| //===--- SemaNamedCast.cpp - Semantic Analysis for Named Casts ------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements semantic analysis for C++ named casts. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Sema/SemaInternal.h" |
| #include "clang/Sema/Initialization.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/CXXInheritance.h" |
| #include "clang/Basic/PartialDiagnostic.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include <set> |
| using namespace clang; |
| |
| |
| |
| enum TryCastResult { |
| TC_NotApplicable, ///< The cast method is not applicable. |
| TC_Success, ///< The cast method is appropriate and successful. |
| TC_Failed ///< The cast method is appropriate, but failed. A |
| ///< diagnostic has been emitted. |
| }; |
| |
| enum CastType { |
| CT_Const, ///< const_cast |
| CT_Static, ///< static_cast |
| CT_Reinterpret, ///< reinterpret_cast |
| CT_Dynamic, ///< dynamic_cast |
| CT_CStyle, ///< (Type)expr |
| CT_Functional ///< Type(expr) |
| }; |
| |
| |
| |
| |
| static void CheckConstCast(Sema &Self, ExprResult &SrcExpr, QualType DestType, |
| ExprValueKind &VK, |
| const SourceRange &OpRange, |
| const SourceRange &DestRange); |
| static void CheckReinterpretCast(Sema &Self, ExprResult &SrcExpr, QualType DestType, |
| ExprValueKind &VK, |
| const SourceRange &OpRange, |
| const SourceRange &DestRange, |
| CastKind &Kind); |
| static void CheckStaticCast(Sema &Self, ExprResult &SrcExpr, QualType DestType, |
| ExprValueKind &VK, |
| const SourceRange &OpRange, |
| CastKind &Kind, |
| CXXCastPath &BasePath); |
| static void CheckDynamicCast(Sema &Self, ExprResult &SrcExpr, QualType DestType, |
| ExprValueKind &VK, |
| const SourceRange &OpRange, |
| const SourceRange &DestRange, |
| CastKind &Kind, |
| CXXCastPath &BasePath); |
| |
| static bool CastsAwayConstness(Sema &Self, QualType SrcType, QualType DestType, |
| bool CheckCVR, bool CheckObjCLifetime); |
| |
| // The Try functions attempt a specific way of casting. If they succeed, they |
| // return TC_Success. If their way of casting is not appropriate for the given |
| // arguments, they return TC_NotApplicable and *may* set diag to a diagnostic |
| // to emit if no other way succeeds. If their way of casting is appropriate but |
| // fails, they return TC_Failed and *must* set diag; they can set it to 0 if |
| // they emit a specialized diagnostic. |
| // All diagnostics returned by these functions must expect the same three |
| // arguments: |
| // %0: Cast Type (a value from the CastType enumeration) |
| // %1: Source Type |
| // %2: Destination Type |
| static TryCastResult TryLValueToRValueCast(Sema &Self, Expr *SrcExpr, |
| QualType DestType, bool CStyle, |
| CastKind &Kind, |
| CXXCastPath &BasePath, |
| unsigned &msg); |
| static TryCastResult TryStaticReferenceDowncast(Sema &Self, Expr *SrcExpr, |
| QualType DestType, bool CStyle, |
| const SourceRange &OpRange, |
| unsigned &msg, |
| CastKind &Kind, |
| CXXCastPath &BasePath); |
| static TryCastResult TryStaticPointerDowncast(Sema &Self, QualType SrcType, |
| QualType DestType, bool CStyle, |
| const SourceRange &OpRange, |
| unsigned &msg, |
| CastKind &Kind, |
| CXXCastPath &BasePath); |
| static TryCastResult TryStaticDowncast(Sema &Self, CanQualType SrcType, |
| CanQualType DestType, bool CStyle, |
| const SourceRange &OpRange, |
| QualType OrigSrcType, |
| QualType OrigDestType, unsigned &msg, |
| CastKind &Kind, |
| CXXCastPath &BasePath); |
| static TryCastResult TryStaticMemberPointerUpcast(Sema &Self, ExprResult &SrcExpr, |
| QualType SrcType, |
| QualType DestType,bool CStyle, |
| const SourceRange &OpRange, |
| unsigned &msg, |
| CastKind &Kind, |
| CXXCastPath &BasePath); |
| |
| static TryCastResult TryStaticImplicitCast(Sema &Self, ExprResult &SrcExpr, |
| QualType DestType, |
| Sema::CheckedConversionKind CCK, |
| const SourceRange &OpRange, |
| unsigned &msg, |
| CastKind &Kind); |
| static TryCastResult TryStaticCast(Sema &Self, ExprResult &SrcExpr, |
| QualType DestType, |
| Sema::CheckedConversionKind CCK, |
| const SourceRange &OpRange, |
| unsigned &msg, |
| CastKind &Kind, |
| CXXCastPath &BasePath); |
| static TryCastResult TryConstCast(Sema &Self, Expr *SrcExpr, QualType DestType, |
| bool CStyle, unsigned &msg); |
| static TryCastResult TryReinterpretCast(Sema &Self, ExprResult &SrcExpr, |
| QualType DestType, bool CStyle, |
| const SourceRange &OpRange, |
| unsigned &msg, |
| CastKind &Kind); |
| |
| |
| /// ActOnCXXNamedCast - Parse {dynamic,static,reinterpret,const}_cast's. |
| ExprResult |
| Sema::ActOnCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind, |
| SourceLocation LAngleBracketLoc, ParsedType Ty, |
| SourceLocation RAngleBracketLoc, |
| SourceLocation LParenLoc, Expr *E, |
| SourceLocation RParenLoc) { |
| |
| TypeSourceInfo *DestTInfo; |
| QualType DestType = GetTypeFromParser(Ty, &DestTInfo); |
| if (!DestTInfo) |
| DestTInfo = Context.getTrivialTypeSourceInfo(DestType, SourceLocation()); |
| |
| return BuildCXXNamedCast(OpLoc, Kind, DestTInfo, move(E), |
| SourceRange(LAngleBracketLoc, RAngleBracketLoc), |
| SourceRange(LParenLoc, RParenLoc)); |
| } |
| |
| ExprResult |
| Sema::BuildCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind, |
| TypeSourceInfo *DestTInfo, Expr *E, |
| SourceRange AngleBrackets, SourceRange Parens) { |
| ExprResult Ex = Owned(E); |
| QualType DestType = DestTInfo->getType(); |
| |
| SourceRange OpRange(OpLoc, Parens.getEnd()); |
| SourceRange DestRange = AngleBrackets; |
| |
| // If the type is dependent, we won't do the semantic analysis now. |
| // FIXME: should we check this in a more fine-grained manner? |
| bool TypeDependent = DestType->isDependentType() || Ex.get()->isTypeDependent(); |
| |
| ExprValueKind VK = VK_RValue; |
| if (TypeDependent) |
| VK = Expr::getValueKindForType(DestType); |
| |
| switch (Kind) { |
| default: llvm_unreachable("Unknown C++ cast!"); |
| |
| case tok::kw_const_cast: |
| if (!TypeDependent) { |
| CheckConstCast(*this, Ex, DestType, VK, OpRange, DestRange); |
| if (Ex.isInvalid()) |
| return ExprError(); |
| } |
| return Owned(CXXConstCastExpr::Create(Context, |
| DestType.getNonLValueExprType(Context), |
| VK, Ex.take(), DestTInfo, OpLoc, |
| Parens.getEnd())); |
| |
| case tok::kw_dynamic_cast: { |
| CastKind Kind = CK_Dependent; |
| CXXCastPath BasePath; |
| if (!TypeDependent) { |
| CheckDynamicCast(*this, Ex, DestType, VK, OpRange, DestRange, |
| Kind, BasePath); |
| if (Ex.isInvalid()) |
| return ExprError(); |
| } |
| return Owned(CXXDynamicCastExpr::Create(Context, |
| DestType.getNonLValueExprType(Context), |
| VK, Kind, Ex.take(), &BasePath, DestTInfo, |
| OpLoc, Parens.getEnd())); |
| } |
| case tok::kw_reinterpret_cast: { |
| CastKind Kind = CK_Dependent; |
| if (!TypeDependent) { |
| CheckReinterpretCast(*this, Ex, DestType, VK, OpRange, DestRange, Kind); |
| if (Ex.isInvalid()) |
| return ExprError(); |
| } |
| return Owned(CXXReinterpretCastExpr::Create(Context, |
| DestType.getNonLValueExprType(Context), |
| VK, Kind, Ex.take(), 0, |
| DestTInfo, OpLoc, Parens.getEnd())); |
| } |
| case tok::kw_static_cast: { |
| CastKind Kind = CK_Dependent; |
| CXXCastPath BasePath; |
| if (!TypeDependent) { |
| CheckStaticCast(*this, Ex, DestType, VK, OpRange, Kind, BasePath); |
| if (Ex.isInvalid()) |
| return ExprError(); |
| } |
| |
| return Owned(CXXStaticCastExpr::Create(Context, |
| DestType.getNonLValueExprType(Context), |
| VK, Kind, Ex.take(), &BasePath, |
| DestTInfo, OpLoc, Parens.getEnd())); |
| } |
| } |
| |
| return ExprError(); |
| } |
| |
| /// Try to diagnose a failed overloaded cast. Returns true if |
| /// diagnostics were emitted. |
| static bool tryDiagnoseOverloadedCast(Sema &S, CastType CT, |
| SourceRange range, Expr *src, |
| QualType destType) { |
| switch (CT) { |
| // These cast kinds don't consider user-defined conversions. |
| case CT_Const: |
| case CT_Reinterpret: |
| case CT_Dynamic: |
| return false; |
| |
| // These do. |
| case CT_Static: |
| case CT_CStyle: |
| case CT_Functional: |
| break; |
| } |
| |
| QualType srcType = src->getType(); |
| if (!destType->isRecordType() && !srcType->isRecordType()) |
| return false; |
| |
| InitializedEntity entity = InitializedEntity::InitializeTemporary(destType); |
| InitializationKind initKind |
| = (CT == CT_CStyle)? InitializationKind::CreateCStyleCast(range.getBegin(), |
