blob: ecb24e730a96c2d19dd8e74210413b9e5f166134 [file] [log] [blame]
//===--- ASTReader.cpp - AST File Reader ------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ASTReader class, which reads AST files.
//
//===----------------------------------------------------------------------===//
#include "clang/Serialization/ASTReader.h"
#include "clang/Serialization/ASTDeserializationListener.h"
#include "ASTCommon.h"
#include "clang/Frontend/FrontendDiagnostic.h"
#include "clang/Frontend/Utils.h"
#include "clang/Sema/Sema.h"
#include "clang/Sema/Scope.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/Type.h"
#include "clang/AST/TypeLocVisitor.h"
#include "clang/Lex/MacroInfo.h"
#include "clang/Lex/PreprocessingRecord.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/HeaderSearch.h"
#include "clang/Basic/OnDiskHashTable.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/SourceManagerInternals.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/FileSystemStatCache.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/Version.h"
#include "clang/Basic/VersionTuple.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Bitcode/BitstreamReader.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/system_error.h"
#include <algorithm>
#include <iterator>
#include <cstdio>
#include <sys/stat.h>
#include <iostream>
using namespace clang;
using namespace clang::serialization;
//===----------------------------------------------------------------------===//
// PCH validator implementation
//===----------------------------------------------------------------------===//
ASTReaderListener::~ASTReaderListener() {}
bool
PCHValidator::ReadLanguageOptions(const LangOptions &LangOpts) {
const LangOptions &PPLangOpts = PP.getLangOptions();
#define PARSE_LANGOPT_BENIGN(Option)
#define PARSE_LANGOPT_IMPORTANT(Option, DiagID) \
if (PPLangOpts.Option != LangOpts.Option) { \
Reader.Diag(DiagID) << LangOpts.Option << PPLangOpts.Option; \
return true; \
}
PARSE_LANGOPT_BENIGN(Trigraphs);
PARSE_LANGOPT_BENIGN(BCPLComment);
PARSE_LANGOPT_BENIGN(DollarIdents);
PARSE_LANGOPT_BENIGN(AsmPreprocessor);
PARSE_LANGOPT_IMPORTANT(GNUMode, diag::warn_pch_gnu_extensions);
PARSE_LANGOPT_IMPORTANT(GNUKeywords, diag::warn_pch_gnu_keywords);
PARSE_LANGOPT_BENIGN(ImplicitInt);
PARSE_LANGOPT_BENIGN(Digraphs);
PARSE_LANGOPT_BENIGN(HexFloats);
PARSE_LANGOPT_IMPORTANT(C99, diag::warn_pch_c99);
PARSE_LANGOPT_IMPORTANT(C1X, diag::warn_pch_c1x);
PARSE_LANGOPT_IMPORTANT(Microsoft, diag::warn_pch_microsoft_extensions);
PARSE_LANGOPT_BENIGN(MSCVersion);
PARSE_LANGOPT_IMPORTANT(CPlusPlus, diag::warn_pch_cplusplus);
PARSE_LANGOPT_IMPORTANT(CPlusPlus0x, diag::warn_pch_cplusplus0x);
PARSE_LANGOPT_BENIGN(CXXOperatorName);
PARSE_LANGOPT_IMPORTANT(ObjC1, diag::warn_pch_objective_c);
PARSE_LANGOPT_IMPORTANT(ObjC2, diag::warn_pch_objective_c2);
PARSE_LANGOPT_IMPORTANT(ObjCNonFragileABI, diag::warn_pch_nonfragile_abi);
PARSE_LANGOPT_IMPORTANT(ObjCNonFragileABI2, diag::warn_pch_nonfragile_abi2);
PARSE_LANGOPT_IMPORTANT(AppleKext, diag::warn_pch_apple_kext);
PARSE_LANGOPT_IMPORTANT(ObjCDefaultSynthProperties,
diag::warn_pch_objc_auto_properties);
PARSE_LANGOPT_BENIGN(ObjCInferRelatedResultType)
PARSE_LANGOPT_IMPORTANT(NoConstantCFStrings,
diag::warn_pch_no_constant_cfstrings);
PARSE_LANGOPT_BENIGN(PascalStrings);
PARSE_LANGOPT_BENIGN(WritableStrings);
PARSE_LANGOPT_IMPORTANT(LaxVectorConversions,
diag::warn_pch_lax_vector_conversions);
PARSE_LANGOPT_IMPORTANT(AltiVec, diag::warn_pch_altivec);
PARSE_LANGOPT_IMPORTANT(Exceptions, diag::warn_pch_exceptions);
PARSE_LANGOPT_IMPORTANT(ObjCExceptions, diag::warn_pch_objc_exceptions);
PARSE_LANGOPT_IMPORTANT(CXXExceptions, diag::warn_pch_cxx_exceptions);
PARSE_LANGOPT_IMPORTANT(SjLjExceptions, diag::warn_pch_sjlj_exceptions);
PARSE_LANGOPT_IMPORTANT(MSBitfields, diag::warn_pch_ms_bitfields);
PARSE_LANGOPT_IMPORTANT(NeXTRuntime, diag::warn_pch_objc_runtime);
PARSE_LANGOPT_IMPORTANT(Freestanding, diag::warn_pch_freestanding);
PARSE_LANGOPT_IMPORTANT(NoBuiltin, diag::warn_pch_builtins);
PARSE_LANGOPT_IMPORTANT(ThreadsafeStatics,
diag::warn_pch_thread_safe_statics);
PARSE_LANGOPT_IMPORTANT(POSIXThreads, diag::warn_pch_posix_threads);
PARSE_LANGOPT_IMPORTANT(Blocks, diag::warn_pch_blocks);
PARSE_LANGOPT_BENIGN(EmitAllDecls);
PARSE_LANGOPT_IMPORTANT(MathErrno, diag::warn_pch_math_errno);
PARSE_LANGOPT_BENIGN(getSignedOverflowBehavior());
PARSE_LANGOPT_IMPORTANT(HeinousExtensions,
diag::warn_pch_heinous_extensions);
// FIXME: Most of the options below are benign if the macro wasn't
// used. Unfortunately, this means that a PCH compiled without
// optimization can't be used with optimization turned on, even
// though the only thing that changes is whether __OPTIMIZE__ was
// defined... but if __OPTIMIZE__ never showed up in the header, it
// doesn't matter. We could consider making this some special kind
// of check.
PARSE_LANGOPT_IMPORTANT(Optimize, diag::warn_pch_optimize);
PARSE_LANGOPT_IMPORTANT(OptimizeSize, diag::warn_pch_optimize_size);
PARSE_LANGOPT_IMPORTANT(Static, diag::warn_pch_static);
PARSE_LANGOPT_IMPORTANT(PICLevel, diag::warn_pch_pic_level);
PARSE_LANGOPT_IMPORTANT(GNUInline, diag::warn_pch_gnu_inline);
PARSE_LANGOPT_IMPORTANT(NoInline, diag::warn_pch_no_inline);
PARSE_LANGOPT_IMPORTANT(Deprecated, diag::warn_pch_deprecated);
PARSE_LANGOPT_IMPORTANT(AccessControl, diag::warn_pch_access_control);
PARSE_LANGOPT_IMPORTANT(CharIsSigned, diag::warn_pch_char_signed);
PARSE_LANGOPT_IMPORTANT(ShortWChar, diag::warn_pch_short_wchar);
PARSE_LANGOPT_IMPORTANT(ShortEnums, diag::warn_pch_short_enums);
if ((PPLangOpts.getGCMode() != 0) != (LangOpts.getGCMode() != 0)) {
Reader.Diag(diag::warn_pch_gc_mode)
<< LangOpts.getGCMode() << PPLangOpts.getGCMode();
return true;
}
PARSE_LANGOPT_BENIGN(getVisibilityMode());
PARSE_LANGOPT_IMPORTANT(getStackProtectorMode(),
diag::warn_pch_stack_protector);
PARSE_LANGOPT_BENIGN(InstantiationDepth);
PARSE_LANGOPT_IMPORTANT(OpenCL, diag::warn_pch_opencl);
PARSE_LANGOPT_IMPORTANT(CUDA, diag::warn_pch_cuda);
PARSE_LANGOPT_BENIGN(CatchUndefined);
PARSE_LANGOPT_BENIGN(DefaultFPContract);
PARSE_LANGOPT_IMPORTANT(ElideConstructors, diag::warn_pch_elide_constructors);
PARSE_LANGOPT_BENIGN(SpellChecking);
PARSE_LANGOPT_IMPORTANT(ObjCAutoRefCount, diag::warn_pch_auto_ref_count);
PARSE_LANGOPT_BENIGN(ObjCInferRelatedReturnType);
#undef PARSE_LANGOPT_IMPORTANT
#undef PARSE_LANGOPT_BENIGN
return false;
}
bool PCHValidator::ReadTargetTriple(llvm::StringRef Triple) {
if (Triple == PP.getTargetInfo().getTriple().str())
return false;
Reader.Diag(diag::warn_pch_target_triple)
<< Triple << PP.getTargetInfo().getTriple().str();
return true;
}
namespace {
struct EmptyStringRef {
bool operator ()(llvm::StringRef r) const { return r.empty(); }
};
struct EmptyBlock {
bool operator ()(const PCHPredefinesBlock &r) const {return r.Data.empty();}
};
}
static bool EqualConcatenations(llvm::SmallVector<llvm::StringRef, 2> L,
PCHPredefinesBlocks R) {
// First, sum up the lengths.
unsigned LL = 0, RL = 0;
for (unsigned I = 0, N = L.size(); I != N; ++I) {
LL += L[I].size();
}
for (unsigned I = 0, N = R.size(); I != N; ++I) {
RL += R[I].Data.size();
}
if (LL != RL)
return false;
if (LL == 0 && RL == 0)
return true;
// Kick out empty parts, they confuse the algorithm below.
L.erase(std::remove_if(L.begin(), L.end(), EmptyStringRef()), L.end());
R.erase(std::remove_if(R.begin(), R.end(), EmptyBlock()), R.end());
// Do it the hard way. At this point, both vectors must be non-empty.
llvm::StringRef LR = L[0], RR = R[0].Data;
unsigned LI = 0, RI = 0, LN = L.size(), RN = R.size();
(void) RN;
for (;;) {
// Compare the current pieces.
if (LR.size() == RR.size()) {
// If they're the same length, it's pretty easy.
if (LR != RR)
return false;
// Both pieces are done, advance.
++LI;
++RI;
// If either string is done, they're both done, since they're the same
// length.
if (LI == LN) {
assert(RI == RN && "Strings not the same length after all?");
return true;
}
LR = L[LI];
RR = R[RI].Data;
} else if (LR.size() < RR.size()) {
// Right piece is longer.
if (!RR.startswith(LR))
return false;
++LI;
assert(LI != LN && "Strings not the same length after all?");
RR = RR.substr(LR.size());
LR = L[LI];
} else {
// Left piece is longer.
if (!LR.startswith(RR))
return false;
++RI;
assert(RI != RN && "Strings not the same length after all?");
LR = LR.substr(RR.size());
RR = R[RI].Data;
}
}
}
static std::pair<FileID, llvm::StringRef::size_type>
FindMacro(const PCHPredefinesBlocks &Buffers, llvm::StringRef MacroDef) {
std::pair<FileID, llvm::StringRef::size_type> Res;
for (unsigned I = 0, N = Buffers.size(); I != N; ++I) {
Res.second = Buffers[I].Data.find(MacroDef);
if (Res.second != llvm::StringRef::npos) {
Res.first = Buffers[I].BufferID;
break;
}
}
return Res;
}
bool PCHValidator::ReadPredefinesBuffer(const PCHPredefinesBlocks &Buffers,
llvm::StringRef OriginalFileName,
std::string &SuggestedPredefines,
FileManager &FileMgr) {
// We are in the context of an implicit include, so the predefines buffer will
// have a #include entry for the PCH file itself (as normalized by the
// preprocessor initialization). Find it and skip over it in the checking
// below.
llvm::SmallString<256> PCHInclude;
PCHInclude += "#include \"";
PCHInclude += NormalizeDashIncludePath(OriginalFileName, FileMgr);
PCHInclude += "\"\n";
std::pair<llvm::StringRef,llvm::StringRef> Split =
llvm::StringRef(PP.getPredefines()).split(PCHInclude.str());
llvm::StringRef Left = Split.first, Right = Split.second;
if (Left == PP.getPredefines()) {
Error("Missing PCH include entry!");
return true;
}
// If the concatenation of all the PCH buffers is equal to the adjusted
// command line, we're done.
llvm::SmallVector<llvm::StringRef, 2> CommandLine;
CommandLine.push_back(Left);
CommandLine.push_back(Right);
if (EqualConcatenations(CommandLine, Buffers))
return false;
SourceManager &SourceMgr = PP.getSourceManager();
// The predefines buffers are different. Determine what the differences are,
// and whether they require us to reject the PCH file.
llvm::SmallVector<llvm::StringRef, 8> PCHLines;
for (unsigned I = 0, N = Buffers.size(); I != N; ++I)
Buffers[I].Data.split(PCHLines, "\n", /*MaxSplit=*/-1, /*KeepEmpty=*/false);
llvm::SmallVector<llvm::StringRef, 8> CmdLineLines;
Left.split(CmdLineLines, "\n", /*MaxSplit=*/-1, /*KeepEmpty=*/false);
// Pick out implicit #includes after the PCH and don't consider them for
// validation; we will insert them into SuggestedPredefines so that the
// preprocessor includes them.
std::string IncludesAfterPCH;
llvm::SmallVector<llvm::StringRef, 8> AfterPCHLines;
Right.split(AfterPCHLines, "\n", /*MaxSplit=*/-1, /*KeepEmpty=*/false);
for (unsigned i = 0, e = AfterPCHLines.size(); i != e; ++i) {
if (AfterPCHLines[i].startswith("#include ")) {
IncludesAfterPCH += AfterPCHLines[i];
IncludesAfterPCH += '\n';
} else {
CmdLineLines.push_back(AfterPCHLines[i]);
}
}
// Make sure we add the includes last into SuggestedPredefines before we
// exit this function.
struct AddIncludesRAII {
std::string &SuggestedPredefines;
std::string &IncludesAfterPCH;
AddIncludesRAII(std::string &SuggestedPredefines,
std::string &IncludesAfterPCH)
: SuggestedPredefines(SuggestedPredefines),
IncludesAfterPCH(IncludesAfterPCH) { }
~AddIncludesRAII() {
SuggestedPredefines += IncludesAfterPCH;
}
} AddIncludes(SuggestedPredefines, IncludesAfterPCH);
// Sort both sets of predefined buffer lines, since we allow some extra
// definitions and they may appear at any point in the output.
std::sort(CmdLineLines.begin(), CmdLineLines.end());
std::sort(PCHLines.begin(), PCHLines.end());
// Determine which predefines that were used to build the PCH file are missing
// from the command line.
std::vector<llvm::StringRef> MissingPredefines;
std::set_difference(PCHLines.begin(), PCHLines.end(),
CmdLineLines.begin(), CmdLineLines.end(),
std::back_inserter(MissingPredefines));
bool MissingDefines = false;
bool ConflictingDefines = false;
for (unsigned I = 0, N = MissingPredefines.size(); I != N; ++I) {
llvm::StringRef Missing = MissingPredefines[I];
if (Missing.startswith("#include ")) {
// An -include was specified when generating the PCH; it is included in
// the PCH, just ignore it.
continue;
}
if (!Missing.startswith("#define ")) {
Reader.Diag(diag::warn_pch_compiler_options_mismatch);
return true;
}
// This is a macro definition. Determine the name of the macro we're
// defining.
std::string::size_type StartOfMacroName = strlen("#define ");
std::string::size_type EndOfMacroName
= Missing.find_first_of("( \n\r", StartOfMacroName);
assert(EndOfMacroName != std::string::npos &&
"Couldn't find the end of the macro name");
llvm::StringRef MacroName = Missing.slice(StartOfMacroName, EndOfMacroName);
// Determine whether this macro was given a different definition on the
// command line.
std::string MacroDefStart = "#define " + MacroName.str();
std::string::size_type MacroDefLen = MacroDefStart.size();
llvm::SmallVector<llvm::StringRef, 8>::iterator ConflictPos
= std::lower_bound(CmdLineLines.begin(), CmdLineLines.end(),
MacroDefStart);
for (; ConflictPos != CmdLineLines.end(); ++ConflictPos) {
if (!ConflictPos->startswith(MacroDefStart)) {
// Different macro; we're done.
ConflictPos = CmdLineLines.end();
break;
}
assert(ConflictPos->size() > MacroDefLen &&
"Invalid #define in predefines buffer?");
if ((*ConflictPos)[MacroDefLen] != ' ' &&
(*ConflictPos)[MacroDefLen] != '(')
continue; // Longer macro name; keep trying.
// We found a conflicting macro definition.
break;
}
if (ConflictPos != CmdLineLines.end()) {
Reader.Diag(diag::warn_cmdline_conflicting_macro_def)
<< MacroName;
// Show the definition of this macro within the PCH file.
std::pair<FileID, llvm::StringRef::size_type> MacroLoc =
FindMacro(Buffers, Missing);
assert(MacroLoc.second!=llvm::StringRef::npos && "Unable to find macro!");
SourceLocation PCHMissingLoc =
SourceMgr.getLocForStartOfFile(MacroLoc.first)
.getFileLocWithOffset(MacroLoc.second);
Reader.Diag(PCHMissingLoc, diag::note_pch_macro_defined_as) << MacroName;
ConflictingDefines = true;
continue;
}
// If the macro doesn't conflict, then we'll just pick up the macro
// definition from the PCH file. Warn the user that they made a mistake.
if (ConflictingDefines)
continue; // Don't complain if there are already conflicting defs
if (!MissingDefines) {
Reader.Diag(diag::warn_cmdline_missing_macro_defs);
MissingDefines = true;
}
// Show the definition of this macro within the PCH file.
std::pair<FileID, llvm::StringRef::size_type> MacroLoc =
FindMacro(Buffers, Missing);
assert(MacroLoc.second!=llvm::StringRef::npos && "Unable to find macro!");
SourceLocation PCHMissingLoc =
SourceMgr.getLocForStartOfFile(MacroLoc.first)
.getFileLocWithOffset(MacroLoc.second);
Reader.Diag(PCHMissingLoc, diag::note_using_macro_def_from_pch);
}
if (ConflictingDefines)
return true;
// Determine what predefines were introduced based on command-line
// parameters that were not present when building the PCH
// file. Extra #defines are okay, so long as the identifiers being
// defined were not used within the precompiled header.
std::vector<llvm::StringRef> ExtraPredefines;
std::set_difference(CmdLineLines.begin(), CmdLineLines.end(),
PCHLines.begin(), PCHLines.end(),
std::back_inserter(ExtraPredefines));
for (unsigned I = 0, N = ExtraPredefines.size(); I != N; ++I) {
llvm::StringRef &Extra = ExtraPredefines[I];
if (!Extra.startswith("#define ")) {
Reader.Diag(diag::warn_pch_compiler_options_mismatch);
return true;
}
// This is an extra macro definition. Determine the name of the
// macro we're defining.
std::string::size_type StartOfMacroName = strlen("#define ");
std::string::size_type EndOfMacroName
= Extra.find_first_of("( \n\r", StartOfMacroName);
assert(EndOfMacroName != std::string::npos &&
"Couldn't find the end of the macro name");
llvm::StringRef MacroName = Extra.slice(StartOfMacroName, EndOfMacroName);
// Check whether this name was used somewhere in the PCH file. If
// so, defining it as a macro could change behavior, so we reject
// the PCH file.
if (IdentifierInfo *II = Reader.get(MacroName)) {
Reader.Diag(diag::warn_macro_name_used_in_pch) << II;
return true;
}
// Add this definition to the suggested predefines buffer.
SuggestedPredefines += Extra;
SuggestedPredefines += '\n';
}
// If we get here, it's because the predefines buffer had compatible
// contents. Accept the PCH file.
return false;
}
void PCHValidator::ReadHeaderFileInfo(const HeaderFileInfo &HFI,
unsigned ID) {
PP.getHeaderSearchInfo().setHeaderFileInfoForUID(HFI, ID);
++NumHeaderInfos;
}
void PCHValidator::ReadCounter(unsigned Value) {
PP.setCounterValue(Value);
}
//===----------------------------------------------------------------------===//
// AST reader implementation
//===----------------------------------------------------------------------===//
void
ASTReader::setDeserializationListener(ASTDeserializationListener *Listener) {
DeserializationListener = Listener;
}
namespace {
class ASTSelectorLookupTrait {
ASTReader &Reader;
Module &F;
public:
struct data_type {
SelectorID ID;
ObjCMethodList Instance, Factory;
};
typedef Selector external_key_type;
typedef external_key_type internal_key_type;
ASTSelectorLookupTrait(ASTReader &Reader, Module &F)
: Reader(Reader), F(F) { }
static bool EqualKey(const internal_key_type& a,
const internal_key_type& b) {
return a == b;
}
static unsigned ComputeHash(Selector Sel) {
return serialization::ComputeHash(Sel);
}
// This hopefully will just get inlined and removed by the optimizer.
static const internal_key_type&
GetInternalKey(const external_key_type& x) { return x; }
static std::pair<unsigned, unsigned>
ReadKeyDataLength(const unsigned char*& d) {
using namespace clang::io;
unsigned KeyLen = ReadUnalignedLE16(d);
unsigned DataLen = ReadUnalignedLE16(d);
return std::make_pair(KeyLen, DataLen);
}
internal_key_type ReadKey(const unsigned char* d, unsigned) {
using namespace clang::io;
SelectorTable &SelTable = Reader.getContext()->Selectors;
unsigned N = ReadUnalignedLE16(d);
IdentifierInfo *FirstII
= Reader.DecodeIdentifierInfo(ReadUnalignedLE32(d));
if (N == 0)
return SelTable.getNullarySelector(FirstII);
else if (N == 1)
return SelTable.getUnarySelector(FirstII);
llvm::SmallVector<IdentifierInfo *, 16> Args;
Args.push_back(FirstII);
for (unsigned I = 1; I != N; ++I)
Args.push_back(Reader.DecodeIdentifierInfo(ReadUnalignedLE32(d)));
return SelTable.getSelector(N, Args.data());
}
data_type ReadData(Selector, const unsigned char* d, unsigned DataLen) {
using namespace clang::io;
data_type Result;
Result.ID = ReadUnalignedLE32(d);
unsigned NumInstanceMethods = ReadUnalignedLE16(d);
unsigned NumFactoryMethods = ReadUnalignedLE16(d);
// Load instance methods
ObjCMethodList *Prev = 0;
for (unsigned I = 0; I != NumInstanceMethods; ++I) {
ObjCMethodDecl *Method
= Reader.GetLocalDeclAs<ObjCMethodDecl>(F, ReadUnalignedLE32(d));
if (!Result.Instance.Method) {
// This is the first method, which is the easy case.
