| //===--- SemaExceptionSpec.cpp - C++ Exception Specifications ---*- C++ -*-===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file provides Sema routines for C++ exception specification testing. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "clang/Sema/SemaInternal.h" | 
 | #include "clang/AST/CXXInheritance.h" | 
 | #include "clang/AST/Expr.h" | 
 | #include "clang/AST/ExprCXX.h" | 
 | #include "clang/AST/TypeLoc.h" | 
 | #include "clang/Lex/Preprocessor.h" | 
 | #include "clang/Basic/Diagnostic.h" | 
 | #include "clang/Basic/SourceManager.h" | 
 | #include "llvm/ADT/SmallPtrSet.h" | 
 | #include "llvm/ADT/SmallString.h" | 
 |  | 
 | namespace clang { | 
 |  | 
 | static const FunctionProtoType *GetUnderlyingFunction(QualType T) | 
 | { | 
 |   if (const PointerType *PtrTy = T->getAs<PointerType>()) | 
 |     T = PtrTy->getPointeeType(); | 
 |   else if (const ReferenceType *RefTy = T->getAs<ReferenceType>()) | 
 |     T = RefTy->getPointeeType(); | 
 |   else if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) | 
 |     T = MPTy->getPointeeType(); | 
 |   return T->getAs<FunctionProtoType>(); | 
 | } | 
 |  | 
 | /// CheckSpecifiedExceptionType - Check if the given type is valid in an | 
 | /// exception specification. Incomplete types, or pointers to incomplete types | 
 | /// other than void are not allowed. | 
 | bool Sema::CheckSpecifiedExceptionType(QualType T, const SourceRange &Range) { | 
 |  | 
 |   // This check (and the similar one below) deals with issue 437, that changes | 
 |   // C++ 9.2p2 this way: | 
 |   // Within the class member-specification, the class is regarded as complete | 
 |   // within function bodies, default arguments, exception-specifications, and | 
 |   // constructor ctor-initializers (including such things in nested classes). | 
 |   if (T->isRecordType() && T->getAs<RecordType>()->isBeingDefined()) | 
 |     return false; | 
 |      | 
 |   // C++ 15.4p2: A type denoted in an exception-specification shall not denote | 
 |   //   an incomplete type. | 
 |   if (RequireCompleteType(Range.getBegin(), T, | 
 |                           diag::err_incomplete_in_exception_spec, | 
 |                           /*direct*/0, Range)) | 
 |     return true; | 
 |  | 
 |   // C++ 15.4p2: A type denoted in an exception-specification shall not denote | 
 |   //   an incomplete type a pointer or reference to an incomplete type, other | 
 |   //   than (cv) void*. | 
 |   int kind; | 
 |   if (const PointerType* IT = T->getAs<PointerType>()) { | 
 |     T = IT->getPointeeType(); | 
 |     kind = 1; | 
 |   } else if (const ReferenceType* IT = T->getAs<ReferenceType>()) { | 
 |     T = IT->getPointeeType(); | 
 |     kind = 2; | 
 |   } else | 
 |     return false; | 
 |  | 
 |   // Again as before | 
 |   if (T->isRecordType() && T->getAs<RecordType>()->isBeingDefined()) | 
 |     return false; | 
 |      | 
 |   if (!T->isVoidType() && | 
 |       RequireCompleteType(Range.getBegin(), T, | 
 |                           diag::err_incomplete_in_exception_spec, kind, Range)) | 
 |     return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer | 
 | /// to member to a function with an exception specification. This means that | 
 | /// it is invalid to add another level of indirection. | 
 | bool Sema::CheckDistantExceptionSpec(QualType T) { | 
 |   if (const PointerType *PT = T->getAs<PointerType>()) | 
 |     T = PT->getPointeeType(); | 
 |   else if (const MemberPointerType *PT = T->getAs<MemberPointerType>()) | 
 |     T = PT->getPointeeType(); | 
 |   else | 
 |     return false; | 
 |  | 
 |   const FunctionProtoType *FnT = T->getAs<FunctionProtoType>(); | 
 |   if (!FnT) | 
 |     return false; | 
 |  | 
 |   return FnT->hasExceptionSpec(); | 
 | } | 
 |  | 
 | const FunctionProtoType * | 
 | Sema::ResolveExceptionSpec(SourceLocation Loc, const FunctionProtoType *FPT) { | 
 |   // FIXME: If FD is a special member, we should delay computing its exception | 
 |   // specification until this point. | 
 |   if (FPT->getExceptionSpecType() != EST_Uninstantiated) | 
 |     return FPT; | 
 |  | 
 |   FunctionDecl *SourceDecl = FPT->getExceptionSpecDecl(); | 
 |   const FunctionProtoType *SourceFPT = | 
 |       SourceDecl->getType()->castAs<FunctionProtoType>(); | 
 |  | 
 |   if (SourceFPT->getExceptionSpecType() != EST_Uninstantiated) | 
 |     return SourceFPT; | 
 |  | 
 |   // Instantiate the exception specification now. | 
 |   InstantiateExceptionSpec(Loc, SourceDecl); | 
 |  | 
 |   return SourceDecl->getType()->castAs<FunctionProtoType>(); | 
 | } | 
 |  | 
 | bool Sema::CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New) { | 
 |   OverloadedOperatorKind OO = New->getDeclName().getCXXOverloadedOperator(); | 
 |   bool IsOperatorNew = OO == OO_New || OO == OO_Array_New; | 
 |   bool MissingExceptionSpecification = false; | 
 |   bool MissingEmptyExceptionSpecification = false; | 
 |   unsigned DiagID = diag::err_mismatched_exception_spec; | 
 |   if (getLangOpts().MicrosoftExt) | 
 |     DiagID = diag::warn_mismatched_exception_spec;  | 
 |  | 
 |   if (!CheckEquivalentExceptionSpec(PDiag(DiagID), | 
 |                                     PDiag(diag::note_previous_declaration), | 
 |                                     Old->getType()->getAs<FunctionProtoType>(), | 
 |                                     Old->getLocation(), | 
 |                                     New->getType()->getAs<FunctionProtoType>(), | 
 |                                     New->getLocation(), | 
 |                                     &MissingExceptionSpecification, | 
 |                                     &MissingEmptyExceptionSpecification, | 
 |                                     /*AllowNoexceptAllMatchWithNoSpec=*/true, | 
 |                                     IsOperatorNew)) | 
 |     return false; | 
 |  | 
 |   // The failure was something other than an empty exception | 
