| //===--- CGException.cpp - Emit LLVM Code for C++ exceptions --------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This contains code dealing with C++ exception related code generation. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CodeGenFunction.h" |
| #include "CGCleanup.h" |
| #include "CGObjCRuntime.h" |
| #include "TargetInfo.h" |
| #include "clang/AST/StmtCXX.h" |
| #include "llvm/Intrinsics.h" |
| #include "llvm/Support/CallSite.h" |
| |
| using namespace clang; |
| using namespace CodeGen; |
| |
| static llvm::Constant *getAllocateExceptionFn(CodeGenFunction &CGF) { |
| // void *__cxa_allocate_exception(size_t thrown_size); |
| |
| llvm::FunctionType *FTy = |
| llvm::FunctionType::get(CGF.Int8PtrTy, CGF.SizeTy, /*IsVarArgs=*/false); |
| |
| return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_allocate_exception"); |
| } |
| |
| static llvm::Constant *getFreeExceptionFn(CodeGenFunction &CGF) { |
| // void __cxa_free_exception(void *thrown_exception); |
| |
| llvm::FunctionType *FTy = |
| llvm::FunctionType::get(CGF.VoidTy, CGF.Int8PtrTy, /*IsVarArgs=*/false); |
| |
| return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_free_exception"); |
| } |
| |
| static llvm::Constant *getThrowFn(CodeGenFunction &CGF) { |
| // void __cxa_throw(void *thrown_exception, std::type_info *tinfo, |
| // void (*dest) (void *)); |
| |
| llvm::Type *Args[3] = { CGF.Int8PtrTy, CGF.Int8PtrTy, CGF.Int8PtrTy }; |
| llvm::FunctionType *FTy = |
| llvm::FunctionType::get(CGF.VoidTy, Args, /*IsVarArgs=*/false); |
| |
| return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_throw"); |
| } |
| |
| static llvm::Constant *getReThrowFn(CodeGenFunction &CGF) { |
| // void __cxa_rethrow(); |
| |
| llvm::FunctionType *FTy = |
| llvm::FunctionType::get(CGF.VoidTy, /*IsVarArgs=*/false); |
| |
| return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_rethrow"); |
| } |
| |
| static llvm::Constant *getGetExceptionPtrFn(CodeGenFunction &CGF) { |
| // void *__cxa_get_exception_ptr(void*); |
| |
| llvm::FunctionType *FTy = |
| llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, /*IsVarArgs=*/false); |
| |
| return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_get_exception_ptr"); |
| } |
| |
| static llvm::Constant *getBeginCatchFn(CodeGenFunction &CGF) { |
| // void *__cxa_begin_catch(void*); |
| |
| llvm::FunctionType *FTy = |
| llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, /*IsVarArgs=*/false); |
| |
| return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_begin_catch"); |
| } |
| |
| static llvm::Constant *getEndCatchFn(CodeGenFunction &CGF) { |
| // void __cxa_end_catch(); |
| |
| llvm::FunctionType *FTy = |
| llvm::FunctionType::get(CGF.VoidTy, /*IsVarArgs=*/false); |
| |
| return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_end_catch"); |
| } |
| |
| static llvm::Constant *getUnexpectedFn(CodeGenFunction &CGF) { |
| // void __cxa_call_unexepcted(void *thrown_exception); |
| |
| llvm::FunctionType *FTy = |
| llvm::FunctionType::get(CGF.VoidTy, CGF.Int8PtrTy, /*IsVarArgs=*/false); |
| |
| return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_call_unexpected"); |
| } |
| |
| llvm::Constant *CodeGenFunction::getUnwindResumeFn() { |
| llvm::FunctionType *FTy = |
| llvm::FunctionType::get(VoidTy, Int8PtrTy, /*IsVarArgs=*/false); |
| |
| if (CGM.getLangOpts().SjLjExceptions) |
| return CGM.CreateRuntimeFunction(FTy, "_Unwind_SjLj_Resume"); |
| return CGM.CreateRuntimeFunction(FTy, "_Unwind_Resume"); |
| } |
| |
| llvm::Constant *CodeGenFunction::getUnwindResumeOrRethrowFn() { |
| llvm::FunctionType *FTy = |
| llvm::FunctionType::get(VoidTy, Int8PtrTy, /*IsVarArgs=*/false); |
| |
| if (CGM.getLangOpts().SjLjExceptions) |
| return CGM.CreateRuntimeFunction(FTy, "_Unwind_SjLj_Resume_or_Rethrow"); |
| return CGM.CreateRuntimeFunction(FTy, "_Unwind_Resume_or_Rethrow"); |
| } |
| |
| static llvm::Constant *getTerminateFn(CodeGenFunction &CGF) { |
| // void __terminate(); |
| |
| llvm::FunctionType *FTy = |
| llvm::FunctionType::get(CGF.VoidTy, /*IsVarArgs=*/false); |
| |
| StringRef name; |
| |
| // In C++, use std::terminate(). |
| if (CGF.getLangOpts().CPlusPlus) |
| name = "_ZSt9terminatev"; // FIXME: mangling! |
| else if (CGF.getLangOpts().ObjC1 && |
| CGF.CGM.getCodeGenOpts().ObjCRuntimeHasTerminate) |
| name = "objc_terminate"; |
| else |
| name = "abort"; |
| return CGF.CGM.CreateRuntimeFunction(FTy, name); |
| } |
| |
| static llvm::Constant *getCatchallRethrowFn(CodeGenFunction &CGF, |
| StringRef Name) { |
| llvm::FunctionType *FTy = |
| llvm::FunctionType::get(CGF.VoidTy, CGF.Int8PtrTy, /*IsVarArgs=*/false); |
| |
| return CGF.CGM.CreateRuntimeFunction(FTy, Name); |
| } |
| |
| namespace { |
| /// The exceptions personality for a function. |
| struct EHPersonality { |
| const char *PersonalityFn; |
| |
| // If this is non-null, this personality requires a non-standard |
| // function for rethrowing an exception after a catchall cleanup. |
| // This function must have prototype void(void*). |
| const char *CatchallRethrowFn; |
| |
| static const EHPersonality &get(const LangOptions &Lang); |
| static const EHPersonality GNU_C; |
| static const EHPersonality GNU_C_SJLJ; |
| static const EHPersonality GNU_ObjC; |
| static const EHPersonality GNU_ObjCXX; |
| static const EHPersonality NeXT_ObjC; |
| static const EHPersonality GNU_CPlusPlus; |
| static const EHPersonality GNU_CPlusPlus_SJLJ; |
| }; |
| } |
| |
| const EHPersonality EHPersonality::GNU_C = { "__gcc_personality_v0", 0 }; |
| const EHPersonality EHPersonality::GNU_C_SJLJ = { "__gcc_personality_sj0", 0 }; |
| const EHPersonality EHPersonality::NeXT_ObjC = { "__objc_personality_v0", 0 }; |
| const EHPersonality EHPersonality::GNU_CPlusPlus = { "__gxx_personality_v0", 0}; |
| const EHPersonality |
| EHPersonality::GNU_CPlusPlus_SJLJ = { "__gxx_personality_sj0", 0 }; |
| const EHPersonality |
| EHPersonality::GNU_ObjC = {"__gnu_objc_personality_v0", "objc_exception_throw"}; |
| const EHPersonality |
| EHPersonality::GNU_ObjCXX = { "__gnustep_objcxx_personality_v0", 0 }; |
| |
| static const EHPersonality &getCPersonality(const LangOptions &L) { |
| if (L.SjLjExceptions) |
| return EHPersonality::GNU_C_SJLJ; |
| return EHPersonality::GNU_C; |
| } |
| |
| static const EHPersonality &getObjCPersonality(const LangOptions &L) { |
| if (L.NeXTRuntime) { |
| if (L.ObjCNonFragileABI) return EHPersonality::NeXT_ObjC; |
| else return getCPersonality(L); |
| } else { |
| return EHPersonality::GNU_ObjC; |
| } |
| } |
| |
| static const EHPersonality &getCXXPersonality(const LangOptions &L) { |
| if (L.SjLjExceptions) |
| return EHPersonality::GNU_CPlusPlus_SJLJ; |
| else |
| return EHPersonality::GNU_CPlusPlus; |
| } |
| |
| /// Determines the personality function to use when both C++ |
| /// and Objective-C exceptions are being caught. |
| static const EHPersonality &getObjCXXPersonality(const LangOptions &L) { |
| // The ObjC personality defers to the C++ personality for non-ObjC |
| // handlers. Unlike the C++ case, we use the same personality |
| // function on targets using (backend-driven) SJLJ EH. |
| if (L.NeXTRuntime) { |
| if (L.ObjCNonFragileABI) |
| return EHPersonality::NeXT_ObjC; |
| |
| // In the fragile ABI, just use C++ exception handling and hope |
| // they're not doing crazy exception mixing. |
| else |