Result.Instance.Method = Method;
Prev = &Result.Instance;
continue;
}
ObjCMethodList *Mem =
Reader.getSema()->BumpAlloc.Allocate<ObjCMethodList>();
Prev->Next = new (Mem) ObjCMethodList(Method, 0);
Prev = Prev->Next;
}
// Load factory methods
Prev = 0;
for (unsigned I = 0; I != NumFactoryMethods; ++I) {
ObjCMethodDecl *Method
= Reader.GetLocalDeclAs<ObjCMethodDecl>(F, ReadUnalignedLE32(d));
if (!Result.Factory.Method) {
// This is the first method, which is the easy case.
Result.Factory.Method = Method;
Prev = &Result.Factory;
continue;
}
ObjCMethodList *Mem =
Reader.getSema()->BumpAlloc.Allocate<ObjCMethodList>();
Prev->Next = new (Mem) ObjCMethodList(Method, 0);
Prev = Prev->Next;
}
return Result;
}
};
} // end anonymous namespace
/// \brief The on-disk hash table used for the global method pool.
typedef OnDiskChainedHashTable<ASTSelectorLookupTrait>
ASTSelectorLookupTable;
namespace clang {
class ASTIdentifierLookupTrait {
ASTReader &Reader;
Module &F;
// If we know the IdentifierInfo in advance, it is here and we will
// not build a new one. Used when deserializing information about an
// identifier that was constructed before the AST file was read.
IdentifierInfo *KnownII;
public:
typedef IdentifierInfo * data_type;
typedef const std::pair<const char*, unsigned> external_key_type;
typedef external_key_type internal_key_type;
ASTIdentifierLookupTrait(ASTReader &Reader, Module &F,
IdentifierInfo *II = 0)
: Reader(Reader), F(F), KnownII(II) { }
static bool EqualKey(const internal_key_type& a,
const internal_key_type& b) {
return (a.second == b.second) ? memcmp(a.first, b.first, a.second) == 0
: false;
}
static unsigned ComputeHash(const internal_key_type& a) {
return llvm::HashString(llvm::StringRef(a.first, a.second));
}
// This hopefully will just get inlined and removed by the optimizer.
static const internal_key_type&
GetInternalKey(const external_key_type& x) { return x; }
// This hopefully will just get inlined and removed by the optimizer.
static const external_key_type&
GetExternalKey(const internal_key_type& x) { return x; }
static std::pair<unsigned, unsigned>
ReadKeyDataLength(const unsigned char*& d) {
using namespace clang::io;
unsigned DataLen = ReadUnalignedLE16(d);
unsigned KeyLen = ReadUnalignedLE16(d);
return std::make_pair(KeyLen, DataLen);
}
static std::pair<const char*, unsigned>
ReadKey(const unsigned char* d, unsigned n) {
assert(n >= 2 && d[n-1] == '\0');
return std::make_pair((const char*) d, n-1);
}
IdentifierInfo *ReadData(const internal_key_type& k,
const unsigned char* d,
unsigned DataLen) {
using namespace clang::io;
IdentID ID = ReadUnalignedLE32(d);
bool IsInteresting = ID & 0x01;
// Wipe out the "is interesting" bit.
ID = ID >> 1;
if (!IsInteresting) {
// For uninteresting identifiers, just build the IdentifierInfo
// and associate it with the persistent ID.
IdentifierInfo *II = KnownII;
if (!II)
II = &Reader.getIdentifierTable().getOwn(llvm::StringRef(k.first,
k.second));
Reader.SetIdentifierInfo(ID, II);
II->setIsFromAST();
return II;
}
unsigned Bits = ReadUnalignedLE16(d);
bool CPlusPlusOperatorKeyword = Bits & 0x01;
Bits >>= 1;
bool HasRevertedTokenIDToIdentifier = Bits & 0x01;
Bits >>= 1;
bool Poisoned = Bits & 0x01;
Bits >>= 1;
bool ExtensionToken = Bits & 0x01;
Bits >>= 1;
bool hasMacroDefinition = Bits & 0x01;
Bits >>= 1;
unsigned ObjCOrBuiltinID = Bits & 0x3FF;
Bits >>= 10;
assert(Bits == 0 && "Extra bits in the identifier?");
DataLen -= 6;
// Build the IdentifierInfo itself and link the identifier ID with
// the new IdentifierInfo.
IdentifierInfo *II = KnownII;
if (!II)
II = &Reader.getIdentifierTable().getOwn(llvm::StringRef(k.first,
k.second));
Reader.SetIdentifierInfo(ID, II);
// Set or check the various bits in the IdentifierInfo structure.
// Token IDs are read-only.
if (HasRevertedTokenIDToIdentifier)
II->RevertTokenIDToIdentifier();
II->setObjCOrBuiltinID(ObjCOrBuiltinID);
assert(II->isExtensionToken() == ExtensionToken &&
"Incorrect extension token flag");
(void)ExtensionToken;
II->setIsPoisoned(Poisoned);
assert(II->isCPlusPlusOperatorKeyword() == CPlusPlusOperatorKeyword &&
"Incorrect C++ operator keyword flag");
(void)CPlusPlusOperatorKeyword;
// If this identifier is a macro, deserialize the macro
// definition.
if (hasMacroDefinition) {
uint32_t Offset = ReadUnalignedLE32(d);
Reader.SetIdentifierIsMacro(II, F, Offset);
DataLen -= 4;
}
// Read all of the declarations visible at global scope with this
// name.
if (Reader.getContext() == 0) return II;
if (DataLen > 0) {
llvm::SmallVector<uint32_t, 4> DeclIDs;
for (; DataLen > 0; DataLen -= 4)
DeclIDs.push_back(Reader.getGlobalDeclID(F, ReadUnalignedLE32(d)));
Reader.SetGloballyVisibleDecls(II, DeclIDs);
}
II->setIsFromAST();
return II;
}
};
} // end anonymous namespace
/// \brief The on-disk hash table used to contain information about
/// all of the identifiers in the program.
typedef OnDiskChainedHashTable<ASTIdentifierLookupTrait>
ASTIdentifierLookupTable;
namespace {
class ASTDeclContextNameLookupTrait {
ASTReader &Reader;
Module &F;
public:
/// \brief Pair of begin/end iterators for DeclIDs.
typedef std::pair<DeclID *, DeclID *> data_type;
/// \brief Special internal key for declaration names.
/// The hash table creates keys for comparison; we do not create
/// a DeclarationName for the internal key to avoid deserializing types.
struct DeclNameKey {
DeclarationName::NameKind Kind;
uint64_t Data;
DeclNameKey() : Kind((DeclarationName::NameKind)0), Data(0) { }
};
typedef DeclarationName external_key_type;
typedef DeclNameKey internal_key_type;
explicit ASTDeclContextNameLookupTrait(ASTReader &Reader,
Module &F)
: Reader(Reader), F(F) { }
static bool EqualKey(const internal_key_type& a,
const internal_key_type& b) {
return a.Kind == b.Kind && a.Data == b.Data;
}
unsigned ComputeHash(const DeclNameKey &Key) const {
llvm::FoldingSetNodeID ID;
ID.AddInteger(Key.Kind);
switch (Key.Kind) {
case DeclarationName::Identifier:
case DeclarationName::CXXLiteralOperatorName:
ID.AddString(((IdentifierInfo*)Key.Data)->getName());
break;
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
ID.AddInteger(serialization::ComputeHash(Selector(Key.Data)));
break;
case DeclarationName::CXXConstructorName:
case DeclarationName::CXXDestructorName:
case DeclarationName::CXXConversionFunctionName:
ID.AddInteger((TypeID)Key.Data);
break;
case DeclarationName::CXXOperatorName:
ID.AddInteger((OverloadedOperatorKind)Key.Data);
break;
case DeclarationName::CXXUsingDirective:
break;
}
return ID.ComputeHash();
}
internal_key_type GetInternalKey(const external_key_type& Name) const {
DeclNameKey Key;
Key.Kind = Name.getNameKind();
switch (Name.getNameKind()) {
case DeclarationName::Identifier:
Key.Data = (uint64_t)Name.getAsIdentifierInfo();
break;
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
Key.Data = (uint64_t)Name.getObjCSelector().getAsOpaquePtr();
break;
case DeclarationName::CXXConstructorName:
case DeclarationName::CXXDestructorName:
case DeclarationName::CXXConversionFunctionName:
Key.Data = Reader.GetTypeID(Name.getCXXNameType());
break;
case DeclarationName::CXXOperatorName:
Key.Data = Name.getCXXOverloadedOperator();
break;
case DeclarationName::CXXLiteralOperatorName:
Key.Data = (uint64_t)Name.getCXXLiteralIdentifier();
break;
case DeclarationName::CXXUsingDirective:
break;
}
return Key;
}
external_key_type GetExternalKey(const internal_key_type& Key) const {
ASTContext *Context = Reader.getContext();
switch (Key.Kind) {
case DeclarationName::Identifier:
return DeclarationName((IdentifierInfo*)Key.Data);
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
return DeclarationName(Selector(Key.Data));
case DeclarationName::CXXConstructorName:
return Context->DeclarationNames.getCXXConstructorName(
Context->getCanonicalType(Reader.getLocalType(F, Key.Data)));
case DeclarationName::CXXDestructorName:
return Context->DeclarationNames.getCXXDestructorName(
Context->getCanonicalType(Reader.getLocalType(F, Key.Data)));
case DeclarationName::CXXConversionFunctionName:
return Context->DeclarationNames.getCXXConversionFunctionName(
Context->getCanonicalType(Reader.getLocalType(F, Key.Data)));
case DeclarationName::CXXOperatorName:
return Context->DeclarationNames.getCXXOperatorName(
(OverloadedOperatorKind)Key.Data);
case DeclarationName::CXXLiteralOperatorName:
return Context->DeclarationNames.getCXXLiteralOperatorName(
(IdentifierInfo*)Key.Data);
case DeclarationName::CXXUsingDirective:
return DeclarationName::getUsingDirectiveName();
}
llvm_unreachable("Invalid Name Kind ?");
}
static std::pair<unsigned, unsigned>
ReadKeyDataLength(const unsigned char*& d) {
using namespace clang::io;
unsigned KeyLen = ReadUnalignedLE16(d);
unsigned DataLen = ReadUnalignedLE16(d);
return std::make_pair(KeyLen, DataLen);
}
internal_key_type ReadKey(const unsigned char* d, unsigned) {
using namespace clang::io;
DeclNameKey Key;
Key.Kind = (DeclarationName::NameKind)*d++;
switch (Key.Kind) {
case DeclarationName::Identifier:
Key.Data = (uint64_t)Reader.DecodeIdentifierInfo(ReadUnalignedLE32(d));
break;
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
Key.Data =
(uint64_t)Reader.DecodeSelector(ReadUnalignedLE32(d)).getAsOpaquePtr();
break;
case DeclarationName::CXXConstructorName:
case DeclarationName::CXXDestructorName:
case DeclarationName::CXXConversionFunctionName:
Key.Data = ReadUnalignedLE32(d); // TypeID
break;
case DeclarationName::CXXOperatorName:
Key.Data = *d++; // OverloadedOperatorKind
break;
case DeclarationName::CXXLiteralOperatorName:
Key.Data = (uint64_t)Reader.DecodeIdentifierInfo(ReadUnalignedLE32(d));
break;
case DeclarationName::CXXUsingDirective:
break;
}
return Key;
}
data_type ReadData(internal_key_type, const unsigned char* d,
unsigned DataLen) {
using namespace clang::io;
unsigned NumDecls = ReadUnalignedLE16(d);
DeclID *Start = (DeclID *)d;
return std::make_pair(Start, Start + NumDecls);
}
};
} // end anonymous namespace
/// \brief The on-disk hash table used for the DeclContext's Name lookup table.
typedef OnDiskChainedHashTable<ASTDeclContextNameLookupTrait>
ASTDeclContextNameLookupTable;
bool ASTReader::ReadDeclContextStorage(llvm::BitstreamCursor &Cursor,
const std::pair<uint64_t, uint64_t> &Offsets,
DeclContextInfo &Info) {
SavedStreamPosition SavedPosition(Cursor);
// First the lexical decls.
if (Offsets.first != 0) {
Cursor.JumpToBit(Offsets.first);
RecordData Record;
const char *Blob;
unsigned BlobLen;
unsigned Code = Cursor.ReadCode();
unsigned RecCode = Cursor.ReadRecord(Code, Record, &Blob, &BlobLen);
if (RecCode != DECL_CONTEXT_LEXICAL) {
Error("Expected lexical block");
return true;
}
Info.LexicalDecls = reinterpret_cast<const KindDeclIDPair*>(Blob);
Info.NumLexicalDecls = BlobLen / sizeof(KindDeclIDPair);
} else {
Info.LexicalDecls = 0;
Info.NumLexicalDecls = 0;
}
// Now the lookup table.
if (Offsets.second != 0) {
Cursor.JumpToBit(Offsets.second);
RecordData Record;
const char *Blob;
unsigned BlobLen;
unsigned Code = Cursor.ReadCode();
unsigned RecCode = Cursor.ReadRecord(Code, Record, &Blob, &BlobLen);
if (RecCode != DECL_CONTEXT_VISIBLE) {
Error("Expected visible lookup table block");
return true;
}
Info.NameLookupTableData
= ASTDeclContextNameLookupTable::Create(
(const unsigned char *)Blob + Record[0],
(const unsigned char *)Blob,
ASTDeclContextNameLookupTrait(*this, *Info.F));
} else {
Info.NameLookupTableData = 0;
}
return false;
}
void ASTReader::Error(llvm::StringRef Msg) {
Error(diag::err_fe_pch_malformed, Msg);
}
void ASTReader::Error(unsigned DiagID,
llvm::StringRef Arg1, llvm::StringRef Arg2) {
if (Diags.isDiagnosticInFlight())
Diags.SetDelayedDiagnostic(DiagID, Arg1, Arg2);
else
Diag(DiagID) << Arg1 << Arg2;
}
/// \brief Tell the AST listener about the predefines buffers in the chain.
bool ASTReader::CheckPredefinesBuffers() {
if (Listener)
return Listener->ReadPredefinesBuffer(PCHPredefinesBuffers,
ActualOriginalFileName,
SuggestedPredefines,
FileMgr);
return false;
}
//===----------------------------------------------------------------------===//
// Source Manager Deserialization
//===----------------------------------------------------------------------===//
/// \brief Read the line table in the source manager block.
/// \returns true if there was an error.
bool ASTReader::ParseLineTable(Module &F,
llvm::SmallVectorImpl<uint64_t> &Record) {
unsigned Idx = 0;
LineTableInfo &LineTable = SourceMgr.getLineTable();
// Parse the file names
std::map<int, int> FileIDs;
for (int I = 0, N = Record[Idx++]; I != N; ++I) {
// Extract the file name
unsigned FilenameLen = Record[Idx++];
std::string Filename(&Record[Idx], &Record[Idx] + FilenameLen);
Idx += FilenameLen;
MaybeAddSystemRootToFilename(Filename);
FileIDs[I] = LineTable.getLineTableFilenameID(Filename);
}
// Parse the line entries
std::vector<LineEntry> Entries;
while (Idx < Record.size()) {
int FID = Record[Idx++];
assert(FID >= 0 && "Serialized line entries for non-local file.");
// Remap FileID from 1-based old view.
FID += F.SLocEntryBaseID - 1;
// Extract the line entries
unsigned NumEntries = Record[Idx++];
assert(NumEntries && "Numentries is 00000");
Entries.clear();
Entries.reserve(NumEntries);
for (unsigned I = 0; I != NumEntries; ++I) {
unsigned FileOffset = Record[Idx++];
unsigned LineNo = Record[Idx++];
int FilenameID = FileIDs[Record[Idx++]];
SrcMgr::CharacteristicKind FileKind
= (SrcMgr::CharacteristicKind)Record[Idx++];
unsigned IncludeOffset = Record[Idx++];
Entries.push_back(LineEntry::get(FileOffset, LineNo, FilenameID,
FileKind, IncludeOffset));
}
LineTable.AddEntry(FID, Entries);
}
return false;
}
namespace {
class ASTStatData {
public:
const ino_t ino;
const dev_t dev;
const mode_t mode;
const time_t mtime;
const off_t size;
ASTStatData(ino_t i, dev_t d, mode_t mo, time_t m, off_t s)
: ino(i), dev(d), mode(mo), mtime(m), size(s) {}
};
class ASTStatLookupTrait {
public:
typedef const char *external_key_type;
typedef const char *internal_key_type;
typedef ASTStatData data_type;
static unsigned ComputeHash(const char *path) {
return llvm::HashString(path);
}
static internal_key_type GetInternalKey(const char *path) { return path; }
static bool EqualKey(internal_key_type a, internal_key_type b) {
return strcmp(a, b) == 0;
}
static std::pair<unsigned, unsigned>
ReadKeyDataLength(const unsigned char*& d) {
unsigned KeyLen = (unsigned) clang::io::ReadUnalignedLE16(d);
unsigned DataLen = (unsigned) *d++;
return std::make_pair(KeyLen + 1, DataLen);
}
static internal_key_type ReadKey(const unsigned char *d, unsigned) {
return (const char *)d;
}
static data_type ReadData(const internal_key_type, const unsigned char *d,
unsigned /*DataLen*/) {
using namespace clang::io;
ino_t ino = (ino_t) ReadUnalignedLE32(d);
dev_t dev = (dev_t) ReadUnalignedLE32(d);
mode_t mode = (mode_t) ReadUnalignedLE16(d);
time_t mtime = (time_t) ReadUnalignedLE64(d);
off_t size = (off_t) ReadUnalignedLE64(d);
return data_type(ino, dev, mode, mtime, size);
}
};
/// \brief stat() cache for precompiled headers.
///
/// This cache is very similar to the stat cache used by pretokenized
/// headers.
class ASTStatCache : public FileSystemStatCache {
typedef OnDiskChainedHashTable<ASTStatLookupTrait> CacheTy;
CacheTy *Cache;
unsigned &NumStatHits, &NumStatMisses;
public:
ASTStatCache(const unsigned char *Buckets, const unsigned char *Base,
unsigned &NumStatHits, unsigned &NumStatMisses)
: Cache(0), NumStatHits(NumStatHits), NumStatMisses(NumStatMisses) {
Cache = CacheTy::Create(Buckets, Base);
}
~ASTStatCache() { delete Cache; }
LookupResult getStat(const char *Path, struct stat &StatBuf,
int *FileDescriptor) {
// Do the lookup for the file's data in the AST file.
CacheTy::iterator I = Cache->find(Path);
// If we don't get a hit in the AST file just forward to 'stat'.
if (I == Cache->end()) {
++NumStatMisses;
return statChained(Path, StatBuf, FileDescriptor);
}
++NumStatHits;
ASTStatData Data = *I;
StatBuf.st_ino = Data.ino;
StatBuf.st_dev = Data.dev;
StatBuf.st_mtime = Data.mtime;
StatBuf.st_mode = Data.mode;
StatBuf.st_size = Data.size;
return CacheExists;
}
};
} // end anonymous namespace
/// \brief Read a source manager block
ASTReader::ASTReadResult ASTReader::ReadSourceManagerBlock(Module &F) {
using namespace SrcMgr;
llvm::BitstreamCursor &SLocEntryCursor = F.SLocEntryCursor;
// Set the source-location entry cursor to the current position in
// the stream. This cursor will be used to read the contents of the
// source manager block initially, and then lazily read
// source-location entries as needed.