 |   // specification; return an error. | 
 |   if (!MissingExceptionSpecification && !MissingEmptyExceptionSpecification) | 
 |     return true; | 
 |  | 
 |   const FunctionProtoType *NewProto  | 
 |     = New->getType()->getAs<FunctionProtoType>(); | 
 |  | 
 |   // The new function declaration is only missing an empty exception | 
 |   // specification "throw()". If the throw() specification came from a | 
 |   // function in a system header that has C linkage, just add an empty | 
 |   // exception specification to the "new" declaration. This is an | 
 |   // egregious workaround for glibc, which adds throw() specifications | 
 |   // to many libc functions as an optimization. Unfortunately, that | 
 |   // optimization isn't permitted by the C++ standard, so we're forced | 
 |   // to work around it here. | 
 |   if (MissingEmptyExceptionSpecification && NewProto && | 
 |       (Old->getLocation().isInvalid() || | 
 |        Context.getSourceManager().isInSystemHeader(Old->getLocation())) && | 
 |       Old->isExternC()) { | 
 |     FunctionProtoType::ExtProtoInfo EPI = NewProto->getExtProtoInfo(); | 
 |     EPI.ExceptionSpecType = EST_DynamicNone; | 
 |     QualType NewType = Context.getFunctionType(NewProto->getResultType(), | 
 |                                                NewProto->arg_type_begin(), | 
 |                                                NewProto->getNumArgs(), | 
 |                                                EPI); | 
 |     New->setType(NewType); | 
 |     return false; | 
 |   } | 
 |  | 
 |   if (MissingExceptionSpecification && NewProto) { | 
 |     const FunctionProtoType *OldProto | 
 |       = Old->getType()->getAs<FunctionProtoType>(); | 
 |  | 
 |     FunctionProtoType::ExtProtoInfo EPI = NewProto->getExtProtoInfo(); | 
 |     EPI.ExceptionSpecType = OldProto->getExceptionSpecType(); | 
 |     if (EPI.ExceptionSpecType == EST_Dynamic) { | 
 |       EPI.NumExceptions = OldProto->getNumExceptions(); | 
 |       EPI.Exceptions = OldProto->exception_begin(); | 
 |     } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) { | 
 |       // FIXME: We can't just take the expression from the old prototype. It | 
 |       // likely contains references to the old prototype's parameters. | 
 |     } | 
 |  | 
 |     // Update the type of the function with the appropriate exception | 
 |     // specification. | 
 |     QualType NewType = Context.getFunctionType(NewProto->getResultType(), | 
 |                                                NewProto->arg_type_begin(), | 
 |                                                NewProto->getNumArgs(), | 
 |                                                EPI); | 
 |     New->setType(NewType); | 
 |  | 
 |     // If exceptions are disabled, suppress the warning about missing | 
 |     // exception specifications for new and delete operators. | 
 |     if (!getLangOpts().CXXExceptions) { | 
 |       switch (New->getDeclName().getCXXOverloadedOperator()) { | 
 |       case OO_New: | 
 |       case OO_Array_New: | 
 |       case OO_Delete: | 
 |       case OO_Array_Delete: | 
 |         if (New->getDeclContext()->isTranslationUnit()) | 
 |           return false; | 
 |         break; | 
 |  | 
 |       default: | 
 |         break; | 
 |       } | 
 |     }  | 
 |  | 
 |     // Warn about the lack of exception specification. | 
 |     SmallString<128> ExceptionSpecString; | 
 |     llvm::raw_svector_ostream OS(ExceptionSpecString); | 
 |     switch (OldProto->getExceptionSpecType()) { | 
 |     case EST_DynamicNone: | 
 |       OS << "throw()"; | 
 |       break; | 
 |  | 
 |     case EST_Dynamic: { | 
 |       OS << "throw("; | 
 |       bool OnFirstException = true; | 
 |       for (FunctionProtoType::exception_iterator E = OldProto->exception_begin(), | 
 |                                               EEnd = OldProto->exception_end(); | 
 |            E != EEnd; | 
 |            ++E) { | 
 |         if (OnFirstException) | 
 |           OnFirstException = false; | 
 |         else | 
 |           OS << ", "; | 
 |          | 
 |         OS << E->getAsString(getPrintingPolicy()); | 
 |       } | 
 |       OS << ")"; | 
 |       break; | 
 |     } | 
 |  | 
 |     case EST_BasicNoexcept: | 
 |       OS << "noexcept"; | 
 |       break; | 
 |  | 
 |     case EST_ComputedNoexcept: | 
 |       OS << "noexcept("; | 
 |       OldProto->getNoexceptExpr()->printPretty(OS, Context, 0,  | 
 |                                                getPrintingPolicy()); | 
 |       OS << ")"; | 
 |       break; | 
 |  | 
 |     default: | 
 |       llvm_unreachable("This spec type is compatible with none."); | 
 |     } | 
 |     OS.flush(); | 
 |  | 
 |     SourceLocation FixItLoc; | 
 |     if (TypeSourceInfo *TSInfo = New->getTypeSourceInfo()) { | 
 |       TypeLoc TL = TSInfo->getTypeLoc().IgnoreParens(); | 
 |       if (const FunctionTypeLoc *FTLoc = dyn_cast<FunctionTypeLoc>(&TL)) | 
 |         FixItLoc = PP.getLocForEndOfToken(FTLoc->getLocalRangeEnd()); | 
 |     } | 
 |  | 
 |     if (FixItLoc.isInvalid()) | 
 |       Diag(New->getLocation(), diag::warn_missing_exception_specification) | 
 |         << New << OS.str(); | 
 |     else { | 
 |       // FIXME: This will get more complicated with C++0x | 
 |       // late-specified return types. | 
 |       Diag(New->getLocation(), diag::warn_missing_exception_specification) | 
 |         << New << OS.str() | 
 |         << FixItHint::CreateInsertion(FixItLoc, " " + OS.str().str()); | 
 |     } | 
 |  | 
 |     if (!Old->getLocation().isInvalid()) | 
 |       Diag(Old->getLocation(), diag::note_previous_declaration); | 
 |  | 
 |     return false;     | 
 |   } | 
 |  | 
 |   Diag(New->getLocation(), DiagID); | 
 |   Diag(Old->getLocation(), diag::note_previous_declaration); | 
 |   return true; | 
 | } | 
 |  | 
 | /// CheckEquivalentExceptionSpec - Check if the two types have equivalent | 