| range) |
| : (CT == CT_Functional)? InitializationKind::CreateFunctionalCast(range) |
| : InitializationKind::CreateCast(/*type range?*/ range); |
| InitializationSequence sequence(S, entity, initKind, &src, 1); |
| |
| assert(sequence.Failed() && "initialization succeeded on second try?"); |
| switch (sequence.getFailureKind()) { |
| default: return false; |
| |
| case InitializationSequence::FK_ConstructorOverloadFailed: |
| case InitializationSequence::FK_UserConversionOverloadFailed: |
| break; |
| } |
| |
| OverloadCandidateSet &candidates = sequence.getFailedCandidateSet(); |
| |
| unsigned msg = 0; |
| OverloadCandidateDisplayKind howManyCandidates = OCD_AllCandidates; |
| |
| switch (sequence.getFailedOverloadResult()) { |
| case OR_Success: llvm_unreachable("successful failed overload"); |
| return false; |
| case OR_No_Viable_Function: |
| if (candidates.empty()) |
| msg = diag::err_ovl_no_conversion_in_cast; |
| else |
| msg = diag::err_ovl_no_viable_conversion_in_cast; |
| howManyCandidates = OCD_AllCandidates; |
| break; |
| |
| case OR_Ambiguous: |
| msg = diag::err_ovl_ambiguous_conversion_in_cast; |
| howManyCandidates = OCD_ViableCandidates; |
| break; |
| |
| case OR_Deleted: |
| msg = diag::err_ovl_deleted_conversion_in_cast; |
| howManyCandidates = OCD_ViableCandidates; |
| break; |
| } |
| |
| S.Diag(range.getBegin(), msg) |
| << CT << srcType << destType |
| << range << src->getSourceRange(); |
| |
| candidates.NoteCandidates(S, howManyCandidates, &src, 1); |
| |
| return true; |
| } |
| |
| /// Diagnose a failed cast. |
| static void diagnoseBadCast(Sema &S, unsigned msg, CastType castType, |
| SourceRange opRange, Expr *src, QualType destType) { |
| if (src->getType() == S.Context.BoundMemberTy) { |
| (void) S.CheckPlaceholderExpr(src); // will always fail |
| return; |
| } |
| |
| if (msg == diag::err_bad_cxx_cast_generic && |
| tryDiagnoseOverloadedCast(S, castType, opRange, src, destType)) |
| return; |
| |
| S.Diag(opRange.getBegin(), msg) << castType |
| << src->getType() << destType << opRange << src->getSourceRange(); |
| } |
| |
| /// UnwrapDissimilarPointerTypes - Like Sema::UnwrapSimilarPointerTypes, |
| /// this removes one level of indirection from both types, provided that they're |
| /// the same kind of pointer (plain or to-member). Unlike the Sema function, |
| /// this one doesn't care if the two pointers-to-member don't point into the |
| /// same class. This is because CastsAwayConstness doesn't care. |
| static bool UnwrapDissimilarPointerTypes(QualType& T1, QualType& T2) { |
| const PointerType *T1PtrType = T1->getAs<PointerType>(), |
| *T2PtrType = T2->getAs<PointerType>(); |
| if (T1PtrType && T2PtrType) { |
| T1 = T1PtrType->getPointeeType(); |
| T2 = T2PtrType->getPointeeType(); |
| return true; |
| } |
| const ObjCObjectPointerType *T1ObjCPtrType = |
| T1->getAs<ObjCObjectPointerType>(), |
| *T2ObjCPtrType = |
| T2->getAs<ObjCObjectPointerType>(); |
| if (T1ObjCPtrType) { |
| if (T2ObjCPtrType) { |
| T1 = T1ObjCPtrType->getPointeeType(); |
| T2 = T2ObjCPtrType->getPointeeType(); |
| return true; |
| } |
| else if (T2PtrType) { |
| T1 = T1ObjCPtrType->getPointeeType(); |
| T2 = T2PtrType->getPointeeType(); |
| return true; |
| } |
| } |
| else if (T2ObjCPtrType) { |
| if (T1PtrType) { |
| T2 = T2ObjCPtrType->getPointeeType(); |
| T1 = T1PtrType->getPointeeType(); |
| return true; |
| } |
| } |
| |
| const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(), |
| *T2MPType = T2->getAs<MemberPointerType>(); |
| if (T1MPType && T2MPType) { |
| T1 = T1MPType->getPointeeType(); |
| T2 = T2MPType->getPointeeType(); |
| return true; |
| } |
| |
| const BlockPointerType *T1BPType = T1->getAs<BlockPointerType>(), |
| *T2BPType = T2->getAs<BlockPointerType>(); |
| if (T1BPType && T2BPType) { |
| T1 = T1BPType->getPointeeType(); |
| T2 = T2BPType->getPointeeType(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// CastsAwayConstness - Check if the pointer conversion from SrcType to |
| /// DestType casts away constness as defined in C++ 5.2.11p8ff. This is used by |
| /// the cast checkers. Both arguments must denote pointer (possibly to member) |
| /// types. |
| /// |
| /// \param CheckCVR Whether to check for const/volatile/restrict qualifiers. |
| /// |
| /// \param CheckObjCLifetime Whether to check Objective-C lifetime qualifiers. |
| static bool |
| CastsAwayConstness(Sema &Self, QualType SrcType, QualType DestType, |
| bool CheckCVR, bool CheckObjCLifetime) { |
| // If the only checking we care about is for Objective-C lifetime qualifiers, |
| // and we're not in ARC mode, there's nothing to check. |
| if (!CheckCVR && CheckObjCLifetime && |
| !Self.Context.getLangOptions().ObjCAutoRefCount) |
| return false; |
| |
| // Casting away constness is defined in C++ 5.2.11p8 with reference to |
| // C++ 4.4. We piggyback on Sema::IsQualificationConversion for this, since |
| // the rules are non-trivial. So first we construct Tcv *...cv* as described |
| // in C++ 5.2.11p8. |
| assert((SrcType->isAnyPointerType() || SrcType->isMemberPointerType() || |
| SrcType->isBlockPointerType()) && |
| "Source type is not pointer or pointer to member."); |
| assert((DestType->isAnyPointerType() || DestType->isMemberPointerType() || |
| DestType->isBlockPointerType()) && |
| "Destination type is not pointer or pointer to member."); |
| |
| QualType UnwrappedSrcType = Self.Context.getCanonicalType(SrcType), |
| UnwrappedDestType = Self.Context.getCanonicalType(DestType); |
| llvm::SmallVector<Qualifiers, 8> cv1, cv2; |
| |
| // Find the qualifiers. We only care about cvr-qualifiers for the |
| // purpose of this check, because other qualifiers (address spaces, |
| // Objective-C GC, etc.) are part of the type's identity. |
| while (UnwrapDissimilarPointerTypes(UnwrappedSrcType, UnwrappedDestType)) { |
| // Determine the relevant qualifiers at this level. |
| Qualifiers SrcQuals, DestQuals; |
| Self.Context.getUnqualifiedArrayType(UnwrappedSrcType, SrcQuals); |
| Self.Context.getUnqualifiedArrayType(UnwrappedDestType, DestQuals); |
| |
| Qualifiers RetainedSrcQuals, RetainedDestQuals; |
| if (CheckCVR) { |
| RetainedSrcQuals.setCVRQualifiers(SrcQuals.getCVRQualifiers()); |
| RetainedDestQuals.setCVRQualifiers(DestQuals.getCVRQualifiers()); |
| } |
| |
| if (CheckObjCLifetime && |
| !DestQuals.compatiblyIncludesObjCLifetime(SrcQuals)) |
| return true; |
| |
| cv1.push_back(RetainedSrcQuals); |
| cv2.push_back(RetainedDestQuals); |
| } |
| if (cv1.empty()) |
| return false; |
| |
| // Construct void pointers with those qualifiers (in reverse order of |
| // unwrapping, of course). |
| QualType SrcConstruct = Self.Context.VoidTy; |
| QualType DestConstruct = Self.Context.VoidTy; |
| ASTContext &Context = Self.Context; |
| for (llvm::SmallVector<Qualifiers, 8>::reverse_iterator i1 = cv1.rbegin(), |
| i2 = cv2.rbegin(); |
| i1 != cv1.rend(); ++i1, ++i2) { |
| SrcConstruct |
| = Context.getPointerType(Context.getQualifiedType(SrcConstruct, *i1)); |
| DestConstruct |
| = Context.getPointerType(Context.getQualifiedType(DestConstruct, *i2)); |
| } |
| |
| // Test if they're compatible. |
| bool ObjCLifetimeConversion; |
| return SrcConstruct != DestConstruct && |
| !Self.IsQualificationConversion(SrcConstruct, DestConstruct, false, |
| ObjCLifetimeConversion); |
| } |
| |
| /// CheckDynamicCast - Check that a dynamic_cast\<DestType\>(SrcExpr) is valid. |
| /// Refer to C++ 5.2.7 for details. Dynamic casts are used mostly for runtime- |
| /// checked downcasts in class hierarchies. |
| static void |
| CheckDynamicCast(Sema &Self, ExprResult &SrcExpr, QualType DestType, |
| ExprValueKind &VK, const SourceRange &OpRange, |
| const SourceRange &DestRange, CastKind &Kind, |
| CXXCastPath &BasePath) { |
| QualType OrigDestType = DestType, OrigSrcType = SrcExpr.get()->getType(); |
| DestType = Self.Context.getCanonicalType(DestType); |
| |
| // C++ 5.2.7p1: T shall be a pointer or reference to a complete class type, |
| // or "pointer to cv void". |
| |
| QualType DestPointee; |
| const PointerType *DestPointer = DestType->getAs<PointerType>(); |
| const ReferenceType *DestReference = 0; |
| if (DestPointer) { |
| DestPointee = DestPointer->getPointeeType(); |
| } else if ((DestReference = DestType->getAs<ReferenceType>())) { |
| DestPointee = DestReference->getPointeeType(); |