SLocEntryCursor = F.Stream;
// The stream itself is going to skip over the source manager block.
if (F.Stream.SkipBlock()) {
Error("malformed block record in AST file");
return Failure;
}
// Enter the source manager block.
if (SLocEntryCursor.EnterSubBlock(SOURCE_MANAGER_BLOCK_ID)) {
Error("malformed source manager block record in AST file");
return Failure;
}
RecordData Record;
while (true) {
unsigned Code = SLocEntryCursor.ReadCode();
if (Code == llvm::bitc::END_BLOCK) {
if (SLocEntryCursor.ReadBlockEnd()) {
Error("error at end of Source Manager block in AST file");
return Failure;
}
return Success;
}
if (Code == llvm::bitc::ENTER_SUBBLOCK) {
// No known subblocks, always skip them.
SLocEntryCursor.ReadSubBlockID();
if (SLocEntryCursor.SkipBlock()) {
Error("malformed block record in AST file");
return Failure;
}
continue;
}
if (Code == llvm::bitc::DEFINE_ABBREV) {
SLocEntryCursor.ReadAbbrevRecord();
continue;
}
// Read a record.
const char *BlobStart;
unsigned BlobLen;
Record.clear();
switch (SLocEntryCursor.ReadRecord(Code, Record, &BlobStart, &BlobLen)) {
default: // Default behavior: ignore.
break;
case SM_SLOC_FILE_ENTRY:
case SM_SLOC_BUFFER_ENTRY:
case SM_SLOC_EXPANSION_ENTRY:
// Once we hit one of the source location entries, we're done.
return Success;
}
}
}
/// \brief If a header file is not found at the path that we expect it to be
/// and the PCH file was moved from its original location, try to resolve the
/// file by assuming that header+PCH were moved together and the header is in
/// the same place relative to the PCH.
static std::string
resolveFileRelativeToOriginalDir(const std::string &Filename,
const std::string &OriginalDir,
const std::string &CurrDir) {
assert(OriginalDir != CurrDir &&
"No point trying to resolve the file if the PCH dir didn't change");
using namespace llvm::sys;
llvm::SmallString<128> filePath(Filename);
fs::make_absolute(filePath);
assert(path::is_absolute(OriginalDir));
llvm::SmallString<128> currPCHPath(CurrDir);
path::const_iterator fileDirI = path::begin(path::parent_path(filePath)),
fileDirE = path::end(path::parent_path(filePath));
path::const_iterator origDirI = path::begin(OriginalDir),
origDirE = path::end(OriginalDir);
// Skip the common path components from filePath and OriginalDir.
while (fileDirI != fileDirE && origDirI != origDirE &&
*fileDirI == *origDirI) {
++fileDirI;
++origDirI;
}
for (; origDirI != origDirE; ++origDirI)
path::append(currPCHPath, "..");
path::append(currPCHPath, fileDirI, fileDirE);
path::append(currPCHPath, path::filename(Filename));
return currPCHPath.str();
}
/// \brief Read in the source location entry with the given ID.
ASTReader::ASTReadResult ASTReader::ReadSLocEntryRecord(int ID) {
if (ID == 0)
return Success;
if (unsigned(-ID) - 2 >= getTotalNumSLocs() || ID > 0) {
Error("source location entry ID out-of-range for AST file");
return Failure;
}
Module *F = GlobalSLocEntryMap.find(-ID)->second;
F->SLocEntryCursor.JumpToBit(F->SLocEntryOffsets[ID - F->SLocEntryBaseID]);
llvm::BitstreamCursor &SLocEntryCursor = F->SLocEntryCursor;
unsigned BaseOffset = F->SLocEntryBaseOffset;
++NumSLocEntriesRead;
unsigned Code = SLocEntryCursor.ReadCode();
if (Code == llvm::bitc::END_BLOCK ||
Code == llvm::bitc::ENTER_SUBBLOCK ||
Code == llvm::bitc::DEFINE_ABBREV) {
Error("incorrectly-formatted source location entry in AST file");
return Failure;
}
RecordData Record;
const char *BlobStart;
unsigned BlobLen;
switch (SLocEntryCursor.ReadRecord(Code, Record, &BlobStart, &BlobLen)) {
default:
Error("incorrectly-formatted source location entry in AST file");
return Failure;
case SM_SLOC_FILE_ENTRY: {
std::string Filename(BlobStart, BlobStart + BlobLen);
MaybeAddSystemRootToFilename(Filename);
const FileEntry *File = FileMgr.getFile(Filename);
if (File == 0 && !OriginalDir.empty() && !CurrentDir.empty() &&
OriginalDir != CurrentDir) {
std::string resolved = resolveFileRelativeToOriginalDir(Filename,
OriginalDir,
CurrentDir);
if (!resolved.empty())
File = FileMgr.getFile(resolved);
}
if (File == 0)
File = FileMgr.getVirtualFile(Filename, (off_t)Record[4],
(time_t)Record[5]);
if (File == 0) {
std::string ErrorStr = "could not find file '";
ErrorStr += Filename;
ErrorStr += "' referenced by AST file";
Error(ErrorStr.c_str());
return Failure;
}
if (Record.size() < 6) {
Error("source location entry is incorrect");
return Failure;
}
if (!DisableValidation &&
((off_t)Record[4] != File->getSize()
#if !defined(LLVM_ON_WIN32)
// In our regression testing, the Windows file system seems to
// have inconsistent modification times that sometimes
// erroneously trigger this error-handling path.
|| (time_t)Record[5] != File->getModificationTime()
#endif
)) {
Error(diag::err_fe_pch_file_modified, Filename);
return Failure;
}
SourceLocation IncludeLoc = ReadSourceLocation(*F, Record[1]);
if (IncludeLoc.isInvalid() && F->Kind != MK_MainFile) {
// This is the module's main file.
IncludeLoc = getImportLocation(F);
}
FileID FID = SourceMgr.createFileID(File, IncludeLoc,
(SrcMgr::CharacteristicKind)Record[2],
ID, BaseOffset + Record[0]);
if (Record[3])
const_cast<SrcMgr::FileInfo&>(SourceMgr.getSLocEntry(FID).getFile())
.setHasLineDirectives();
break;
}
case SM_SLOC_BUFFER_ENTRY: {
const char *Name = BlobStart;
unsigned Offset = Record[0];
unsigned Code = SLocEntryCursor.ReadCode();
Record.clear();
unsigned RecCode
= SLocEntryCursor.ReadRecord(Code, Record, &BlobStart, &BlobLen);
if (RecCode != SM_SLOC_BUFFER_BLOB) {
Error("AST record has invalid code");
return Failure;
}
llvm::MemoryBuffer *Buffer
= llvm::MemoryBuffer::getMemBuffer(llvm::StringRef(BlobStart, BlobLen - 1),
Name);
FileID BufferID = SourceMgr.createFileIDForMemBuffer(Buffer, ID,
BaseOffset + Offset);
if (strcmp(Name, "<built-in>") == 0) {
PCHPredefinesBlock Block = {
BufferID,
llvm::StringRef(BlobStart, BlobLen - 1)
};
PCHPredefinesBuffers.push_back(Block);
}
break;
}
case SM_SLOC_EXPANSION_ENTRY: {
SourceLocation SpellingLoc = ReadSourceLocation(*F, Record[1]);
SourceMgr.createInstantiationLoc(SpellingLoc,
ReadSourceLocation(*F, Record[2]),
ReadSourceLocation(*F, Record[3]),
Record[4],
ID,
BaseOffset + Record[0]);
break;
}
}
return Success;
}
/// \brief Find the location where the module F is imported.
SourceLocation ASTReader::getImportLocation(Module *F) {
if (F->ImportLoc.isValid())
return F->ImportLoc;
// Otherwise we have a PCH. It's considered to be "imported" at the first
// location of its includer.
if (F->Loaders.empty() || !F->Loaders[0]) {
// Main file is the importer. We assume that it is the first entry in the
// entry table. We can't ask the manager, because at the time of PCH loading
// the main file entry doesn't exist yet.
// The very first entry is the invalid instantiation loc, which takes up
// offsets 0 and 1.
return SourceLocation::getFromRawEncoding(2U);
}
return F->Loaders[0]->FirstLoc;
}
/// ReadBlockAbbrevs - Enter a subblock of the specified BlockID with the
/// specified cursor. Read the abbreviations that are at the top of the block
/// and then leave the cursor pointing into the block.
bool ASTReader::ReadBlockAbbrevs(llvm::BitstreamCursor &Cursor,
unsigned BlockID) {
if (Cursor.EnterSubBlock(BlockID)) {
Error("malformed block record in AST file");
return Failure;
}
while (true) {
uint64_t Offset = Cursor.GetCurrentBitNo();
unsigned Code = Cursor.ReadCode();
// We expect all abbrevs to be at the start of the block.
if (Code != llvm::bitc::DEFINE_ABBREV) {
Cursor.JumpToBit(Offset);
return false;
}
Cursor.ReadAbbrevRecord();
}
}
PreprocessedEntity *ASTReader::ReadMacroRecord(Module &F, uint64_t Offset) {
assert(PP && "Forgot to set Preprocessor ?");
llvm::BitstreamCursor &Stream = F.MacroCursor;
// Keep track of where we are in the stream, then jump back there
// after reading this macro.
SavedStreamPosition SavedPosition(Stream);
Stream.JumpToBit(Offset);
RecordData Record;
llvm::SmallVector<IdentifierInfo*, 16> MacroArgs;
MacroInfo *Macro = 0;
while (true) {
unsigned Code = Stream.ReadCode();
switch (Code) {
case llvm::bitc::END_BLOCK:
return 0;
case llvm::bitc::ENTER_SUBBLOCK:
// No known subblocks, always skip them.
Stream.ReadSubBlockID();
if (Stream.SkipBlock()) {
Error("malformed block record in AST file");
return 0;
}
continue;
case llvm::bitc::DEFINE_ABBREV:
Stream.ReadAbbrevRecord();
continue;
default: break;
}
// Read a record.
const char *BlobStart = 0;
unsigned BlobLen = 0;
Record.clear();
PreprocessorRecordTypes RecType =
(PreprocessorRecordTypes)Stream.ReadRecord(Code, Record, BlobStart,
BlobLen);
switch (RecType) {
case PP_MACRO_OBJECT_LIKE:
case PP_MACRO_FUNCTION_LIKE: {
// If we already have a macro, that means that we've hit the end
// of the definition of the macro we were looking for. We're
// done.
if (Macro)
return 0;
IdentifierInfo *II = DecodeIdentifierInfo(Record[0]);
if (II == 0) {
Error("macro must have a name in AST file");
return 0;
}
SourceLocation Loc = ReadSourceLocation(F, Record[1]);
bool isUsed = Record[2];
MacroInfo *MI = PP->AllocateMacroInfo(Loc);
MI->setIsUsed(isUsed);
MI->setIsFromAST();
unsigned NextIndex = 3;
if (RecType == PP_MACRO_FUNCTION_LIKE) {
// Decode function-like macro info.
bool isC99VarArgs = Record[3];
bool isGNUVarArgs = Record[4];
MacroArgs.clear();
unsigned NumArgs = Record[5];
NextIndex = 6 + NumArgs;
for (unsigned i = 0; i != NumArgs; ++i)
MacroArgs.push_back(DecodeIdentifierInfo(Record[6+i]));
// Install function-like macro info.
MI->setIsFunctionLike();
if (isC99VarArgs) MI->setIsC99Varargs();
if (isGNUVarArgs) MI->setIsGNUVarargs();
MI->setArgumentList(MacroArgs.data(), MacroArgs.size(),
PP->getPreprocessorAllocator());
}
// Finally, install the macro.
PP->setMacroInfo(II, MI);
// Remember that we saw this macro last so that we add the tokens that
// form its body to it.
Macro = MI;
if (NextIndex + 1 == Record.size() && PP->getPreprocessingRecord()) {
// We have a macro definition. Load it now.
PP->getPreprocessingRecord()->RegisterMacroDefinition(Macro,
getMacroDefinition(Record[NextIndex]));
}
++NumMacrosRead;
break;
}
case PP_TOKEN: {
// If we see a TOKEN before a PP_MACRO_*, then the file is
// erroneous, just pretend we didn't see this.
if (Macro == 0) break;
Token Tok;
Tok.startToken();
Tok.setLocation(ReadSourceLocation(F, Record[0]));
Tok.setLength(Record[1]);
if (IdentifierInfo *II = DecodeIdentifierInfo(Record[2]))
Tok.setIdentifierInfo(II);
Tok.setKind((tok::TokenKind)Record[3]);
Tok.setFlag((Token::TokenFlags)Record[4]);
Macro->AddTokenToBody(Tok);
break;
}
}
}
return 0;
}
PreprocessedEntity *ASTReader::LoadPreprocessedEntity(Module &F) {
assert(PP && "Forgot to set Preprocessor ?");
unsigned Code = F.PreprocessorDetailCursor.ReadCode();
switch (Code) {
case llvm::bitc::END_BLOCK:
return 0;
case llvm::bitc::ENTER_SUBBLOCK:
Error("unexpected subblock record in preprocessor detail block");
return 0;
case llvm::bitc::DEFINE_ABBREV:
Error("unexpected abbrevation record in preprocessor detail block");
return 0;
default:
break;
}
if (!PP->getPreprocessingRecord()) {
Error("no preprocessing record");
return 0;
}
// Read the record.
PreprocessingRecord &PPRec = *PP->getPreprocessingRecord();
const char *BlobStart = 0;
unsigned BlobLen = 0;
RecordData Record;
PreprocessorDetailRecordTypes RecType =
(PreprocessorDetailRecordTypes)F.PreprocessorDetailCursor.ReadRecord(
Code, Record, BlobStart, BlobLen);
switch (RecType) {
case PPD_MACRO_EXPANSION: {
if (PreprocessedEntity *PE = PPRec.getLoadedPreprocessedEntity(Record[0]))
return PE;
MacroExpansion *ME =
new (PPRec) MacroExpansion(DecodeIdentifierInfo(Record[3]),
SourceRange(ReadSourceLocation(F, Record[1]),
ReadSourceLocation(F, Record[2])),
getMacroDefinition(Record[4]));
PPRec.setLoadedPreallocatedEntity(Record[0], ME);
return ME;
}
case PPD_MACRO_DEFINITION: {
if (PreprocessedEntity *PE = PPRec.getLoadedPreprocessedEntity(Record[0]))
return PE;
if (Record[1] > MacroDefinitionsLoaded.size()) {
Error("out-of-bounds macro definition record");
return 0;
}
// Decode the identifier info and then check again; if the macro is
// still defined and associated with the identifier,
IdentifierInfo *II = DecodeIdentifierInfo(Record[4]);
if (!MacroDefinitionsLoaded[Record[1] - 1]) {
MacroDefinition *MD
= new (PPRec) MacroDefinition(II,
ReadSourceLocation(F, Record[5]),
SourceRange(
ReadSourceLocation(F, Record[2]),
ReadSourceLocation(F, Record[3])));
PPRec.setLoadedPreallocatedEntity(Record[0], MD);
MacroDefinitionsLoaded[Record[1] - 1] = MD;
if (DeserializationListener)
DeserializationListener->MacroDefinitionRead(Record[1], MD);
}
return MacroDefinitionsLoaded[Record[1] - 1];
}
case PPD_INCLUSION_DIRECTIVE: {
if (PreprocessedEntity *PE = PPRec.getLoadedPreprocessedEntity(Record[0]))
return PE;
const char *FullFileNameStart = BlobStart + Record[3];
const FileEntry *File
= PP->getFileManager().getFile(llvm::StringRef(FullFileNameStart,
BlobLen - Record[3]));
// FIXME: Stable encoding
InclusionDirective::InclusionKind Kind
= static_cast<InclusionDirective::InclusionKind>(Record[5]);
InclusionDirective *ID
= new (PPRec) InclusionDirective(PPRec, Kind,
llvm::StringRef(BlobStart, Record[3]),
Record[4],
File,
SourceRange(ReadSourceLocation(F, Record[1]),
ReadSourceLocation(F, Record[2])));
PPRec.setLoadedPreallocatedEntity(Record[0], ID);
return ID;
}
}
Error("invalid offset in preprocessor detail block");
return 0;
}
namespace {
/// \brief Trait class used to search the on-disk hash table containing all of
/// the header search information.
///
/// The on-disk hash table contains a mapping from each header path to
/// information about that header (how many times it has been included, its
/// controlling macro, etc.). Note that we actually hash based on the
/// filename, and support "deep" comparisons of file names based on current
/// inode numbers, so that the search can cope with non-normalized path names
/// and symlinks.
class HeaderFileInfoTrait {
const char *SearchPath;
struct stat SearchPathStatBuf;
llvm::Optional<int> SearchPathStatResult;
int StatSimpleCache(const char *Path, struct stat *StatBuf) {
if (Path == SearchPath) {
if (!SearchPathStatResult)
SearchPathStatResult = stat(Path, &SearchPathStatBuf);
*StatBuf = SearchPathStatBuf;
return *SearchPathStatResult;
}
return stat(Path, StatBuf);
}
public:
typedef const char *external_key_type;
typedef const char *internal_key_type;
typedef HeaderFileInfo data_type;
HeaderFileInfoTrait(const char *SearchPath = 0) : SearchPath(SearchPath) { }
static unsigned ComputeHash(const char *path) {
return llvm::HashString(llvm::sys::path::filename(path));
}
static internal_key_type GetInternalKey(const char *path) { return path; }
bool EqualKey(internal_key_type a, internal_key_type b) {
if (strcmp(a, b) == 0)
return true;
if (llvm::sys::path::filename(a) != llvm::sys::path::filename(b))
return false;
// The file names match, but the path names don't. stat() the files to
// see if they are the same.
struct stat StatBufA, StatBufB;
if (StatSimpleCache(a, &StatBufA) || StatSimpleCache(b, &StatBufB))
return false;
return StatBufA.st_ino == StatBufB.st_ino;
}
static std::pair<unsigned, unsigned>
ReadKeyDataLength(const unsigned char*& d) {
unsigned KeyLen = (unsigned) clang::io::ReadUnalignedLE16(d);
unsigned DataLen = (unsigned) *d++;
return std::make_pair(KeyLen + 1, DataLen);
}
static internal_key_type ReadKey(const unsigned char *d, unsigned) {
return (const char *)d;
}
static data_type ReadData(const internal_key_type, const unsigned char *d,
unsigned DataLen) {
const unsigned char *End = d + DataLen;
using namespace clang::io;
HeaderFileInfo HFI;
unsigned Flags = *d++;
HFI.isImport = (Flags >> 4) & 0x01;
HFI.isPragmaOnce = (Flags >> 3) & 0x01;
HFI.DirInfo = (Flags >> 1) & 0x03;
HFI.Resolved = Flags & 0x01;
HFI.NumIncludes = ReadUnalignedLE16(d);
HFI.ControllingMacroID = ReadUnalignedLE32(d);
assert(End == d && "Wrong data length in HeaderFileInfo deserialization");
(void)End;
// This HeaderFileInfo was externally loaded.
HFI.External = true;
return HFI;
}
};
}
/// \brief The on-disk hash table used for the global method pool.
typedef OnDiskChainedHashTable<HeaderFileInfoTrait>
HeaderFileInfoLookupTable;
void ASTReader::SetIdentifierIsMacro(IdentifierInfo *II, Module &F,
uint64_t Offset) {
// Note that this identifier has a macro definition.
II->setHasMacroDefinition(true);
// Adjust the offset to a global offset.
UnreadMacroRecordOffsets[II] = F.GlobalBitOffset + Offset;
}
void ASTReader::ReadDefinedMacros() {
for (unsigned I = 0, N = Chain.size(); I != N; ++I) {
Module &F = *Chain[N - I - 1];
llvm::BitstreamCursor &MacroCursor = F.MacroCursor;
// If there was no preprocessor block, skip this file.
if (!MacroCursor.getBitStreamReader())
continue;
llvm::BitstreamCursor Cursor = MacroCursor;
Cursor.JumpToBit(F.MacroStartOffset);
RecordData Record;
while (true) {
unsigned Code = Cursor.ReadCode();
if (Code == llvm::bitc::END_BLOCK)
break;
if (Code == llvm::bitc::ENTER_SUBBLOCK) {
// No known subblocks, always skip them.