 | /// exception specifications. Exception specifications are equivalent if | 
 | /// they allow exactly the same set of exception types. It does not matter how | 
 | /// that is achieved. See C++ [except.spec]p2. | 
 | bool Sema::CheckEquivalentExceptionSpec( | 
 |     const FunctionProtoType *Old, SourceLocation OldLoc, | 
 |     const FunctionProtoType *New, SourceLocation NewLoc) { | 
 |   unsigned DiagID = diag::err_mismatched_exception_spec; | 
 |   if (getLangOpts().MicrosoftExt) | 
 |     DiagID = diag::warn_mismatched_exception_spec;  | 
 |   return CheckEquivalentExceptionSpec( | 
 |                                       PDiag(DiagID), | 
 |                                       PDiag(diag::note_previous_declaration), | 
 |                                       Old, OldLoc, New, NewLoc); | 
 | } | 
 |  | 
 | /// CheckEquivalentExceptionSpec - Check if the two types have compatible | 
 | /// exception specifications. See C++ [except.spec]p3. | 
 | bool Sema::CheckEquivalentExceptionSpec(const PartialDiagnostic &DiagID, | 
 |                                         const PartialDiagnostic & NoteID, | 
 |                                         const FunctionProtoType *Old, | 
 |                                         SourceLocation OldLoc, | 
 |                                         const FunctionProtoType *New, | 
 |                                         SourceLocation NewLoc, | 
 |                                         bool *MissingExceptionSpecification, | 
 |                                         bool*MissingEmptyExceptionSpecification, | 
 |                                         bool AllowNoexceptAllMatchWithNoSpec, | 
 |                                         bool IsOperatorNew) { | 
 |   // Just completely ignore this under -fno-exceptions. | 
 |   if (!getLangOpts().CXXExceptions) | 
 |     return false; | 
 |  | 
 |   if (MissingExceptionSpecification) | 
 |     *MissingExceptionSpecification = false; | 
 |  | 
 |   if (MissingEmptyExceptionSpecification) | 
 |     *MissingEmptyExceptionSpecification = false; | 
 |  | 
 |   Old = ResolveExceptionSpec(NewLoc, Old); | 
 |   if (!Old) | 
 |     return false; | 
 |   New = ResolveExceptionSpec(NewLoc, New); | 
 |   if (!New) | 
 |     return false; | 
 |  | 
 |   // C++0x [except.spec]p3: Two exception-specifications are compatible if: | 
 |   //   - both are non-throwing, regardless of their form, | 
 |   //   - both have the form noexcept(constant-expression) and the constant- | 
 |   //     expressions are equivalent, | 
 |   //   - both are dynamic-exception-specifications that have the same set of | 
 |   //     adjusted types. | 
 |   // | 
 |   // C++0x [except.spec]p12: An exception-specifcation is non-throwing if it is | 
 |   //   of the form throw(), noexcept, or noexcept(constant-expression) where the | 
 |   //   constant-expression yields true. | 
 |   // | 
 |   // C++0x [except.spec]p4: If any declaration of a function has an exception- | 
 |   //   specifier that is not a noexcept-specification allowing all exceptions, | 
 |   //   all declarations [...] of that function shall have a compatible | 
 |   //   exception-specification. | 
 |   // | 
 |   // That last point basically means that noexcept(false) matches no spec. | 
 |   // It's considered when AllowNoexceptAllMatchWithNoSpec is true. | 
 |  | 
 |   ExceptionSpecificationType OldEST = Old->getExceptionSpecType(); | 
 |   ExceptionSpecificationType NewEST = New->getExceptionSpecType(); | 
 |  | 
 |   assert(OldEST != EST_Delayed && NewEST != EST_Delayed && | 
 |          OldEST != EST_Uninstantiated && NewEST != EST_Uninstantiated && | 
 |          "Shouldn't see unknown exception specifications here"); | 
 |  | 
 |   // Shortcut the case where both have no spec. | 
 |   if (OldEST == EST_None && NewEST == EST_None) | 
 |     return false; | 
 |  | 
 |   FunctionProtoType::NoexceptResult OldNR = Old->getNoexceptSpec(Context); | 
 |   FunctionProtoType::NoexceptResult NewNR = New->getNoexceptSpec(Context); | 
 |   if (OldNR == FunctionProtoType::NR_BadNoexcept || | 
 |       NewNR == FunctionProtoType::NR_BadNoexcept) | 
 |     return false; | 
 |  | 
 |   // Dependent noexcept specifiers are compatible with each other, but nothing | 
 |   // else. | 
 |   // One noexcept is compatible with another if the argument is the same | 
 |   if (OldNR == NewNR && | 
 |       OldNR != FunctionProtoType::NR_NoNoexcept && | 
 |       NewNR != FunctionProtoType::NR_NoNoexcept) | 
 |     return false; | 
 |   if (OldNR != NewNR && | 
 |       OldNR != FunctionProtoType::NR_NoNoexcept && | 
 |       NewNR != FunctionProtoType::NR_NoNoexcept) { | 
 |     Diag(NewLoc, DiagID); | 
 |     if (NoteID.getDiagID() != 0) | 
 |       Diag(OldLoc, NoteID); | 
 |     return true; | 
 |   } | 
 |  | 
 |   // The MS extension throw(...) is compatible with itself. | 
 |   if (OldEST == EST_MSAny && NewEST == EST_MSAny) | 
 |     return false; | 
 |  | 
 |   // It's also compatible with no spec. | 
 |   if ((OldEST == EST_None && NewEST == EST_MSAny) || | 
 |       (OldEST == EST_MSAny && NewEST == EST_None)) | 
 |     return false; | 
 |  | 
 |   // It's also compatible with noexcept(false). | 
 |   if (OldEST == EST_MSAny && NewNR == FunctionProtoType::NR_Throw) | 
 |     return false; | 
 |   if (NewEST == EST_MSAny && OldNR == FunctionProtoType::NR_Throw) | 
 |     return false; | 
 |  | 
 |   // As described above, noexcept(false) matches no spec only for functions. | 
 |   if (AllowNoexceptAllMatchWithNoSpec) { | 
 |     if (OldEST == EST_None && NewNR == FunctionProtoType::NR_Throw) | 
 |       return false; | 
 |     if (NewEST == EST_None && OldNR == FunctionProtoType::NR_Throw) | 
 |       return false; | 
 |   } | 
 |  | 
 |   // Any non-throwing specifications are compatible. | 
 |   bool OldNonThrowing = OldNR == FunctionProtoType::NR_Nothrow || | 
 |                         OldEST == EST_DynamicNone; | 