| VK = isa<LValueReferenceType>(DestReference) ? VK_LValue |
| : isa<RValueReferenceType>(DestReference) ? VK_XValue |
| : VK_RValue; |
| } else { |
| Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_ref_or_ptr) |
| << OrigDestType << DestRange; |
| return; |
| } |
| |
| const RecordType *DestRecord = DestPointee->getAs<RecordType>(); |
| if (DestPointee->isVoidType()) { |
| assert(DestPointer && "Reference to void is not possible"); |
| } else if (DestRecord) { |
| if (Self.RequireCompleteType(OpRange.getBegin(), DestPointee, |
| Self.PDiag(diag::err_bad_dynamic_cast_incomplete) |
| << DestRange)) |
| return; |
| } else { |
| Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_class) |
| << DestPointee.getUnqualifiedType() << DestRange; |
| return; |
| } |
| |
| // C++0x 5.2.7p2: If T is a pointer type, v shall be an rvalue of a pointer to |
| // complete class type, [...]. If T is an lvalue reference type, v shall be |
| // an lvalue of a complete class type, [...]. If T is an rvalue reference |
| // type, v shall be an expression having a complete class type, [...] |
| QualType SrcType = Self.Context.getCanonicalType(OrigSrcType); |
| QualType SrcPointee; |
| if (DestPointer) { |
| if (const PointerType *SrcPointer = SrcType->getAs<PointerType>()) { |
| SrcPointee = SrcPointer->getPointeeType(); |
| } else { |
| Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_ptr) |
| << OrigSrcType << SrcExpr.get()->getSourceRange(); |
| return; |
| } |
| } else if (DestReference->isLValueReferenceType()) { |
| if (!SrcExpr.get()->isLValue()) { |
| Self.Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_rvalue) |
| << CT_Dynamic << OrigSrcType << OrigDestType << OpRange; |
| } |
| SrcPointee = SrcType; |
| } else { |
| SrcPointee = SrcType; |
| } |
| |
| const RecordType *SrcRecord = SrcPointee->getAs<RecordType>(); |
| if (SrcRecord) { |
| if (Self.RequireCompleteType(OpRange.getBegin(), SrcPointee, |
| Self.PDiag(diag::err_bad_dynamic_cast_incomplete) |
| << SrcExpr.get()->getSourceRange())) |
| return; |
| } else { |
| Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_class) |
| << SrcPointee.getUnqualifiedType() << SrcExpr.get()->getSourceRange(); |
| return; |
| } |
| |
| assert((DestPointer || DestReference) && |
| "Bad destination non-ptr/ref slipped through."); |
| assert((DestRecord || DestPointee->isVoidType()) && |
| "Bad destination pointee slipped through."); |
| assert(SrcRecord && "Bad source pointee slipped through."); |
| |
| // C++ 5.2.7p1: The dynamic_cast operator shall not cast away constness. |
| if (!DestPointee.isAtLeastAsQualifiedAs(SrcPointee)) { |
| Self.Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_qualifiers_away) |
| << CT_Dynamic << OrigSrcType << OrigDestType << OpRange; |
| return; |
| } |
| |
| // C++ 5.2.7p3: If the type of v is the same as the required result type, |
| // [except for cv]. |
| if (DestRecord == SrcRecord) { |
| Kind = CK_NoOp; |
| return; |
| } |
| |
| // C++ 5.2.7p5 |
| // Upcasts are resolved statically. |
| if (DestRecord && Self.IsDerivedFrom(SrcPointee, DestPointee)) { |
| if (Self.CheckDerivedToBaseConversion(SrcPointee, DestPointee, |
| OpRange.getBegin(), OpRange, |
| &BasePath)) |
| return; |
| |
| Kind = CK_DerivedToBase; |
| |
| // If we are casting to or through a virtual base class, we need a |
| // vtable. |
| if (Self.BasePathInvolvesVirtualBase(BasePath)) |
| Self.MarkVTableUsed(OpRange.getBegin(), |
| cast<CXXRecordDecl>(SrcRecord->getDecl())); |
| return; |
| } |
| |
| // C++ 5.2.7p6: Otherwise, v shall be [polymorphic]. |
| const RecordDecl *SrcDecl = SrcRecord->getDecl()->getDefinition(); |
| assert(SrcDecl && "Definition missing"); |
| if (!cast<CXXRecordDecl>(SrcDecl)->isPolymorphic()) { |
| Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_polymorphic) |
| << SrcPointee.getUnqualifiedType() << SrcExpr.get()->getSourceRange(); |
| } |
| Self.MarkVTableUsed(OpRange.getBegin(), |
| cast<CXXRecordDecl>(SrcRecord->getDecl())); |
| |
| // Done. Everything else is run-time checks. |
| Kind = CK_Dynamic; |
| } |
| |
| /// CheckConstCast - Check that a const_cast\<DestType\>(SrcExpr) is valid. |
| /// Refer to C++ 5.2.11 for details. const_cast is typically used in code |
| /// like this: |
| /// const char *str = "literal"; |
| /// legacy_function(const_cast\<char*\>(str)); |
| void |
| CheckConstCast(Sema &Self, ExprResult &SrcExpr, QualType DestType, ExprValueKind &VK, |
| const SourceRange &OpRange, const SourceRange &DestRange) { |
| VK = Expr::getValueKindForType(DestType); |
| if (VK == VK_RValue) { |
| SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.take()); |
| if (SrcExpr.isInvalid()) // if conversion failed, don't report another error |
| return; |
| } |
| |
| unsigned msg = diag::err_bad_cxx_cast_generic; |
| if (TryConstCast(Self, SrcExpr.get(), DestType, /*CStyle*/false, msg) != TC_Success |
| && msg != 0) |
| Self.Diag(OpRange.getBegin(), msg) << CT_Const |
| << SrcExpr.get()->getType() << DestType << OpRange; |
| } |
| |
| /// CheckReinterpretCast - Check that a reinterpret_cast\<DestType\>(SrcExpr) is |
| /// valid. |
| /// Refer to C++ 5.2.10 for details. reinterpret_cast is typically used in code |
| /// like this: |
| /// char *bytes = reinterpret_cast\<char*\>(int_ptr); |
| void |
| CheckReinterpretCast(Sema &Self, ExprResult &SrcExpr, QualType DestType, |
| ExprValueKind &VK, const SourceRange &OpRange, |
| const SourceRange &DestRange, CastKind &Kind) { |
| VK = Expr::getValueKindForType(DestType); |
| if (VK == VK_RValue) { |
| SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.take()); |
| if (SrcExpr.isInvalid()) // if conversion failed, don't report another error |
| return; |
| } |
| |
| unsigned msg = diag::err_bad_cxx_cast_generic; |
| TryCastResult tcr = |
| TryReinterpretCast(Self, SrcExpr, DestType, |
| /*CStyle*/false, OpRange, msg, Kind); |
| if (tcr != TC_Success && msg != 0) |
| { |
| if (SrcExpr.isInvalid()) // if conversion failed, don't report another error |
| return; |
| if (SrcExpr.get()->getType() == Self.Context.OverloadTy) { |
| //FIXME: &f<int>; is overloaded and resolvable |
| Self.Diag(OpRange.getBegin(), diag::err_bad_reinterpret_cast_overload) |
| << OverloadExpr::find(SrcExpr.get()).Expression->getName() |
| << DestType << OpRange; |
| Self.NoteAllOverloadCandidates(SrcExpr.get()); |
| |
| } else { |
| diagnoseBadCast(Self, msg, CT_Reinterpret, OpRange, SrcExpr.get(), DestType); |
| } |
| } else if (tcr == TC_Success && Self.getLangOptions().ObjCAutoRefCount) { |
| Expr *Exp = SrcExpr.get(); |
| // Note that Exp does not change with CCK_OtherCast cast type |
| Self.CheckObjCARCConversion(OpRange, DestType, |
| Exp, Sema::CCK_OtherCast); |
| } |
| } |
| |
| |
| /// CheckStaticCast - Check that a static_cast\<DestType\>(SrcExpr) is valid. |
| /// Refer to C++ 5.2.9 for details. Static casts are mostly used for making |
| /// implicit conversions explicit and getting rid of data loss warnings. |
| void |
| CheckStaticCast(Sema &Self, ExprResult &SrcExpr, QualType DestType, |
| ExprValueKind &VK, const SourceRange &OpRange, |
| CastKind &Kind, CXXCastPath &BasePath) { |
| // This test is outside everything else because it's the only case where |
| // a non-lvalue-reference target type does not lead to decay. |
| // C++ 5.2.9p4: Any expression can be explicitly converted to type "cv void". |
| if (DestType->isVoidType()) { |
| SrcExpr = Self.IgnoredValueConversions(SrcExpr.take()); |
| if (SrcExpr.isInvalid()) // if conversion failed, don't report another error |
| return; |
| if (SrcExpr.get()->getType() == Self.Context.OverloadTy) { |
| ExprResult SingleFunctionExpression = |
| Self.ResolveAndFixSingleFunctionTemplateSpecialization(SrcExpr.get(), |
| false, // Decay Function to ptr |
| true, // Complain |
| OpRange, DestType, diag::err_bad_static_cast_overload); |
| if (SingleFunctionExpression.isUsable()) |
| { |
| SrcExpr = SingleFunctionExpression; |
| Kind = CK_ToVoid; |
| } |
| } |
| else |
| Kind = CK_ToVoid; |
| return; |
| } |
| |
| VK = Expr::getValueKindForType(DestType); |
| if (VK == VK_RValue && !DestType->isRecordType()) { |
| SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.take()); |
| if (SrcExpr.isInvalid()) // if conversion failed, don't report another error |
| return; |
| } |
| |
| unsigned msg = diag::err_bad_cxx_cast_generic; |