Cursor.ReadSubBlockID();
if (Cursor.SkipBlock()) {
Error("malformed block record in AST file");
return;
}
continue;
}
if (Code == llvm::bitc::DEFINE_ABBREV) {
Cursor.ReadAbbrevRecord();
continue;
}
// Read a record.
const char *BlobStart;
unsigned BlobLen;
Record.clear();
switch (Cursor.ReadRecord(Code, Record, &BlobStart, &BlobLen)) {
default: // Default behavior: ignore.
break;
case PP_MACRO_OBJECT_LIKE:
case PP_MACRO_FUNCTION_LIKE:
DecodeIdentifierInfo(Record[0]);
break;
case PP_TOKEN:
// Ignore tokens.
break;
}
}
}
// Drain the unread macro-record offsets map.
while (!UnreadMacroRecordOffsets.empty())
LoadMacroDefinition(UnreadMacroRecordOffsets.begin());
}
void ASTReader::LoadMacroDefinition(
llvm::DenseMap<IdentifierInfo *, uint64_t>::iterator Pos) {
assert(Pos != UnreadMacroRecordOffsets.end() && "Unknown macro definition");
uint64_t Offset = Pos->second;
UnreadMacroRecordOffsets.erase(Pos);
RecordLocation Loc = getLocalBitOffset(Offset);
ReadMacroRecord(*Loc.F, Loc.Offset);
}
void ASTReader::LoadMacroDefinition(IdentifierInfo *II) {
llvm::DenseMap<IdentifierInfo *, uint64_t>::iterator Pos
= UnreadMacroRecordOffsets.find(II);
LoadMacroDefinition(Pos);
}
MacroDefinition *ASTReader::getMacroDefinition(MacroID ID) {
if (ID == 0 || ID > MacroDefinitionsLoaded.size())
return 0;
if (!MacroDefinitionsLoaded[ID - 1]) {
GlobalMacroDefinitionMapType::iterator I =GlobalMacroDefinitionMap.find(ID);
assert(I != GlobalMacroDefinitionMap.end() &&
"Corrupted global macro definition map");
Module &F = *I->second.first;
unsigned Index = ID - 1 + I->second.second;
SavedStreamPosition SavedPosition(F.PreprocessorDetailCursor);
F.PreprocessorDetailCursor.JumpToBit(F.MacroDefinitionOffsets[Index]);
LoadPreprocessedEntity(F);
}
return MacroDefinitionsLoaded[ID - 1];
}
const FileEntry *ASTReader::getFileEntry(llvm::StringRef filenameStrRef) {
std::string Filename = filenameStrRef;
MaybeAddSystemRootToFilename(Filename);
const FileEntry *File = FileMgr.getFile(Filename);
if (File == 0 && !OriginalDir.empty() && !CurrentDir.empty() &&
OriginalDir != CurrentDir) {
std::string resolved = resolveFileRelativeToOriginalDir(Filename,
OriginalDir,
CurrentDir);
if (!resolved.empty())
File = FileMgr.getFile(resolved);
}
return File;
}
/// \brief If we are loading a relocatable PCH file, and the filename is
/// not an absolute path, add the system root to the beginning of the file
/// name.
void ASTReader::MaybeAddSystemRootToFilename(std::string &Filename) {
// If this is not a relocatable PCH file, there's nothing to do.
if (!RelocatablePCH)
return;
if (Filename.empty() || llvm::sys::path::is_absolute(Filename))
return;
if (isysroot.empty()) {
// If no system root was given, default to '/'
Filename.insert(Filename.begin(), '/');
return;
}
unsigned Length = isysroot.size();
if (isysroot[Length - 1] != '/')
Filename.insert(Filename.begin(), '/');
Filename.insert(Filename.begin(), isysroot.begin(), isysroot.end());
}
ASTReader::ASTReadResult
ASTReader::ReadASTBlock(Module &F) {
llvm::BitstreamCursor &Stream = F.Stream;
if (Stream.EnterSubBlock(AST_BLOCK_ID)) {
Error("malformed block record in AST file");
return Failure;
}
// Read all of the records and blocks for the ASt file.
RecordData Record;
bool First = true;
while (!Stream.AtEndOfStream()) {
unsigned Code = Stream.ReadCode();
if (Code == llvm::bitc::END_BLOCK) {
if (Stream.ReadBlockEnd()) {
Error("error at end of module block in AST file");
return Failure;
}
return Success;
}
if (Code == llvm::bitc::ENTER_SUBBLOCK) {
switch (Stream.ReadSubBlockID()) {
case DECLTYPES_BLOCK_ID:
// We lazily load the decls block, but we want to set up the
// DeclsCursor cursor to point into it. Clone our current bitcode
// cursor to it, enter the block and read the abbrevs in that block.
// With the main cursor, we just skip over it.
F.DeclsCursor = Stream;
if (Stream.SkipBlock() || // Skip with the main cursor.
// Read the abbrevs.
ReadBlockAbbrevs(F.DeclsCursor, DECLTYPES_BLOCK_ID)) {
Error("malformed block record in AST file");
return Failure;
}
break;
case DECL_UPDATES_BLOCK_ID:
if (Stream.SkipBlock()) {
Error("malformed block record in AST file");
return Failure;
}
break;
case PREPROCESSOR_BLOCK_ID:
F.MacroCursor = Stream;
if (PP)
PP->setExternalSource(this);
if (Stream.SkipBlock() ||
ReadBlockAbbrevs(F.MacroCursor, PREPROCESSOR_BLOCK_ID)) {
Error("malformed block record in AST file");
return Failure;
}
F.MacroStartOffset = F.MacroCursor.GetCurrentBitNo();
break;
case PREPROCESSOR_DETAIL_BLOCK_ID:
F.PreprocessorDetailCursor = Stream;
if (Stream.SkipBlock() ||
ReadBlockAbbrevs(F.PreprocessorDetailCursor,
PREPROCESSOR_DETAIL_BLOCK_ID)) {
Error("malformed preprocessor detail record in AST file");
return Failure;
}
F.PreprocessorDetailStartOffset
= F.PreprocessorDetailCursor.GetCurrentBitNo();
break;
case SOURCE_MANAGER_BLOCK_ID:
switch (ReadSourceManagerBlock(F)) {
case Success:
break;
case Failure:
Error("malformed source manager block in AST file");
return Failure;
case IgnorePCH:
return IgnorePCH;
}
break;
}
First = false;
continue;
}
if (Code == llvm::bitc::DEFINE_ABBREV) {
Stream.ReadAbbrevRecord();
continue;
}
// Read and process a record.
Record.clear();
const char *BlobStart = 0;
unsigned BlobLen = 0;
switch ((ASTRecordTypes)Stream.ReadRecord(Code, Record,
&BlobStart, &BlobLen)) {
default: // Default behavior: ignore.
break;
case METADATA: {
if (Record[0] != VERSION_MAJOR && !DisableValidation) {
Diag(Record[0] < VERSION_MAJOR? diag::warn_pch_version_too_old
: diag::warn_pch_version_too_new);
return IgnorePCH;
}
RelocatablePCH = Record[4];
if (Listener) {
std::string TargetTriple(BlobStart, BlobLen);
if (Listener->ReadTargetTriple(TargetTriple))
return IgnorePCH;
}
break;
}
case CHAINED_METADATA: {
if (!First) {
Error("CHAINED_METADATA is not first record in block");
return Failure;
}
if (Record[0] != VERSION_MAJOR && !DisableValidation) {
Diag(Record[0] < VERSION_MAJOR? diag::warn_pch_version_too_old
: diag::warn_pch_version_too_new);
return IgnorePCH;
}
// Load the chained file, which is always a PCH file.
// FIXME: This could end up being a module.
switch(ReadASTCore(llvm::StringRef(BlobStart, BlobLen), MK_PCH)) {
case Failure: return Failure;
// If we have to ignore the dependency, we'll have to ignore this too.
case IgnorePCH: return IgnorePCH;
case Success: break;
}
break;
}
case TYPE_OFFSET:
if (F.LocalNumTypes != 0) {
Error("duplicate TYPE_OFFSET record in AST file");
return Failure;
}
F.TypeOffsets = (const uint32_t *)BlobStart;
F.LocalNumTypes = Record[0];
// Introduce the global -> local mapping for types within this
// AST file.
GlobalTypeMap.insert(std::make_pair(getTotalNumTypes() + 1,
std::make_pair(&F,
-getTotalNumTypes())));
TypesLoaded.resize(TypesLoaded.size() + F.LocalNumTypes);
break;
case DECL_OFFSET:
if (F.LocalNumDecls != 0) {
Error("duplicate DECL_OFFSET record in AST file");
return Failure;
}
F.DeclOffsets = (const uint32_t *)BlobStart;
F.LocalNumDecls = Record[0];
// Introduce the global -> local mapping for declarations within this
// AST file.
GlobalDeclMap.insert(std::make_pair(getTotalNumDecls() + 1,
std::make_pair(&F,
-getTotalNumDecls())));
DeclsLoaded.resize(DeclsLoaded.size() + F.LocalNumDecls);
break;
case TU_UPDATE_LEXICAL: {
DeclContextInfo Info = {
&F,
/* No visible information */ 0,
reinterpret_cast<const KindDeclIDPair *>(BlobStart),
BlobLen / sizeof(KindDeclIDPair)
};
DeclContextOffsets[Context ? Context->getTranslationUnitDecl() : 0]
.push_back(Info);
break;
}
case UPDATE_VISIBLE: {
serialization::DeclID ID = Record[0];
void *Table = ASTDeclContextNameLookupTable::Create(
(const unsigned char *)BlobStart + Record[1],
(const unsigned char *)BlobStart,
ASTDeclContextNameLookupTrait(*this, F));
if (ID == 1 && Context) { // Is it the TU?
DeclContextInfo Info = {
&F, Table, /* No lexical inforamtion */ 0, 0
};
DeclContextOffsets[Context->getTranslationUnitDecl()].push_back(Info);
} else
PendingVisibleUpdates[ID].push_back(Table);
break;
}
case REDECLS_UPDATE_LATEST: {
assert(Record.size() % 2 == 0 && "Expected pairs of DeclIDs");
for (unsigned i = 0, e = Record.size(); i < e; i += 2) {
DeclID First = Record[i], Latest = Record[i+1];
assert((FirstLatestDeclIDs.find(First) == FirstLatestDeclIDs.end() ||
Latest > FirstLatestDeclIDs[First]) &&
"The new latest is supposed to come after the previous latest");
FirstLatestDeclIDs[First] = Latest;
}
break;
}
case LANGUAGE_OPTIONS:
if (ParseLanguageOptions(Record) && !DisableValidation)
return IgnorePCH;
break;
case IDENTIFIER_TABLE:
F.IdentifierTableData = BlobStart;
if (Record[0]) {
F.IdentifierLookupTable
= ASTIdentifierLookupTable::Create(
(const unsigned char *)F.IdentifierTableData + Record[0],
(const unsigned char *)F.IdentifierTableData,
ASTIdentifierLookupTrait(*this, F));
if (PP) {
PP->getIdentifierTable().setExternalIdentifierLookup(this);
PP->getHeaderSearchInfo().SetExternalLookup(this);
}
}
break;
case IDENTIFIER_OFFSET:
if (F.LocalNumIdentifiers != 0) {
Error("duplicate IDENTIFIER_OFFSET record in AST file");
return Failure;
}
F.IdentifierOffsets = (const uint32_t *)BlobStart;
F.LocalNumIdentifiers = Record[0];
// Introduce the global -> local mapping for identifiers within this AST
// file
GlobalIdentifierMap.insert(
std::make_pair(getTotalNumIdentifiers() + 1,
std::make_pair(&F,
-getTotalNumIdentifiers())));
IdentifiersLoaded.resize(IdentifiersLoaded.size() +F.LocalNumIdentifiers);
break;
case EXTERNAL_DEFINITIONS:
for (unsigned I = 0, N = Record.size(); I != N; ++I)
ExternalDefinitions.push_back(getGlobalDeclID(F, Record[I]));
break;
case SPECIAL_TYPES:
for (unsigned I = 0, N = Record.size(); I != N; ++I)
SpecialTypes.push_back(getGlobalTypeID(F, Record[I]));
break;
case STATISTICS:
TotalNumStatements += Record[0];
TotalNumMacros += Record[1];
TotalLexicalDeclContexts += Record[2];
TotalVisibleDeclContexts += Record[3];
break;
case UNUSED_FILESCOPED_DECLS:
for (unsigned I = 0, N = Record.size(); I != N; ++I)
UnusedFileScopedDecls.push_back(getGlobalDeclID(F, Record[I]));
break;
case DELEGATING_CTORS:
for (unsigned I = 0, N = Record.size(); I != N; ++I)
DelegatingCtorDecls.push_back(getGlobalDeclID(F, Record[I]));
break;
case WEAK_UNDECLARED_IDENTIFIERS:
// Later blocks overwrite earlier ones.
WeakUndeclaredIdentifiers.swap(Record);
break;
case LOCALLY_SCOPED_EXTERNAL_DECLS:
for (unsigned I = 0, N = Record.size(); I != N; ++I)
LocallyScopedExternalDecls.push_back(getGlobalDeclID(F, Record[I]));
break;
case SELECTOR_OFFSETS:
F.SelectorOffsets = (const uint32_t *)BlobStart;
F.LocalNumSelectors = Record[0];
// Introduce the global -> local mapping for identifiers within this AST
// file
GlobalSelectorMap.insert(
std::make_pair(getTotalNumSelectors() + 1,
std::make_pair(&F,
-getTotalNumSelectors())));
SelectorsLoaded.resize(SelectorsLoaded.size() + F.LocalNumSelectors);
break;
case METHOD_POOL:
F.SelectorLookupTableData = (const unsigned char *)BlobStart;
if (Record[0])
F.SelectorLookupTable
= ASTSelectorLookupTable::Create(
F.SelectorLookupTableData + Record[0],
F.SelectorLookupTableData,
ASTSelectorLookupTrait(*this, F));
TotalNumMethodPoolEntries += Record[1];
break;
case REFERENCED_SELECTOR_POOL:
F.ReferencedSelectorsData.swap(Record);
break;
case PP_COUNTER_VALUE:
if (!Record.empty() && Listener)
Listener->ReadCounter(Record[0]);
break;
case SOURCE_LOCATION_OFFSETS: {
F.SLocEntryOffsets = (const uint32_t *)BlobStart;
F.LocalNumSLocEntries = Record[0];
llvm::tie(F.SLocEntryBaseID, F.SLocEntryBaseOffset) =
SourceMgr.AllocateLoadedSLocEntries(F.LocalNumSLocEntries, Record[1]);
// Make our entry in the range map. BaseID is negative and growing, so
// we invert it. Because we invert it, though, we need the other end of
// the range.
unsigned RangeStart =
unsigned(-F.SLocEntryBaseID) - F.LocalNumSLocEntries + 1;
GlobalSLocEntryMap.insert(std::make_pair(RangeStart, &F));
F.FirstLoc = SourceLocation::getFromRawEncoding(F.SLocEntryBaseOffset);
// Initialize the remapping table.
// Invalid stays invalid.
F.SLocRemap.insert(std::make_pair(0U, 0));
// This module. Base was 2 when being compiled.
F.SLocRemap.insert(std::make_pair(2U,
static_cast<int>(F.SLocEntryBaseOffset - 2)));
TotalNumSLocEntries += F.LocalNumSLocEntries;
break;
}
case SOURCE_LOCATION_MAP: {
// Additional remapping information.
const unsigned char *Data = (const unsigned char*)BlobStart;
const unsigned char *DataEnd = Data + BlobLen;
while(Data < DataEnd) {
uint32_t Offset = io::ReadUnalignedLE32(Data);
uint16_t Len = io::ReadUnalignedLE16(Data);
llvm::StringRef Name = llvm::StringRef((const char*)Data, Len);
Module *OM = Modules.lookup(Name);
if (!OM) {
Error("SourceLocation remap refers to unknown module");
return Failure;
}
// My Offset is mapped to OM->SLocEntryBaseOffset.
F.SLocRemap.insert(std::make_pair(Offset,
static_cast<int>(OM->SLocEntryBaseOffset - Offset)));
Data += Len;
}
break;
}
case SOURCE_MANAGER_LINE_TABLE:
if (ParseLineTable(F, Record))
return Failure;
break;
case FILE_SOURCE_LOCATION_OFFSETS:
F.SLocFileOffsets = (const uint32_t *)BlobStart;
F.LocalNumSLocFileEntries = Record[0];
break;
case SOURCE_LOCATION_PRELOADS: {
// Need to transform from the local view (1-based IDs) to the global view,
// which is based off F.SLocEntryBaseID.
PreloadSLocEntries.reserve(PreloadSLocEntries.size() + Record.size());
for (unsigned I = 0, N = Record.size(); I != N; ++I)
PreloadSLocEntries.push_back(int(Record[I] - 1) + F.SLocEntryBaseID);
break;
}
case STAT_CACHE: {
if (!DisableStatCache) {
ASTStatCache *MyStatCache =
new ASTStatCache((const unsigned char *)BlobStart + Record[0],
(const unsigned char *)BlobStart,
NumStatHits, NumStatMisses);
FileMgr.addStatCache(MyStatCache);
F.StatCache = MyStatCache;
}
break;
}
case EXT_VECTOR_DECLS:
for (unsigned I = 0, N = Record.size(); I != N; ++I)
ExtVectorDecls.push_back(getGlobalDeclID(F, Record[I]));
break;
case VTABLE_USES:
// Later tables overwrite earlier ones.
// FIXME: Modules will have some trouble with this.
VTableUses.clear();
for (unsigned I = 0, N = Record.size(); I != N; ++I)
VTableUses.push_back(getGlobalDeclID(F, Record[I]));
break;
case DYNAMIC_CLASSES:
for (unsigned I = 0, N = Record.size(); I != N; ++I)
DynamicClasses.push_back(getGlobalDeclID(F, Record[I]));
break;
case PENDING_IMPLICIT_INSTANTIATIONS:
for (unsigned I = 0, N = Record.size(); I != N; ++I)
F.PendingInstantiations.push_back(getGlobalDeclID(F, Record[I]));
break;
case SEMA_DECL_REFS:
// Later tables overwrite earlier ones.
// FIXME: Modules will have some trouble with this.
SemaDeclRefs.clear();
for (unsigned I = 0, N = Record.size(); I != N; ++I)
SemaDeclRefs.push_back(getGlobalDeclID(F, Record[I]));
break;
case ORIGINAL_FILE_NAME:
// The primary AST will be the last to get here, so it will be the one
// that's used.
ActualOriginalFileName.assign(BlobStart, BlobLen);
OriginalFileName = ActualOriginalFileName;
MaybeAddSystemRootToFilename(OriginalFileName);
break;
case ORIGINAL_FILE_ID:
OriginalFileID = FileID::get(Record[0]);
break;
case ORIGINAL_PCH_DIR:
// The primary AST will be the last to get here, so it will be the one
// that's used.
OriginalDir.assign(BlobStart, BlobLen);
break;
case VERSION_CONTROL_BRANCH_REVISION: {
const std::string &CurBranch = getClangFullRepositoryVersion();
llvm::StringRef ASTBranch(BlobStart, BlobLen);
if (llvm::StringRef(CurBranch) != ASTBranch && !DisableValidation) {
Diag(diag::warn_pch_different_branch) << ASTBranch << CurBranch;
return IgnorePCH;
}
break;
}
case MACRO_DEFINITION_OFFSETS: {
F.MacroDefinitionOffsets = (const uint32_t *)BlobStart;
F.NumPreallocatedPreprocessingEntities = Record[0];
F.LocalNumMacroDefinitions = Record[1];
// Introduce the global -> local mapping for preprocessed entities within
// this AST file.
unsigned StartingID;
if (PP) {
if (!PP->getPreprocessingRecord())
PP->createPreprocessingRecord(true);
if (!PP->getPreprocessingRecord()->getExternalSource())
PP->getPreprocessingRecord()->SetExternalSource(*this);
StartingID
= PP->getPreprocessingRecord()
->allocateLoadedEntities(F.NumPreallocatedPreprocessingEntities);
} else {
// FIXME: We'll eventually want to kill this path, since it assumes
// a particular allocation strategy in the preprocessing record.
StartingID = getTotalNumPreprocessedEntities();
}
GlobalPreprocessedEntityMap.insert(
std::make_pair(StartingID,
std::make_pair(&F, -(int)StartingID)));
// Introduce the global -> local mapping for macro definitions within
// this AST file.
GlobalMacroDefinitionMap.insert(
std::make_pair(getTotalNumMacroDefinitions() + 1,
std::make_pair(&F,
-getTotalNumMacroDefinitions())));
MacroDefinitionsLoaded.resize(
MacroDefinitionsLoaded.size() + F.LocalNumMacroDefinitions);
break;
}
case DECL_UPDATE_OFFSETS: {
if (Record.size() % 2 != 0) {
Error("invalid DECL_UPDATE_OFFSETS block in AST file");
return Failure;
}
for (unsigned I = 0, N = Record.size(); I != N; I += 2)
DeclUpdateOffsets[static_cast<DeclID>(Record[I])]
.push_back(std::make_pair(&F, Record[I+1]));
break;
}
case DECL_REPLACEMENTS: {
if (Record.size() % 2 != 0) {
Error("invalid DECL_REPLACEMENTS block in AST file");
return Failure;
}
for (unsigned I = 0, N = Record.size(); I != N; I += 2)
ReplacedDecls[static_cast<DeclID>(Record[I])] =
std::make_pair(&F, Record[I+1]);
break;
}
case CXX_BASE_SPECIFIER_OFFSETS: {
if (F.LocalNumCXXBaseSpecifiers != 0) {
Error("duplicate CXX_BASE_SPECIFIER_OFFSETS record in AST file");
return Failure;
}
F.LocalNumCXXBaseSpecifiers = Record[0];
F.CXXBaseSpecifiersOffsets = (const uint32_t *)BlobStart;
GlobalCXXBaseSpecifiersMap.insert(std::make_pair(
getTotalNumCXXBaseSpecifiers() + 1,
std::make_pair(&F,
-getTotalNumCXXBaseSpecifiers())));
NumCXXBaseSpecifiersLoaded += F.LocalNumCXXBaseSpecifiers;
break;
}
case DIAG_PRAGMA_MAPPINGS:
if (Record.size() % 2 != 0) {
Error("invalid DIAG_USER_MAPPINGS block in AST file");
return Failure;
}
if (F.PragmaDiagMappings.empty())
F.PragmaDiagMappings.swap(Record);
else
F.PragmaDiagMappings.insert(F.PragmaDiagMappings.end(),
Record.begin(), Record.end());
break;
case CUDA_SPECIAL_DECL_REFS:
// Later tables overwrite earlier ones.
// FIXME: Modules will have trouble with this.