 |   bool NewNonThrowing = NewNR == FunctionProtoType::NR_Nothrow || | 
 |                         NewEST == EST_DynamicNone; | 
 |   if (OldNonThrowing && NewNonThrowing) | 
 |     return false; | 
 |  | 
 |   // As a special compatibility feature, under C++0x we accept no spec and | 
 |   // throw(std::bad_alloc) as equivalent for operator new and operator new[]. | 
 |   // This is because the implicit declaration changed, but old code would break. | 
 |   if (getLangOpts().CPlusPlus0x && IsOperatorNew) { | 
 |     const FunctionProtoType *WithExceptions = 0; | 
 |     if (OldEST == EST_None && NewEST == EST_Dynamic) | 
 |       WithExceptions = New; | 
 |     else if (OldEST == EST_Dynamic && NewEST == EST_None) | 
 |       WithExceptions = Old; | 
 |     if (WithExceptions && WithExceptions->getNumExceptions() == 1) { | 
 |       // One has no spec, the other throw(something). If that something is | 
 |       // std::bad_alloc, all conditions are met. | 
 |       QualType Exception = *WithExceptions->exception_begin(); | 
 |       if (CXXRecordDecl *ExRecord = Exception->getAsCXXRecordDecl()) { | 
 |         IdentifierInfo* Name = ExRecord->getIdentifier(); | 
 |         if (Name && Name->getName() == "bad_alloc") { | 
 |           // It's called bad_alloc, but is it in std? | 
 |           DeclContext* DC = ExRecord->getDeclContext(); | 
 |           DC = DC->getEnclosingNamespaceContext(); | 
 |           if (NamespaceDecl* NS = dyn_cast<NamespaceDecl>(DC)) { | 
 |             IdentifierInfo* NSName = NS->getIdentifier(); | 
 |             DC = DC->getParent(); | 
 |             if (NSName && NSName->getName() == "std" && | 
 |                 DC->getEnclosingNamespaceContext()->isTranslationUnit()) { | 
 |               return false; | 
 |             } | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // At this point, the only remaining valid case is two matching dynamic | 
 |   // specifications. We return here unless both specifications are dynamic. | 
 |   if (OldEST != EST_Dynamic || NewEST != EST_Dynamic) { | 
 |     if (MissingExceptionSpecification && Old->hasExceptionSpec() && | 
 |         !New->hasExceptionSpec()) { | 
 |       // The old type has an exception specification of some sort, but | 
 |       // the new type does not. | 
 |       *MissingExceptionSpecification = true; | 
 |  | 
 |       if (MissingEmptyExceptionSpecification && OldNonThrowing) { | 
 |         // The old type has a throw() or noexcept(true) exception specification | 
 |         // and the new type has no exception specification, and the caller asked | 
 |         // to handle this itself. | 
 |         *MissingEmptyExceptionSpecification = true; | 
 |       } | 
 |  | 
 |       return true; | 
 |     } | 
 |  | 
 |     Diag(NewLoc, DiagID); | 
 |     if (NoteID.getDiagID() != 0) | 
 |       Diag(OldLoc, NoteID); | 
 |     return true; | 
 |   } | 
 |  | 
 |   assert(OldEST == EST_Dynamic && NewEST == EST_Dynamic && | 
 |       "Exception compatibility logic error: non-dynamic spec slipped through."); | 
 |  | 
 |   bool Success = true; | 
 |   // Both have a dynamic exception spec. Collect the first set, then compare | 
 |   // to the second. | 
 |   llvm::SmallPtrSet<CanQualType, 8> OldTypes, NewTypes; | 
 |   for (FunctionProtoType::exception_iterator I = Old->exception_begin(), | 
 |        E = Old->exception_end(); I != E; ++I) | 
 |     OldTypes.insert(Context.getCanonicalType(*I).getUnqualifiedType()); | 
 |  | 
 |   for (FunctionProtoType::exception_iterator I = New->exception_begin(), | 
 |        E = New->exception_end(); I != E && Success; ++I) { | 
 |     CanQualType TypePtr = Context.getCanonicalType(*I).getUnqualifiedType(); | 
 |     if(OldTypes.count(TypePtr)) | 
 |       NewTypes.insert(TypePtr); | 
 |     else | 
 |       Success = false; | 
 |   } | 
 |  | 
 |   Success = Success && OldTypes.size() == NewTypes.size(); | 
 |  | 
 |   if (Success) { | 
 |     return false; | 
 |   } | 
 |   Diag(NewLoc, DiagID); | 
 |   if (NoteID.getDiagID() != 0) | 
 |     Diag(OldLoc, NoteID); | 
 |   return true; | 
 | } | 
 |  | 
 | /// CheckExceptionSpecSubset - Check whether the second function type's | 
 | /// exception specification is a subset (or equivalent) of the first function | 
 | /// type. This is used by override and pointer assignment checks. | 
 | bool Sema::CheckExceptionSpecSubset( | 
 |     const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID, | 
 |     const FunctionProtoType *Superset, SourceLocation SuperLoc, | 
 |     const FunctionProtoType *Subset, SourceLocation SubLoc) { | 
 |  | 
 |   // Just auto-succeed under -fno-exceptions. | 
 |   if (!getLangOpts().CXXExceptions) | 
 |     return false; | 
 |  | 
 |   // FIXME: As usual, we could be more specific in our error messages, but | 
 |   // that better waits until we've got types with source locations. | 
 |  | 
 |   if (!SubLoc.isValid()) | 
 |     SubLoc = SuperLoc; | 
 |  | 
 |   // Resolve the exception specifications, if needed. | 
 |   Superset = ResolveExceptionSpec(SuperLoc, Superset); | 
 |   if (!Superset) | 
 |     return false; | 
 |   Subset = ResolveExceptionSpec(SubLoc, Subset); | 
 |   if (!Subset) | 
 |     return false; | 
 |  | 
 |   ExceptionSpecificationType SuperEST = Superset->getExceptionSpecType(); | 
 |  | 
 |   // If superset contains everything, we're done. | 
 |   if (SuperEST == EST_None || SuperEST == EST_MSAny) | 
 |     return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc); | 
 |  | 
 |   // If there are dependent noexcept specs, assume everything is fine. Unlike | 
 |   // with the equivalency check, this is safe in this case, because we don't | 
 |   // want to merge declarations. Checks after instantiation will catch any | 
 |   // omissions we make here. | 
 |   // We also shortcut checking if a noexcept expression was bad. | 
 |  | 
 |   FunctionProtoType::NoexceptResult SuperNR =Superset->getNoexceptSpec(Context); | 