| TryCastResult tcr |
| = TryStaticCast(Self, SrcExpr, DestType, Sema::CCK_OtherCast, OpRange, msg, |
| Kind, BasePath); |
| if (tcr != TC_Success && msg != 0) { |
| if (SrcExpr.isInvalid()) |
| return; |
| if (SrcExpr.get()->getType() == Self.Context.OverloadTy) { |
| OverloadExpr* oe = OverloadExpr::find(SrcExpr.get()).Expression; |
| Self.Diag(OpRange.getBegin(), diag::err_bad_static_cast_overload) |
| << oe->getName() << DestType << OpRange |
| << oe->getQualifierLoc().getSourceRange(); |
| Self.NoteAllOverloadCandidates(SrcExpr.get()); |
| } else { |
| diagnoseBadCast(Self, msg, CT_Static, OpRange, SrcExpr.get(), DestType); |
| } |
| } else if (tcr == TC_Success) { |
| if (Kind == CK_BitCast) |
| Self.CheckCastAlign(SrcExpr.get(), DestType, OpRange); |
| if (Self.getLangOptions().ObjCAutoRefCount) { |
| Expr *Exp = SrcExpr.get(); |
| // Note that Exp does not change with CCK_OtherCast cast type |
| Self.CheckObjCARCConversion(OpRange, DestType, |
| Exp, Sema::CCK_OtherCast); |
| } |
| } |
| else if (Kind == CK_BitCast) |
| Self.CheckCastAlign(SrcExpr.get(), DestType, OpRange); |
| } |
| |
| /// TryStaticCast - Check if a static cast can be performed, and do so if |
| /// possible. If @p CStyle, ignore access restrictions on hierarchy casting |
| /// and casting away constness. |
| static TryCastResult TryStaticCast(Sema &Self, ExprResult &SrcExpr, |
| QualType DestType, |
| Sema::CheckedConversionKind CCK, |
| const SourceRange &OpRange, unsigned &msg, |
| CastKind &Kind, |
| CXXCastPath &BasePath) { |
| // Determine whether we have the semantics of a C-style cast. |
| bool CStyle |
| = (CCK == Sema::CCK_CStyleCast || CCK == Sema::CCK_FunctionalCast); |
| |
| // The order the tests is not entirely arbitrary. There is one conversion |
| // that can be handled in two different ways. Given: |
| // struct A {}; |
| // struct B : public A { |
| // B(); B(const A&); |
| // }; |
| // const A &a = B(); |
| // the cast static_cast<const B&>(a) could be seen as either a static |
| // reference downcast, or an explicit invocation of the user-defined |
| // conversion using B's conversion constructor. |
| // DR 427 specifies that the downcast is to be applied here. |
| |
| // C++ 5.2.9p4: Any expression can be explicitly converted to type "cv void". |
| // Done outside this function. |
| |
| TryCastResult tcr; |
| |
| // C++ 5.2.9p5, reference downcast. |
| // See the function for details. |
| // DR 427 specifies that this is to be applied before paragraph 2. |
| tcr = TryStaticReferenceDowncast(Self, SrcExpr.get(), DestType, CStyle, OpRange, |
| msg, Kind, BasePath); |
| if (tcr != TC_NotApplicable) |
| return tcr; |
| |
| // C++0x [expr.static.cast]p3: |
| // A glvalue of type "cv1 T1" can be cast to type "rvalue reference to cv2 |
| // T2" if "cv2 T2" is reference-compatible with "cv1 T1". |
| tcr = TryLValueToRValueCast(Self, SrcExpr.get(), DestType, CStyle, Kind, BasePath, |
| msg); |
| if (tcr != TC_NotApplicable) |
| return tcr; |
| |
| // C++ 5.2.9p2: An expression e can be explicitly converted to a type T |
| // [...] if the declaration "T t(e);" is well-formed, [...]. |
| tcr = TryStaticImplicitCast(Self, SrcExpr, DestType, CCK, OpRange, msg, |
| Kind); |
| if (SrcExpr.isInvalid()) |
| return TC_Failed; |
| if (tcr != TC_NotApplicable) |
| return tcr; |
| |
| // C++ 5.2.9p6: May apply the reverse of any standard conversion, except |
| // lvalue-to-rvalue, array-to-pointer, function-to-pointer, and boolean |
| // conversions, subject to further restrictions. |
| // Also, C++ 5.2.9p1 forbids casting away constness, which makes reversal |
| // of qualification conversions impossible. |
| // In the CStyle case, the earlier attempt to const_cast should have taken |
| // care of reverse qualification conversions. |
| |
| QualType SrcType = Self.Context.getCanonicalType(SrcExpr.get()->getType()); |
| |
| // C++0x 5.2.9p9: A value of a scoped enumeration type can be explicitly |
| // converted to an integral type. [...] A value of a scoped enumeration type |
| // can also be explicitly converted to a floating-point type [...]. |
| if (const EnumType *Enum = SrcType->getAs<EnumType>()) { |
| if (Enum->getDecl()->isScoped()) { |
| if (DestType->isBooleanType()) { |
| Kind = CK_IntegralToBoolean; |
| return TC_Success; |
| } else if (DestType->isIntegralType(Self.Context)) { |
| Kind = CK_IntegralCast; |
| return TC_Success; |
| } else if (DestType->isRealFloatingType()) { |
| Kind = CK_IntegralToFloating; |
| return TC_Success; |
| } |
| } |
| } |
| |
| // Reverse integral promotion/conversion. All such conversions are themselves |
| // again integral promotions or conversions and are thus already handled by |
| // p2 (TryDirectInitialization above). |
| // (Note: any data loss warnings should be suppressed.) |
| // The exception is the reverse of enum->integer, i.e. integer->enum (and |
| // enum->enum). See also C++ 5.2.9p7. |
| // The same goes for reverse floating point promotion/conversion and |
| // floating-integral conversions. Again, only floating->enum is relevant. |
| if (DestType->isEnumeralType()) { |
| if (SrcType->isComplexType() || SrcType->isVectorType()) { |
| // Fall through - these cannot be converted. |
| } else if (SrcType->isArithmeticType() || SrcType->isEnumeralType()) { |
| Kind = CK_IntegralCast; |
| return TC_Success; |
| } |
| } |
| |
| // Reverse pointer upcast. C++ 4.10p3 specifies pointer upcast. |
| // C++ 5.2.9p8 additionally disallows a cast path through virtual inheritance. |
| tcr = TryStaticPointerDowncast(Self, SrcType, DestType, CStyle, OpRange, msg, |
| Kind, BasePath); |
| if (tcr != TC_NotApplicable) |
| return tcr; |
| |
| // Reverse member pointer conversion. C++ 4.11 specifies member pointer |
| // conversion. C++ 5.2.9p9 has additional information. |
| // DR54's access restrictions apply here also. |
| tcr = TryStaticMemberPointerUpcast(Self, SrcExpr, SrcType, DestType, CStyle, |
| OpRange, msg, Kind, BasePath); |
| if (tcr != TC_NotApplicable) |
| return tcr; |
| |
| // Reverse pointer conversion to void*. C++ 4.10.p2 specifies conversion to |
| // void*. C++ 5.2.9p10 specifies additional restrictions, which really is |
| // just the usual constness stuff. |
| if (const PointerType *SrcPointer = SrcType->getAs<PointerType>()) { |
| QualType SrcPointee = SrcPointer->getPointeeType(); |
| if (SrcPointee->isVoidType()) { |
| if (const PointerType *DestPointer = DestType->getAs<PointerType>()) { |
| QualType DestPointee = DestPointer->getPointeeType(); |
| if (DestPointee->isIncompleteOrObjectType()) { |
| // This is definitely the intended conversion, but it might fail due |
| // to a qualifier violation. Note that we permit Objective-C lifetime |
| // and GC qualifier mismatches here. |
| if (!CStyle) { |
| Qualifiers DestPointeeQuals = DestPointee.getQualifiers(); |
| Qualifiers SrcPointeeQuals = SrcPointee.getQualifiers(); |
| DestPointeeQuals.removeObjCGCAttr(); |
| DestPointeeQuals.removeObjCLifetime(); |
| SrcPointeeQuals.removeObjCGCAttr(); |
| SrcPointeeQuals.removeObjCLifetime(); |
| if (DestPointeeQuals != SrcPointeeQuals && |
| !DestPointeeQuals.compatiblyIncludes(SrcPointeeQuals)) { |
| msg = diag::err_bad_cxx_cast_qualifiers_away; |
| return TC_Failed; |
| } |
| } |
| Kind = CK_BitCast; |
| return TC_Success; |
| } |
| } |
| else if (DestType->isObjCObjectPointerType()) { |
| // allow both c-style cast and static_cast of objective-c pointers as |
| // they are pervasive. |
| Kind = CK_AnyPointerToObjCPointerCast; |
| return TC_Success; |
| } |
| else if (CStyle && DestType->isBlockPointerType()) { |
| // allow c-style cast of void * to block pointers. |
| Kind = CK_AnyPointerToBlockPointerCast; |
| return TC_Success; |
| } |
| } |
| } |
| // Allow arbitray objective-c pointer conversion with static casts. |
| if (SrcType->isObjCObjectPointerType() && |
| DestType->isObjCObjectPointerType()) { |
| Kind = CK_BitCast; |
| return TC_Success; |
| } |
| |
| // We tried everything. Everything! Nothing works! :-( |
| return TC_NotApplicable; |
| } |
| |
| /// Tests whether a conversion according to N2844 is valid. |
| TryCastResult |
| TryLValueToRValueCast(Sema &Self, Expr *SrcExpr, QualType DestType, |
| bool CStyle, CastKind &Kind, CXXCastPath &BasePath, |
| unsigned &msg) { |
| // C++0x [expr.static.cast]p3: |
| // A glvalue of type "cv1 T1" can be cast to type "rvalue reference to |