CUDASpecialDeclRefs.clear();
for (unsigned I = 0, N = Record.size(); I != N; ++I)
CUDASpecialDeclRefs.push_back(getGlobalDeclID(F, Record[I]));
break;
case HEADER_SEARCH_TABLE:
F.HeaderFileInfoTableData = BlobStart;
F.LocalNumHeaderFileInfos = Record[1];
if (Record[0]) {
F.HeaderFileInfoTable
= HeaderFileInfoLookupTable::Create(
(const unsigned char *)F.HeaderFileInfoTableData + Record[0],
(const unsigned char *)F.HeaderFileInfoTableData);
if (PP)
PP->getHeaderSearchInfo().SetExternalSource(this);
}
break;
case FP_PRAGMA_OPTIONS:
// Later tables overwrite earlier ones.
FPPragmaOptions.swap(Record);
break;
case OPENCL_EXTENSIONS:
// Later tables overwrite earlier ones.
OpenCLExtensions.swap(Record);
break;
case TENTATIVE_DEFINITIONS:
for (unsigned I = 0, N = Record.size(); I != N; ++I)
TentativeDefinitions.push_back(getGlobalDeclID(F, Record[I]));
break;
case KNOWN_NAMESPACES:
for (unsigned I = 0, N = Record.size(); I != N; ++I)
KnownNamespaces.push_back(getGlobalDeclID(F, Record[I]));
break;
}
First = false;
}
Error("premature end of bitstream in AST file");
return Failure;
}
ASTReader::ASTReadResult ASTReader::validateFileEntries() {
for (unsigned CI = 0, CN = Chain.size(); CI != CN; ++CI) {
Module *F = Chain[CI];
llvm::BitstreamCursor &SLocEntryCursor = F->SLocEntryCursor;
for (unsigned i = 0, e = F->LocalNumSLocFileEntries; i != e; ++i) {
SLocEntryCursor.JumpToBit(F->SLocFileOffsets[i]);
unsigned Code = SLocEntryCursor.ReadCode();
if (Code == llvm::bitc::END_BLOCK ||
Code == llvm::bitc::ENTER_SUBBLOCK ||
Code == llvm::bitc::DEFINE_ABBREV) {
Error("incorrectly-formatted source location entry in AST file");
return Failure;
}
RecordData Record;
const char *BlobStart;
unsigned BlobLen;
switch (SLocEntryCursor.ReadRecord(Code, Record, &BlobStart, &BlobLen)) {
default:
Error("incorrectly-formatted source location entry in AST file");
return Failure;
case SM_SLOC_FILE_ENTRY: {
llvm::StringRef Filename(BlobStart, BlobLen);
const FileEntry *File = getFileEntry(Filename);
if (File == 0) {
std::string ErrorStr = "could not find file '";
ErrorStr += Filename;
ErrorStr += "' referenced by AST file";
Error(ErrorStr.c_str());
return IgnorePCH;
}
if (Record.size() < 6) {
Error("source location entry is incorrect");
return Failure;
}
// The stat info from the FileEntry came from the cached stat
// info of the PCH, so we cannot trust it.
struct stat StatBuf;
if (::stat(File->getName(), &StatBuf) != 0) {
StatBuf.st_size = File->getSize();
StatBuf.st_mtime = File->getModificationTime();
}
if (((off_t)Record[4] != StatBuf.st_size
#if !defined(LLVM_ON_WIN32)
// In our regression testing, the Windows file system seems to
// have inconsistent modification times that sometimes
// erroneously trigger this error-handling path.
|| (time_t)Record[5] != StatBuf.st_mtime
#endif
)) {
Error(diag::err_fe_pch_file_modified, Filename);
return IgnorePCH;
}
break;
}
}
}
}
return Success;
}
ASTReader::ASTReadResult ASTReader::ReadAST(const std::string &FileName,
ModuleKind Type) {
switch(ReadASTCore(FileName, Type)) {
case Failure: return Failure;
case IgnorePCH: return IgnorePCH;
case Success: break;
}
// Here comes stuff that we only do once the entire chain is loaded.
if (!DisableValidation) {
switch(validateFileEntries()) {
case Failure: return Failure;
case IgnorePCH: return IgnorePCH;
case Success: break;
}
}
// Preload SLocEntries.
for (unsigned I = 0, N = PreloadSLocEntries.size(); I != N; ++I) {
ASTReadResult Result = ReadSLocEntryRecord(PreloadSLocEntries[I]);
if (Result != Success)
return Failure;
}
PreloadSLocEntries.clear();
// Check the predefines buffers.
if (!DisableValidation && CheckPredefinesBuffers())
return IgnorePCH;
if (PP) {
// Initialization of keywords and pragmas occurs before the
// AST file is read, so there may be some identifiers that were
// loaded into the IdentifierTable before we intercepted the
// creation of identifiers. Iterate through the list of known
// identifiers and determine whether we have to establish
// preprocessor definitions or top-level identifier declaration
// chains for those identifiers.
//
// We copy the IdentifierInfo pointers to a small vector first,
// since de-serializing declarations or macro definitions can add
// new entries into the identifier table, invalidating the
// iterators.
llvm::SmallVector<IdentifierInfo *, 128> Identifiers;
for (IdentifierTable::iterator Id = PP->getIdentifierTable().begin(),
IdEnd = PP->getIdentifierTable().end();
Id != IdEnd; ++Id)
Identifiers.push_back(Id->second);
// We need to search the tables in all files.
for (unsigned J = 0, M = Chain.size(); J != M; ++J) {
ASTIdentifierLookupTable *IdTable
= (ASTIdentifierLookupTable *)Chain[J]->IdentifierLookupTable;
// Not all AST files necessarily have identifier tables, only the useful
// ones.
if (!IdTable)
continue;
for (unsigned I = 0, N = Identifiers.size(); I != N; ++I) {
IdentifierInfo *II = Identifiers[I];
// Look in the on-disk hash tables for an entry for this identifier
ASTIdentifierLookupTrait Info(*this, *Chain[J], II);
std::pair<const char*,unsigned> Key(II->getNameStart(),II->getLength());
ASTIdentifierLookupTable::iterator Pos = IdTable->find(Key, &Info);
if (Pos == IdTable->end())
continue;
// Dereferencing the iterator has the effect of populating the
// IdentifierInfo node with the various declarations it needs.
(void)*Pos;
}
}
}
if (Context)
InitializeContext(*Context);
if (DeserializationListener)
DeserializationListener->ReaderInitialized(this);
// If this AST file is a precompiled preamble, then set the main file ID of
// the source manager to the file source file from which the preamble was
// built. This is the only valid way to use a precompiled preamble.
if (Type == MK_Preamble) {
if (OriginalFileID.isInvalid()) {
SourceLocation Loc
= SourceMgr.getLocation(FileMgr.getFile(getOriginalSourceFile()), 1, 1);
if (Loc.isValid())
OriginalFileID = SourceMgr.getDecomposedLoc(Loc).first;
}
else {
OriginalFileID = FileID::get(Chain[0]->SLocEntryBaseID
+ OriginalFileID.getOpaqueValue() - 1);
}
if (!OriginalFileID.isInvalid())
SourceMgr.SetPreambleFileID(OriginalFileID);
}
return Success;
}
ASTReader::ASTReadResult ASTReader::ReadASTCore(llvm::StringRef FileName,
ModuleKind Type) {
Module *Prev = Chain.empty() ? 0 : Chain.back();
Chain.push_back(new Module(Type));
Module &F = *Chain.back();
if (Prev)
Prev->NextInSource = &F;
else
FirstInSource = &F;
F.Loaders.push_back(Prev);
// A non-module AST file's module name is $filename.
Modules["$" + FileName.str()] = &F;
// Set the AST file name.
F.FileName = FileName;
if (FileName != "-") {
CurrentDir = llvm::sys::path::parent_path(FileName);
if (CurrentDir.empty()) CurrentDir = ".";
}
if (!ASTBuffers.empty()) {
F.Buffer.reset(ASTBuffers.back());
ASTBuffers.pop_back();
assert(F.Buffer && "Passed null buffer");
} else {
// Open the AST file.
//
// FIXME: This shouldn't be here, we should just take a raw_ostream.
std::string ErrStr;
llvm::error_code ec;
if (FileName == "-") {
ec = llvm::MemoryBuffer::getSTDIN(F.Buffer);
if (ec)
ErrStr = ec.message();
} else
F.Buffer.reset(FileMgr.getBufferForFile(FileName, &ErrStr));
if (!F.Buffer) {
Error(ErrStr.c_str());
return IgnorePCH;
}
}
// Initialize the stream
F.StreamFile.init((const unsigned char *)F.Buffer->getBufferStart(),
(const unsigned char *)F.Buffer->getBufferEnd());
llvm::BitstreamCursor &Stream = F.Stream;
Stream.init(F.StreamFile);
F.SizeInBits = F.Buffer->getBufferSize() * 8;
// Sniff for the signature.
if (Stream.Read(8) != 'C' ||
Stream.Read(8) != 'P' ||
Stream.Read(8) != 'C' ||
Stream.Read(8) != 'H') {
Diag(diag::err_not_a_pch_file) << FileName;
return Failure;
}
while (!Stream.AtEndOfStream()) {
unsigned Code = Stream.ReadCode();
if (Code != llvm::bitc::ENTER_SUBBLOCK) {
Error("invalid record at top-level of AST file");
return Failure;
}
unsigned BlockID = Stream.ReadSubBlockID();
// We only know the AST subblock ID.
switch (BlockID) {
case llvm::bitc::BLOCKINFO_BLOCK_ID:
if (Stream.ReadBlockInfoBlock()) {
Error("malformed BlockInfoBlock in AST file");
return Failure;
}
break;
case AST_BLOCK_ID:
switch (ReadASTBlock(F)) {
case Success:
break;
case Failure:
return Failure;
case IgnorePCH:
// FIXME: We could consider reading through to the end of this
// AST block, skipping subblocks, to see if there are other
// AST blocks elsewhere.
// FIXME: We can't clear loaded slocentries anymore.
//SourceMgr.ClearPreallocatedSLocEntries();
// Remove the stat cache.
if (F.StatCache)
FileMgr.removeStatCache((ASTStatCache*)F.StatCache);
return IgnorePCH;
}
break;
default:
if (Stream.SkipBlock()) {
Error("malformed block record in AST file");
return Failure;
}
break;
}
}
// Once read, set the Module bit base offset and update the size in
// bits of all files we've seen.
F.GlobalBitOffset = TotalModulesSizeInBits;
TotalModulesSizeInBits += F.SizeInBits;
GlobalBitOffsetsMap.insert(std::make_pair(F.GlobalBitOffset, &F));
return Success;
}
void ASTReader::setPreprocessor(Preprocessor &pp) {
PP = &pp;
if (unsigned N = getTotalNumPreprocessedEntities()) {
if (!PP->getPreprocessingRecord())
PP->createPreprocessingRecord(true);
PP->getPreprocessingRecord()->SetExternalSource(*this);
PP->getPreprocessingRecord()->allocateLoadedEntities(N);
}
PP->getHeaderSearchInfo().SetExternalLookup(this);
PP->getHeaderSearchInfo().SetExternalSource(this);
}
void ASTReader::InitializeContext(ASTContext &Ctx) {
Context = &Ctx;
assert(Context && "Passed null context!");
assert(PP && "Forgot to set Preprocessor ?");
PP->getIdentifierTable().setExternalIdentifierLookup(this);
PP->setExternalSource(this);
// If we have an update block for the TU waiting, we have to add it before
// deserializing the decl.
DeclContextOffsetsMap::iterator DCU = DeclContextOffsets.find(0);
if (DCU != DeclContextOffsets.end()) {
// Insertion could invalidate map, so grab vector.
DeclContextInfos T;
T.swap(DCU->second);
DeclContextOffsets.erase(DCU);
DeclContextOffsets[Ctx.getTranslationUnitDecl()].swap(T);
}
// Load the translation unit declaration
GetTranslationUnitDecl();
// Load the special types.
Context->setBuiltinVaListType(
GetType(SpecialTypes[SPECIAL_TYPE_BUILTIN_VA_LIST]));
if (unsigned Id = SpecialTypes[SPECIAL_TYPE_OBJC_ID])
Context->setObjCIdType(GetType(Id));
if (unsigned Sel = SpecialTypes[SPECIAL_TYPE_OBJC_SELECTOR])
Context->setObjCSelType(GetType(Sel));
if (unsigned Proto = SpecialTypes[SPECIAL_TYPE_OBJC_PROTOCOL])
Context->setObjCProtoType(GetType(Proto));
if (unsigned Class = SpecialTypes[SPECIAL_TYPE_OBJC_CLASS])
Context->setObjCClassType(GetType(Class));
if (unsigned String = SpecialTypes[SPECIAL_TYPE_CF_CONSTANT_STRING])
Context->setCFConstantStringType(GetType(String));
if (unsigned FastEnum
= SpecialTypes[SPECIAL_TYPE_OBJC_FAST_ENUMERATION_STATE])
Context->setObjCFastEnumerationStateType(GetType(FastEnum));
if (unsigned File = SpecialTypes[SPECIAL_TYPE_FILE]) {
QualType FileType = GetType(File);
if (FileType.isNull()) {
Error("FILE type is NULL");
return;
}
if (const TypedefType *Typedef = FileType->getAs<TypedefType>())
Context->setFILEDecl(Typedef->getDecl());
else {
const TagType *Tag = FileType->getAs<TagType>();
if (!Tag) {
Error("Invalid FILE type in AST file");
return;
}
Context->setFILEDecl(Tag->getDecl());
}
}
if (unsigned Jmp_buf = SpecialTypes[SPECIAL_TYPE_jmp_buf]) {
QualType Jmp_bufType = GetType(Jmp_buf);
if (Jmp_bufType.isNull()) {
Error("jmp_bug type is NULL");
return;
}
if (const TypedefType *Typedef = Jmp_bufType->getAs<TypedefType>())
Context->setjmp_bufDecl(Typedef->getDecl());
else {
const TagType *Tag = Jmp_bufType->getAs<TagType>();
if (!Tag) {
Error("Invalid jmp_buf type in AST file");
return;
}
Context->setjmp_bufDecl(Tag->getDecl());
}
}
if (unsigned Sigjmp_buf = SpecialTypes[SPECIAL_TYPE_sigjmp_buf]) {
QualType Sigjmp_bufType = GetType(Sigjmp_buf);
if (Sigjmp_bufType.isNull()) {
Error("sigjmp_buf type is NULL");
return;
}
if (const TypedefType *Typedef = Sigjmp_bufType->getAs<TypedefType>())
Context->setsigjmp_bufDecl(Typedef->getDecl());
else {
const TagType *Tag = Sigjmp_bufType->getAs<TagType>();
assert(Tag && "Invalid sigjmp_buf type in AST file");
Context->setsigjmp_bufDecl(Tag->getDecl());
}
}
if (unsigned ObjCIdRedef
= SpecialTypes[SPECIAL_TYPE_OBJC_ID_REDEFINITION])
Context->ObjCIdRedefinitionType = GetType(ObjCIdRedef);
if (unsigned ObjCClassRedef
= SpecialTypes[SPECIAL_TYPE_OBJC_CLASS_REDEFINITION])
Context->ObjCClassRedefinitionType = GetType(ObjCClassRedef);
if (unsigned String = SpecialTypes[SPECIAL_TYPE_BLOCK_DESCRIPTOR])
Context->setBlockDescriptorType(GetType(String));
if (unsigned String
= SpecialTypes[SPECIAL_TYPE_BLOCK_EXTENDED_DESCRIPTOR])
Context->setBlockDescriptorExtendedType(GetType(String));
if (unsigned ObjCSelRedef
= SpecialTypes[SPECIAL_TYPE_OBJC_SEL_REDEFINITION])
Context->ObjCSelRedefinitionType = GetType(ObjCSelRedef);
if (unsigned String = SpecialTypes[SPECIAL_TYPE_NS_CONSTANT_STRING])
Context->setNSConstantStringType(GetType(String));
if (SpecialTypes[SPECIAL_TYPE_INT128_INSTALLED])
Context->setInt128Installed();
if (unsigned AutoDeduct = SpecialTypes[SPECIAL_TYPE_AUTO_DEDUCT])
Context->AutoDeductTy = GetType(AutoDeduct);
if (unsigned AutoRRefDeduct = SpecialTypes[SPECIAL_TYPE_AUTO_RREF_DEDUCT])
Context->AutoRRefDeductTy = GetType(AutoRRefDeduct);
ReadPragmaDiagnosticMappings(Context->getDiagnostics());
// If there were any CUDA special declarations, deserialize them.
if (!CUDASpecialDeclRefs.empty()) {
assert(CUDASpecialDeclRefs.size() == 1 && "More decl refs than expected!");
Context->setcudaConfigureCallDecl(
cast<FunctionDecl>(GetDecl(CUDASpecialDeclRefs[0])));
}
}
/// \brief Retrieve the name of the original source file name
/// directly from the AST file, without actually loading the AST
/// file.
std::string ASTReader::getOriginalSourceFile(const std::string &ASTFileName,
FileManager &FileMgr,
Diagnostic &Diags) {
// Open the AST file.
std::string ErrStr;
llvm::OwningPtr<llvm::MemoryBuffer> Buffer;
Buffer.reset(FileMgr.getBufferForFile(ASTFileName, &ErrStr));
if (!Buffer) {
Diags.Report(diag::err_fe_unable_to_read_pch_file) << ErrStr;
return std::string();
}
// Initialize the stream
llvm::BitstreamReader StreamFile;
llvm::BitstreamCursor Stream;
StreamFile.init((const unsigned char *)Buffer->getBufferStart(),
(const unsigned char *)Buffer->getBufferEnd());
Stream.init(StreamFile);
// Sniff for the signature.
if (Stream.Read(8) != 'C' ||
Stream.Read(8) != 'P' ||
Stream.Read(8) != 'C' ||
Stream.Read(8) != 'H') {
Diags.Report(diag::err_fe_not_a_pch_file) << ASTFileName;
return std::string();
}
RecordData Record;
while (!Stream.AtEndOfStream()) {
unsigned Code = Stream.ReadCode();
if (Code == llvm::bitc::ENTER_SUBBLOCK) {
unsigned BlockID = Stream.ReadSubBlockID();
// We only know the AST subblock ID.
switch (BlockID) {
case AST_BLOCK_ID:
if (Stream.EnterSubBlock(AST_BLOCK_ID)) {
Diags.Report(diag::err_fe_pch_malformed_block) << ASTFileName;
return std::string();
}
break;
default:
if (Stream.SkipBlock()) {
Diags.Report(diag::err_fe_pch_malformed_block) << ASTFileName;
return std::string();
}
break;
}
continue;
}
if (Code == llvm::bitc::END_BLOCK) {
if (Stream.ReadBlockEnd()) {
Diags.Report(diag::err_fe_pch_error_at_end_block) << ASTFileName;
return std::string();
}
continue;
}
if (Code == llvm::bitc::DEFINE_ABBREV) {
Stream.ReadAbbrevRecord();
continue;
}
Record.clear();
const char *BlobStart = 0;
unsigned BlobLen = 0;
if (Stream.ReadRecord(Code, Record, &BlobStart, &BlobLen)
== ORIGINAL_FILE_NAME)
return std::string(BlobStart, BlobLen);
}
return std::string();
}
/// \brief Parse the record that corresponds to a LangOptions data
/// structure.
///
/// This routine parses the language options from the AST file and then gives
/// them to the AST listener if one is set.