 |   if (SuperNR == FunctionProtoType::NR_BadNoexcept || | 
 |       SuperNR == FunctionProtoType::NR_Dependent) | 
 |     return false; | 
 |  | 
 |   // Another case of the superset containing everything. | 
 |   if (SuperNR == FunctionProtoType::NR_Throw) | 
 |     return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc); | 
 |  | 
 |   ExceptionSpecificationType SubEST = Subset->getExceptionSpecType(); | 
 |  | 
 |   assert(SuperEST != EST_Delayed && SubEST != EST_Delayed && | 
 |          SuperEST != EST_Uninstantiated && SubEST != EST_Uninstantiated && | 
 |          "Shouldn't see unknown exception specifications here"); | 
 |  | 
 |   // It does not. If the subset contains everything, we've failed. | 
 |   if (SubEST == EST_None || SubEST == EST_MSAny) { | 
 |     Diag(SubLoc, DiagID); | 
 |     if (NoteID.getDiagID() != 0) | 
 |       Diag(SuperLoc, NoteID); | 
 |     return true; | 
 |   } | 
 |  | 
 |   FunctionProtoType::NoexceptResult SubNR = Subset->getNoexceptSpec(Context); | 
 |   if (SubNR == FunctionProtoType::NR_BadNoexcept || | 
 |       SubNR == FunctionProtoType::NR_Dependent) | 
 |     return false; | 
 |  | 
 |   // Another case of the subset containing everything. | 
 |   if (SubNR == FunctionProtoType::NR_Throw) { | 
 |     Diag(SubLoc, DiagID); | 
 |     if (NoteID.getDiagID() != 0) | 
 |       Diag(SuperLoc, NoteID); | 
 |     return true; | 
 |   } | 
 |  | 
 |   // If the subset contains nothing, we're done. | 
 |   if (SubEST == EST_DynamicNone || SubNR == FunctionProtoType::NR_Nothrow) | 
 |     return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc); | 
 |  | 
 |   // Otherwise, if the superset contains nothing, we've failed. | 
 |   if (SuperEST == EST_DynamicNone || SuperNR == FunctionProtoType::NR_Nothrow) { | 
 |     Diag(SubLoc, DiagID); | 
 |     if (NoteID.getDiagID() != 0) | 
 |       Diag(SuperLoc, NoteID); | 
 |     return true; | 
 |   } | 
 |  | 
 |   assert(SuperEST == EST_Dynamic && SubEST == EST_Dynamic && | 
 |          "Exception spec subset: non-dynamic case slipped through."); | 
 |  | 
 |   // Neither contains everything or nothing. Do a proper comparison. | 
 |   for (FunctionProtoType::exception_iterator SubI = Subset->exception_begin(), | 
 |        SubE = Subset->exception_end(); SubI != SubE; ++SubI) { | 
 |     // Take one type from the subset. | 
 |     QualType CanonicalSubT = Context.getCanonicalType(*SubI); | 
 |     // Unwrap pointers and references so that we can do checks within a class | 
 |     // hierarchy. Don't unwrap member pointers; they don't have hierarchy | 
 |     // conversions on the pointee. | 
 |     bool SubIsPointer = false; | 
 |     if (const ReferenceType *RefTy = CanonicalSubT->getAs<ReferenceType>()) | 
 |       CanonicalSubT = RefTy->getPointeeType(); | 
 |     if (const PointerType *PtrTy = CanonicalSubT->getAs<PointerType>()) { | 
 |       CanonicalSubT = PtrTy->getPointeeType(); | 
 |       SubIsPointer = true; | 
 |     } | 
 |     bool SubIsClass = CanonicalSubT->isRecordType(); | 
 |     CanonicalSubT = CanonicalSubT.getLocalUnqualifiedType(); | 
 |  | 
 |     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, | 
 |                        /*DetectVirtual=*/false); | 
 |  | 
 |     bool Contained = false; | 
 |     // Make sure it's in the superset. | 
 |     for (FunctionProtoType::exception_iterator SuperI = | 
 |            Superset->exception_begin(), SuperE = Superset->exception_end(); | 
 |          SuperI != SuperE; ++SuperI) { | 
 |       QualType CanonicalSuperT = Context.getCanonicalType(*SuperI); | 
 |       // SubT must be SuperT or derived from it, or pointer or reference to | 
 |       // such types. | 
 |       if (const ReferenceType *RefTy = CanonicalSuperT->getAs<ReferenceType>()) | 
 |         CanonicalSuperT = RefTy->getPointeeType(); | 
 |       if (SubIsPointer) { | 
 |         if (const PointerType *PtrTy = CanonicalSuperT->getAs<PointerType>()) | 
 |           CanonicalSuperT = PtrTy->getPointeeType(); | 
 |         else { | 
 |           continue; | 
 |         } | 
 |       } | 
 |       CanonicalSuperT = CanonicalSuperT.getLocalUnqualifiedType(); | 
 |       // If the types are the same, move on to the next type in the subset. | 
 |       if (CanonicalSubT == CanonicalSuperT) { | 
 |         Contained = true; | 
 |         break; | 
 |       } | 
 |  | 
 |       // Otherwise we need to check the inheritance. | 
 |       if (!SubIsClass || !CanonicalSuperT->isRecordType()) | 
 |         continue; | 
 |  | 
 |       Paths.clear(); | 
 |       if (!IsDerivedFrom(CanonicalSubT, CanonicalSuperT, Paths)) | 
 |         continue; | 
 |  | 
 |       if (Paths.isAmbiguous(Context.getCanonicalType(CanonicalSuperT))) | 
 |         continue; | 
 |  | 
 |       // Do this check from a context without privileges. | 
 |       switch (CheckBaseClassAccess(SourceLocation(), | 
 |                                    CanonicalSuperT, CanonicalSubT, | 
 |                                    Paths.front(), | 
 |                                    /*Diagnostic*/ 0, | 
 |                                    /*ForceCheck*/ true, | 
 |                                    /*ForceUnprivileged*/ true)) { | 
 |       case AR_accessible: break; | 
 |       case AR_inaccessible: continue; | 
 |       case AR_dependent: | 
 |         llvm_unreachable("access check dependent for unprivileged context"); | 
 |       case AR_delayed: | 
 |         llvm_unreachable("access check delayed in non-declaration"); | 
 |       } | 
 |  | 
 |       Contained = true; | 
 |       break; | 
 |     } | 
 |     if (!Contained) { | 
 |       Diag(SubLoc, DiagID); | 
 |       if (NoteID.getDiagID() != 0) | 
 |         Diag(SuperLoc, NoteID); | 
 |       return true; | 
 |     } | 
 |   } | 
 |   // We've run half the gauntlet. | 
 |   return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc); | 
 | } | 
 |  | 