| // cv2 T2" if "cv2 T2" is reference-compatible with "cv1 T1". |
| const RValueReferenceType *R = DestType->getAs<RValueReferenceType>(); |
| if (!R) |
| return TC_NotApplicable; |
| |
| if (!SrcExpr->isGLValue()) |
| return TC_NotApplicable; |
| |
| // Because we try the reference downcast before this function, from now on |
| // this is the only cast possibility, so we issue an error if we fail now. |
| // FIXME: Should allow casting away constness if CStyle. |
| bool DerivedToBase; |
| bool ObjCConversion; |
| bool ObjCLifetimeConversion; |
| QualType FromType = SrcExpr->getType(); |
| QualType ToType = R->getPointeeType(); |
| if (CStyle) { |
| FromType = FromType.getUnqualifiedType(); |
| ToType = ToType.getUnqualifiedType(); |
| } |
| |
| if (Self.CompareReferenceRelationship(SrcExpr->getLocStart(), |
| ToType, FromType, |
| DerivedToBase, ObjCConversion, |
| ObjCLifetimeConversion) |
| < Sema::Ref_Compatible_With_Added_Qualification) { |
| msg = diag::err_bad_lvalue_to_rvalue_cast; |
| return TC_Failed; |
| } |
| |
| if (DerivedToBase) { |
| Kind = CK_DerivedToBase; |
| CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, |
| /*DetectVirtual=*/true); |
| if (!Self.IsDerivedFrom(SrcExpr->getType(), R->getPointeeType(), Paths)) |
| return TC_NotApplicable; |
| |
| Self.BuildBasePathArray(Paths, BasePath); |
| } else |
| Kind = CK_NoOp; |
| |
| return TC_Success; |
| } |
| |
| /// Tests whether a conversion according to C++ 5.2.9p5 is valid. |
| TryCastResult |
| TryStaticReferenceDowncast(Sema &Self, Expr *SrcExpr, QualType DestType, |
| bool CStyle, const SourceRange &OpRange, |
| unsigned &msg, CastKind &Kind, |
| CXXCastPath &BasePath) { |
| // C++ 5.2.9p5: An lvalue of type "cv1 B", where B is a class type, can be |
| // cast to type "reference to cv2 D", where D is a class derived from B, |
| // if a valid standard conversion from "pointer to D" to "pointer to B" |
| // exists, cv2 >= cv1, and B is not a virtual base class of D. |
| // In addition, DR54 clarifies that the base must be accessible in the |
| // current context. Although the wording of DR54 only applies to the pointer |
| // variant of this rule, the intent is clearly for it to apply to the this |
| // conversion as well. |
| |
| const ReferenceType *DestReference = DestType->getAs<ReferenceType>(); |
| if (!DestReference) { |
| return TC_NotApplicable; |
| } |
| bool RValueRef = DestReference->isRValueReferenceType(); |
| if (!RValueRef && !SrcExpr->isLValue()) { |
| // We know the left side is an lvalue reference, so we can suggest a reason. |
| msg = diag::err_bad_cxx_cast_rvalue; |
| return TC_NotApplicable; |
| } |
| |
| QualType DestPointee = DestReference->getPointeeType(); |
| |
| return TryStaticDowncast(Self, |
| Self.Context.getCanonicalType(SrcExpr->getType()), |
| Self.Context.getCanonicalType(DestPointee), CStyle, |
| OpRange, SrcExpr->getType(), DestType, msg, Kind, |
| BasePath); |
| } |
| |
| /// Tests whether a conversion according to C++ 5.2.9p8 is valid. |
| TryCastResult |
| TryStaticPointerDowncast(Sema &Self, QualType SrcType, QualType DestType, |
| bool CStyle, const SourceRange &OpRange, |
| unsigned &msg, CastKind &Kind, |
| CXXCastPath &BasePath) { |
| // C++ 5.2.9p8: An rvalue of type "pointer to cv1 B", where B is a class |
| // type, can be converted to an rvalue of type "pointer to cv2 D", where D |
| // is a class derived from B, if a valid standard conversion from "pointer |
| // to D" to "pointer to B" exists, cv2 >= cv1, and B is not a virtual base |
| // class of D. |
| // In addition, DR54 clarifies that the base must be accessible in the |
| // current context. |
| |
| const PointerType *DestPointer = DestType->getAs<PointerType>(); |
| if (!DestPointer) { |
| return TC_NotApplicable; |
| } |
| |
| const PointerType *SrcPointer = SrcType->getAs<PointerType>(); |
| if (!SrcPointer) { |
| msg = diag::err_bad_static_cast_pointer_nonpointer; |
| return TC_NotApplicable; |
| } |
| |
| return TryStaticDowncast(Self, |
| Self.Context.getCanonicalType(SrcPointer->getPointeeType()), |
| Self.Context.getCanonicalType(DestPointer->getPointeeType()), |
| CStyle, OpRange, SrcType, DestType, msg, Kind, |
| BasePath); |
| } |
| |
| /// TryStaticDowncast - Common functionality of TryStaticReferenceDowncast and |
| /// TryStaticPointerDowncast. Tests whether a static downcast from SrcType to |
| /// DestType is possible and allowed. |
| TryCastResult |
| TryStaticDowncast(Sema &Self, CanQualType SrcType, CanQualType DestType, |
| bool CStyle, const SourceRange &OpRange, QualType OrigSrcType, |
| QualType OrigDestType, unsigned &msg, |
| CastKind &Kind, CXXCastPath &BasePath) { |
| // We can only work with complete types. But don't complain if it doesn't work |
| if (Self.RequireCompleteType(OpRange.getBegin(), SrcType, Self.PDiag(0)) || |
| Self.RequireCompleteType(OpRange.getBegin(), DestType, Self.PDiag(0))) |
| return TC_NotApplicable; |
| |
| // Downcast can only happen in class hierarchies, so we need classes. |
| if (!DestType->getAs<RecordType>() || !SrcType->getAs<RecordType>()) { |
| return TC_NotApplicable; |
| } |
| |
| CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, |
| /*DetectVirtual=*/true); |
| if (!Self.IsDerivedFrom(DestType, SrcType, Paths)) { |
| return TC_NotApplicable; |
| } |
| |
| // Target type does derive from source type. Now we're serious. If an error |
| // appears now, it's not ignored. |
| // This may not be entirely in line with the standard. Take for example: |
| // struct A {}; |
| // struct B : virtual A { |
| // B(A&); |
| // }; |
| // |
| // void f() |
| // { |
| // (void)static_cast<const B&>(*((A*)0)); |
| // } |
| // As far as the standard is concerned, p5 does not apply (A is virtual), so |
| // p2 should be used instead - "const B& t(*((A*)0));" is perfectly valid. |
| // However, both GCC and Comeau reject this example, and accepting it would |
| // mean more complex code if we're to preserve the nice error message. |
| // FIXME: Being 100% compliant here would be nice to have. |
| |
| // Must preserve cv, as always, unless we're in C-style mode. |
| if (!CStyle && !DestType.isAtLeastAsQualifiedAs(SrcType)) { |
| msg = diag::err_bad_cxx_cast_qualifiers_away; |
| return TC_Failed; |
| } |
| |
| if (Paths.isAmbiguous(SrcType.getUnqualifiedType())) { |
| // This code is analoguous to that in CheckDerivedToBaseConversion, except |
| // that it builds the paths in reverse order. |
| // To sum up: record all paths to the base and build a nice string from |
| // them. Use it to spice up the error message. |
| if (!Paths.isRecordingPaths()) { |
| Paths.clear(); |
| Paths.setRecordingPaths(true); |
| Self.IsDerivedFrom(DestType, SrcType, Paths); |
| } |
| std::string PathDisplayStr; |
| std::set<unsigned> DisplayedPaths; |
| for (CXXBasePaths::paths_iterator PI = Paths.begin(), PE = Paths.end(); |
| PI != PE; ++PI) { |
| if (DisplayedPaths.insert(PI->back().SubobjectNumber).second) { |
| // We haven't displayed a path to this particular base |
| // class subobject yet. |
| PathDisplayStr += "\n "; |
| for (CXXBasePath::const_reverse_iterator EI = PI->rbegin(), |
| EE = PI->rend(); |
| EI != EE; ++EI) |
| PathDisplayStr += EI->Base->getType().getAsString() + " -> "; |
| PathDisplayStr += QualType(DestType).getAsString(); |
| } |
| } |
| |
| Self.Diag(OpRange.getBegin(), diag::err_ambiguous_base_to_derived_cast) |
| << QualType(SrcType).getUnqualifiedType() |
| << QualType(DestType).getUnqualifiedType() |
| << PathDisplayStr << OpRange; |
| msg = 0; |
| return TC_Failed; |
| } |
| |
| if (Paths.getDetectedVirtual() != 0) { |
| QualType VirtualBase(Paths.getDetectedVirtual(), 0); |
| Self.Diag(OpRange.getBegin(), diag::err_static_downcast_via_virtual) |
| << OrigSrcType << OrigDestType << VirtualBase << OpRange; |
| msg = 0; |
| return TC_Failed; |
| } |
| |
| if (!CStyle) { |
| switch (Self.CheckBaseClassAccess(OpRange.getBegin(), |
| SrcType, DestType, |
| Paths.front(), |
| diag::err_downcast_from_inaccessible_base)) { |
| case Sema::AR_accessible: |
| case Sema::AR_delayed: // be optimistic |
| case Sema::AR_dependent: // be optimistic |
| break; |
| |
| case Sema::AR_inaccessible: |
| msg = 0; |
| return TC_Failed; |
| } |
| } |
| |
| Self.BuildBasePathArray(Paths, BasePath); |
| Kind = CK_BaseToDerived; |
| return TC_Success; |
