComponentType - Determine whether the components of this access are | 
 | /// "point" "color" or "texture" elements. | 
 | OCUVectorElementExpr::ElementType  | 
 | OCUVectorElementExpr::getElementType() const { | 
 |   // derive the component type, no need to waste space. | 
 |   const char *compStr = Accessor.getName(); | 
 |    | 
 |   if (OCUVectorType::getPointAccessorIdx(*compStr) != -1) return Point; | 
 |   if (OCUVectorType::getColorAccessorIdx(*compStr) != -1) return Color; | 
 |    | 
 |   assert(OCUVectorType::getTextureAccessorIdx(*compStr) != -1 && | 
 |          "getComponentType(): Illegal accessor"); | 
 |   return Texture; | 
 | } | 
 |  | 
 | /// containsDuplicateElements - Return true if any element access is | 
 | /// repeated. | 
 | bool OCUVectorElementExpr::containsDuplicateElements() const { | 
 |   const char *compStr = Accessor.getName(); | 
 |   unsigned length = strlen(compStr); | 
 |    | 
 |   for (unsigned i = 0; i < length-1; i++) { | 
 |     const char *s = compStr+i; | 
 |     for (const char c = *s++; *s; s++) | 
 |       if (c == *s)  | 
 |         return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | /// getEncodedElementAccess - We encode fields with two bits per component. | 
 | unsigned OCUVectorElementExpr::getEncodedElementAccess() const { | 
 |   const char *compStr = Accessor.getName(); | 
 |   unsigned length = getNumElements(); | 
 |  | 
 |   unsigned Result = 0; | 
 |    | 
 |   while (length--) { | 
 |     Result <<= 2; | 
 |     int Idx = OCUVectorType::getAccessorIdx(compStr[length]); | 
 |     assert(Idx != -1 && "Invalid accessor letter"); | 
 |     Result |= Idx; | 
 |   } | 
 |   return Result; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //  Child Iterators for iterating over subexpressions/substatements | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | // DeclRefExpr | 
 | Stmt::child_iterator DeclRefExpr::child_begin() { return NULL; } | 
 | Stmt::child_iterator DeclRefExpr::child_end() { return NULL; } | 
 |  | 
 | // PreDefinedExpr | 
 | Stmt::child_iterator PreDefinedExpr::child_begin() { return NULL; } | 
 | Stmt::child_iterator PreDefinedExpr::child_end() { return NULL; } | 
 |  | 
 | // IntegerLiteral | 
 | Stmt::child_iterator IntegerLiteral::child_begin() { return NULL; } | 
 | Stmt::child_iterator IntegerLiteral::child_end() { return NULL; } | 
 |  | 
 | // CharacterLiteral | 
 | Stmt::child_iterator CharacterLiteral::child_begin() { return NULL; } | 
 | Stmt::child_iterator CharacterLiteral::child_end() { return NULL; } | 
 |  | 
 | // FloatingLiteral | 
 | Stmt::child_iterator FloatingLiteral::child_begin() { return NULL; } | 
 | Stmt::child_iterator FloatingLiteral::child_end() { return NULL; } | 
 |  | 
 | // ImaginaryLiteral | 
 | Stmt::child_iterator ImaginaryLiteral::child_begin() { | 
 |   return reinterpret_cast<Stmt**>(&Val); | 
 | } | 
 | Stmt::child_iterator ImaginaryLiteral::child_end() { | 
 |   return reinterpret_cast<Stmt**>(&Val)+1; | 
 | } | 
 |  | 
 | // StringLiteral | 
 | Stmt::child_iterator StringLiteral::child_begin() { return NULL; } | 
 | Stmt::child_iterator StringLiteral::child_end() { return NULL; } | 
 |  | 
 | // ParenExpr | 
 | Stmt::child_iterator ParenExpr::child_begin() { | 
 |   return reinterpret_cast<Stmt**>(&Val); | 
 | } | 
 | Stmt::child_iterator ParenExpr::child_end() { | 
 |   return reinterpret_cast<Stmt**>(&Val)+1; | 
 | } | 
 |  | 
 | // UnaryOperator | 
 | Stmt::child_iterator UnaryOperator::child_begin() { | 
 |   return reinterpret_cast<Stmt**>(&Val); | 
 | } | 
 | Stmt::child_iterator UnaryOperator::child_end() { | 
 |   return reinterpret_cast<Stmt**>(&Val)+1; | 
 | } | 
 |  | 
 | // SizeOfAlignOfTypeExpr | 
 | Stmt::child_iterator SizeOfAlignOfTypeExpr::child_begin() { return NULL; } | 