 | static bool CheckSpecForTypesEquivalent(Sema &S, | 
 |     const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID, | 
 |     QualType Target, SourceLocation TargetLoc, | 
 |     QualType Source, SourceLocation SourceLoc) | 
 | { | 
 |   const FunctionProtoType *TFunc = GetUnderlyingFunction(Target); | 
 |   if (!TFunc) | 
 |     return false; | 
 |   const FunctionProtoType *SFunc = GetUnderlyingFunction(Source); | 
 |   if (!SFunc) | 
 |     return false; | 
 |  | 
 |   return S.CheckEquivalentExceptionSpec(DiagID, NoteID, TFunc, TargetLoc, | 
 |                                         SFunc, SourceLoc); | 
 | } | 
 |  | 
 | /// CheckParamExceptionSpec - Check if the parameter and return types of the | 
 | /// two functions have equivalent exception specs. This is part of the | 
 | /// assignment and override compatibility check. We do not check the parameters | 
 | /// of parameter function pointers recursively, as no sane programmer would | 
 | /// even be able to write such a function type. | 
 | bool Sema::CheckParamExceptionSpec(const PartialDiagnostic & NoteID, | 
 |     const FunctionProtoType *Target, SourceLocation TargetLoc, | 
 |     const FunctionProtoType *Source, SourceLocation SourceLoc) | 
 | { | 
 |   if (CheckSpecForTypesEquivalent(*this, | 
 |                            PDiag(diag::err_deep_exception_specs_differ) << 0,  | 
 |                                   PDiag(), | 
 |                                   Target->getResultType(), TargetLoc, | 
 |                                   Source->getResultType(), SourceLoc)) | 
 |     return true; | 
 |  | 
 |   // We shouldn't even be testing this unless the arguments are otherwise | 
 |   // compatible. | 
 |   assert(Target->getNumArgs() == Source->getNumArgs() && | 
 |          "Functions have different argument counts."); | 
 |   for (unsigned i = 0, E = Target->getNumArgs(); i != E; ++i) { | 
 |     if (CheckSpecForTypesEquivalent(*this, | 
 |                            PDiag(diag::err_deep_exception_specs_differ) << 1,  | 
 |                                     PDiag(), | 
 |                                     Target->getArgType(i), TargetLoc, | 
 |                                     Source->getArgType(i), SourceLoc)) | 
 |       return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | bool Sema::CheckExceptionSpecCompatibility(Expr *From, QualType ToType) | 
 | { | 
 |   // First we check for applicability. | 
 |   // Target type must be a function, function pointer or function reference. | 
 |   const FunctionProtoType *ToFunc = GetUnderlyingFunction(ToType); | 
 |   if (!ToFunc) | 
 |     return false; | 
 |  | 
 |   // SourceType must be a function or function pointer. | 
 |   const FunctionProtoType *FromFunc = GetUnderlyingFunction(From->getType()); | 
 |   if (!FromFunc) | 
 |     return false; | 
 |  | 
 |   // Now we've got the correct types on both sides, check their compatibility. | 
 |   // This means that the source of the conversion can only throw a subset of | 
 |   // the exceptions of the target, and any exception specs on arguments or | 
 |   // return types must be equivalent. | 
 |   return CheckExceptionSpecSubset(PDiag(diag::err_incompatible_exception_specs), | 
 |                                   PDiag(), ToFunc,  | 
 |                                   From->getSourceRange().getBegin(), | 
 |                                   FromFunc, SourceLocation()); | 
 | } | 
 |  | 
 | bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New, | 
 |                                                 const CXXMethodDecl *Old) { | 
 |   if (getLangOpts().CPlusPlus0x && isa<CXXDestructorDecl>(New)) { | 
 |     // Don't check uninstantiated template destructors at all. We can only | 
 |     // synthesize correct specs after the template is instantiated. | 
 |     if (New->getParent()->isDependentType()) | 
 |       return false; | 
 |     if (New->getParent()->isBeingDefined()) { | 
 |       // The destructor might be updated once the definition is finished. So | 
 |       // remember it and check later. | 
 |       DelayedDestructorExceptionSpecChecks.push_back(std::make_pair( | 
 |         cast<CXXDestructorDecl>(New), cast<CXXDestructorDecl>(Old))); | 
 |       return false; | 
 |     } | 
 |   } | 
 |   unsigned DiagID = diag::err_override_exception_spec; | 
 |   if (getLangOpts().MicrosoftExt) | 
 |     DiagID = diag::warn_override_exception_spec; | 
 |   return CheckExceptionSpecSubset(PDiag(DiagID), | 
 |                                   PDiag(diag::note_overridden_virtual_function), | 
 |                                   Old->getType()->getAs<FunctionProtoType>(), | 
 |                                   Old->getLocation(), | 
 |                                   New->getType()->getAs<FunctionProtoType>(), | 
 |                                   New->getLocation()); | 
 | } | 
 |  | 
 | static CanThrowResult canSubExprsThrow(Sema &S, const Expr *CE) { | 
 |   Expr *E = const_cast<Expr*>(CE); | 
 |   CanThrowResult R = CT_Cannot; | 
 |   for (Expr::child_range I = E->children(); I && R != CT_Can; ++I) | 
 |     R = mergeCanThrow(R, S.canThrow(cast<Expr>(*I))); | 
 |   return R; | 
 | } | 
 |  | 
 | static CanThrowResult canCalleeThrow(Sema &S, const Expr *E, | 
 |                                            const Decl *D, | 
 |                                            bool NullThrows = true) { | 
 |   if (!D) | 
 |     return NullThrows ? CT_Can : CT_Cannot; | 
 |  | 
 |   // See if we can get a function type from the decl somehow. | 
 |   const ValueDecl *VD = dyn_cast<ValueDecl>(D); | 
 |   if (!VD) // If we have no clue what we're calling, assume the worst. | 
 |     return CT_Can; | 
 |  | 
 |   // As an extension, we assume that __attribute__((nothrow)) functions don't | 
 |   // throw. | 
 |   if (isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>()) | 
 |     return CT_Cannot; | 
 |  | 
 |   QualType T = VD->getType(); | 