| } |
| |
| /// TryStaticMemberPointerUpcast - Tests whether a conversion according to |
| /// C++ 5.2.9p9 is valid: |
| /// |
| /// An rvalue of type "pointer to member of D of type cv1 T" can be |
| /// converted to an rvalue of type "pointer to member of B of type cv2 T", |
| /// where B is a base class of D [...]. |
| /// |
| TryCastResult |
| TryStaticMemberPointerUpcast(Sema &Self, ExprResult &SrcExpr, QualType SrcType, |
| QualType DestType, bool CStyle, |
| const SourceRange &OpRange, |
| unsigned &msg, CastKind &Kind, |
| CXXCastPath &BasePath) { |
| const MemberPointerType *DestMemPtr = DestType->getAs<MemberPointerType>(); |
| if (!DestMemPtr) |
| return TC_NotApplicable; |
| |
| bool WasOverloadedFunction = false; |
| DeclAccessPair FoundOverload; |
| if (SrcExpr.get()->getType() == Self.Context.OverloadTy) { |
| if (FunctionDecl *Fn |
| = Self.ResolveAddressOfOverloadedFunction(SrcExpr.get(), DestType, false, |
| FoundOverload)) { |
| CXXMethodDecl *M = cast<CXXMethodDecl>(Fn); |
| SrcType = Self.Context.getMemberPointerType(Fn->getType(), |
| Self.Context.getTypeDeclType(M->getParent()).getTypePtr()); |
| WasOverloadedFunction = true; |
| } |
| } |
| |
| const MemberPointerType *SrcMemPtr = SrcType->getAs<MemberPointerType>(); |
| if (!SrcMemPtr) { |
| msg = diag::err_bad_static_cast_member_pointer_nonmp; |
| return TC_NotApplicable; |
| } |
| |
| // T == T, modulo cv |
| if (!Self.Context.hasSameUnqualifiedType(SrcMemPtr->getPointeeType(), |
| DestMemPtr->getPointeeType())) |
| return TC_NotApplicable; |
| |
| // B base of D |
| QualType SrcClass(SrcMemPtr->getClass(), 0); |
| QualType DestClass(DestMemPtr->getClass(), 0); |
| CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, |
| /*DetectVirtual=*/true); |
| if (!Self.IsDerivedFrom(SrcClass, DestClass, Paths)) { |
| return TC_NotApplicable; |
| } |
| |
| // B is a base of D. But is it an allowed base? If not, it's a hard error. |
| if (Paths.isAmbiguous(Self.Context.getCanonicalType(DestClass))) { |
| Paths.clear(); |
| Paths.setRecordingPaths(true); |
| bool StillOkay = Self.IsDerivedFrom(SrcClass, DestClass, Paths); |
| assert(StillOkay); |
| (void)StillOkay; |
| std::string PathDisplayStr = Self.getAmbiguousPathsDisplayString(Paths); |
| Self.Diag(OpRange.getBegin(), diag::err_ambiguous_memptr_conv) |
| << 1 << SrcClass << DestClass << PathDisplayStr << OpRange; |
| msg = 0; |
| return TC_Failed; |
| } |
| |
| if (const RecordType *VBase = Paths.getDetectedVirtual()) { |
| Self.Diag(OpRange.getBegin(), diag::err_memptr_conv_via_virtual) |
| << SrcClass << DestClass << QualType(VBase, 0) << OpRange; |
| msg = 0; |
| return TC_Failed; |
| } |
| |
| if (!CStyle) { |
| switch (Self.CheckBaseClassAccess(OpRange.getBegin(), |
| DestClass, SrcClass, |
| Paths.front(), |
| diag::err_upcast_to_inaccessible_base)) { |
| case Sema::AR_accessible: |
| case Sema::AR_delayed: |
| case Sema::AR_dependent: |
| // Optimistically assume that the delayed and dependent cases |
| // will work out. |
| break; |
| |
| case Sema::AR_inaccessible: |
| msg = 0; |
| return TC_Failed; |
| } |
| } |
| |
| if (WasOverloadedFunction) { |
| // Resolve the address of the overloaded function again, this time |
| // allowing complaints if something goes wrong. |
| FunctionDecl *Fn = Self.ResolveAddressOfOverloadedFunction(SrcExpr.get(), |
| DestType, |
| true, |
| FoundOverload); |
| if (!Fn) { |
| msg = 0; |
| return TC_Failed; |
| } |
| |
| SrcExpr = Self.FixOverloadedFunctionReference(SrcExpr, FoundOverload, Fn); |
| if (!SrcExpr.isUsable()) { |
| msg = 0; |
| return TC_Failed; |
| } |
| } |
| |
| Self.BuildBasePathArray(Paths, BasePath); |
| Kind = CK_DerivedToBaseMemberPointer; |
| return TC_Success; |
| } |
| |
| /// TryStaticImplicitCast - Tests whether a conversion according to C++ 5.2.9p2 |
| /// is valid: |
| /// |
| /// An expression e can be explicitly converted to a type T using a |
| /// @c static_cast if the declaration "T t(e);" is well-formed [...]. |
| TryCastResult |
| TryStaticImplicitCast(Sema &Self, ExprResult &SrcExpr, QualType DestType, |
| Sema::CheckedConversionKind CCK, |
| const SourceRange &OpRange, unsigned &msg, |
| CastKind &Kind) { |
| if (DestType->isRecordType()) { |
| if (Self.RequireCompleteType(OpRange.getBegin(), DestType, |
| diag::err_bad_dynamic_cast_incomplete)) { |
| msg = 0; |
| return TC_Failed; |
| } |
| } |
| |
| InitializedEntity Entity = InitializedEntity::InitializeTemporary(DestType); |
| InitializationKind InitKind |
| = (CCK == Sema::CCK_CStyleCast) |
| ? InitializationKind::CreateCStyleCast(OpRange.getBegin(), OpRange) |
| : (CCK == Sema::CCK_FunctionalCast) |
| ? InitializationKind::CreateFunctionalCast(OpRange) |
| : InitializationKind::CreateCast(OpRange); |
| Expr *SrcExprRaw = SrcExpr.get(); |
| InitializationSequence InitSeq(Self, Entity, InitKind, &SrcExprRaw, 1); |
| |
| // At this point of CheckStaticCast, if the destination is a reference, |
| // or the expression is an overload expression this has to work. |
| // There is no other way that works. |
| // On the other hand, if we're checking a C-style cast, we've still got |
| // the reinterpret_cast way. |
| bool CStyle |
| = (CCK == Sema::CCK_CStyleCast || CCK == Sema::CCK_FunctionalCast); |
| if (InitSeq.Failed() && (CStyle || !DestType->isReferenceType())) |
| return TC_NotApplicable; |
| |
| ExprResult Result |
| = InitSeq.Perform(Self, Entity, InitKind, MultiExprArg(Self, &SrcExprRaw, 1)); |
| if (Result.isInvalid()) { |
| msg = 0; |
| return TC_Failed; |
| } |
| |
| if (InitSeq.isConstructorInitialization()) |
| Kind = CK_ConstructorConversion; |
| else |
| Kind = CK_NoOp; |
| |
| SrcExpr = move(Result); |
| return TC_Success; |
| } |
| |
| /// TryConstCast - See if a const_cast from source to destination is allowed, |
| /// and perform it if it is. |
| static TryCastResult TryConstCast(Sema &Self, Expr *SrcExpr, QualType DestType, |
| bool CStyle, unsigned &msg) { |
| DestType = Self.Context.getCanonicalType(DestType); |
| QualType SrcType = SrcExpr->getType(); |
| if (const ReferenceType *DestTypeTmp =DestType->getAs<ReferenceType>()) { |
| if (DestTypeTmp->isLValueReferenceType() && !SrcExpr->isLValue()) { |
| // Cannot const_cast non-lvalue to lvalue reference type. But if this |
| // is C-style, static_cast might find a way, so we simply suggest a |
| // message and tell the parent to keep searching. |
| msg = diag::err_bad_cxx_cast_rvalue; |
| return TC_NotApplicable; |
| } |
| |
| // C++ 5.2.11p4: An lvalue of type T1 can be [cast] to an lvalue of type T2 |
| // [...] if a pointer to T1 can be [cast] to the type pointer to T2. |
| DestType = Self.Context.getPointerType(DestTypeTmp->getPointeeType()); |
| SrcType = Self.Context.getPointerType(SrcType); |
| } |
| |
| // C++ 5.2.11p5: For a const_cast involving pointers to data members [...] |
| // the rules for const_cast are the same as those used for pointers. |
| |
| if (!DestType->isPointerType() && |
| !DestType->isMemberPointerType() && |
| !DestType->isObjCObjectPointerType()) { |
| // Cannot cast to non-pointer, non-reference type. Note that, if DestType |
| // was a reference type, we converted it to a pointer above. |
| // The status of rvalue references isn't entirely clear, but it looks like |
| // conversion to them is simply invalid. |
| // C++ 5.2.11p3: For two pointer types [...] |
| if (!CStyle) |
| msg = diag::err_bad_const_cast_dest; |
| return TC_NotApplicable; |
| } |
| if (DestType->isFunctionPointerType() || |
| DestType->isMemberFunctionPointerType()) { |
| // Cannot cast direct function pointers. |
| // C++ 5.2.11p2: [...] where T is any object type or the void type [...] |
| // T is the ultimate pointee of source and target type. |
| if (!CStyle) |
| msg = diag::err_bad_const_cast_dest; |
| return TC_NotApplicable; |
| } |
| SrcType = Self.Context.getCanonicalType(SrcType); |
| |
| // Unwrap the pointers. Ignore qualifiers. Terminate early if the types are |
| // completely equal. |
| // C++ 5.2.11p3 describes the core semantics of const_cast. All cv specifiers |
| // in multi-level pointers may change, but the level count must be the same, |
| // as must be the final pointee type. |
| while (SrcType != DestType && |
| Self.Context.UnwrapSimilarPointerTypes(SrcType, DestType)) { |
| Qualifiers SrcQuals, DestQuals; |
| SrcType = Self.Context.getUnqualifiedArrayType(SrcType, SrcQuals); |