| return getCXXPersonality(L); |
| } |
| |
| // The GNU runtime's personality function inherently doesn't support |
| // mixed EH. Use the C++ personality just to avoid returning null. |
| return EHPersonality::GNU_ObjCXX; |
| } |
| |
| const EHPersonality &EHPersonality::get(const LangOptions &L) { |
| if (L.CPlusPlus && L.ObjC1) |
| return getObjCXXPersonality(L); |
| else if (L.CPlusPlus) |
| return getCXXPersonality(L); |
| else if (L.ObjC1) |
| return getObjCPersonality(L); |
| else |
| return getCPersonality(L); |
| } |
| |
| static llvm::Constant *getPersonalityFn(CodeGenModule &CGM, |
| const EHPersonality &Personality) { |
| llvm::Constant *Fn = |
| CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.Int32Ty, true), |
| Personality.PersonalityFn); |
| return Fn; |
| } |
| |
| static llvm::Constant *getOpaquePersonalityFn(CodeGenModule &CGM, |
| const EHPersonality &Personality) { |
| llvm::Constant *Fn = getPersonalityFn(CGM, Personality); |
| return llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy); |
| } |
| |
| /// Check whether a personality function could reasonably be swapped |
| /// for a C++ personality function. |
| static bool PersonalityHasOnlyCXXUses(llvm::Constant *Fn) { |
| for (llvm::Constant::use_iterator |
| I = Fn->use_begin(), E = Fn->use_end(); I != E; ++I) { |
| llvm::User *User = *I; |
| |
| // Conditionally white-list bitcasts. |
| if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(User)) { |
| if (CE->getOpcode() != llvm::Instruction::BitCast) return false; |
| if (!PersonalityHasOnlyCXXUses(CE)) |
| return false; |
| continue; |
| } |
| |
| // Otherwise, it has to be a landingpad instruction. |
| llvm::LandingPadInst *LPI = dyn_cast<llvm::LandingPadInst>(User); |
| if (!LPI) return false; |
| |
| for (unsigned I = 0, E = LPI->getNumClauses(); I != E; ++I) { |
| // Look for something that would've been returned by the ObjC |
| // runtime's GetEHType() method. |
| llvm::Value *Val = LPI->getClause(I)->stripPointerCasts(); |
| if (LPI->isCatch(I)) { |
| // Check if the catch value has the ObjC prefix. |
| if (llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Val)) |
| // ObjC EH selector entries are always global variables with |
| // names starting like this. |
| if (GV->getName().startswith("OBJC_EHTYPE")) |
| return false; |
| } else { |
| // Check if any of the filter values have the ObjC prefix. |
| llvm::Constant *CVal = cast<llvm::Constant>(Val); |
| for (llvm::User::op_iterator |
| II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II) { |
| if (llvm::GlobalVariable *GV = |
| cast<llvm::GlobalVariable>((*II)->stripPointerCasts())) |
| // ObjC EH selector entries are always global variables with |
| // names starting like this. |
| if (GV->getName().startswith("OBJC_EHTYPE")) |
| return false; |
| } |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| /// Try to use the C++ personality function in ObjC++. Not doing this |
| /// can cause some incompatibilities with gcc, which is more |
| /// aggressive about only using the ObjC++ personality in a function |
| /// when it really needs it. |
| void CodeGenModule::SimplifyPersonality() { |
| // For now, this is really a Darwin-specific operation. |
| if (!Context.getTargetInfo().getTriple().isOSDarwin()) |
| return; |
| |
| // If we're not in ObjC++ -fexceptions, there's nothing to do. |
| if (!LangOpts.CPlusPlus || !LangOpts.ObjC1 || !LangOpts.Exceptions) |
| return; |
| |
| const EHPersonality &ObjCXX = EHPersonality::get(LangOpts); |
| const EHPersonality &CXX = getCXXPersonality(LangOpts); |
| if (&ObjCXX == &CXX) |
| return; |
| |
| assert(std::strcmp(ObjCXX.PersonalityFn, CXX.PersonalityFn) != 0 && |
| "Different EHPersonalities using the same personality function."); |
| |
| llvm::Function *Fn = getModule().getFunction(ObjCXX.PersonalityFn); |
| |
| // Nothing to do if it's unused. |
| if (!Fn || Fn->use_empty()) return; |
| |
| // Can't do the optimization if it has non-C++ uses. |
| if (!PersonalityHasOnlyCXXUses(Fn)) return; |
| |
| // Create the C++ personality function and kill off the old |
| // function. |
| llvm::Constant *CXXFn = getPersonalityFn(*this, CXX); |
| |
| // This can happen if the user is screwing with us. |
| if (Fn->getType() != CXXFn->getType()) return; |
| |
| Fn->replaceAllUsesWith(CXXFn); |
| Fn->eraseFromParent(); |
| } |
| |
| /// Returns the value to inject into a selector to indicate the |
| /// presence of a catch-all. |
| static llvm::Constant *getCatchAllValue(CodeGenFunction &CGF) { |
| // Possibly we should use @llvm.eh.catch.all.value here. |
| return llvm::ConstantPointerNull::get(CGF.Int8PtrTy); |
| } |
| |
| namespace { |
| /// A cleanup to free the exception object if its initialization |
| /// throws. |
| struct FreeException : EHScopeStack::Cleanup { |
| llvm::Value *exn; |
| FreeException(llvm::Value *exn) : exn(exn) {} |
| void Emit(CodeGenFunction &CGF, Flags flags) { |
| CGF.Builder.CreateCall(getFreeExceptionFn(CGF), exn) |
| ->setDoesNotThrow(); |
| } |
| }; |
| } |
| |
| // Emits an exception expression into the given location. This |
| // differs from EmitAnyExprToMem only in that, if a final copy-ctor |
| // call is required, an exception within that copy ctor causes |
| // std::terminate to be invoked. |
| static void EmitAnyExprToExn(CodeGenFunction &CGF, const Expr *e, |
| llvm::Value *addr) { |
| // Make sure the exception object is cleaned up if there's an |
| // exception during initialization. |
| CGF.pushFullExprCleanup<FreeException>(EHCleanup, addr); |
| EHScopeStack::stable_iterator cleanup = CGF.EHStack.stable_begin(); |
| |
| // __cxa_allocate_exception returns a void*; we need to cast this |
| // to the appropriate type for the object. |
| llvm::Type *ty = CGF.ConvertTypeForMem(e->getType())->getPointerTo(); |
| llvm::Value *typedAddr = CGF.Builder.CreateBitCast(addr, ty); |
| |
| // FIXME: this isn't quite right! If there's a final unelided call |
| // to a copy constructor, then according to [except.terminate]p1 we |
| // must call std::terminate() if that constructor throws, because |
| // technically that copy occurs after the exception expression is |
| // evaluated but before the exception is caught. But the best way |
| // to handle that is to teach EmitAggExpr to do the final copy |
| // differently if it can't be elided. |
| CGF.EmitAnyExprToMem(e, typedAddr, e->getType().getQualifiers(), |
| /*IsInit*/ true); |
| |
| // Deactivate the cleanup block. |
| CGF.DeactivateCleanupBlock(cleanup, cast<llvm::Instruction>(typedAddr)); |
| } |
| |
| llvm::Value *CodeGenFunction::getExceptionSlot() { |
| if (!ExceptionSlot) |
| ExceptionSlot = CreateTempAlloca(Int8PtrTy, "exn.slot"); |
| return ExceptionSlot; |
| } |
| |
| llvm::Value *CodeGenFunction::getEHSelectorSlot() { |
| if (!EHSelectorSlot) |
| EHSelectorSlot = CreateTempAlloca(Int32Ty, "ehselector.slot"); |
| return EHSelectorSlot; |
| } |
| |
| llvm::Value *CodeGenFunction::getExceptionFromSlot() { |
| return Builder.CreateLoad(getExceptionSlot(), "exn"); |
| } |
| |
| llvm::Value *CodeGenFunction::getSelectorFromSlot() { |
| return Builder.CreateLoad(getEHSelectorSlot(), "sel"); |
| } |
| |
| void CodeGenFunction::EmitCXXThrowExpr(const CXXThrowExpr *E) { |
| if (!E->getSubExpr()) { |
| if (getInvokeDest()) { |
| Builder.CreateInvoke(getReThrowFn(*this), |
| getUnreachableBlock(), |
| getInvokeDest()) |