 | Stmt::child_iterator SizeOfAlignOfTypeExpr::child_end() { return NULL; } | 
 |  | 
 | // ArraySubscriptExpr | 
 | Stmt::child_iterator ArraySubscriptExpr::child_begin() { | 
 |   return reinterpret_cast<Stmt**>(&SubExprs); | 
 | } | 
 | Stmt::child_iterator ArraySubscriptExpr::child_end() { | 
 |   return reinterpret_cast<Stmt**>(&SubExprs)+END_EXPR; | 
 | } | 
 |  | 
 | // CallExpr | 
 | Stmt::child_iterator CallExpr::child_begin() { | 
 |   return reinterpret_cast<Stmt**>(&SubExprs); | 
 | } | 
 | Stmt::child_iterator CallExpr::child_end() { | 
 |   return reinterpret_cast<Stmt**>(&SubExprs)+NumArgs+ARGS_START; | 
 | } | 
 |  | 
 | // MemberExpr | 
 | Stmt::child_iterator MemberExpr::child_begin() { | 
 |   return reinterpret_cast<Stmt**>(&Base); | 
 | } | 
 | Stmt::child_iterator MemberExpr::child_end() { | 
 |   return reinterpret_cast<Stmt**>(&Base)+1; | 
 | } | 
 |  | 
 | // OCUVectorElementExpr | 
 | Stmt::child_iterator OCUVectorElementExpr::child_begin() { | 
 |   return reinterpret_cast<Stmt**>(&Base); | 
 | } | 
 | Stmt::child_iterator OCUVectorElementExpr::child_end() { | 
 |   return reinterpret_cast<Stmt**>(&Base)+1; | 
 | } | 
 |  | 
 | // CompoundLiteralExpr | 
 | Stmt::child_iterator CompoundLiteralExpr::child_begin() { | 
 |   return reinterpret_cast<Stmt**>(&Init); | 
 | } | 
 | Stmt::child_iterator CompoundLiteralExpr::child_end() { | 
 |   return reinterpret_cast<Stmt**>(&Init)+1; | 
 | } | 
 |  | 
 | // ImplicitCastExpr | 
 | Stmt::child_iterator ImplicitCastExpr::child_begin() { | 
 |   return reinterpret_cast<Stmt**>(&Op); | 
 | } | 
 | Stmt::child_iterator ImplicitCastExpr::child_end() { | 
 |   return reinterpret_cast<Stmt**>(&Op)+1; | 
 | } | 
 |  | 
 | // CastExpr | 
 | Stmt::child_iterator CastExpr::child_begin() { | 
 |   return reinterpret_cast<Stmt**>(&Op); | 
 | } | 
 | Stmt::child_iterator CastExpr::child_end() { | 
 |   return reinterpret_cast<Stmt**>(&Op)+1; | 
 | } | 
 |  | 
 | // BinaryOperator | 
 | Stmt::child_iterator BinaryOperator::child_begin() { | 
 |   return reinterpret_cast<Stmt**>(&SubExprs); | 
 | } | 
 | Stmt::child_iterator BinaryOperator::child_end() { | 
 |   return reinterpret_cast<Stmt**>(&SubExprs)+END_EXPR; | 
 | } | 
 |  | 
 | // ConditionalOperator | 
 | Stmt::child_iterator ConditionalOperator::child_begin() { | 
 |   return reinterpret_cast<Stmt**>(&SubExprs); | 
 | } | 
 | Stmt::child_iterator ConditionalOperator::child_end() { | 
 |   return reinterpret_cast<Stmt**>(&SubExprs)+END_EXPR; | 
 | } | 
 |  | 
 | // AddrLabelExpr | 
 | Stmt::child_iterator AddrLabelExpr::child_begin() { return NULL; } | 
 | Stmt::child_iterator AddrLabelExpr::child_end() { return NULL; } | 
 |  | 
 | // StmtExpr | 
 | Stmt::child_iterator StmtExpr::child_begin() { | 
 |   return reinterpret_cast<Stmt**>(&SubStmt); | 
 | } | 
 | Stmt::child_iterator StmtExpr::child_end() { | 
 |   return reinterpret_cast<Stmt**>(&SubStmt)+1; | 
 | } | 
 |  | 
 | // TypesCompatibleExpr | 
 | Stmt::child_iterator TypesCompatibleExpr::child_begin() { return NULL; } | 
 | Stmt::child_iterator TypesCompatibleExpr::child_end() { return NULL; } | 
 |  | 
 | // ChooseExpr | 
 | Stmt::child_iterator ChooseExpr::child_begin() { | 
 |   return reinterpret_cast<Stmt**>(&SubExprs); | 
 | } | 
 |  | 
 | Stmt::child_iterator ChooseExpr::child_end() { | 
 |   return reinterpret_cast<Stmt**>(&SubExprs)+END_EXPR; | 
 | } | 
 |  | 
 | // ObjCStringLiteral | 
 | Stmt::child_iterator ObjCStringLiteral::child_begin() { return NULL; } | 
 | Stmt::child_iterator ObjCStringLiteral::child_end() { return NULL; } | 
 |  | 
 | // ObjCEncodeExpr | 
 | Stmt::child_iterator ObjCEncodeExpr::child_begin() { return NULL; } | 
 | Stmt::child_iterator ObjCEncodeExpr::child_end() { return NULL; } | 
 |  |