| DestType = Self.Context.getUnqualifiedArrayType(DestType, DestQuals); |
| |
| // const_cast is permitted to strip cvr-qualifiers, only. Make sure that |
| // the other qualifiers (e.g., address spaces) are identical. |
| SrcQuals.removeCVRQualifiers(); |
| DestQuals.removeCVRQualifiers(); |
| if (SrcQuals != DestQuals) |
| return TC_NotApplicable; |
| } |
| |
| // Since we're dealing in canonical types, the remainder must be the same. |
| if (SrcType != DestType) |
| return TC_NotApplicable; |
| |
| return TC_Success; |
| } |
| |
| // Checks for undefined behavior in reinterpret_cast. |
| // The cases that is checked for is: |
| // *reinterpret_cast<T*>(&a) |
| // reinterpret_cast<T&>(a) |
| // where accessing 'a' as type 'T' will result in undefined behavior. |
| void Sema::CheckCompatibleReinterpretCast(QualType SrcType, QualType DestType, |
| bool IsDereference, |
| SourceRange Range) { |
| unsigned DiagID = IsDereference ? |
| diag::warn_pointer_indirection_from_incompatible_type : |
| diag::warn_undefined_reinterpret_cast; |
| |
| if (Diags.getDiagnosticLevel(DiagID, Range.getBegin()) == |
| Diagnostic::Ignored) { |
| return; |
| } |
| |
| QualType SrcTy, DestTy; |
| if (IsDereference) { |
| if (!SrcType->getAs<PointerType>() || !DestType->getAs<PointerType>()) { |
| return; |
| } |
| SrcTy = SrcType->getPointeeType(); |
| DestTy = DestType->getPointeeType(); |
| } else { |
| if (!DestType->getAs<ReferenceType>()) { |
| return; |
| } |
| SrcTy = SrcType; |
| DestTy = DestType->getPointeeType(); |
| } |
| |
| // Cast is compatible if the types are the same. |
| if (Context.hasSameUnqualifiedType(DestTy, SrcTy)) { |
| return; |
| } |
| // or one of the types is a char or void type |
| if (DestTy->isAnyCharacterType() || DestTy->isVoidType() || |
| SrcTy->isAnyCharacterType() || SrcTy->isVoidType()) { |
| return; |
| } |
| // or one of the types is a tag type. |
| if (SrcTy->getAs<TagType>() || DestTy->getAs<TagType>()) { |
| return; |
| } |
| |
| // FIXME: Scoped enums? |
| if ((SrcTy->isUnsignedIntegerType() && DestTy->isSignedIntegerType()) || |
| (SrcTy->isSignedIntegerType() && DestTy->isUnsignedIntegerType())) { |
| if (Context.getTypeSize(DestTy) == Context.getTypeSize(SrcTy)) { |
| return; |
| } |
| } |
| |
| Diag(Range.getBegin(), DiagID) << SrcType << DestType << Range; |
| } |
| |
| static TryCastResult TryReinterpretCast(Sema &Self, ExprResult &SrcExpr, |
| QualType DestType, bool CStyle, |
| const SourceRange &OpRange, |
| unsigned &msg, |
| CastKind &Kind) { |
| bool IsLValueCast = false; |
| |
| DestType = Self.Context.getCanonicalType(DestType); |
| QualType SrcType = SrcExpr.get()->getType(); |
| |
| // Is the source an overloaded name? (i.e. &foo) |
| // If so, reinterpret_cast can not help us here (13.4, p1, bullet 5) ... |
| if (SrcType == Self.Context.OverloadTy) { |
| // ... unless foo<int> resolves to an lvalue unambiguously |
| ExprResult SingleFunctionExpr = |
| Self.ResolveAndFixSingleFunctionTemplateSpecialization(SrcExpr.get(), |
| Expr::getValueKindForType(DestType) == VK_RValue // Convert Fun to Ptr |
| ); |
| if (SingleFunctionExpr.isUsable()) { |
| SrcExpr = move(SingleFunctionExpr); |
| SrcType = SrcExpr.get()->getType(); |
| } |
| else |
| return TC_NotApplicable; |
| } |
| |
| if (const ReferenceType *DestTypeTmp = DestType->getAs<ReferenceType>()) { |
| bool LValue = DestTypeTmp->isLValueReferenceType(); |
| if (LValue && !SrcExpr.get()->isLValue()) { |
| // Cannot cast non-lvalue to lvalue reference type. See the similar |
| // comment in const_cast. |
| msg = diag::err_bad_cxx_cast_rvalue; |
| return TC_NotApplicable; |
| } |
| |
| if (!CStyle) { |
| Self.CheckCompatibleReinterpretCast(SrcType, DestType, |
| /*isDereference=*/false, OpRange); |
| } |
| |
| // C++ 5.2.10p10: [...] a reference cast reinterpret_cast<T&>(x) has the |
| // same effect as the conversion *reinterpret_cast<T*>(&x) with the |
| // built-in & and * operators. |
| |
| const char *inappropriate = 0; |
| switch (SrcExpr.get()->getObjectKind()) { |
| case OK_Ordinary: |
| break; |
| case OK_BitField: inappropriate = "bit-field"; break; |
| case OK_VectorComponent: inappropriate = "vector element"; break; |
| case OK_ObjCProperty: inappropriate = "property expression"; break; |
| } |
| if (inappropriate) { |
| Self.Diag(OpRange.getBegin(), diag::err_bad_reinterpret_cast_reference) |
| << inappropriate << DestType |
| << OpRange << SrcExpr.get()->getSourceRange(); |
| msg = 0; SrcExpr = ExprError(); |
| return TC_NotApplicable; |
| } |
| |
| // This code does this transformation for the checked types. |
| DestType = Self.Context.getPointerType(DestTypeTmp->getPointeeType()); |
| SrcType = Self.Context.getPointerType(SrcType); |
| |
| IsLValueCast = true; |
| } |
| |
| // Canonicalize source for comparison. |
| SrcType = Self.Context.getCanonicalType(SrcType); |
| |
| const MemberPointerType *DestMemPtr = DestType->getAs<MemberPointerType>(), |
| *SrcMemPtr = SrcType->getAs<MemberPointerType>(); |
| if (DestMemPtr && SrcMemPtr) { |
| // C++ 5.2.10p9: An rvalue of type "pointer to member of X of type T1" |
| // can be explicitly converted to an rvalue of type "pointer to member |
| // of Y of type T2" if T1 and T2 are both function types or both object |
| // types. |
| if (DestMemPtr->getPointeeType()->isFunctionType() != |
| SrcMemPtr->getPointeeType()->isFunctionType()) |
| return TC_NotApplicable; |
| |
| // C++ 5.2.10p2: The reinterpret_cast operator shall not cast away |
| // constness. |
| // A reinterpret_cast followed by a const_cast can, though, so in C-style, |
| // we accept it. |
| if (CastsAwayConstness(Self, SrcType, DestType, /*CheckCVR=*/!CStyle, |
| /*CheckObjCLifetime=*/CStyle)) { |
| msg = diag::err_bad_cxx_cast_qualifiers_away; |
| return TC_Failed; |
| } |
| |
| // Don't allow casting between member pointers of different sizes. |
| if (Self.Context.getTypeSize(DestMemPtr) != |
| Self.Context.getTypeSize(SrcMemPtr)) { |
| msg = diag::err_bad_cxx_cast_member_pointer_size; |
| return TC_Failed; |
| } |
| |
| // A valid member pointer cast. |
| Kind = IsLValueCast? CK_LValueBitCast : CK_BitCast; |
| return TC_Success; |
| } |
| |
| // See below for the enumeral issue. |
| if (SrcType->isNullPtrType() && DestType->isIntegralType(Self.Context)) { |
| // C++0x 5.2.10p4: A pointer can be explicitly converted to any integral |
| // type large enough to hold it. A value of std::nullptr_t can be |
| // converted to an integral type; the conversion has the same meaning |
| // and validity as a conversion of (void*)0 to the integral type. |
| if (Self.Context.getTypeSize(SrcType) > |
| Self.Context.getTypeSize(DestType)) { |
| msg = diag::err_bad_reinterpret_cast_small_int; |
| return TC_Failed; |
| } |
| Kind = CK_PointerToIntegral; |
| return TC_Success; |
| } |
| |
| bool destIsVector = DestType->isVectorType(); |
| bool srcIsVector = SrcType->isVectorType(); |
| if (srcIsVector || destIsVector) { |
| // FIXME: Should this also apply to floating point types? |
| bool srcIsScalar = SrcType->isIntegralType(Self.Context); |
| bool destIsScalar = DestType->isIntegralType(Self.Context); |
| |
| // Check if this is a cast between a vector and something else. |
| if (!(srcIsScalar && destIsVector) && !(srcIsVector && destIsScalar) && |
| !(srcIsVector && destIsVector)) |
| return TC_NotApplicable; |
| |
| // If both types have the same size, we can successfully cast. |
| if (Self.Context.getTypeSize(SrcType) |
| == Self.Context.getTypeSize(DestType)) { |
| Kind = CK_BitCast; |
| return TC_Success; |
| } |
| |
| if (destIsScalar) |
| msg = diag::err_bad_cxx_cast_vector_to_scalar_different_size; |
| else if (srcIsScalar) |
| msg = diag::err_bad_cxx_cast_scalar_to_vector_different_size; |
| else |
| msg = diag::err_bad_cxx_cast_vector_to_vector_different_size; |
| |
| return TC_Failed; |
| } |
| |
| bool destIsPtr = DestType->isAnyPointerType() || |
| DestType->isBlockPointerType(); |
| bool srcIsPtr = SrcType->isAnyPointerType() || |
| SrcType->isBlockPointerType(); |
| if (!destIsPtr && !srcIsPtr) { |
| // Except for std::nullptr_t->integer and lvalue->reference, which are |
| // handled above, at least one of the two arguments must be a pointer. |
| return TC_NotApplicable; |
| } |
| |
| if (SrcType == DestType) { |
| // C++ 5.2.10p2 has a note that mentions that, subject to all other |