| ->setDoesNotReturn(); |
| } else { |
| Builder.CreateCall(getReThrowFn(*this))->setDoesNotReturn(); |
| Builder.CreateUnreachable(); |
| } |
| |
| // throw is an expression, and the expression emitters expect us |
| // to leave ourselves at a valid insertion point. |
| EmitBlock(createBasicBlock("throw.cont")); |
| |
| return; |
| } |
| |
| QualType ThrowType = E->getSubExpr()->getType(); |
| |
| // Now allocate the exception object. |
| llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); |
| uint64_t TypeSize = getContext().getTypeSizeInChars(ThrowType).getQuantity(); |
| |
| llvm::Constant *AllocExceptionFn = getAllocateExceptionFn(*this); |
| llvm::CallInst *ExceptionPtr = |
| Builder.CreateCall(AllocExceptionFn, |
| llvm::ConstantInt::get(SizeTy, TypeSize), |
| "exception"); |
| ExceptionPtr->setDoesNotThrow(); |
| |
| EmitAnyExprToExn(*this, E->getSubExpr(), ExceptionPtr); |
| |
| // Now throw the exception. |
| llvm::Constant *TypeInfo = CGM.GetAddrOfRTTIDescriptor(ThrowType, |
| /*ForEH=*/true); |
| |
| // The address of the destructor. If the exception type has a |
| // trivial destructor (or isn't a record), we just pass null. |
| llvm::Constant *Dtor = 0; |
| if (const RecordType *RecordTy = ThrowType->getAs<RecordType>()) { |
| CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl()); |
| if (!Record->hasTrivialDestructor()) { |
| CXXDestructorDecl *DtorD = Record->getDestructor(); |
| Dtor = CGM.GetAddrOfCXXDestructor(DtorD, Dtor_Complete); |
| Dtor = llvm::ConstantExpr::getBitCast(Dtor, Int8PtrTy); |
| } |
| } |
| if (!Dtor) Dtor = llvm::Constant::getNullValue(Int8PtrTy); |
| |
| if (getInvokeDest()) { |
| llvm::InvokeInst *ThrowCall = |
| Builder.CreateInvoke3(getThrowFn(*this), |
| getUnreachableBlock(), getInvokeDest(), |
| ExceptionPtr, TypeInfo, Dtor); |
| ThrowCall->setDoesNotReturn(); |
| } else { |
| llvm::CallInst *ThrowCall = |
| Builder.CreateCall3(getThrowFn(*this), ExceptionPtr, TypeInfo, Dtor); |
| ThrowCall->setDoesNotReturn(); |
| Builder.CreateUnreachable(); |
| } |
| |
| // throw is an expression, and the expression emitters expect us |
| // to leave ourselves at a valid insertion point. |
| EmitBlock(createBasicBlock("throw.cont")); |
| } |
| |
| void CodeGenFunction::EmitStartEHSpec(const Decl *D) { |
| if (!CGM.getLangOpts().CXXExceptions) |
| return; |
| |
| const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D); |
| if (FD == 0) |
| return; |
| const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>(); |
| if (Proto == 0) |
| return; |
| |
| ExceptionSpecificationType EST = Proto->getExceptionSpecType(); |
| if (isNoexceptExceptionSpec(EST)) { |
| if (Proto->getNoexceptSpec(getContext()) == FunctionProtoType::NR_Nothrow) { |
| // noexcept functions are simple terminate scopes. |
| EHStack.pushTerminate(); |
| } |
| } else if (EST == EST_Dynamic || EST == EST_DynamicNone) { |
| unsigned NumExceptions = Proto->getNumExceptions(); |
| EHFilterScope *Filter = EHStack.pushFilter(NumExceptions); |
| |
| for (unsigned I = 0; I != NumExceptions; ++I) { |
| QualType Ty = Proto->getExceptionType(I); |
| QualType ExceptType = Ty.getNonReferenceType().getUnqualifiedType(); |
| llvm::Value *EHType = CGM.GetAddrOfRTTIDescriptor(ExceptType, |
| /*ForEH=*/true); |
| Filter->setFilter(I, EHType); |
| } |
| } |
| } |
| |
| /// Emit the dispatch block for a filter scope if necessary. |
| static void emitFilterDispatchBlock(CodeGenFunction &CGF, |
| EHFilterScope &filterScope) { |
| llvm::BasicBlock *dispatchBlock = filterScope.getCachedEHDispatchBlock(); |
| if (!dispatchBlock) return; |
| if (dispatchBlock->use_empty()) { |
| delete dispatchBlock; |
| return; |
| } |
| |
| CGF.EmitBlockAfterUses(dispatchBlock); |
| |
| // If this isn't a catch-all filter, we need to check whether we got |
| // here because the filter triggered. |
| if (filterScope.getNumFilters()) { |
| // Load the selector value. |
| llvm::Value *selector = CGF.getSelectorFromSlot(); |
| llvm::BasicBlock *unexpectedBB = CGF.createBasicBlock("ehspec.unexpected"); |
| |
| llvm::Value *zero = CGF.Builder.getInt32(0); |
| llvm::Value *failsFilter = |
| CGF.Builder.CreateICmpSLT(selector, zero, "ehspec.fails"); |
| CGF.Builder.CreateCondBr(failsFilter, unexpectedBB, CGF.getEHResumeBlock()); |
| |
| CGF.EmitBlock(unexpectedBB); |
| } |
| |
| // Call __cxa_call_unexpected. This doesn't need to be an invoke |
| // because __cxa_call_unexpected magically filters exceptions |
| // according to the last landing pad the exception was thrown |
| // into. Seriously. |
| llvm::Value *exn = CGF.getExceptionFromSlot(); |
| CGF.Builder.CreateCall(getUnexpectedFn(CGF), exn) |
| ->setDoesNotReturn(); |
| CGF.Builder.CreateUnreachable(); |
| } |
| |
| void CodeGenFunction::EmitEndEHSpec(const Decl *D) { |
| if (!CGM.getLangOpts().CXXExceptions) |
| return; |
| |
| const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D); |
| if (FD == 0) |
| return; |
| const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>(); |
| if (Proto == 0) |
| return; |
| |
| ExceptionSpecificationType EST = Proto->getExceptionSpecType(); |
| if (isNoexceptExceptionSpec(EST)) { |
| if (Proto->getNoexceptSpec(getContext()) == FunctionProtoType::NR_Nothrow) { |
| EHStack.popTerminate(); |
| } |
| } else if (EST == EST_Dynamic || EST == EST_DynamicNone) { |
| EHFilterScope &filterScope = cast<EHFilterScope>(*EHStack.begin()); |
| emitFilterDispatchBlock(*this, filterScope); |
| EHStack.popFilter(); |
| } |
| } |
| |
| void CodeGenFunction::EmitCXXTryStmt(const CXXTryStmt &S) { |
| EnterCXXTryStmt(S); |
| EmitStmt(S.getTryBlock()); |
| ExitCXXTryStmt(S); |
| } |
| |
| void CodeGenFunction::EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) { |
| unsigned NumHandlers = S.getNumHandlers(); |
| EHCatchScope *CatchScope = EHStack.pushCatch(NumHandlers); |
| |
| for (unsigned I = 0; I != NumHandlers; ++I) { |
| const CXXCatchStmt *C = S.getHandler(I); |
| |
| llvm::BasicBlock *Handler = createBasicBlock("catch"); |
| if (C->getExceptionDecl()) { |
| // FIXME: Dropping the reference type on the type into makes it |
| // impossible to correctly implement catch-by-reference |
| // semantics for pointers. Unfortunately, this is what all |
| // existing compilers do, and it's not clear that the standard |
| // personality routine is capable of doing this right. See C++ DR 388: |
| // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#388 |
| QualType CaughtType = C->getCaughtType(); |
| CaughtType = CaughtType.getNonReferenceType().getUnqualifiedType(); |
| |
| llvm::Value *TypeInfo = 0; |
| if (CaughtType->isObjCObjectPointerType()) |
| TypeInfo = CGM.getObjCRuntime().GetEHType(CaughtType); |
| else |
| TypeInfo = CGM.GetAddrOfRTTIDescriptor(CaughtType, /*ForEH=*/true); |
| CatchScope->setHandler(I, TypeInfo, Handler); |
| } else { |
| // No exception decl indicates '...', a catch-all. |
| CatchScope->setCatchAllHandler(I, Handler); |
| } |
| } |
| } |
| |
| llvm::BasicBlock * |
| CodeGenFunction::getEHDispatchBlock(EHScopeStack::stable_iterator si) { |
| // The dispatch block for the end of the scope chain is a block that |
| // just resumes unwinding. |
| if (si == EHStack.stable_end()) |
| return getEHResumeBlock(); |
| |
| // Otherwise, we should look at the actual scope. |
| EHScope &scope = *EHStack.find(si); |
| |
| llvm::BasicBlock *dispatchBlock = scope.getCachedEHDispatchBlock(); |