 |   const FunctionProtoType *FT; | 
 |   if ((FT = T->getAs<FunctionProtoType>())) { | 
 |   } else if (const PointerType *PT = T->getAs<PointerType>()) | 
 |     FT = PT->getPointeeType()->getAs<FunctionProtoType>(); | 
 |   else if (const ReferenceType *RT = T->getAs<ReferenceType>()) | 
 |     FT = RT->getPointeeType()->getAs<FunctionProtoType>(); | 
 |   else if (const MemberPointerType *MT = T->getAs<MemberPointerType>()) | 
 |     FT = MT->getPointeeType()->getAs<FunctionProtoType>(); | 
 |   else if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) | 
 |     FT = BT->getPointeeType()->getAs<FunctionProtoType>(); | 
 |  | 
 |   if (!FT) | 
 |     return CT_Can; | 
 |  | 
 |   FT = S.ResolveExceptionSpec(E->getLocStart(), FT); | 
 |   if (!FT) | 
 |     return CT_Can; | 
 |  | 
 |   if (FT->getExceptionSpecType() == EST_Delayed) { | 
 |     // FIXME: Try to resolve a delayed exception spec in ResolveExceptionSpec. | 
 |     assert(isa<CXXConstructorDecl>(D) && | 
 |            "only constructor exception specs can be unknown"); | 
 |     S.Diag(E->getLocStart(), diag::err_exception_spec_unknown) | 
 |       << E->getSourceRange(); | 
 |     return CT_Can; | 
 |   } | 
 |  | 
 |   return FT->isNothrow(S.Context) ? CT_Cannot : CT_Can; | 
 | } | 
 |  | 
 | static CanThrowResult canDynamicCastThrow(const CXXDynamicCastExpr *DC) { | 
 |   if (DC->isTypeDependent()) | 
 |     return CT_Dependent; | 
 |  | 
 |   if (!DC->getTypeAsWritten()->isReferenceType()) | 
 |     return CT_Cannot; | 
 |  | 
 |   if (DC->getSubExpr()->isTypeDependent()) | 
 |     return CT_Dependent; | 
 |  | 
 |   return DC->getCastKind() == clang::CK_Dynamic? CT_Can : CT_Cannot; | 
 | } | 
 |  | 
 | static CanThrowResult canTypeidThrow(Sema &S, const CXXTypeidExpr *DC) { | 
 |   if (DC->isTypeOperand()) | 
 |     return CT_Cannot; | 
 |  | 
 |   Expr *Op = DC->getExprOperand(); | 
 |   if (Op->isTypeDependent()) | 
 |     return CT_Dependent; | 
 |  | 
 |   const RecordType *RT = Op->getType()->getAs<RecordType>(); | 
 |   if (!RT) | 
 |     return CT_Cannot; | 
 |  | 
 |   if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic()) | 
 |     return CT_Cannot; | 
 |  | 
 |   if (Op->Classify(S.Context).isPRValue()) | 
 |     return CT_Cannot; | 
 |  | 
 |   return CT_Can; | 
 | } | 
 |  | 
 | CanThrowResult Sema::canThrow(const Expr *E) { | 
 |   // C++ [expr.unary.noexcept]p3: | 
 |   //   [Can throw] if in a potentially-evaluated context the expression would | 
 |   //   contain: | 
 |   switch (E->getStmtClass()) { | 
 |   case Expr::CXXThrowExprClass: | 
 |     //   - a potentially evaluated throw-expression | 
 |     return CT_Can; | 
 |  | 
 |   case Expr::CXXDynamicCastExprClass: { | 
 |     //   - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v), | 
 |     //     where T is a reference type, that requires a run-time check | 
 |     CanThrowResult CT = canDynamicCastThrow(cast<CXXDynamicCastExpr>(E)); | 
 |     if (CT == CT_Can) | 
 |       return CT; | 
 |     return mergeCanThrow(CT, canSubExprsThrow(*this, E)); | 
 |   } | 
 |  | 
 |   case Expr::CXXTypeidExprClass: | 
 |     //   - a potentially evaluated typeid expression applied to a glvalue | 
 |     //     expression whose type is a polymorphic class type | 
 |     return canTypeidThrow(*this, cast<CXXTypeidExpr>(E)); | 
 |  | 
 |     //   - a potentially evaluated call to a function, member function, function | 
 |     //     pointer, or member function pointer that does not have a non-throwing | 
 |     //     exception-specification | 
 |   case Expr::CallExprClass: | 
 |   case Expr::CXXMemberCallExprClass: | 
 |   case Expr::CXXOperatorCallExprClass: | 
 |   case Expr::UserDefinedLiteralClass: { | 
 |     const CallExpr *CE = cast<CallExpr>(E); | 
 |     CanThrowResult CT; | 
 |     if (E->isTypeDependent()) | 
 |       CT = CT_Dependent; | 
 |     else if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) | 
 |       CT = CT_Cannot; | 
 |     else | 
 |       CT = canCalleeThrow(*this, E, CE->getCalleeDecl()); | 
 |     if (CT == CT_Can) | 
 |       return CT; | 
 |     return mergeCanThrow(CT, canSubExprsThrow(*this, E)); | 
 |   } | 
 |  | 
 |   case Expr::CXXConstructExprClass: | 
 |   case Expr::CXXTemporaryObjectExprClass: { | 
 |     CanThrowResult CT = canCalleeThrow(*this, E, | 
 |         cast<CXXConstructExpr>(E)->getConstructor()); | 
 |     if (CT == CT_Can) | 
 |       return CT; | 
 |     return mergeCanThrow(CT, canSubExprsThrow(*this, E)); | 
 |   } | 
 |  | 
 |   case Expr::LambdaExprClass: { | 
 |     const LambdaExpr *Lambda = cast<LambdaExpr>(E); | 
 |     CanThrowResult CT = CT_Cannot; | 
 |     for (LambdaExpr::capture_init_iterator Cap = Lambda->capture_init_begin(), | 
 |                                         CapEnd = Lambda->capture_init_end(); | 
 |          Cap != CapEnd; ++Cap) | 
 |       CT = mergeCanThrow(CT, canThrow(*Cap)); | 
 |     return CT; | 
 |   } | 
 |  | 
 |   case Expr::CXXNewExprClass: { | 
 |     CanThrowResult CT; | 
 |     if (E->isTypeDependent()) | 
 |       CT = CT_Dependent; | 
 |     else | 
 |       CT = canCalleeThrow(*this, E, cast<CXXNewExpr>(E)->getOperatorNew()); | 
 |     if (CT == CT_Can) | 
 |       return CT; | 
 |     return mergeCanThrow(CT, canSubExprsThrow(*this, E)); | 
 |   } | 
 |  | 
 |   case Expr::CXXDeleteExprClass: { | 
 |     CanThrowResult CT; | 
 |     QualType DTy = cast<CXXDeleteExpr>(E)->getDestroyedType(); | 
 |     if (DTy.isNull() || DTy->isDependentType()) { | 
 |       CT = CT_Dependent; | 
 |     } else { | 
 |       CT = canCalleeThrow(*this, E, | 
 |                           cast<CXXDeleteExpr>(E)->getOperatorDelete()); | 
 |       if (const RecordType *RT = DTy->getAs<RecordType>()) { | 
 |         const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); | 
 |         CT = mergeCanThrow(CT, canCalleeThrow(*this, E, RD->getDestructor())); | 
 |       } | 