| // restrictions, a cast to the same type is allowed. The intent is not |
| // entirely clear here, since all other paragraphs explicitly forbid casts |
| // to the same type. However, the behavior of compilers is pretty consistent |
| // on this point: allow same-type conversion if the involved types are |
| // pointers, disallow otherwise. |
| Kind = CK_NoOp; |
| return TC_Success; |
| } |
| |
| if (DestType->isIntegralType(Self.Context)) { |
| assert(srcIsPtr && "One type must be a pointer"); |
| // C++ 5.2.10p4: A pointer can be explicitly converted to any integral |
| // type large enough to hold it; except in Microsoft mode, where the |
| // integral type size doesn't matter. |
| if ((Self.Context.getTypeSize(SrcType) > |
| Self.Context.getTypeSize(DestType)) && |
| !Self.getLangOptions().Microsoft) { |
| msg = diag::err_bad_reinterpret_cast_small_int; |
| return TC_Failed; |
| } |
| Kind = CK_PointerToIntegral; |
| return TC_Success; |
| } |
| |
| if (SrcType->isIntegralOrEnumerationType()) { |
| assert(destIsPtr && "One type must be a pointer"); |
| // C++ 5.2.10p5: A value of integral or enumeration type can be explicitly |
| // converted to a pointer. |
| // C++ 5.2.10p9: [Note: ...a null pointer constant of integral type is not |
| // necessarily converted to a null pointer value.] |
| Kind = CK_IntegralToPointer; |
| return TC_Success; |
| } |
| |
| if (!destIsPtr || !srcIsPtr) { |
| // With the valid non-pointer conversions out of the way, we can be even |
| // more stringent. |
| return TC_NotApplicable; |
| } |
| |
| // C++ 5.2.10p2: The reinterpret_cast operator shall not cast away constness. |
| // The C-style cast operator can. |
| if (CastsAwayConstness(Self, SrcType, DestType, /*CheckCVR=*/!CStyle, |
| /*CheckObjCLifetime=*/CStyle)) { |
| msg = diag::err_bad_cxx_cast_qualifiers_away; |
| return TC_Failed; |
| } |
| |
| // Cannot convert between block pointers and Objective-C object pointers. |
| if ((SrcType->isBlockPointerType() && DestType->isObjCObjectPointerType()) || |
| (DestType->isBlockPointerType() && SrcType->isObjCObjectPointerType())) |
| return TC_NotApplicable; |
| |
| // Any pointer can be cast to an Objective-C pointer type with a C-style |
| // cast. |
| if (CStyle && DestType->isObjCObjectPointerType()) { |
| Kind = CK_AnyPointerToObjCPointerCast; |
| return TC_Success; |
| } |
| |
| // Not casting away constness, so the only remaining check is for compatible |
| // pointer categories. |
| Kind = IsLValueCast? CK_LValueBitCast : CK_BitCast; |
| |
| if (SrcType->isFunctionPointerType()) { |
| if (DestType->isFunctionPointerType()) { |
| // C++ 5.2.10p6: A pointer to a function can be explicitly converted to |
| // a pointer to a function of a different type. |
| return TC_Success; |
| } |
| |
| // C++0x 5.2.10p8: Converting a pointer to a function into a pointer to |
| // an object type or vice versa is conditionally-supported. |
| // Compilers support it in C++03 too, though, because it's necessary for |
| // casting the return value of dlsym() and GetProcAddress(). |
| // FIXME: Conditionally-supported behavior should be configurable in the |
| // TargetInfo or similar. |
| if (!Self.getLangOptions().CPlusPlus0x) |
| Self.Diag(OpRange.getBegin(), diag::ext_cast_fn_obj) << OpRange; |
| return TC_Success; |
| } |
| |
| if (DestType->isFunctionPointerType()) { |
| // See above. |
| if (!Self.getLangOptions().CPlusPlus0x) |
| Self.Diag(OpRange.getBegin(), diag::ext_cast_fn_obj) << OpRange; |
| return TC_Success; |
| } |
| |
| // C++ 5.2.10p7: A pointer to an object can be explicitly converted to |
| // a pointer to an object of different type. |
| // Void pointers are not specified, but supported by every compiler out there. |
| // So we finish by allowing everything that remains - it's got to be two |
| // object pointers. |
| return TC_Success; |
| } |
| |
| ExprResult |
| Sema::CXXCheckCStyleCast(SourceRange R, QualType CastTy, ExprValueKind &VK, |
| Expr *CastExpr, CastKind &Kind, |
| CXXCastPath &BasePath, |
| bool FunctionalStyle) { |
| // This test is outside everything else because it's the only case where |
| // a non-lvalue-reference target type does not lead to decay. |
| // C++ 5.2.9p4: Any expression can be explicitly converted to type "cv void". |
| if (CastTy->isVoidType()) { |
| Kind = CK_ToVoid; |
| |
| ExprResult CastExprRes = IgnoredValueConversions(CastExpr); |
| if (CastExprRes.isInvalid()) |
| return ExprError(); |
| CastExpr = CastExprRes.take(); |
| |
| if (CastExpr->getType() == Context.BoundMemberTy) |
| return CheckPlaceholderExpr(CastExpr); // will always fail |
| |
| if (CastExpr->getType() == Context.OverloadTy) { |
| ExprResult SingleFunctionExpr = |
| ResolveAndFixSingleFunctionTemplateSpecialization( |
| CastExpr, /* Decay Function to ptr */ false, |
| /* Complain */ true, R, CastTy, |
| diag::err_bad_cstyle_cast_overload); |
| if (SingleFunctionExpr.isInvalid()) |
| return ExprError(); |
| CastExpr = SingleFunctionExpr.take(); |
| } |
| |
| assert(!CastExpr->getType()->isPlaceholderType()); |
| |
| return Owned(CastExpr); |
| } |
| |
| // Make sure we determine the value kind before we bail out for |
| // dependent types. |
| VK = Expr::getValueKindForType(CastTy); |
| |
| // If the type is dependent, we won't do any other semantic analysis now. |
| if (CastTy->isDependentType() || CastExpr->isTypeDependent()) { |
| Kind = CK_Dependent; |
| return Owned(CastExpr); |
| } |
| |
| if (VK == VK_RValue && !CastTy->isRecordType()) { |
| ExprResult CastExprRes = DefaultFunctionArrayLvalueConversion(CastExpr); |
| if (CastExprRes.isInvalid()) |
| return ExprError(); |
| CastExpr = CastExprRes.take(); |
| } |
| |
| // AltiVec vector initialization with a single literal. |
| if (const VectorType *vecTy = CastTy->getAs<VectorType>()) |
| if (vecTy->getVectorKind() == VectorType::AltiVecVector |
| && (CastExpr->getType()->isIntegerType() |
| || CastExpr->getType()->isFloatingType())) { |
| Kind = CK_VectorSplat; |
| return Owned(CastExpr); |
| } |
| |
| // C++ [expr.cast]p5: The conversions performed by |
| // - a const_cast, |
| // - a static_cast, |
| // - a static_cast followed by a const_cast, |
| // - a reinterpret_cast, or |
| // - a reinterpret_cast followed by a const_cast, |
| // can be performed using the cast notation of explicit type conversion. |
| // [...] If a conversion can be interpreted in more than one of the ways |
| // listed above, the interpretation that appears first in the list is used, |
| // even if a cast resulting from that interpretation is ill-formed. |
| // In plain language, this means trying a const_cast ... |
| unsigned msg = diag::err_bad_cxx_cast_generic; |
| TryCastResult tcr = TryConstCast(*this, CastExpr, CastTy, /*CStyle*/true, |
| msg); |
| if (tcr == TC_Success) |
| Kind = CK_NoOp; |
| |
| Sema::CheckedConversionKind CCK |
| = FunctionalStyle? Sema::CCK_FunctionalCast |
| : Sema::CCK_CStyleCast; |
| if (tcr == TC_NotApplicable) { |
| // ... or if that is not possible, a static_cast, ignoring const, ... |
| ExprResult CastExprRes = Owned(CastExpr); |
| tcr = TryStaticCast(*this, CastExprRes, CastTy, CCK, R, msg, Kind, |
| BasePath); |
| if (CastExprRes.isInvalid()) |
| return ExprError(); |
| CastExpr = CastExprRes.take(); |
| if (tcr == TC_NotApplicable) { |
| // ... and finally a reinterpret_cast, ignoring const. |
| CastExprRes = Owned(CastExpr); |
| tcr = TryReinterpretCast(*this, CastExprRes, CastTy, /*CStyle*/true, R, |
| msg, Kind); |
| if (CastExprRes.isInvalid()) |
| return ExprError(); |
| CastExpr = CastExprRes.take(); |
| } |
| } |
| |
| if (getLangOptions().ObjCAutoRefCount && tcr == TC_Success) |
| CheckObjCARCConversion(R, CastTy, CastExpr, CCK); |
| |
| if (tcr != TC_Success && msg != 0) { |
| if (CastExpr->getType() == Context.OverloadTy) { |
| DeclAccessPair Found; |
| FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(CastExpr, |
| CastTy, |
| /* Complain */ true, |
| Found); |
| |
| assert(!Fn && "cast failed but able to resolve overload expression!!"); |
| (void)Fn; |
| |
| } else { |
| diagnoseBadCast(*this, msg, (FunctionalStyle ? CT_Functional : CT_CStyle), |
| R, CastExpr, CastTy); |
| } |
| } |
| else if (Kind == CK_BitCast) |
| CheckCastAlign(CastExpr, CastTy, R); |
| |
| if (tcr != TC_Success) |
| return ExprError(); |
| |
| return Owned(CastExpr); |
| } |