| if (!dispatchBlock) { |
| switch (scope.getKind()) { |
| case EHScope::Catch: { |
| // Apply a special case to a single catch-all. |
| EHCatchScope &catchScope = cast<EHCatchScope>(scope); |
| if (catchScope.getNumHandlers() == 1 && |
| catchScope.getHandler(0).isCatchAll()) { |
| dispatchBlock = catchScope.getHandler(0).Block; |
| |
| // Otherwise, make a dispatch block. |
| } else { |
| dispatchBlock = createBasicBlock("catch.dispatch"); |
| } |
| break; |
| } |
| |
| case EHScope::Cleanup: |
| dispatchBlock = createBasicBlock("ehcleanup"); |
| break; |
| |
| case EHScope::Filter: |
| dispatchBlock = createBasicBlock("filter.dispatch"); |
| break; |
| |
| case EHScope::Terminate: |
| dispatchBlock = getTerminateHandler(); |
| break; |
| } |
| scope.setCachedEHDispatchBlock(dispatchBlock); |
| } |
| return dispatchBlock; |
| } |
| |
| /// Check whether this is a non-EH scope, i.e. a scope which doesn't |
| /// affect exception handling. Currently, the only non-EH scopes are |
| /// normal-only cleanup scopes. |
| static bool isNonEHScope(const EHScope &S) { |
| switch (S.getKind()) { |
| case EHScope::Cleanup: |
| return !cast<EHCleanupScope>(S).isEHCleanup(); |
| case EHScope::Filter: |
| case EHScope::Catch: |
| case EHScope::Terminate: |
| return false; |
| } |
| |
| llvm_unreachable("Invalid EHScope Kind!"); |
| } |
| |
| llvm::BasicBlock *CodeGenFunction::getInvokeDestImpl() { |
| assert(EHStack.requiresLandingPad()); |
| assert(!EHStack.empty()); |
| |
| if (!CGM.getLangOpts().Exceptions) |
| return 0; |
| |
| // Check the innermost scope for a cached landing pad. If this is |
| // a non-EH cleanup, we'll check enclosing scopes in EmitLandingPad. |
| llvm::BasicBlock *LP = EHStack.begin()->getCachedLandingPad(); |
| if (LP) return LP; |
| |
| // Build the landing pad for this scope. |
| LP = EmitLandingPad(); |
| assert(LP); |
| |
| // Cache the landing pad on the innermost scope. If this is a |
| // non-EH scope, cache the landing pad on the enclosing scope, too. |
| for (EHScopeStack::iterator ir = EHStack.begin(); true; ++ir) { |
| ir->setCachedLandingPad(LP); |
| if (!isNonEHScope(*ir)) break; |
| } |
| |
| return LP; |
| } |
| |
| // This code contains a hack to work around a design flaw in |
| // LLVM's EH IR which breaks semantics after inlining. This same |
| // hack is implemented in llvm-gcc. |
| // |
| // The LLVM EH abstraction is basically a thin veneer over the |
| // traditional GCC zero-cost design: for each range of instructions |
| // in the function, there is (at most) one "landing pad" with an |
| // associated chain of EH actions. A language-specific personality |
| // function interprets this chain of actions and (1) decides whether |
| // or not to resume execution at the landing pad and (2) if so, |
| // provides an integer indicating why it's stopping. In LLVM IR, |
| // the association of a landing pad with a range of instructions is |
| // achieved via an invoke instruction, the chain of actions becomes |
| // the arguments to the @llvm.eh.selector call, and the selector |
| // call returns the integer indicator. Other than the required |
| // presence of two intrinsic function calls in the landing pad, |
| // the IR exactly describes the layout of the output code. |
| // |
| // A principal advantage of this design is that it is completely |
| // language-agnostic; in theory, the LLVM optimizers can treat |
| // landing pads neutrally, and targets need only know how to lower |
| // the intrinsics to have a functioning exceptions system (assuming |
| // that platform exceptions follow something approximately like the |
| // GCC design). Unfortunately, landing pads cannot be combined in a |
| // language-agnostic way: given selectors A and B, there is no way |
| // to make a single landing pad which faithfully represents the |
| // semantics of propagating an exception first through A, then |
| // through B, without knowing how the personality will interpret the |
| // (lowered form of the) selectors. This means that inlining has no |
| // choice but to crudely chain invokes (i.e., to ignore invokes in |
| // the inlined function, but to turn all unwindable calls into |
| // invokes), which is only semantically valid if every unwind stops |
| // at every landing pad. |
| // |
| // Therefore, the invoke-inline hack is to guarantee that every |
| // landing pad has a catch-all. |
| enum CleanupHackLevel_t { |
| /// A level of hack that requires that all landing pads have |
| /// catch-alls. |
| CHL_MandatoryCatchall, |
| |
| /// A level of hack that requires that all landing pads handle |
| /// cleanups. |
| CHL_MandatoryCleanup, |
| |
| /// No hacks at all; ideal IR generation. |
| CHL_Ideal |
| }; |
| const CleanupHackLevel_t CleanupHackLevel = CHL_MandatoryCleanup; |
| |
| llvm::BasicBlock *CodeGenFunction::EmitLandingPad() { |
| assert(EHStack.requiresLandingPad()); |
| |
| EHScope &innermostEHScope = *EHStack.find(EHStack.getInnermostEHScope()); |
| switch (innermostEHScope.getKind()) { |
| case EHScope::Terminate: |
| return getTerminateLandingPad(); |
| |
| case EHScope::Catch: |
| case EHScope::Cleanup: |
| case EHScope::Filter: |
| if (llvm::BasicBlock *lpad = innermostEHScope.getCachedLandingPad()) |
| return lpad; |
| } |
| |
| // Save the current IR generation state. |
| CGBuilderTy::InsertPoint savedIP = Builder.saveAndClearIP(); |
| |
| const EHPersonality &personality = EHPersonality::get(getLangOpts()); |
| |
| // Create and configure the landing pad. |
| llvm::BasicBlock *lpad = createBasicBlock("lpad"); |
| EmitBlock(lpad); |
| |
| llvm::LandingPadInst *LPadInst = |
| Builder.CreateLandingPad(llvm::StructType::get(Int8PtrTy, Int32Ty, NULL), |
| getOpaquePersonalityFn(CGM, personality), 0); |
| |
| llvm::Value *LPadExn = Builder.CreateExtractValue(LPadInst, 0); |
| Builder.CreateStore(LPadExn, getExceptionSlot()); |
| llvm::Value *LPadSel = Builder.CreateExtractValue(LPadInst, 1); |
| Builder.CreateStore(LPadSel, getEHSelectorSlot()); |
| |
| // Save the exception pointer. It's safe to use a single exception |
| // pointer per function because EH cleanups can never have nested |
| // try/catches. |
| // Build the landingpad instruction. |
| |
| // Accumulate all the handlers in scope. |
| bool hasCatchAll = false; |
| bool hasCleanup = false; |
| bool hasFilter = false; |
| SmallVector<llvm::Value*, 4> filterTypes; |
| llvm::SmallPtrSet<llvm::Value*, 4> catchTypes; |
| for (EHScopeStack::iterator I = EHStack.begin(), E = EHStack.end(); |
| I != E; ++I) { |
| |
| switch (I->getKind()) { |
| case EHScope::Cleanup: |
| // If we have a cleanup, remember that. |
| hasCleanup = (hasCleanup || cast<EHCleanupScope>(*I).isEHCleanup()); |
| continue; |
| |
| case EHScope::Filter: { |
| assert(I.next() == EHStack.end() && "EH filter is not end of EH stack"); |
| assert(!hasCatchAll && "EH filter reached after catch-all"); |
| |
| // Filter scopes get added to the landingpad in weird ways. |
| EHFilterScope &filter = cast<EHFilterScope>(*I); |
| hasFilter = true; |
| |
| // Add all the filter values. |
| for (unsigned i = 0, e = filter.getNumFilters(); i != e; ++i) |
| filterTypes.push_back(filter.getFilter(i)); |
| goto done; |
| } |
| |
| case EHScope::Terminate: |
| // Terminate scopes are basically catch-alls. |
| assert(!hasCatchAll); |
| hasCatchAll = true; |