///
/// \returns true if the listener deems the file unacceptable, false otherwise.
bool ASTReader::ParseLanguageOptions(
const llvm::SmallVectorImpl<uint64_t> &Record) {
if (Listener) {
LangOptions LangOpts;
#define PARSE_LANGOPT(Option) \
LangOpts.Option = Record[Idx]; \
++Idx
unsigned Idx = 0;
PARSE_LANGOPT(Trigraphs);
PARSE_LANGOPT(BCPLComment);
PARSE_LANGOPT(DollarIdents);
PARSE_LANGOPT(AsmPreprocessor);
PARSE_LANGOPT(GNUMode);
PARSE_LANGOPT(GNUKeywords);
PARSE_LANGOPT(ImplicitInt);
PARSE_LANGOPT(Digraphs);
PARSE_LANGOPT(HexFloats);
PARSE_LANGOPT(C99);
PARSE_LANGOPT(C1X);
PARSE_LANGOPT(Microsoft);
PARSE_LANGOPT(CPlusPlus);
PARSE_LANGOPT(CPlusPlus0x);
PARSE_LANGOPT(CXXOperatorNames);
PARSE_LANGOPT(ObjC1);
PARSE_LANGOPT(ObjC2);
PARSE_LANGOPT(ObjCNonFragileABI);
PARSE_LANGOPT(ObjCNonFragileABI2);
PARSE_LANGOPT(AppleKext);
PARSE_LANGOPT(ObjCDefaultSynthProperties);
PARSE_LANGOPT(ObjCInferRelatedResultType);
PARSE_LANGOPT(NoConstantCFStrings);
PARSE_LANGOPT(PascalStrings);
PARSE_LANGOPT(WritableStrings);
PARSE_LANGOPT(LaxVectorConversions);
PARSE_LANGOPT(AltiVec);
PARSE_LANGOPT(Exceptions);
PARSE_LANGOPT(ObjCExceptions);
PARSE_LANGOPT(CXXExceptions);
PARSE_LANGOPT(SjLjExceptions);
PARSE_LANGOPT(MSBitfields);
PARSE_LANGOPT(NeXTRuntime);
PARSE_LANGOPT(Freestanding);
PARSE_LANGOPT(NoBuiltin);
PARSE_LANGOPT(ThreadsafeStatics);
PARSE_LANGOPT(POSIXThreads);
PARSE_LANGOPT(Blocks);
PARSE_LANGOPT(EmitAllDecls);
PARSE_LANGOPT(MathErrno);
LangOpts.setSignedOverflowBehavior((LangOptions::SignedOverflowBehaviorTy)
Record[Idx++]);
PARSE_LANGOPT(HeinousExtensions);
PARSE_LANGOPT(Optimize);
PARSE_LANGOPT(OptimizeSize);
PARSE_LANGOPT(Static);
PARSE_LANGOPT(PICLevel);
PARSE_LANGOPT(GNUInline);
PARSE_LANGOPT(NoInline);
PARSE_LANGOPT(Deprecated);
PARSE_LANGOPT(AccessControl);
PARSE_LANGOPT(CharIsSigned);
PARSE_LANGOPT(ShortWChar);
PARSE_LANGOPT(ShortEnums);
LangOpts.setGCMode((LangOptions::GCMode)Record[Idx++]);
LangOpts.setVisibilityMode((Visibility)Record[Idx++]);
LangOpts.setStackProtectorMode((LangOptions::StackProtectorMode)
Record[Idx++]);
PARSE_LANGOPT(InstantiationDepth);
PARSE_LANGOPT(OpenCL);
PARSE_LANGOPT(CUDA);
PARSE_LANGOPT(CatchUndefined);
PARSE_LANGOPT(DefaultFPContract);
PARSE_LANGOPT(ElideConstructors);
PARSE_LANGOPT(SpellChecking);
PARSE_LANGOPT(MRTD);
PARSE_LANGOPT(ObjCAutoRefCount);
#undef PARSE_LANGOPT
return Listener->ReadLanguageOptions(LangOpts);
}
return false;
}
void ASTReader::ReadPreprocessedEntities() {
for (unsigned I = 0, N = Chain.size(); I != N; ++I) {
Module &F = *Chain[I];
if (!F.PreprocessorDetailCursor.getBitStreamReader())
continue;
SavedStreamPosition SavedPosition(F.PreprocessorDetailCursor);
F.PreprocessorDetailCursor.JumpToBit(F.PreprocessorDetailStartOffset);
while (LoadPreprocessedEntity(F)) { }
}
}
PreprocessedEntity *ASTReader::ReadPreprocessedEntityAtOffset(uint64_t Offset) {
RecordLocation Loc = getLocalBitOffset(Offset);
// Keep track of where we are in the stream, then jump back there
// after reading this entity.
SavedStreamPosition SavedPosition(Loc.F->PreprocessorDetailCursor);
Loc.F->PreprocessorDetailCursor.JumpToBit(Loc.Offset);
return LoadPreprocessedEntity(*Loc.F);
}
HeaderFileInfo ASTReader::GetHeaderFileInfo(const FileEntry *FE) {
HeaderFileInfoTrait Trait(FE->getName());
for (unsigned I = 0, N = Chain.size(); I != N; ++I) {
Module &F = *Chain[I];
HeaderFileInfoLookupTable *Table
= static_cast<HeaderFileInfoLookupTable *>(F.HeaderFileInfoTable);
if (!Table)
continue;
// Look in the on-disk hash table for an entry for this file name.
HeaderFileInfoLookupTable::iterator Pos = Table->find(FE->getName(),
&Trait);
if (Pos == Table->end())
continue;
HeaderFileInfo HFI = *Pos;
if (Listener)
Listener->ReadHeaderFileInfo(HFI, FE->getUID());
return HFI;
}
return HeaderFileInfo();
}
void ASTReader::ReadPragmaDiagnosticMappings(Diagnostic &Diag) {
for (unsigned I = 0, N = Chain.size(); I != N; ++I) {
Module &F = *Chain[I];
unsigned Idx = 0;
while (Idx < F.PragmaDiagMappings.size()) {
SourceLocation Loc = ReadSourceLocation(F, F.PragmaDiagMappings[Idx++]);
while (1) {
assert(Idx < F.PragmaDiagMappings.size() &&
"Invalid data, didn't find '-1' marking end of diag/map pairs");
if (Idx >= F.PragmaDiagMappings.size()) {
break; // Something is messed up but at least avoid infinite loop in
// release build.
}
unsigned DiagID = F.PragmaDiagMappings[Idx++];
if (DiagID == (unsigned)-1) {
break; // no more diag/map pairs for this location.
}
diag::Mapping Map = (diag::Mapping)F.PragmaDiagMappings[Idx++];
Diag.setDiagnosticMapping(DiagID, Map, Loc);
}
}
}
}
/// \brief Get the correct cursor and offset for loading a type.
ASTReader::RecordLocation ASTReader::TypeCursorForIndex(unsigned Index) {
GlobalTypeMapType::iterator I = GlobalTypeMap.find(Index+1);
assert(I != GlobalTypeMap.end() && "Corrupted global type map");
return RecordLocation(I->second.first,
I->second.first->TypeOffsets[Index + I->second.second]);
}
/// \brief Read and return the type with the given index..
///
/// The index is the type ID, shifted and minus the number of predefs. This
/// routine actually reads the record corresponding to the type at the given
/// location. It is a helper routine for GetType, which deals with reading type
/// IDs.
QualType ASTReader::readTypeRecord(unsigned Index) {
RecordLocation Loc = TypeCursorForIndex(Index);
llvm::BitstreamCursor &DeclsCursor = Loc.F->DeclsCursor;
// Keep track of where we are in the stream, then jump back there
// after reading this type.
SavedStreamPosition SavedPosition(DeclsCursor);
ReadingKindTracker ReadingKind(Read_Type, *this);
// Note that we are loading a type record.
Deserializing AType(this);
unsigned Idx = 0;
DeclsCursor.JumpToBit(Loc.Offset);
RecordData Record;
unsigned Code = DeclsCursor.ReadCode();
switch ((TypeCode)DeclsCursor.ReadRecord(Code, Record)) {
case TYPE_EXT_QUAL: {
if (Record.size() != 2) {
Error("Incorrect encoding of extended qualifier type");
return QualType();
}
QualType Base = readType(*Loc.F, Record, Idx);
Qualifiers Quals = Qualifiers::fromOpaqueValue(Record[Idx++]);
return Context->getQualifiedType(Base, Quals);
}
case TYPE_COMPLEX: {
if (Record.size() != 1) {
Error("Incorrect encoding of complex type");
return QualType();
}
QualType ElemType = readType(*Loc.F, Record, Idx);
return Context->getComplexType(ElemType);
}
case TYPE_POINTER: {
if (Record.size() != 1) {
Error("Incorrect encoding of pointer type");
return QualType();
}
QualType PointeeType = readType(*Loc.F, Record, Idx);
return Context->getPointerType(PointeeType);
}
case TYPE_BLOCK_POINTER: {
if (Record.size() != 1) {
Error("Incorrect encoding of block pointer type");
return QualType();
}
QualType PointeeType = readType(*Loc.F, Record, Idx);
return Context->getBlockPointerType(PointeeType);
}
case TYPE_LVALUE_REFERENCE: {
if (Record.size() != 2) {
Error("Incorrect encoding of lvalue reference type");
return QualType();
}
QualType PointeeType = readType(*Loc.F, Record, Idx);
return Context->getLValueReferenceType(PointeeType, Record[1]);
}
case TYPE_RVALUE_REFERENCE: {
if (Record.size() != 1) {
Error("Incorrect encoding of rvalue reference type");
return QualType();
}
QualType PointeeType = readType(*Loc.F, Record, Idx);
return Context->getRValueReferenceType(PointeeType);
}
case TYPE_MEMBER_POINTER: {
if (Record.size() != 2) {
Error("Incorrect encoding of member pointer type");
return QualType();
}
QualType PointeeType = readType(*Loc.F, Record, Idx);
QualType ClassType = readType(*Loc.F, Record, Idx);
if (PointeeType.isNull() || ClassType.isNull())
return QualType();
return Context->getMemberPointerType(PointeeType, ClassType.getTypePtr());
}
case TYPE_CONSTANT_ARRAY: {
QualType ElementType = readType(*Loc.F, Record, Idx);
ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[1];
unsigned IndexTypeQuals = Record[2];
unsigned Idx = 3;
llvm::APInt Size = ReadAPInt(Record, Idx);
return Context->getConstantArrayType(ElementType, Size,
ASM, IndexTypeQuals);
}
case TYPE_INCOMPLETE_ARRAY: {
QualType ElementType = readType(*Loc.F, Record, Idx);
ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[1];
unsigned IndexTypeQuals = Record[2];
return Context->getIncompleteArrayType(ElementType, ASM, IndexTypeQuals);
}
case TYPE_VARIABLE_ARRAY: {
QualType ElementType = readType(*Loc.F, Record, Idx);
ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[1];
unsigned IndexTypeQuals = Record[2];
SourceLocation LBLoc = ReadSourceLocation(*Loc.F, Record[3]);
SourceLocation RBLoc = ReadSourceLocation(*Loc.F, Record[4]);
return Context->getVariableArrayType(ElementType, ReadExpr(*Loc.F),
ASM, IndexTypeQuals,
SourceRange(LBLoc, RBLoc));
}
case TYPE_VECTOR: {
if (Record.size() != 3) {
Error("incorrect encoding of vector type in AST file");
return QualType();
}
QualType ElementType = readType(*Loc.F, Record, Idx);
unsigned NumElements = Record[1];
unsigned VecKind = Record[2];
return Context->getVectorType(ElementType, NumElements,
(VectorType::VectorKind)VecKind);
}
case TYPE_EXT_VECTOR: {
if (Record.size() != 3) {
Error("incorrect encoding of extended vector type in AST file");
return QualType();
}
QualType ElementType = readType(*Loc.F, Record, Idx);
unsigned NumElements = Record[1];
return Context->getExtVectorType(ElementType, NumElements);
}
case TYPE_FUNCTION_NO_PROTO: {
if (Record.size() != 6) {
Error("incorrect encoding of no-proto function type");
return QualType();
}
QualType ResultType = readType(*Loc.F, Record, Idx);
FunctionType::ExtInfo Info(Record[1], Record[2], Record[3],
(CallingConv)Record[4], Record[5]);
return Context->getFunctionNoProtoType(ResultType, Info);
}
case TYPE_FUNCTION_PROTO: {
QualType ResultType = readType(*Loc.F, Record, Idx);
FunctionProtoType::ExtProtoInfo EPI;
EPI.ExtInfo = FunctionType::ExtInfo(/*noreturn*/ Record[1],
/*hasregparm*/ Record[2],
/*regparm*/ Record[3],
static_cast<CallingConv>(Record[4]),
/*produces*/ Record[5]);
unsigned Idx = 6;
unsigned NumParams = Record[Idx++];
llvm::SmallVector<QualType, 16> ParamTypes;
for (unsigned I = 0; I != NumParams; ++I)
ParamTypes.push_back(readType(*Loc.F, Record, Idx));
EPI.Variadic = Record[Idx++];
EPI.TypeQuals = Record[Idx++];
EPI.RefQualifier = static_cast<RefQualifierKind>(Record[Idx++]);
ExceptionSpecificationType EST =
static_cast<ExceptionSpecificationType>(Record[Idx++]);
EPI.ExceptionSpecType = EST;
if (EST == EST_Dynamic) {
EPI.NumExceptions = Record[Idx++];
llvm::SmallVector<QualType, 2> Exceptions;
for (unsigned I = 0; I != EPI.NumExceptions; ++I)
Exceptions.push_back(readType(*Loc.F, Record, Idx));
EPI.Exceptions = Exceptions.data();
} else if (EST == EST_ComputedNoexcept) {
EPI.NoexceptExpr = ReadExpr(*Loc.F);
}
return Context->getFunctionType(ResultType, ParamTypes.data(), NumParams,
EPI);
}
case TYPE_UNRESOLVED_USING: {
unsigned Idx = 0;
return Context->getTypeDeclType(
ReadDeclAs<UnresolvedUsingTypenameDecl>(*Loc.F, Record, Idx));
}
case TYPE_TYPEDEF: {
if (Record.size() != 2) {
Error("incorrect encoding of typedef type");
return QualType();
}
unsigned Idx = 0;
TypedefNameDecl *Decl = ReadDeclAs<TypedefNameDecl>(*Loc.F, Record, Idx);
QualType Canonical = readType(*Loc.F, Record, Idx);
if (!Canonical.isNull())
Canonical = Context->getCanonicalType(Canonical);
return Context->getTypedefType(Decl, Canonical);
}
case TYPE_TYPEOF_EXPR:
return Context->getTypeOfExprType(ReadExpr(*Loc.F));
case TYPE_TYPEOF: {
if (Record.size() != 1) {
Error("incorrect encoding of typeof(type) in AST file");
return QualType();
}
QualType UnderlyingType = readType(*Loc.F, Record, Idx);
return Context->getTypeOfType(UnderlyingType);
}
case TYPE_DECLTYPE:
return Context->getDecltypeType(ReadExpr(*Loc.F));
case TYPE_UNARY_TRANSFORM: {
QualType BaseType = readType(*Loc.F, Record, Idx);
QualType UnderlyingType = readType(*Loc.F, Record, Idx);
UnaryTransformType::UTTKind UKind = (UnaryTransformType::UTTKind)Record[2];
return Context->getUnaryTransformType(BaseType, UnderlyingType, UKind);
}
case TYPE_AUTO:
return Context->getAutoType(readType(*Loc.F, Record, Idx));
case TYPE_RECORD: {
if (Record.size() != 2) {
Error("incorrect encoding of record type");
return QualType();
}
unsigned Idx = 0;
bool IsDependent = Record[Idx++];
QualType T
= Context->getRecordType(ReadDeclAs<RecordDecl>(*Loc.F, Record, Idx));
const_cast<Type*>(T.getTypePtr())->setDependent(IsDependent);
return T;
}
case TYPE_ENUM: {
if (Record.size() != 2) {
Error("incorrect encoding of enum type");
return QualType();
}
unsigned Idx = 0;
bool IsDependent = Record[Idx++];
QualType T
= Context->getEnumType(ReadDeclAs<EnumDecl>(*Loc.F, Record, Idx));
const_cast<Type*>(T.getTypePtr())->setDependent(IsDependent);
return T;
}
case TYPE_ATTRIBUTED: {
if (Record.size() != 3) {
Error("incorrect encoding of attributed type");
return QualType();
}
QualType modifiedType = readType(*Loc.F, Record, Idx);
QualType equivalentType = readType(*Loc.F, Record, Idx);
AttributedType::Kind kind = static_cast<AttributedType::Kind>(Record[2]);
return Context->getAttributedType(kind, modifiedType, equivalentType);
}
case TYPE_PAREN: {
if (Record.size() != 1) {
Error("incorrect encoding of paren type");
return QualType();
}
QualType InnerType = readType(*Loc.F, Record, Idx);
return Context->getParenType(InnerType);
}
case TYPE_PACK_EXPANSION: {
if (Record.size() != 2) {
Error("incorrect encoding of pack expansion type");
return QualType();
}
QualType Pattern = readType(*Loc.F, Record, Idx);
if (Pattern.isNull())
return QualType();
llvm::Optional<unsigned> NumExpansions;
if (Record[1])
NumExpansions = Record[1] - 1;
return Context->getPackExpansionType(Pattern, NumExpansions);
}
case TYPE_ELABORATED: {
unsigned Idx = 0;
ElaboratedTypeKeyword Keyword = (ElaboratedTypeKeyword)Record[Idx++];
NestedNameSpecifier *NNS = ReadNestedNameSpecifier(*Loc.F, Record, Idx);
QualType NamedType = readType(*Loc.F, Record, Idx);
return Context->getElaboratedType(Keyword, NNS, NamedType);
}
case TYPE_OBJC_INTERFACE: {
unsigned Idx = 0;
ObjCInterfaceDecl *ItfD
= ReadDeclAs<ObjCInterfaceDecl>(*Loc.F, Record, Idx);
return Context->getObjCInterfaceType(ItfD);
}
case TYPE_OBJC_OBJECT: {
unsigned Idx = 0;
QualType Base = readType(*Loc.F, Record, Idx);
unsigned NumProtos = Record[Idx++];
llvm::SmallVector<ObjCProtocolDecl*, 4> Protos;
for (unsigned I = 0; I != NumProtos; ++I)
Protos.push_back(ReadDeclAs<ObjCProtocolDecl>(*Loc.F, Record, Idx));
return Context->getObjCObjectType(Base, Protos.data(), NumProtos);
}
case TYPE_OBJC_OBJECT_POINTER: {
unsigned Idx = 0;
QualType Pointee = readType(*Loc.F, Record, Idx);
return Context->getObjCObjectPointerType(Pointee);
}
case TYPE_SUBST_TEMPLATE_TYPE_PARM: {
unsigned Idx = 0;
QualType Parm = readType(*Loc.F, Record, Idx);
QualType Replacement = readType(*Loc.F, Record, Idx);
return
Context->getSubstTemplateTypeParmType(cast<TemplateTypeParmType>(Parm),
Replacement);
}
case TYPE_SUBST_TEMPLATE_TYPE_PARM_PACK: {
unsigned Idx = 0;
QualType Parm = readType(*Loc.F, Record, Idx);
TemplateArgument ArgPack = ReadTemplateArgument(*Loc.F, Record, Idx);
return Context->getSubstTemplateTypeParmPackType(
cast<TemplateTypeParmType>(Parm),
ArgPack);
}
case TYPE_INJECTED_CLASS_NAME: {
CXXRecordDecl *D = ReadDeclAs<CXXRecordDecl>(*Loc.F, Record, Idx);
QualType TST = readType(*Loc.F, Record, Idx); // probably derivable
// FIXME: ASTContext::getInjectedClassNameType is not currently suitable
// for AST reading, too much interdependencies.
return
QualType(new (*Context, TypeAlignment) InjectedClassNameType(D, TST), 0);
}
case TYPE_TEMPLATE_TYPE_PARM: {
unsigned Idx = 0;
unsigned Depth = Record[Idx++];
unsigned Index = Record[Idx++];
bool Pack = Record[Idx++];
TemplateTypeParmDecl *D
= ReadDeclAs<TemplateTypeParmDecl>(*Loc.F, Record, Idx);
return Context->getTemplateTypeParmType(Depth, Index, Pack, D);
}
case TYPE_DEPENDENT_NAME: {
unsigned Idx = 0;
ElaboratedTypeKeyword Keyword = (ElaboratedTypeKeyword)Record[Idx++];
NestedNameSpecifier *NNS = ReadNestedNameSpecifier(*Loc.F, Record, Idx);
const IdentifierInfo *Name = this->GetIdentifierInfo(Record, Idx);
QualType Canon = readType(*Loc.F, Record, Idx);
if (!Canon.isNull())
Canon = Context->getCanonicalType(Canon);
return Context->getDependentNameType(Keyword, NNS, Name, Canon);
}
case TYPE_DEPENDENT_TEMPLATE_SPECIALIZATION: {
unsigned Idx = 0;
ElaboratedTypeKeyword Keyword = (ElaboratedTypeKeyword)Record[Idx++];
NestedNameSpecifier *NNS = ReadNestedNameSpecifier(*Loc.F, Record, Idx);
const IdentifierInfo *Name = this->GetIdentifierInfo(Record, Idx);
unsigned NumArgs = Record[Idx++];
llvm::SmallVector<TemplateArgument, 8> Args;
Args.reserve(NumArgs);
while (NumArgs--)
Args.push_back(ReadTemplateArgument(*Loc.F, Record, Idx));
return Context->getDependentTemplateSpecializationType(Keyword, NNS, Name,
Args.size(), Args.data());
}
case TYPE_DEPENDENT_SIZED_ARRAY: {
unsigned Idx = 0;
// ArrayType
QualType ElementType = readType(*Loc.F, Record, Idx);
ArrayType::ArraySizeModifier ASM
= (ArrayType::ArraySizeModifier)Record[Idx++];
unsigned IndexTypeQuals = Record[Idx++];
// DependentSizedArrayType
Expr *NumElts = ReadExpr(*Loc.F);
SourceRange Brackets = ReadSourceRange(*Loc.F, Record, Idx);
return Context->getDependentSizedArrayType(ElementType, NumElts, ASM,
IndexTypeQuals, Brackets);
}
case TYPE_TEMPLATE_SPECIALIZATION: {
unsigned Idx = 0;
bool IsDependent = Record[Idx++];
TemplateName Name = ReadTemplateName(*Loc.F, Record, Idx);
llvm::SmallVector<TemplateArgument, 8> Args;
ReadTemplateArgumentList(Args, *Loc.F, Record, Idx);
QualType Underlying = readType(*Loc.F, Record, Idx);
QualType T;
if (Underlying.isNull())
T = Context->getCanonicalTemplateSpecializationType(Name, Args.data(),
Args.size());
else
T = Context->getTemplateSpecializationType(Name, Args.data(),
Args.size(), Underlying);
const_cast<Type*>(T.getTypePtr())->setDependent(IsDependent);
return T;
}
}
// Suppress a GCC warning
return QualType();
}
class clang::TypeLocReader : public TypeLocVisitor<TypeLocReader> {
ASTReader &Reader;
Module &F;
llvm::BitstreamCursor &DeclsCursor;
const ASTReader::RecordData &Record;
unsigned &Idx;
SourceLocation ReadSourceLocation(const ASTReader::RecordData &R,
unsigned &I) {
return Reader.ReadSourceLocation(F, R, I);
}
template<typename T>
T *ReadDeclAs(const ASTReader::RecordData &Record, unsigned &Idx) {
return Reader.ReadDeclAs<T>(F, Record, Idx);
}
public:
TypeLocReader(ASTReader &Reader, Module &F,
const ASTReader::RecordData &Record, unsigned &Idx)
: Reader(Reader), F(F), DeclsCursor(F.DeclsCursor), Record(Record), Idx(Idx)
{ }
// We want compile-time assurance that we've enumerated all of
// these, so unfortunately we have to declare them first, then
// define them out-of-line.