 |       if (CT == CT_Can) | 
 |         return CT; | 
 |     } | 
 |     return mergeCanThrow(CT, canSubExprsThrow(*this, E)); | 
 |   } | 
 |  | 
 |   case Expr::CXXBindTemporaryExprClass: { | 
 |     // The bound temporary has to be destroyed again, which might throw. | 
 |     CanThrowResult CT = canCalleeThrow(*this, E, | 
 |       cast<CXXBindTemporaryExpr>(E)->getTemporary()->getDestructor()); | 
 |     if (CT == CT_Can) | 
 |       return CT; | 
 |     return mergeCanThrow(CT, canSubExprsThrow(*this, E)); | 
 |   } | 
 |  | 
 |     // ObjC message sends are like function calls, but never have exception | 
 |     // specs. | 
 |   case Expr::ObjCMessageExprClass: | 
 |   case Expr::ObjCPropertyRefExprClass: | 
 |   case Expr::ObjCSubscriptRefExprClass: | 
 |     return CT_Can; | 
 |  | 
 |     // All the ObjC literals that are implemented as calls are | 
 |     // potentially throwing unless we decide to close off that | 
 |     // possibility. | 
 |   case Expr::ObjCArrayLiteralClass: | 
 |   case Expr::ObjCDictionaryLiteralClass: | 
 |   case Expr::ObjCBoxedExprClass: | 
 |     return CT_Can; | 
 |  | 
 |     // Many other things have subexpressions, so we have to test those. | 
 |     // Some are simple: | 
 |   case Expr::ConditionalOperatorClass: | 
 |   case Expr::CompoundLiteralExprClass: | 
 |   case Expr::CXXConstCastExprClass: | 
 |   case Expr::CXXDefaultArgExprClass: | 
 |   case Expr::CXXReinterpretCastExprClass: | 
 |   case Expr::DesignatedInitExprClass: | 
 |   case Expr::ExprWithCleanupsClass: | 
 |   case Expr::ExtVectorElementExprClass: | 
 |   case Expr::InitListExprClass: | 
 |   case Expr::MemberExprClass: | 
 |   case Expr::ObjCIsaExprClass: | 
 |   case Expr::ObjCIvarRefExprClass: | 
 |   case Expr::ParenExprClass: | 
 |   case Expr::ParenListExprClass: | 
 |   case Expr::ShuffleVectorExprClass: | 
 |   case Expr::VAArgExprClass: | 
 |     return canSubExprsThrow(*this, E); | 
 |  | 
 |     // Some might be dependent for other reasons. | 
 |   case Expr::ArraySubscriptExprClass: | 
 |   case Expr::BinaryOperatorClass: | 
 |   case Expr::CompoundAssignOperatorClass: | 
 |   case Expr::CStyleCastExprClass: | 
 |   case Expr::CXXStaticCastExprClass: | 
 |   case Expr::CXXFunctionalCastExprClass: | 
 |   case Expr::ImplicitCastExprClass: | 
 |   case Expr::MaterializeTemporaryExprClass: | 
 |   case Expr::UnaryOperatorClass: { | 
 |     CanThrowResult CT = E->isTypeDependent() ? CT_Dependent : CT_Cannot; | 
 |     return mergeCanThrow(CT, canSubExprsThrow(*this, E)); | 
 |   } | 
 |  | 
 |     // FIXME: We should handle StmtExpr, but that opens a MASSIVE can of worms. | 
 |   case Expr::StmtExprClass: | 
 |     return CT_Can; | 
 |  | 
 |   case Expr::ChooseExprClass: | 
 |     if (E->isTypeDependent() || E->isValueDependent()) | 
 |       return CT_Dependent; | 
 |     return canThrow(cast<ChooseExpr>(E)->getChosenSubExpr(Context)); | 
 |  | 
 |   case Expr::GenericSelectionExprClass: | 
 |     if (cast<GenericSelectionExpr>(E)->isResultDependent()) | 
 |       return CT_Dependent; | 
 |     return canThrow(cast<GenericSelectionExpr>(E)->getResultExpr()); | 
 |  | 
 |     // Some expressions are always dependent. | 
 |   case Expr::CXXDependentScopeMemberExprClass: | 
 |   case Expr::CXXUnresolvedConstructExprClass: | 
 |   case Expr::DependentScopeDeclRefExprClass: | 
 |     return CT_Dependent; | 
 |  | 
 |   case Expr::AsTypeExprClass: | 
 |   case Expr::BinaryConditionalOperatorClass: | 
 |   case Expr::BlockExprClass: | 
 |   case Expr::CUDAKernelCallExprClass: | 
 |   case Expr::DeclRefExprClass: | 
 |   case Expr::ObjCBridgedCastExprClass: | 
 |   case Expr::ObjCIndirectCopyRestoreExprClass: | 
 |   case Expr::ObjCProtocolExprClass: | 
 |   case Expr::ObjCSelectorExprClass: | 
 |   case Expr::OffsetOfExprClass: | 
 |   case Expr::PackExpansionExprClass: | 
 |   case Expr::PseudoObjectExprClass: | 
 |   case Expr::SubstNonTypeTemplateParmExprClass: | 
 |   case Expr::SubstNonTypeTemplateParmPackExprClass: | 
 |   case Expr::UnaryExprOrTypeTraitExprClass: | 
 |   case Expr::UnresolvedLookupExprClass: | 
 |   case Expr::UnresolvedMemberExprClass: | 
 |     // FIXME: Can any of the above throw?  If so, when? | 
 |     return CT_Cannot; | 
 |  | 
 |   case Expr::AddrLabelExprClass: | 
 |   case Expr::ArrayTypeTraitExprClass: | 
 |   case Expr::AtomicExprClass: | 
 |   case Expr::BinaryTypeTraitExprClass: | 
 |   case Expr::TypeTraitExprClass: | 
 |   case Expr::CXXBoolLiteralExprClass: | 
 |   case Expr::CXXNoexceptExprClass: | 
 |   case Expr::CXXNullPtrLiteralExprClass: | 
 |   case Expr::CXXPseudoDestructorExprClass: | 
 |   case Expr::CXXScalarValueInitExprClass: | 
 |   case Expr::CXXThisExprClass: | 
 |   case Expr::CXXUuidofExprClass: | 
 |   case Expr::CharacterLiteralClass: | 
 |   case Expr::ExpressionTraitExprClass: | 
 |   case Expr::FloatingLiteralClass: | 
 |   case Expr::GNUNullExprClass: | 
 |   case Expr::ImaginaryLiteralClass: | 
 |   case Expr::ImplicitValueInitExprClass: | 
 |   case Expr::IntegerLiteralClass: | 
 |   case Expr::ObjCEncodeExprClass: | 
 |   case Expr::ObjCStringLiteralClass: | 
 |   case Expr::ObjCBoolLiteralExprClass: | 
 |   case Expr::OpaqueValueExprClass: | 
 |   case Expr::PredefinedExprClass: | 
 |   case Expr::SizeOfPackExprClass: | 
 |   case Expr::StringLiteralClass: | 
 |   case Expr::UnaryTypeTraitExprClass: | 
 |     // These expressions can never throw. | 
 |     return CT_Cannot; | 
 |  | 
 | #define STMT(CLASS, PARENT) case Expr::CLASS##Class: | 
 | #define STMT_RANGE(Base, First, Last) | 
 | #define LAST_STMT_RANGE(BASE, FIRST, LAST) | 
 | #define EXPR(CLASS, PARENT) | 
 | #define ABSTRACT_STMT(STMT) | 
 | #include "clang/AST/StmtNodes.inc" | 
 |   case Expr::NoStmtClass: | 
 |     llvm_unreachable("Invalid class for expression"); | 
 |   } | 
 |   llvm_unreachable("Bogus StmtClass"); | 
 | } | 
 |  | 
 | } // end namespace clang |