| goto done; |
| |
| case EHScope::Catch: |
| break; |
| } |
| |
| EHCatchScope &catchScope = cast<EHCatchScope>(*I); |
| for (unsigned hi = 0, he = catchScope.getNumHandlers(); hi != he; ++hi) { |
| EHCatchScope::Handler handler = catchScope.getHandler(hi); |
| |
| // If this is a catch-all, register that and abort. |
| if (!handler.Type) { |
| assert(!hasCatchAll); |
| hasCatchAll = true; |
| goto done; |
| } |
| |
| // Check whether we already have a handler for this type. |
| if (catchTypes.insert(handler.Type)) |
| // If not, add it directly to the landingpad. |
| LPadInst->addClause(handler.Type); |
| } |
| } |
| |
| done: |
| // If we have a catch-all, add null to the landingpad. |
| assert(!(hasCatchAll && hasFilter)); |
| if (hasCatchAll) { |
| LPadInst->addClause(getCatchAllValue(*this)); |
| |
| // If we have an EH filter, we need to add those handlers in the |
| // right place in the landingpad, which is to say, at the end. |
| } else if (hasFilter) { |
| // Create a filter expression: a constant array indicating which filter |
| // types there are. The personality routine only lands here if the filter |
| // doesn't match. |
| llvm::SmallVector<llvm::Constant*, 8> Filters; |
| llvm::ArrayType *AType = |
| llvm::ArrayType::get(!filterTypes.empty() ? |
| filterTypes[0]->getType() : Int8PtrTy, |
| filterTypes.size()); |
| |
| for (unsigned i = 0, e = filterTypes.size(); i != e; ++i) |
| Filters.push_back(cast<llvm::Constant>(filterTypes[i])); |
| llvm::Constant *FilterArray = llvm::ConstantArray::get(AType, Filters); |
| LPadInst->addClause(FilterArray); |
| |
| // Also check whether we need a cleanup. |
| if (hasCleanup) |
| LPadInst->setCleanup(true); |
| |
| // Otherwise, signal that we at least have cleanups. |
| } else if (CleanupHackLevel == CHL_MandatoryCatchall || hasCleanup) { |
| if (CleanupHackLevel == CHL_MandatoryCatchall) |
| LPadInst->addClause(getCatchAllValue(*this)); |
| else |
| LPadInst->setCleanup(true); |
| } |
| |
| assert((LPadInst->getNumClauses() > 0 || LPadInst->isCleanup()) && |
| "landingpad instruction has no clauses!"); |
| |
| // Tell the backend how to generate the landing pad. |
| Builder.CreateBr(getEHDispatchBlock(EHStack.getInnermostEHScope())); |
| |
| // Restore the old IR generation state. |
| Builder.restoreIP(savedIP); |
| |
| return lpad; |
| } |
| |
| namespace { |
| /// A cleanup to call __cxa_end_catch. In many cases, the caught |
| /// exception type lets us state definitively that the thrown exception |
| /// type does not have a destructor. In particular: |
| /// - Catch-alls tell us nothing, so we have to conservatively |
| /// assume that the thrown exception might have a destructor. |
| /// - Catches by reference behave according to their base types. |
| /// - Catches of non-record types will only trigger for exceptions |
| /// of non-record types, which never have destructors. |
| /// - Catches of record types can trigger for arbitrary subclasses |
| /// of the caught type, so we have to assume the actual thrown |
| /// exception type might have a throwing destructor, even if the |
| /// caught type's destructor is trivial or nothrow. |
| struct CallEndCatch : EHScopeStack::Cleanup { |
| CallEndCatch(bool MightThrow) : MightThrow(MightThrow) {} |
| bool MightThrow; |
| |
| void Emit(CodeGenFunction &CGF, Flags flags) { |
| if (!MightThrow) { |
| CGF.Builder.CreateCall(getEndCatchFn(CGF))->setDoesNotThrow(); |
| return; |
| } |
| |
| CGF.EmitCallOrInvoke(getEndCatchFn(CGF)); |
| } |
| }; |
| } |
| |
| /// Emits a call to __cxa_begin_catch and enters a cleanup to call |
| /// __cxa_end_catch. |
| /// |
| /// \param EndMightThrow - true if __cxa_end_catch might throw |
| static llvm::Value *CallBeginCatch(CodeGenFunction &CGF, |
| llvm::Value *Exn, |
| bool EndMightThrow) { |
| llvm::CallInst *Call = CGF.Builder.CreateCall(getBeginCatchFn(CGF), Exn); |
| Call->setDoesNotThrow(); |
| |
| CGF.EHStack.pushCleanup<CallEndCatch>(NormalAndEHCleanup, EndMightThrow); |
| |
| return Call; |
| } |
| |
| /// A "special initializer" callback for initializing a catch |
| /// parameter during catch initialization. |
| static void InitCatchParam(CodeGenFunction &CGF, |
| const VarDecl &CatchParam, |
| llvm::Value *ParamAddr) { |
| // Load the exception from where the landing pad saved it. |
| llvm::Value *Exn = CGF.getExceptionFromSlot(); |
| |
| CanQualType CatchType = |
| CGF.CGM.getContext().getCanonicalType(CatchParam.getType()); |
| llvm::Type *LLVMCatchTy = CGF.ConvertTypeForMem(CatchType); |
| |
| // If we're catching by reference, we can just cast the object |
| // pointer to the appropriate pointer. |
| if (isa<ReferenceType>(CatchType)) { |
| QualType CaughtType = cast<ReferenceType>(CatchType)->getPointeeType(); |
| bool EndCatchMightThrow = CaughtType->isRecordType(); |
| |
| // __cxa_begin_catch returns the adjusted object pointer. |
| llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, EndCatchMightThrow); |
| |
| // We have no way to tell the personality function that we're |
| // catching by reference, so if we're catching a pointer, |
| // __cxa_begin_catch will actually return that pointer by value. |
| if (const PointerType *PT = dyn_cast<PointerType>(CaughtType)) { |
| QualType PointeeType = PT->getPointeeType(); |
| |
| // When catching by reference, generally we should just ignore |
| // this by-value pointer and use the exception object instead. |
| if (!PointeeType->isRecordType()) { |
| |
| // Exn points to the struct _Unwind_Exception header, which |
| // we have to skip past in order to reach the exception data. |
| unsigned HeaderSize = |
| CGF.CGM.getTargetCodeGenInfo().getSizeOfUnwindException(); |
| AdjustedExn = CGF.Builder.CreateConstGEP1_32(Exn, HeaderSize); |
| |
| // However, if we're catching a pointer-to-record type that won't |
| // work, because the personality function might have adjusted |
| // the pointer. There's actually no way for us to fully satisfy |
| // the language/ABI contract here: we can't use Exn because it |
| // might have the wrong adjustment, but we can't use the by-value |
| // pointer because it's off by a level of abstraction. |
| // |
| // The current solution is to dump the adjusted pointer into an |
| // alloca, which breaks language semantics (because changing the |
| // pointer doesn't change the exception) but at least works. |
| // The better solution would be to filter out non-exact matches |
| // and rethrow them, but this is tricky because the rethrow |
| // really needs to be catchable by other sites at this landing |
| // pad. The best solution is to fix the personality function. |
| } else { |
| // Pull the pointer for the reference type off. |
| llvm::Type *PtrTy = |
| cast<llvm::PointerType>(LLVMCatchTy)->getElementType(); |
| |
| // Create the temporary and write the adjusted pointer into it. |
| llvm::Value *ExnPtrTmp = CGF.CreateTempAlloca(PtrTy, "exn.byref.tmp"); |
| llvm::Value *Casted = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy); |
| CGF.Builder.CreateStore(Casted, ExnPtrTmp); |
| |
| // Bind the reference to the temporary. |
| AdjustedExn = ExnPtrTmp; |
| } |
| } |
| |
| llvm::Value *ExnCast = |
| CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.byref"); |
| CGF.Builder.CreateStore(ExnCast, ParamAddr); |
| return; |
| } |
| |
| // Non-aggregates (plus complexes). |