#define ABSTRACT_TYPELOC(CLASS, PARENT)
#define TYPELOC(CLASS, PARENT) \
void Visit##CLASS##TypeLoc(CLASS##TypeLoc TyLoc);
#include "clang/AST/TypeLocNodes.def"
void VisitFunctionTypeLoc(FunctionTypeLoc);
void VisitArrayTypeLoc(ArrayTypeLoc);
};
void TypeLocReader::VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
// nothing to do
}
void TypeLocReader::VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
TL.setBuiltinLoc(ReadSourceLocation(Record, Idx));
if (TL.needsExtraLocalData()) {
TL.setWrittenTypeSpec(static_cast<DeclSpec::TST>(Record[Idx++]));
TL.setWrittenSignSpec(static_cast<DeclSpec::TSS>(Record[Idx++]));
TL.setWrittenWidthSpec(static_cast<DeclSpec::TSW>(Record[Idx++]));
TL.setModeAttr(Record[Idx++]);
}
}
void TypeLocReader::VisitComplexTypeLoc(ComplexTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitPointerTypeLoc(PointerTypeLoc TL) {
TL.setStarLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
TL.setCaretLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
TL.setAmpLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
TL.setAmpAmpLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
TL.setStarLoc(ReadSourceLocation(Record, Idx));
TL.setClassTInfo(Reader.GetTypeSourceInfo(F, Record, Idx));
}
void TypeLocReader::VisitArrayTypeLoc(ArrayTypeLoc TL) {
TL.setLBracketLoc(ReadSourceLocation(Record, Idx));
TL.setRBracketLoc(ReadSourceLocation(Record, Idx));
if (Record[Idx++])
TL.setSizeExpr(Reader.ReadExpr(F));
else
TL.setSizeExpr(0);
}
void TypeLocReader::VisitConstantArrayTypeLoc(ConstantArrayTypeLoc TL) {
VisitArrayTypeLoc(TL);
}
void TypeLocReader::VisitIncompleteArrayTypeLoc(IncompleteArrayTypeLoc TL) {
VisitArrayTypeLoc(TL);
}
void TypeLocReader::VisitVariableArrayTypeLoc(VariableArrayTypeLoc TL) {
VisitArrayTypeLoc(TL);
}
void TypeLocReader::VisitDependentSizedArrayTypeLoc(
DependentSizedArrayTypeLoc TL) {
VisitArrayTypeLoc(TL);
}
void TypeLocReader::VisitDependentSizedExtVectorTypeLoc(
DependentSizedExtVectorTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitVectorTypeLoc(VectorTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitExtVectorTypeLoc(ExtVectorTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitFunctionTypeLoc(FunctionTypeLoc TL) {
TL.setLocalRangeBegin(ReadSourceLocation(Record, Idx));
TL.setLocalRangeEnd(ReadSourceLocation(Record, Idx));
TL.setTrailingReturn(Record[Idx++]);
for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) {
TL.setArg(i, ReadDeclAs<ParmVarDecl>(Record, Idx));
}
}
void TypeLocReader::VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc TL) {
VisitFunctionTypeLoc(TL);
}
void TypeLocReader::VisitFunctionNoProtoTypeLoc(FunctionNoProtoTypeLoc TL) {
VisitFunctionTypeLoc(TL);
}
void TypeLocReader::VisitUnresolvedUsingTypeLoc(UnresolvedUsingTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitTypedefTypeLoc(TypedefTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
TL.setTypeofLoc(ReadSourceLocation(Record, Idx));
TL.setLParenLoc(ReadSourceLocation(Record, Idx));
TL.setRParenLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
TL.setTypeofLoc(ReadSourceLocation(Record, Idx));
TL.setLParenLoc(ReadSourceLocation(Record, Idx));
TL.setRParenLoc(ReadSourceLocation(Record, Idx));
TL.setUnderlyingTInfo(Reader.GetTypeSourceInfo(F, Record, Idx));
}
void TypeLocReader::VisitDecltypeTypeLoc(DecltypeTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
TL.setKWLoc(ReadSourceLocation(Record, Idx));
TL.setLParenLoc(ReadSourceLocation(Record, Idx));
TL.setRParenLoc(ReadSourceLocation(Record, Idx));
TL.setUnderlyingTInfo(Reader.GetTypeSourceInfo(F, Record, Idx));
}
void TypeLocReader::VisitAutoTypeLoc(AutoTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitRecordTypeLoc(RecordTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitEnumTypeLoc(EnumTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitAttributedTypeLoc(AttributedTypeLoc TL) {
TL.setAttrNameLoc(ReadSourceLocation(Record, Idx));
if (TL.hasAttrOperand()) {
SourceRange range;
range.setBegin(ReadSourceLocation(Record, Idx));
range.setEnd(ReadSourceLocation(Record, Idx));
TL.setAttrOperandParensRange(range);
}
if (TL.hasAttrExprOperand()) {
if (Record[Idx++])
TL.setAttrExprOperand(Reader.ReadExpr(F));
else
TL.setAttrExprOperand(0);
} else if (TL.hasAttrEnumOperand())
TL.setAttrEnumOperandLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitSubstTemplateTypeParmTypeLoc(
SubstTemplateTypeParmTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitSubstTemplateTypeParmPackTypeLoc(
SubstTemplateTypeParmPackTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitTemplateSpecializationTypeLoc(
TemplateSpecializationTypeLoc TL) {
TL.setTemplateNameLoc(ReadSourceLocation(Record, Idx));
TL.setLAngleLoc(ReadSourceLocation(Record, Idx));
TL.setRAngleLoc(ReadSourceLocation(Record, Idx));
for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
TL.setArgLocInfo(i,
Reader.GetTemplateArgumentLocInfo(F,
TL.getTypePtr()->getArg(i).getKind(),
Record, Idx));
}
void TypeLocReader::VisitParenTypeLoc(ParenTypeLoc TL) {
TL.setLParenLoc(ReadSourceLocation(Record, Idx));
TL.setRParenLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
TL.setKeywordLoc(ReadSourceLocation(Record, Idx));
TL.setQualifierLoc(Reader.ReadNestedNameSpecifierLoc(F, Record, Idx));
}
void TypeLocReader::VisitInjectedClassNameTypeLoc(InjectedClassNameTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
TL.setKeywordLoc(ReadSourceLocation(Record, Idx));
TL.setQualifierLoc(Reader.ReadNestedNameSpecifierLoc(F, Record, Idx));
TL.setNameLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitDependentTemplateSpecializationTypeLoc(
DependentTemplateSpecializationTypeLoc TL) {
TL.setKeywordLoc(ReadSourceLocation(Record, Idx));
TL.setQualifierLoc(Reader.ReadNestedNameSpecifierLoc(F, Record, Idx));
TL.setNameLoc(ReadSourceLocation(Record, Idx));
TL.setLAngleLoc(ReadSourceLocation(Record, Idx));
TL.setRAngleLoc(ReadSourceLocation(Record, Idx));
for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I)
TL.setArgLocInfo(I,
Reader.GetTemplateArgumentLocInfo(F,
TL.getTypePtr()->getArg(I).getKind(),
Record, Idx));
}
void TypeLocReader::VisitPackExpansionTypeLoc(PackExpansionTypeLoc TL) {
TL.setEllipsisLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
TL.setNameLoc(ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
TL.setHasBaseTypeAsWritten(Record[Idx++]);
TL.setLAngleLoc(ReadSourceLocation(Record, Idx));
TL.setRAngleLoc(ReadSourceLocation(Record, Idx));
for (unsigned i = 0, e = TL.getNumProtocols(); i != e; ++i)
TL.setProtocolLoc(i, ReadSourceLocation(Record, Idx));
}
void TypeLocReader::VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
TL.setStarLoc(ReadSourceLocation(Record, Idx));
}
TypeSourceInfo *ASTReader::GetTypeSourceInfo(Module &F,
const RecordData &Record,
unsigned &Idx) {
QualType InfoTy = readType(F, Record, Idx);
if (InfoTy.isNull())
return 0;
TypeSourceInfo *TInfo = getContext()->CreateTypeSourceInfo(InfoTy);
TypeLocReader TLR(*this, F, Record, Idx);
for (TypeLoc TL = TInfo->getTypeLoc(); !TL.isNull(); TL = TL.getNextTypeLoc())
TLR.Visit(TL);
return TInfo;
}
QualType ASTReader::GetType(TypeID ID) {
unsigned FastQuals = ID & Qualifiers::FastMask;
unsigned Index = ID >> Qualifiers::FastWidth;
if (Index < NUM_PREDEF_TYPE_IDS) {
QualType T;
switch ((PredefinedTypeIDs)Index) {
case PREDEF_TYPE_NULL_ID: return QualType();
case PREDEF_TYPE_VOID_ID: T = Context->VoidTy; break;
case PREDEF_TYPE_BOOL_ID: T = Context->BoolTy; break;
case PREDEF_TYPE_CHAR_U_ID:
case PREDEF_TYPE_CHAR_S_ID:
// FIXME: Check that the signedness of CharTy is correct!
T = Context->CharTy;
break;
case PREDEF_TYPE_UCHAR_ID: T = Context->UnsignedCharTy; break;
case PREDEF_TYPE_USHORT_ID: T = Context->UnsignedShortTy; break;
case PREDEF_TYPE_UINT_ID: T = Context->UnsignedIntTy; break;
case PREDEF_TYPE_ULONG_ID: T = Context->UnsignedLongTy; break;
case PREDEF_TYPE_ULONGLONG_ID: T = Context->UnsignedLongLongTy; break;
case PREDEF_TYPE_UINT128_ID: T = Context->UnsignedInt128Ty; break;
case PREDEF_TYPE_SCHAR_ID: T = Context->SignedCharTy; break;
case PREDEF_TYPE_WCHAR_ID: T = Context->WCharTy; break;
case PREDEF_TYPE_SHORT_ID: T = Context->ShortTy; break;
case PREDEF_TYPE_INT_ID: T = Context->IntTy; break;
case PREDEF_TYPE_LONG_ID: T = Context->LongTy; break;
case PREDEF_TYPE_LONGLONG_ID: T = Context->LongLongTy; break;
case PREDEF_TYPE_INT128_ID: T = Context->Int128Ty; break;
case PREDEF_TYPE_FLOAT_ID: T = Context->FloatTy; break;
case PREDEF_TYPE_DOUBLE_ID: T = Context->DoubleTy; break;
case PREDEF_TYPE_LONGDOUBLE_ID: T = Context->LongDoubleTy; break;
case PREDEF_TYPE_OVERLOAD_ID: T = Context->OverloadTy; break;
case PREDEF_TYPE_BOUND_MEMBER: T = Context->BoundMemberTy; break;
case PREDEF_TYPE_DEPENDENT_ID: T = Context->DependentTy; break;
case PREDEF_TYPE_UNKNOWN_ANY: T = Context->UnknownAnyTy; break;
case PREDEF_TYPE_NULLPTR_ID: T = Context->NullPtrTy; break;
case PREDEF_TYPE_CHAR16_ID: T = Context->Char16Ty; break;
case PREDEF_TYPE_CHAR32_ID: T = Context->Char32Ty; break;
case PREDEF_TYPE_OBJC_ID: T = Context->ObjCBuiltinIdTy; break;
case PREDEF_TYPE_OBJC_CLASS: T = Context->ObjCBuiltinClassTy; break;
case PREDEF_TYPE_OBJC_SEL: T = Context->ObjCBuiltinSelTy; break;
}
assert(!T.isNull() && "Unknown predefined type");
return T.withFastQualifiers(FastQuals);
}
Index -= NUM_PREDEF_TYPE_IDS;
assert(Index < TypesLoaded.size() && "Type index out-of-range");
if (TypesLoaded[Index].isNull()) {
TypesLoaded[Index] = readTypeRecord(Index);
if (TypesLoaded[Index].isNull())
return QualType();
TypesLoaded[Index]->setFromAST();
TypeIdxs[TypesLoaded[Index]] = TypeIdx::fromTypeID(ID);
if (DeserializationListener)
DeserializationListener->TypeRead(TypeIdx::fromTypeID(ID),
TypesLoaded[Index]);
}
return TypesLoaded[Index].withFastQualifiers(FastQuals);
}
QualType ASTReader::getLocalType(Module &F, unsigned LocalID) {
return GetType(getGlobalTypeID(F, LocalID));
}
serialization::TypeID
ASTReader::getGlobalTypeID(Module &F, unsigned LocalID) const {
// FIXME: Map from local type ID to global type ID.
return LocalID;
}
TypeID ASTReader::GetTypeID(QualType T) const {
return MakeTypeID(T,
std::bind1st(std::mem_fun(&ASTReader::GetTypeIdx), this));
}
TypeIdx ASTReader::GetTypeIdx(QualType T) const {
if (T.isNull())
return TypeIdx();
assert(!T.getLocalFastQualifiers());
TypeIdxMap::const_iterator I = TypeIdxs.find(T);
// GetTypeIdx is mostly used for computing the hash of DeclarationNames and
// comparing keys of ASTDeclContextNameLookupTable.
// If the type didn't come from the AST file use a specially marked index
// so that any hash/key comparison fail since no such index is stored
// in a AST file.
if (I == TypeIdxs.end())
return TypeIdx(-1);
return I->second;
}
TemplateArgumentLocInfo
ASTReader::GetTemplateArgumentLocInfo(Module &F,
TemplateArgument::ArgKind Kind,
const RecordData &Record,
unsigned &Index) {
switch (Kind) {
case TemplateArgument::Expression:
return ReadExpr(F);
case TemplateArgument::Type:
return GetTypeSourceInfo(F, Record, Index);
case TemplateArgument::Template: {
NestedNameSpecifierLoc QualifierLoc = ReadNestedNameSpecifierLoc(F, Record,
Index);
SourceLocation TemplateNameLoc = ReadSourceLocation(F, Record, Index);
return TemplateArgumentLocInfo(QualifierLoc, TemplateNameLoc,
SourceLocation());
}
case TemplateArgument::TemplateExpansion: {
NestedNameSpecifierLoc QualifierLoc = ReadNestedNameSpecifierLoc(F, Record,
Index);
SourceLocation TemplateNameLoc = ReadSourceLocation(F, Record, Index);
SourceLocation EllipsisLoc = ReadSourceLocation(F, Record, Index);
return TemplateArgumentLocInfo(QualifierLoc, TemplateNameLoc,
EllipsisLoc);
}
case TemplateArgument::Null:
case TemplateArgument::Integral:
case TemplateArgument::Declaration:
case TemplateArgument::Pack:
return TemplateArgumentLocInfo();
}
llvm_unreachable("unexpected template argument loc");
return TemplateArgumentLocInfo();
}
TemplateArgumentLoc
ASTReader::ReadTemplateArgumentLoc(Module &F,
const RecordData &Record, unsigned &Index) {
TemplateArgument Arg = ReadTemplateArgument(F, Record, Index);
if (Arg.getKind() == TemplateArgument::Expression) {
if (Record[Index++]) // bool InfoHasSameExpr.
return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo(Arg.getAsExpr()));
}
return TemplateArgumentLoc(Arg, GetTemplateArgumentLocInfo(F, Arg.getKind(),
Record, Index));
}
Decl *ASTReader::GetExternalDecl(uint32_t ID) {
return GetDecl(ID);
}
uint64_t
ASTReader::GetCXXBaseSpecifiersOffset(serialization::CXXBaseSpecifiersID ID) {
if (ID == 0)
return 0;
GlobalCXXBaseSpecifiersMapType::iterator I =
GlobalCXXBaseSpecifiersMap.find(ID);
assert (I != GlobalCXXBaseSpecifiersMap.end() &&
"Corrupted global CXX base specifiers map");
return I->second.first->CXXBaseSpecifiersOffsets[ID - 1 +
I->second.second] +
I->second.first->GlobalBitOffset;
}
CXXBaseSpecifier *ASTReader::GetExternalCXXBaseSpecifiers(uint64_t Offset) {
RecordLocation Loc = getLocalBitOffset(Offset);
llvm::BitstreamCursor &Cursor = Loc.F->DeclsCursor;
SavedStreamPosition SavedPosition(Cursor);
Cursor.JumpToBit(Loc.Offset);
ReadingKindTracker ReadingKind(Read_Decl, *this);
RecordData Record;
unsigned Code = Cursor.ReadCode();
unsigned RecCode = Cursor.ReadRecord(Code, Record);
if (RecCode != DECL_CXX_BASE_SPECIFIERS) {
Error("Malformed AST file: missing C++ base specifiers");
return 0;
}
unsigned Idx = 0;
unsigned NumBases = Record[Idx++];
void *Mem = Context->Allocate(sizeof(CXXBaseSpecifier) * NumBases);
CXXBaseSpecifier *Bases = new (Mem) CXXBaseSpecifier [NumBases];
for (unsigned I = 0; I != NumBases; ++I)
Bases[I] = ReadCXXBaseSpecifier(*Loc.F, Record, Idx);
return Bases;
}
TranslationUnitDecl *ASTReader::GetTranslationUnitDecl() {
if (!DeclsLoaded[0]) {
ReadDeclRecord(0, 1);
if (DeserializationListener)
DeserializationListener->DeclRead(1, DeclsLoaded[0]);
}
return cast<TranslationUnitDecl>(DeclsLoaded[0]);
}
serialization::DeclID
ASTReader::getGlobalDeclID(Module &F, unsigned LocalID) const {
// FIXME: Perform local -> global remapping for declarations.
return LocalID;
}
Decl *ASTReader::GetDecl(DeclID ID) {
if (ID == 0)
return 0;
if (ID > DeclsLoaded.size()) {
Error("declaration ID out-of-range for AST file");
return 0;
}
unsigned Index = ID - 1;
if (!DeclsLoaded[Index]) {
ReadDeclRecord(Index, ID);
if (DeserializationListener)
DeserializationListener->DeclRead(ID, DeclsLoaded[Index]);
}
return DeclsLoaded[Index];
}
serialization::DeclID ASTReader::ReadDeclID(Module &F,
const RecordData &Record,
unsigned &Idx) {
if (Idx >= Record.size()) {
Error("Corrupted AST file");
return 0;
}
return getGlobalDeclID(F, Record[Idx++]);
}
/// \brief Resolve the offset of a statement into a statement.
///
/// This operation will read a new statement from the external
/// source each time it is called, and is meant to be used via a
/// LazyOffsetPtr (which is used by Decls for the body of functions, etc).
Stmt *ASTReader::GetExternalDeclStmt(uint64_t Offset) {
// Switch case IDs are per Decl.
ClearSwitchCaseIDs();
// Offset here is a global offset across the entire chain.
RecordLocation Loc = getLocalBitOffset(Offset);
Loc.F->DeclsCursor.JumpToBit(Loc.Offset);
return ReadStmtFromStream(*Loc.F);
}
ExternalLoadResult ASTReader::FindExternalLexicalDecls(const DeclContext *DC,
bool (*isKindWeWant)(Decl::Kind),
llvm::SmallVectorImpl<Decl*> &Decls) {
// There might be lexical decls in multiple parts of the chain, for the TU
// at least.
// DeclContextOffsets might reallocate as we load additional decls below,
// so make a copy of the vector.
DeclContextInfos Infos = DeclContextOffsets[DC];
for (DeclContextInfos::iterator I = Infos.begin(), E = Infos.end();
I != E; ++I) {
// IDs can be 0 if this context doesn't contain declarations.
if (!I->LexicalDecls)
continue;
// Load all of the declaration IDs
for (const KindDeclIDPair *ID = I->LexicalDecls,
*IDE = ID + I->NumLexicalDecls; ID != IDE; ++ID) {
if (isKindWeWant && !isKindWeWant((Decl::Kind)ID->first))
continue;
Decl *D = GetLocalDecl(*I->F, ID->second);
assert(D && "Null decl in lexical decls");
Decls.push_back(D);
}
}
++NumLexicalDeclContextsRead;
return ELR_Success;
}
DeclContext::lookup_result
ASTReader::FindExternalVisibleDeclsByName(const DeclContext *DC,
DeclarationName Name) {
assert(DC->hasExternalVisibleStorage() &&
"DeclContext has no visible decls in storage");
if (!Name)
return DeclContext::lookup_result(DeclContext::lookup_iterator(0),
DeclContext::lookup_iterator(0));
llvm::SmallVector<NamedDecl *, 64> Decls;
// There might be visible decls in multiple parts of the chain, for the TU
// and namespaces. For any given name, the last available results replace
// all earlier ones. For this reason, we walk in reverse.