| bool IsComplex = false; |
| if (!CGF.hasAggregateLLVMType(CatchType) || |
| (IsComplex = CatchType->isAnyComplexType())) { |
| llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, false); |
| |
| // If the catch type is a pointer type, __cxa_begin_catch returns |
| // the pointer by value. |
| if (CatchType->hasPointerRepresentation()) { |
| llvm::Value *CastExn = |
| CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.casted"); |
| |
| switch (CatchType.getQualifiers().getObjCLifetime()) { |
| case Qualifiers::OCL_Strong: |
| CastExn = CGF.EmitARCRetainNonBlock(CastExn); |
| // fallthrough |
| |
| case Qualifiers::OCL_None: |
| case Qualifiers::OCL_ExplicitNone: |
| case Qualifiers::OCL_Autoreleasing: |
| CGF.Builder.CreateStore(CastExn, ParamAddr); |
| return; |
| |
| case Qualifiers::OCL_Weak: |
| CGF.EmitARCInitWeak(ParamAddr, CastExn); |
| return; |
| } |
| llvm_unreachable("bad ownership qualifier!"); |
| } |
| |
| // Otherwise, it returns a pointer into the exception object. |
| |
| llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok |
| llvm::Value *Cast = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy); |
| |
| if (IsComplex) { |
| CGF.StoreComplexToAddr(CGF.LoadComplexFromAddr(Cast, /*volatile*/ false), |
| ParamAddr, /*volatile*/ false); |
| } else { |
| unsigned Alignment = |
| CGF.getContext().getDeclAlign(&CatchParam).getQuantity(); |
| llvm::Value *ExnLoad = CGF.Builder.CreateLoad(Cast, "exn.scalar"); |
| CGF.EmitStoreOfScalar(ExnLoad, ParamAddr, /*volatile*/ false, Alignment, |
| CatchType); |
| } |
| return; |
| } |
| |
| assert(isa<RecordType>(CatchType) && "unexpected catch type!"); |
| |
| llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok |
| |
| // Check for a copy expression. If we don't have a copy expression, |
| // that means a trivial copy is okay. |
| const Expr *copyExpr = CatchParam.getInit(); |
| if (!copyExpr) { |
| llvm::Value *rawAdjustedExn = CallBeginCatch(CGF, Exn, true); |
| llvm::Value *adjustedExn = CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy); |
| CGF.EmitAggregateCopy(ParamAddr, adjustedExn, CatchType); |
| return; |
| } |
| |
| // We have to call __cxa_get_exception_ptr to get the adjusted |
| // pointer before copying. |
| llvm::CallInst *rawAdjustedExn = |
| CGF.Builder.CreateCall(getGetExceptionPtrFn(CGF), Exn); |
| rawAdjustedExn->setDoesNotThrow(); |
| |
| // Cast that to the appropriate type. |
| llvm::Value *adjustedExn = CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy); |
| |
| // The copy expression is defined in terms of an OpaqueValueExpr. |
| // Find it and map it to the adjusted expression. |
| CodeGenFunction::OpaqueValueMapping |
| opaque(CGF, OpaqueValueExpr::findInCopyConstruct(copyExpr), |
| CGF.MakeAddrLValue(adjustedExn, CatchParam.getType())); |
| |
| // Call the copy ctor in a terminate scope. |
| CGF.EHStack.pushTerminate(); |
| |
| // Perform the copy construction. |
| CharUnits Alignment = CGF.getContext().getDeclAlign(&CatchParam); |
| CGF.EmitAggExpr(copyExpr, |
| AggValueSlot::forAddr(ParamAddr, Alignment, Qualifiers(), |
| AggValueSlot::IsNotDestructed, |
| AggValueSlot::DoesNotNeedGCBarriers, |
| AggValueSlot::IsNotAliased)); |
| |
| // Leave the terminate scope. |
| CGF.EHStack.popTerminate(); |
| |
| // Undo the opaque value mapping. |
| opaque.pop(); |
| |
| // Finally we can call __cxa_begin_catch. |
| CallBeginCatch(CGF, Exn, true); |
| } |
| |
| /// Begins a catch statement by initializing the catch variable and |
| /// calling __cxa_begin_catch. |
| static void BeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *S) { |
| // We have to be very careful with the ordering of cleanups here: |
| // C++ [except.throw]p4: |
| // The destruction [of the exception temporary] occurs |
| // immediately after the destruction of the object declared in |
| // the exception-declaration in the handler. |
| // |
| // So the precise ordering is: |
| // 1. Construct catch variable. |
| // 2. __cxa_begin_catch |
| // 3. Enter __cxa_end_catch cleanup |
| // 4. Enter dtor cleanup |
| // |
| // We do this by using a slightly abnormal initialization process. |
| // Delegation sequence: |
| // - ExitCXXTryStmt opens a RunCleanupsScope |
| // - EmitAutoVarAlloca creates the variable and debug info |
| // - InitCatchParam initializes the variable from the exception |
| // - CallBeginCatch calls __cxa_begin_catch |
| // - CallBeginCatch enters the __cxa_end_catch cleanup |
| // - EmitAutoVarCleanups enters the variable destructor cleanup |
| // - EmitCXXTryStmt emits the code for the catch body |
| // - EmitCXXTryStmt close the RunCleanupsScope |
| |
| VarDecl *CatchParam = S->getExceptionDecl(); |
| if (!CatchParam) { |
| llvm::Value *Exn = CGF.getExceptionFromSlot(); |
| CallBeginCatch(CGF, Exn, true); |
| return; |
| } |
| |
| // Emit the local. |
| CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam); |
| InitCatchParam(CGF, *CatchParam, var.getObjectAddress(CGF)); |
| CGF.EmitAutoVarCleanups(var); |
| } |
| |
| namespace { |
| struct CallRethrow : EHScopeStack::Cleanup { |
| void Emit(CodeGenFunction &CGF, Flags flags) { |
| CGF.EmitCallOrInvoke(getReThrowFn(CGF)); |
| } |
| }; |
| } |
| |
| /// Emit the structure of the dispatch block for the given catch scope. |
| /// It is an invariant that the dispatch block already exists. |
| static void emitCatchDispatchBlock(CodeGenFunction &CGF, |
| EHCatchScope &catchScope) { |
| llvm::BasicBlock *dispatchBlock = catchScope.getCachedEHDispatchBlock(); |
| assert(dispatchBlock); |
| |
| // If there's only a single catch-all, getEHDispatchBlock returned |
| // that catch-all as the dispatch block. |
| if (catchScope.getNumHandlers() == 1 && |
| catchScope.getHandler(0).isCatchAll()) { |
| assert(dispatchBlock == catchScope.getHandler(0).Block); |
| return; |
| } |
| |
| CGBuilderTy::InsertPoint savedIP = CGF.Builder.saveIP(); |
| CGF.EmitBlockAfterUses(dispatchBlock); |
| |
| // Select the right handler. |
| llvm::Value *llvm_eh_typeid_for = |
| CGF.CGM.getIntrinsic(llvm::Intrinsic::eh_typeid_for); |
| |
| // Load the selector value. |
| llvm::Value *selector = CGF.getSelectorFromSlot(); |
| |
| // Test against each of the exception types we claim to catch. |
| for (unsigned i = 0, e = catchScope.getNumHandlers(); ; ++i) { |
| assert(i < e && "ran off end of handlers!"); |
| const EHCatchScope::Handler &handler = catchScope.getHandler(i); |
| |
| llvm::Value *typeValue = handler.Type; |
| assert(typeValue && "fell into catch-all case!"); |
| typeValue = CGF.Builder.CreateBitCast(typeValue, CGF.Int8PtrTy); |
| |
| // Figure out the next block. |
| bool nextIsEnd; |
| llvm::BasicBlock *nextBlock; |
| |
| // If this is the last handler, we're at the end, and the next |
| // block is the block for the enclosing EH scope. |
| if (i + 1 == e) { |
| nextBlock = CGF.getEHDispatchBlock(catchScope.getEnclosingEHScope()); |
| nextIsEnd = true; |
| |
| // If the next handler is a catch-all, we're at the end, and the |
| // next block is that handler. |
| } else if (catchScope.getHandler(i+1).isCatchAll()) { |
| nextBlock = catchScope.getHandler(i+1).Block; |
| nextIsEnd = true; |
| |
| // Otherwise, we're not at the end and we need a new block. |
| } else { |
| nextBlock = CGF.createBasicBlock("catch.fallthrough"); |
| nextIsEnd = false; |
| } |
| |
| // Figure out the catch type's index in the LSDA's type table. |
| llvm::CallInst *typeIndex = |
| CGF.Builder.CreateCall(llvm_eh_typeid_for, typeValue); |
| typeIndex->setDoesNotThrow(); |
| |
| llvm::Value *matchesTypeIndex = |
| CGF.Builder.CreateICmpEQ(selector, typeIndex, "matches"); |
| CGF.Builder.CreateCondBr(matchesTypeIndex, handler.Block, nextBlock); |
| |
| // If the next handler is a catch-all, we're completely done. |
| if (nextIsEnd) { |
| CGF.Builder.restoreIP(savedIP); |
| return; |
| } |
| // Otherwise we need to emit and continue at that block. |
| CGF.EmitBlock(nextBlock); |
| } |
| } |
| |
| void CodeGenFunction::popCatchScope() { |
| EHCatchScope &catchScope = cast<EHCatchScope>(*EHStack.begin()); |
| if (catchScope.hasEHBranches()) |
| emitCatchDispatchBlock(*this, catchScope); |
| EHStack.popCatch(); |
| } |
| |
| void CodeGenFunction::ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) { |
| unsigned NumHandlers = S.getNumHandlers(); |
| EHCatchScope &CatchScope = cast<EHCatchScope>(*EHStack.begin()); |
| assert(CatchScope.getNumHandlers() == NumHandlers); |
| |
| // If the catch was not required, bail out now. |
| if (!CatchScope.hasEHBranches()) { |
| EHStack.popCatch(); |
| return; |
| } |
| |
| // Emit the structure of the EH dispatch for this catch. |
| emitCatchDispatchBlock(*this, CatchScope); |
| |
| // Copy the handler blocks off before we pop the EH stack. Emitting |
| // the handlers might scribble on this memory. |
| SmallVector<EHCatchScope::Handler, 8> Handlers(NumHandlers); |
| memcpy(Handlers.data(), CatchScope.begin(), |
| NumHandlers * sizeof(EHCatchScope::Handler)); |
| |
| EHStack.popCatch(); |
| |
| // The fall-through block. |
| llvm::BasicBlock *ContBB = createBasicBlock("try.cont"); |
| |
| // We just emitted the body of the try; jump to the continue block. |
| if (HaveInsertPoint()) |
| Builder.CreateBr(ContBB); |
| |
| // Determine if we need an implicit rethrow for all these catch handlers. |
| bool ImplicitRethrow = false; |
| if (IsFnTryBlock) |
| ImplicitRethrow = isa<CXXDestructorDecl>(CurCodeDecl) || |
| isa<CXXConstructorDecl>(CurCodeDecl); |
| |
| // Perversely, we emit the handlers backwards precisely because we |
| // want them to appear in source order. In all of these cases, the |
| // catch block will have exactly one predecessor, which will be a |
| // particular block in the catch dispatch. However, in the case of |
| // a catch-all, one of the dispatch blocks will branch to two |
| // different handlers, and EmitBlockAfterUses will cause the second |
| // handler to be moved before the first. |
| for (unsigned I = NumHandlers; I != 0; --I) { |
| llvm::BasicBlock *CatchBlock = Handlers[I-1].Block; |
| EmitBlockAfterUses(CatchBlock); |
| |
| // Catch the exception if this isn't a catch-all. |
| const CXXCatchStmt *C = S.getHandler(I-1); |
| |
| // Enter a cleanup scope, including the catch variable and the |
| // end-catch. |
| RunCleanupsScope CatchScope(*this); |
| |
| // Initialize the catch variable and set up the cleanups. |
| BeginCatch(*this, C); |
| |
| // If there's an implicit rethrow, push a normal "cleanup" to call |
| // _cxa_rethrow. This needs to happen before __cxa_end_catch is |
| // called, and so it is pushed after BeginCatch. |
| if (ImplicitRethrow) |
| EHStack.pushCleanup<CallRethrow>(NormalCleanup); |
| |
| // Perform the body of the catch. |
| EmitStmt(C->getHandlerBlock()); |
| |
| // Fall out through the catch cleanups. |
| CatchScope.ForceCleanup(); |
| |
| // Branch out of the try. |
| if (HaveInsertPoint()) |
| Builder.CreateBr(ContBB); |
| } |
| |
| EmitBlock(ContBB); |
| } |
| |
| namespace { |
| struct CallEndCatchForFinally : EHScopeStack::Cleanup { |
| llvm::Value *ForEHVar; |
| llvm::Value *EndCatchFn; |
| CallEndCatchForFinally(llvm::Value *ForEHVar, llvm::Value *EndCatchFn) |
| : ForEHVar(ForEHVar), EndCatchFn(EndCatchFn) {} |
| |
| void Emit(CodeGenFunction &CGF, Flags flags) { |
| llvm::BasicBlock *EndCatchBB = CGF.createBasicBlock("finally.endcatch"); |
| llvm::BasicBlock *CleanupContBB = |
| CGF.createBasicBlock("finally.cleanup.cont"); |
| |
| llvm::Value *ShouldEndCatch = |
| CGF.Builder.CreateLoad(ForEHVar, "finally.endcatch"); |
| CGF.Builder.CreateCondBr(ShouldEndCatch, EndCatchBB, CleanupContBB); |
| CGF.EmitBlock(EndCatchBB); |
| CGF.EmitCallOrInvoke(EndCatchFn); // catch-all, so might throw |
| CGF.EmitBlock(CleanupContBB); |
| } |
| }; |
| |
| struct PerformFinally : EHScopeStack::Cleanup { |
| const Stmt *Body; |
| llvm::Value *ForEHVar; |
| llvm::Value *EndCatchFn; |
| llvm::Value *RethrowFn; |
| llvm::Value *SavedExnVar; |
| |
| PerformFinally(const Stmt *Body, llvm::Value *ForEHVar, |
| llvm::Value *EndCatchFn, |
| llvm::Value *RethrowFn, llvm::Value *SavedExnVar) |
| : Body(Body), ForEHVar(ForEHVar), EndCatchFn(EndCatchFn), |
| RethrowFn(RethrowFn), SavedExnVar(SavedExnVar) {} |
| |
| void Emit(CodeGenFunction &CGF, Flags flags) { |
| // Enter a cleanup to call the end-catch function if one was provided. |
| if (EndCatchFn) |
| CGF.EHStack.pushCleanup<CallEndCatchForFinally>(NormalAndEHCleanup, |
| ForEHVar, EndCatchFn); |
| |
| // Save the current cleanup destination in case there are |
| // cleanups in the finally block. |
| llvm::Value *SavedCleanupDest = |
| CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot(), |
| "cleanup.dest.saved"); |
| |
| // Emit the finally block. |
| CGF.EmitStmt(Body); |
| |
| // If the end of the finally is reachable, check whether this was |
| // for EH. If so, rethrow. |
| if (CGF.HaveInsertPoint()) { |
| llvm::BasicBlock *RethrowBB = CGF.createBasicBlock("finally.rethrow"); |
| llvm::BasicBlock *ContBB = CGF.createBasicBlock("finally.cont"); |
| |
| llvm::Value *ShouldRethrow = |
| CGF.Builder.CreateLoad(ForEHVar, "finally.shouldthrow"); |
| CGF.Builder.CreateCondBr(ShouldRethrow, RethrowBB, ContBB); |
| |
| CGF.EmitBlock(RethrowBB); |
| if (SavedExnVar) { |
| CGF.EmitCallOrInvoke(RethrowFn, CGF.Builder.CreateLoad(SavedExnVar)); |
| } else { |
| CGF.EmitCallOrInvoke(RethrowFn); |
| } |
| CGF.Builder.CreateUnreachable(); |
| |
| CGF.EmitBlock(ContBB); |
| |
| // Restore the cleanup destination. |
| CGF.Builder.CreateStore(SavedCleanupDest, |
| CGF.getNormalCleanupDestSlot()); |
| } |
| |
| // Leave the end-catch cleanup. As an optimization, pretend that |
| // the fallthrough path was inaccessible; we've dynamically proven |
| // that we're not in the EH case along that path. |
| if (EndCatchFn) { |
| CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP(); |
| CGF.PopCleanupBlock(); |
| CGF.Builder.restoreIP(SavedIP); |
| } |
| |
| // Now make sure we actually have an insertion point or the |
| // cleanup gods will hate us. |
| CGF.EnsureInsertPoint(); |
| } |
| }; |
| } |
| |
| /// Enters a finally block for an implementation using zero-cost |
| /// exceptions. This is mostly general, but hard-codes some |
| /// language/ABI-specific behavior in the catch-all sections. |
| void CodeGenFunction::FinallyInfo::enter(CodeGenFunction &CGF, |
| const Stmt *body, |
| llvm::Constant *beginCatchFn, |
| llvm::Constant *endCatchFn, |
| llvm::Constant *rethrowFn) { |
| assert((beginCatchFn != 0) == (endCatchFn != 0) && |
| "begin/end catch functions not paired"); |
| assert(rethrowFn && "rethrow function is required"); |
| |
| BeginCatchFn = beginCatchFn; |
| |
| // The rethrow function has one of the following two types: |
| // void (*)() |
| // void (*)(void*) |
| // In the latter case we need to pass it the exception object. |
| // But we can't use the exception slot because the @finally might |
| // have a landing pad (which would overwrite the exception slot). |
| llvm::FunctionType *rethrowFnTy = |
| cast<llvm::FunctionType>( |
| cast<llvm::PointerType>(rethrowFn->getType())->getElementType()); |
| SavedExnVar = 0; |
| if (rethrowFnTy->getNumParams()) |
| SavedExnVar = CGF.CreateTempAlloca(CGF.Int8PtrTy, "finally.exn"); |
| |
| // A finally block is a statement which must be executed on any edge |
| // out of a given scope. Unlike a cleanup, the finally block may |
| // contain arbitrary control flow leading out of itself. In |
| // addition, finally blocks should always be executed, even if there |
| // are no catch handlers higher on the stack. Therefore, we |
| // surround the protected scope with a combination of a normal |
| // cleanup (to catch attempts to break out of the block via normal |
| // control flow) and an EH catch-all (semantically "outside" any try |
| // statement to which the finally block might have been attached). |
| // The finally block itself is generated in the context of a cleanup |
| // which conditionally leaves the catch-all. |
| |
| // Jump destination for performing the finally block on an exception |
| // edge. We'll never actually reach this block, so unreachable is |
| // fine. |
| RethrowDest = CGF.getJumpDestInCurrentScope(CGF.getUnreachableBlock()); |
| |
| // Whether the finally block is being executed for EH purposes. |
| ForEHVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), "finally.for-eh"); |
| CGF.Builder.CreateStore(CGF.Builder.getFalse(), ForEHVar); |
| |
| // Enter a normal cleanup which will perform the @finally block. |
| CGF.EHStack.pushCleanup<PerformFinally>(NormalCleanup, body, |
| ForEHVar, endCatchFn, |
| rethrowFn, SavedExnVar); |
| |
| // Enter a catch-all scope. |
| llvm::BasicBlock *catchBB = CGF.createBasicBlock("finally.catchall"); |
| EHCatchScope *catchScope = CGF.EHStack.pushCatch(1); |
| catchScope->setCatchAllHandler(0, catchBB); |
| } |
| |
| void CodeGenFunction::FinallyInfo::exit(CodeGenFunction &CGF) { |
| // Leave the finally catch-all. |
| EHCatchScope &catchScope = cast<EHCatchScope>(*CGF.EHStack.begin()); |
| llvm::BasicBlock *catchBB = catchScope.getHandler(0).Block; |
| |
| CGF.popCatchScope(); |
| |
| // If there are any references to the catch-all block, emit it. |
| if (catchBB->use_empty()) { |
| delete catchBB; |
| } else { |
| CGBuilderTy::InsertPoint savedIP = CGF.Builder.saveAndClearIP(); |
| CGF.EmitBlock(catchBB); |
| |
| llvm::Value *exn = 0; |
| |
| // If there's a begin-catch function, call it. |
| if (BeginCatchFn) { |
| exn = CGF.getExceptionFromSlot(); |
| CGF.Builder.CreateCall(BeginCatchFn, exn)->setDoesNotThrow(); |
| } |
| |
| // If we need to remember the exception pointer to rethrow later, do so. |
| if (SavedExnVar) { |
| if (!exn) exn = CGF.getExceptionFromSlot(); |
| CGF.Builder.CreateStore(exn, SavedExnVar); |
| } |
| |
| // Tell the cleanups in the finally block that we're do this for EH. |
| CGF.Builder.CreateStore(CGF.Builder.getTrue(), ForEHVar); |
| |
| // Thread a jump through the finally cleanup. |
| CGF.EmitBranchThroughCleanup(RethrowDest); |
| |
| CGF.Builder.restoreIP(savedIP); |
| } |
| |
| // Finally, leave the @finally cleanup. |
| CGF.PopCleanupBlock(); |
| } |
| |
| llvm::BasicBlock *CodeGenFunction::getTerminateLandingPad() { |
| if (TerminateLandingPad) |
| return TerminateLandingPad; |
| |
| CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); |
| |
| // This will get inserted at the end of the function. |
| TerminateLandingPad = createBasicBlock("terminate.lpad"); |
| Builder.SetInsertPoint(TerminateLandingPad); |
| |
| // Tell the backend that this is a landing pad. |
| const EHPersonality &Personality = EHPersonality::get(CGM.getLangOpts()); |
| llvm::LandingPadInst *LPadInst = |
| Builder.CreateLandingPad(llvm::StructType::get(Int8PtrTy, Int32Ty, NULL), |
| getOpaquePersonalityFn(CGM, Personality), 0); |
| LPadInst->addClause(getCatchAllValue(*this)); |
| |
| llvm::CallInst *TerminateCall = Builder.CreateCall(getTerminateFn(*this)); |
| TerminateCall->setDoesNotReturn(); |
| TerminateCall->setDoesNotThrow(); |
| Builder.CreateUnreachable(); |
| |
| // Restore the saved insertion state. |
| Builder.restoreIP(SavedIP); |
| |
| return TerminateLandingPad; |
| } |
| |
| llvm::BasicBlock *CodeGenFunction::getTerminateHandler() { |
| if (TerminateHandler) |
| return TerminateHandler; |
| |
| CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); |
| |
| // Set up the terminate handler. This block is inserted at the very |
| // end of the function by FinishFunction. |
| TerminateHandler = createBasicBlock("terminate.handler"); |
| Builder.SetInsertPoint(TerminateHandler); |
| llvm::CallInst *TerminateCall = Builder.CreateCall(getTerminateFn(*this)); |
| TerminateCall->setDoesNotReturn(); |
| TerminateCall->setDoesNotThrow(); |
| Builder.CreateUnreachable(); |
| |
| // Restore the saved insertion state. |
| Builder.restoreIP(SavedIP); |
| |
| return TerminateHandler; |
| } |
| |
| llvm::BasicBlock *CodeGenFunction::getEHResumeBlock() { |
| if (EHResumeBlock) return EHResumeBlock; |
| |
| CGBuilderTy::InsertPoint SavedIP = Builder.saveIP(); |
| |
| // We emit a jump to a notional label at the outermost unwind state. |
| EHResumeBlock = createBasicBlock("eh.resume"); |
| Builder.SetInsertPoint(EHResumeBlock); |
| |
| const EHPersonality &Personality = EHPersonality::get(CGM.getLangOpts()); |
| |
| // This can always be a call because we necessarily didn't find |
| // anything on the EH stack which needs our help. |
| const char *RethrowName = Personality.CatchallRethrowFn; |
| if (RethrowName != 0) { |
| Builder.CreateCall(getCatchallRethrowFn(*this, RethrowName), |
| getExceptionFromSlot()) |
| ->setDoesNotReturn(); |
| } else { |
| switch (CleanupHackLevel) { |
| case CHL_MandatoryCatchall: |
| // In mandatory-catchall mode, we need to use |
| // _Unwind_Resume_or_Rethrow, or whatever the personality's |
| // equivalent is. |
| Builder.CreateCall(getUnwindResumeOrRethrowFn(), |
| getExceptionFromSlot()) |
| ->setDoesNotReturn(); |
| break; |
| case CHL_MandatoryCleanup: { |
| // In mandatory-cleanup mode, we should use 'resume'. |
| |
| // Recreate the landingpad's return value for the 'resume' instruction. |
| llvm::Value *Exn = getExceptionFromSlot(); |
| llvm::Value *Sel = getSelectorFromSlot(); |
| |
| llvm::Type *LPadType = llvm::StructType::get(Exn->getType(), |
| Sel->getType(), NULL); |
| llvm::Value *LPadVal = llvm::UndefValue::get(LPadType); |
| LPadVal = Builder.CreateInsertValue(LPadVal, Exn, 0, "lpad.val"); |
| LPadVal = Builder.CreateInsertValue(LPadVal, Sel, 1, "lpad.val"); |
| |
| Builder.CreateResume(LPadVal); |
| Builder.restoreIP(SavedIP); |
| return EHResumeBlock; |
| } |
| case CHL_Ideal: |
| // In an idealized mode where we don't have to worry about the |
| // optimizer combining landing pads, we should just use |
| // _Unwind_Resume (or the personality's equivalent). |
| Builder.CreateCall(getUnwindResumeFn(), getExceptionFromSlot()) |
| ->setDoesNotReturn(); |
| break; |
| } |
| } |
| |
| Builder.CreateUnreachable(); |
| |
| Builder.restoreIP(SavedIP); |
| |
| return EHResumeBlock; |
| } |