DeclContextInfos &Infos = DeclContextOffsets[DC];
for (DeclContextInfos::reverse_iterator I = Infos.rbegin(), E = Infos.rend();
I != E; ++I) {
if (!I->NameLookupTableData)
continue;
ASTDeclContextNameLookupTable *LookupTable =
(ASTDeclContextNameLookupTable*)I->NameLookupTableData;
ASTDeclContextNameLookupTable::iterator Pos = LookupTable->find(Name);
if (Pos == LookupTable->end())
continue;
ASTDeclContextNameLookupTrait::data_type Data = *Pos;
for (; Data.first != Data.second; ++Data.first)
Decls.push_back(GetLocalDeclAs<NamedDecl>(*I->F, *Data.first));
break;
}
++NumVisibleDeclContextsRead;
SetExternalVisibleDeclsForName(DC, Name, Decls);
return const_cast<DeclContext*>(DC)->lookup(Name);
}
void ASTReader::MaterializeVisibleDecls(const DeclContext *DC) {
assert(DC->hasExternalVisibleStorage() &&
"DeclContext has no visible decls in storage");
llvm::SmallVector<NamedDecl *, 64> Decls;
// There might be visible decls in multiple parts of the chain, for the TU
// and namespaces.
DeclContextInfos &Infos = DeclContextOffsets[DC];
for (DeclContextInfos::iterator I = Infos.begin(), E = Infos.end();
I != E; ++I) {
if (!I->NameLookupTableData)
continue;
ASTDeclContextNameLookupTable *LookupTable =
(ASTDeclContextNameLookupTable*)I->NameLookupTableData;
for (ASTDeclContextNameLookupTable::item_iterator
ItemI = LookupTable->item_begin(),
ItemEnd = LookupTable->item_end() ; ItemI != ItemEnd; ++ItemI) {
ASTDeclContextNameLookupTable::item_iterator::value_type Val
= *ItemI;
ASTDeclContextNameLookupTrait::data_type Data = Val.second;
Decls.clear();
for (; Data.first != Data.second; ++Data.first)
Decls.push_back(GetLocalDeclAs<NamedDecl>(*I->F, *Data.first));
MaterializeVisibleDeclsForName(DC, Val.first, Decls);
}
}
}
void ASTReader::PassInterestingDeclsToConsumer() {
assert(Consumer);
while (!InterestingDecls.empty()) {
DeclGroupRef DG(InterestingDecls.front());
InterestingDecls.pop_front();
Consumer->HandleInterestingDecl(DG);
}
}
void ASTReader::StartTranslationUnit(ASTConsumer *Consumer) {
this->Consumer = Consumer;
if (!Consumer)
return;
for (unsigned I = 0, N = ExternalDefinitions.size(); I != N; ++I) {
// Force deserialization of this decl, which will cause it to be queued for
// passing to the consumer.
GetDecl(ExternalDefinitions[I]);
}
PassInterestingDeclsToConsumer();
}
void ASTReader::PrintStats() {
std::fprintf(stderr, "*** AST File Statistics:\n");
unsigned NumTypesLoaded
= TypesLoaded.size() - std::count(TypesLoaded.begin(), TypesLoaded.end(),
QualType());
unsigned NumDeclsLoaded
= DeclsLoaded.size() - std::count(DeclsLoaded.begin(), DeclsLoaded.end(),
(Decl *)0);
unsigned NumIdentifiersLoaded
= IdentifiersLoaded.size() - std::count(IdentifiersLoaded.begin(),
IdentifiersLoaded.end(),
(IdentifierInfo *)0);
unsigned NumSelectorsLoaded
= SelectorsLoaded.size() - std::count(SelectorsLoaded.begin(),
SelectorsLoaded.end(),
Selector());
std::fprintf(stderr, " %u stat cache hits\n", NumStatHits);
std::fprintf(stderr, " %u stat cache misses\n", NumStatMisses);
if (unsigned TotalNumSLocEntries = getTotalNumSLocs())
std::fprintf(stderr, " %u/%u source location entries read (%f%%)\n",
NumSLocEntriesRead, TotalNumSLocEntries,
((float)NumSLocEntriesRead/TotalNumSLocEntries * 100));
if (!TypesLoaded.empty())
std::fprintf(stderr, " %u/%u types read (%f%%)\n",
NumTypesLoaded, (unsigned)TypesLoaded.size(),
((float)NumTypesLoaded/TypesLoaded.size() * 100));
if (!DeclsLoaded.empty())
std::fprintf(stderr, " %u/%u declarations read (%f%%)\n",
NumDeclsLoaded, (unsigned)DeclsLoaded.size(),
((float)NumDeclsLoaded/DeclsLoaded.size() * 100));
if (!IdentifiersLoaded.empty())
std::fprintf(stderr, " %u/%u identifiers read (%f%%)\n",
NumIdentifiersLoaded, (unsigned)IdentifiersLoaded.size(),
((float)NumIdentifiersLoaded/IdentifiersLoaded.size() * 100));
if (!SelectorsLoaded.empty())
std::fprintf(stderr, " %u/%u selectors read (%f%%)\n",
NumSelectorsLoaded, (unsigned)SelectorsLoaded.size(),
((float)NumSelectorsLoaded/SelectorsLoaded.size() * 100));
if (TotalNumStatements)
std::fprintf(stderr, " %u/%u statements read (%f%%)\n",
NumStatementsRead, TotalNumStatements,
((float)NumStatementsRead/TotalNumStatements * 100));
if (TotalNumMacros)
std::fprintf(stderr, " %u/%u macros read (%f%%)\n",
NumMacrosRead, TotalNumMacros,
((float)NumMacrosRead/TotalNumMacros * 100));
if (TotalLexicalDeclContexts)
std::fprintf(stderr, " %u/%u lexical declcontexts read (%f%%)\n",
NumLexicalDeclContextsRead, TotalLexicalDeclContexts,
((float)NumLexicalDeclContextsRead/TotalLexicalDeclContexts
* 100));
if (TotalVisibleDeclContexts)
std::fprintf(stderr, " %u/%u visible declcontexts read (%f%%)\n",
NumVisibleDeclContextsRead, TotalVisibleDeclContexts,
((float)NumVisibleDeclContextsRead/TotalVisibleDeclContexts
* 100));
if (TotalNumMethodPoolEntries) {
std::fprintf(stderr, " %u/%u method pool entries read (%f%%)\n",
NumMethodPoolEntriesRead, TotalNumMethodPoolEntries,
((float)NumMethodPoolEntriesRead/TotalNumMethodPoolEntries
* 100));
std::fprintf(stderr, " %u method pool misses\n", NumMethodPoolMisses);
}
std::fprintf(stderr, "\n");
dump();
std::fprintf(stderr, "\n");
}
template<typename Key, typename Module, unsigned InitialCapacity>
static void
dumpModuleIDMap(llvm::StringRef Name,
const ContinuousRangeMap<Key, Module *,
InitialCapacity> &Map) {
if (Map.begin() == Map.end())
return;
typedef ContinuousRangeMap<Key, Module *, InitialCapacity> MapType;
llvm::errs() << Name << ":\n";
for (typename MapType::const_iterator I = Map.begin(), IEnd = Map.end();
I != IEnd; ++I) {
llvm::errs() << " " << I->first << " -> " << I->second->FileName
<< "\n";
}
}
template<typename Key, typename Module, typename Adjustment,
unsigned InitialCapacity>
static void
dumpModuleIDOffsetMap(llvm::StringRef Name,
const ContinuousRangeMap<Key,
std::pair<Module *,
Adjustment>,
InitialCapacity> &Map) {
if (Map.begin() == Map.end())
return;
typedef ContinuousRangeMap<Key, std::pair<Module *, Adjustment>,
InitialCapacity> MapType;
llvm::errs() << Name << ":\n";
for (typename MapType::const_iterator I = Map.begin(), IEnd = Map.end();
I != IEnd; ++I) {
llvm::errs() << " " << I->first << " -> (" << I->second.first->FileName
<< ", " << I->second.second << ")\n";
}
}
void ASTReader::dump() {
llvm::errs() << "*** AST File Remapping:\n";
dumpModuleIDMap("Global bit offset map", GlobalBitOffsetsMap);
dumpModuleIDMap("Global source location entry map", GlobalSLocEntryMap);
dumpModuleIDOffsetMap("Global type map", GlobalTypeMap);
dumpModuleIDOffsetMap("Global declaration map", GlobalDeclMap);
dumpModuleIDOffsetMap("Global identifier map", GlobalIdentifierMap);
dumpModuleIDOffsetMap("Global selector map", GlobalSelectorMap);
dumpModuleIDOffsetMap("Global macro definition map",
GlobalMacroDefinitionMap);
dumpModuleIDOffsetMap("Global preprocessed entity map",
GlobalPreprocessedEntityMap);
}
/// Return the amount of memory used by memory buffers, breaking down
/// by heap-backed versus mmap'ed memory.
void ASTReader::getMemoryBufferSizes(MemoryBufferSizes &sizes) const {
for (unsigned i = 0, e = Chain.size(); i != e; ++i)
if (llvm::MemoryBuffer *buf = Chain[i]->Buffer.get()) {
size_t bytes = buf->getBufferSize();
switch (buf->getBufferKind()) {
case llvm::MemoryBuffer::MemoryBuffer_Malloc:
sizes.malloc_bytes += bytes;
break;
case llvm::MemoryBuffer::MemoryBuffer_MMap:
sizes.mmap_bytes += bytes;
break;
}
}
}
void ASTReader::InitializeSema(Sema &S) {
SemaObj = &S;
S.ExternalSource = this;
// Makes sure any declarations that were deserialized "too early"
// still get added to the identifier's declaration chains.
for (unsigned I = 0, N = PreloadedDecls.size(); I != N; ++I) {
if (SemaObj->TUScope)
SemaObj->TUScope->AddDecl(PreloadedDecls[I]);
SemaObj->IdResolver.AddDecl(PreloadedDecls[I]);
}
PreloadedDecls.clear();
// If there were any tentative definitions, deserialize them and add
// them to Sema's list of tentative definitions.
for (unsigned I = 0, N = TentativeDefinitions.size(); I != N; ++I) {
VarDecl *Var = cast<VarDecl>(GetDecl(TentativeDefinitions[I]));
SemaObj->TentativeDefinitions.push_back(Var);
}
// If there were any unused file scoped decls, deserialize them and add to
// Sema's list of unused file scoped decls.
for (unsigned I = 0, N = UnusedFileScopedDecls.size(); I != N; ++I) {
DeclaratorDecl *D = cast<DeclaratorDecl>(GetDecl(UnusedFileScopedDecls[I]));
SemaObj->UnusedFileScopedDecls.push_back(D);
}
// If there were any delegating constructors, add them to Sema's list
for (unsigned I = 0, N = DelegatingCtorDecls.size(); I != N; ++I) {
CXXConstructorDecl *D
= cast<CXXConstructorDecl>(GetDecl(DelegatingCtorDecls[I]));
SemaObj->DelegatingCtorDecls.push_back(D);
}
// If there were any locally-scoped external declarations,
// deserialize them and add them to Sema's table of locally-scoped
// external declarations.
for (unsigned I = 0, N = LocallyScopedExternalDecls.size(); I != N; ++I) {
NamedDecl *D = cast<NamedDecl>(GetDecl(LocallyScopedExternalDecls[I]));
SemaObj->LocallyScopedExternalDecls[D->getDeclName()] = D;
}
// If there were any ext_vector type declarations, deserialize them
// and add them to Sema's vector of such declarations.
for (unsigned I = 0, N = ExtVectorDecls.size(); I != N; ++I)
SemaObj->ExtVectorDecls.push_back(
cast<TypedefNameDecl>(GetDecl(ExtVectorDecls[I])));
// FIXME: Do VTable uses and dynamic classes deserialize too much ?
// Can we cut them down before writing them ?
// If there were any dynamic classes declarations, deserialize them
// and add them to Sema's vector of such declarations.
for (unsigned I = 0, N = DynamicClasses.size(); I != N; ++I)
SemaObj->DynamicClasses.push_back(
cast<CXXRecordDecl>(GetDecl(DynamicClasses[I])));
// Load the offsets of the declarations that Sema references.
// They will be lazily deserialized when needed.
if (!SemaDeclRefs.empty()) {
assert(SemaDeclRefs.size() == 2 && "More decl refs than expected!");
SemaObj->StdNamespace = SemaDeclRefs[0];
SemaObj->StdBadAlloc = SemaDeclRefs[1];
}
for (Module *F = FirstInSource; F; F = F->NextInSource) {
// If there are @selector references added them to its pool. This is for
// implementation of -Wselector.
if (!F->ReferencedSelectorsData.empty()) {
unsigned int DataSize = F->ReferencedSelectorsData.size()-1;
unsigned I = 0;
while (I < DataSize) {
Selector Sel = DecodeSelector(F->ReferencedSelectorsData[I++]);
SourceLocation SelLoc = ReadSourceLocation(
*F, F->ReferencedSelectorsData, I);
SemaObj->ReferencedSelectors.insert(std::make_pair(Sel, SelLoc));
}
}
}
// The special data sets below always come from the most recent PCH,
// which is at the front of the chain.
Module &F = *Chain.front();
// If there were any pending implicit instantiations, deserialize them
// and add them to Sema's queue of such instantiations.
assert(F.PendingInstantiations.size() % 2 == 0 &&
"Expected pairs of entries");
for (unsigned Idx = 0, N = F.PendingInstantiations.size(); Idx < N;) {
ValueDecl *D=cast<ValueDecl>(GetDecl(F.PendingInstantiations[Idx++]));
SourceLocation Loc = ReadSourceLocation(F, F.PendingInstantiations,Idx);
SemaObj->PendingInstantiations.push_back(std::make_pair(D, Loc));
}
// If there were any weak undeclared identifiers, deserialize them and add to
// Sema's list of weak undeclared identifiers.
if (!WeakUndeclaredIdentifiers.empty()) {
unsigned Idx = 0;
for (unsigned I = 0, N = WeakUndeclaredIdentifiers[Idx++]; I != N; ++I) {
IdentifierInfo *WeakId = GetIdentifierInfo(WeakUndeclaredIdentifiers,Idx);
IdentifierInfo *AliasId= GetIdentifierInfo(WeakUndeclaredIdentifiers,Idx);
SourceLocation Loc = ReadSourceLocation(F, WeakUndeclaredIdentifiers,Idx);
bool Used = WeakUndeclaredIdentifiers[Idx++];
Sema::WeakInfo WI(AliasId, Loc);
WI.setUsed(Used);
SemaObj->WeakUndeclaredIdentifiers.insert(std::make_pair(WeakId, WI));
}
}
// If there were any VTable uses, deserialize the information and add it
// to Sema's vector and map of VTable uses.
if (!VTableUses.empty()) {
unsigned Idx = 0;
for (unsigned I = 0, N = VTableUses[Idx++]; I != N; ++I) {
CXXRecordDecl *Class = cast<CXXRecordDecl>(GetDecl(VTableUses[Idx++]));
SourceLocation Loc = ReadSourceLocation(F, VTableUses, Idx);
bool DefinitionRequired = VTableUses[Idx++];
SemaObj->VTableUses.push_back(std::make_pair(Class, Loc));
SemaObj->VTablesUsed[Class] = DefinitionRequired;
}
}
if (!FPPragmaOptions.empty()) {
assert(FPPragmaOptions.size() == 1 && "Wrong number of FP_PRAGMA_OPTIONS");
SemaObj->FPFeatures.fp_contract = FPPragmaOptions[0];
}
if (!OpenCLExtensions.empty()) {
unsigned I = 0;
#define OPENCLEXT(nm) SemaObj->OpenCLFeatures.nm = OpenCLExtensions[I++];
#include "clang/Basic/OpenCLExtensions.def"
assert(OpenCLExtensions.size() == I && "Wrong number of OPENCL_EXTENSIONS");
}
}
IdentifierInfo* ASTReader::get(const char *NameStart, const char *NameEnd) {
// Try to find this name within our on-disk hash tables. We start with the
// most recent one, since that one contains the most up-to-date info.
for (unsigned I = 0, N = Chain.size(); I != N; ++I) {
ASTIdentifierLookupTable *IdTable
= (ASTIdentifierLookupTable *)Chain[I]->IdentifierLookupTable;
if (!IdTable)
continue;
std::pair<const char*, unsigned> Key(NameStart, NameEnd - NameStart);
ASTIdentifierLookupTable::iterator Pos = IdTable->find(Key);
if (Pos == IdTable->end())
continue;
// Dereferencing the iterator has the effect of building the
// IdentifierInfo node and populating it with the various
// declarations it needs.
return *Pos;
}
return 0;
}
namespace clang {
/// \brief An identifier-lookup iterator that enumerates all of the
/// identifiers stored within a set of AST files.
class ASTIdentifierIterator : public IdentifierIterator {
/// \brief The AST reader whose identifiers are being enumerated.
const ASTReader &Reader;
/// \brief The current index into the chain of AST files stored in
/// the AST reader.
unsigned Index;
/// \brief The current position within the identifier lookup table
/// of the current AST file.
ASTIdentifierLookupTable::key_iterator Current;
/// \brief The end position within the identifier lookup table of
/// the current AST file.
ASTIdentifierLookupTable::key_iterator End;
public:
explicit ASTIdentifierIterator(const ASTReader &Reader);
virtual llvm::StringRef Next();
};
}
ASTIdentifierIterator::ASTIdentifierIterator(const ASTReader &Reader)
: Reader(Reader), Index(Reader.Chain.size() - 1) {
ASTIdentifierLookupTable *IdTable
= (ASTIdentifierLookupTable *)Reader.Chain[Index]->IdentifierLookupTable;
Current = IdTable->key_begin();
End = IdTable->key_end();
}
llvm::StringRef ASTIdentifierIterator::Next() {
while (Current == End) {
// If we have exhausted all of our AST files, we're done.
if (Index == 0)
return llvm::StringRef();
--Index;
ASTIdentifierLookupTable *IdTable
= (ASTIdentifierLookupTable *)Reader.Chain[Index]->IdentifierLookupTable;
Current = IdTable->key_begin();
End = IdTable->key_end();
}
// We have any identifiers remaining in the current AST file; return
// the next one.
std::pair<const char*, unsigned> Key = *Current;
++Current;
return llvm::StringRef(Key.first, Key.second);
}
IdentifierIterator *ASTReader::getIdentifiers() const {
return new ASTIdentifierIterator(*this);
}
std::pair<ObjCMethodList, ObjCMethodList>
ASTReader::ReadMethodPool(Selector Sel) {
// Find this selector in a hash table. We want to find the most recent entry.
for (unsigned I = 0, N = Chain.size(); I != N; ++I) {
Module &F = *Chain[I];
if (!F.SelectorLookupTable)
continue;
ASTSelectorLookupTable *PoolTable
= (ASTSelectorLookupTable*)F.SelectorLookupTable;
ASTSelectorLookupTable::iterator Pos = PoolTable->find(Sel);
if (Pos != PoolTable->end()) {
++NumSelectorsRead;
// FIXME: Not quite happy with the statistics here. We probably should
// disable this tracking when called via LoadSelector.
// Also, should entries without methods count as misses?
++NumMethodPoolEntriesRead;
ASTSelectorLookupTrait::data_type Data = *Pos;
if (DeserializationListener)
DeserializationListener->SelectorRead(Data.ID, Sel);
return std::make_pair(Data.Instance, Data.Factory);
}
}
++NumMethodPoolMisses;
return std::pair<ObjCMethodList, ObjCMethodList>();
}
void ASTReader::ReadKnownNamespaces(
llvm::SmallVectorImpl<NamespaceDecl *> &Namespaces) {
Namespaces.clear();
for (unsigned I = 0, N = KnownNamespaces.size(); I != N; ++I) {
if (NamespaceDecl *Namespace
= dyn_cast_or_null<NamespaceDecl>(GetDecl(KnownNamespaces[I])))
Namespaces.push_back(Namespace);
}
}
void ASTReader::LoadSelector(Selector Sel) {
// It would be complicated to avoid reading the methods anyway. So don't.
ReadMethodPool(Sel);
}
void ASTReader::SetIdentifierInfo(unsigned ID, IdentifierInfo *II) {
assert(ID && "Non-zero identifier ID required");
assert(ID <= IdentifiersLoaded.size() && "identifier ID out of range");
IdentifiersLoaded[ID - 1] = II;
if (DeserializationListener)
DeserializationListener->IdentifierRead(ID, II);
}
/// \brief Set the globally-visible declarations associated with the given
/// identifier.
///
/// If the AST reader is currently in a state where the given declaration IDs
/// cannot safely be resolved, they are queued until it is safe to resolve
/// them.
///
/// \param II an IdentifierInfo that refers to one or more globally-visible
/// declarations.
///
/// \param DeclIDs the set of declaration IDs with the name @p II that are
/// visible at global scope.
///
/// \param Nonrecursive should be true to indicate that the caller knows that
/// this call is non-recursive, and therefore the globally-visible declarations
/// will not be placed onto the pending queue.
void
ASTReader::SetGloballyVisibleDecls(IdentifierInfo *II,
const llvm::SmallVectorImpl<uint32_t> &DeclIDs,
bool Nonrecursive) {
if (NumCurrentElementsDeserializing && !Nonrecursive) {
PendingIdentifierInfos.push_back(PendingIdentifierInfo());
PendingIdentifierInfo &PII = PendingIdentifierInfos.back();
PII.II = II;
PII.DeclIDs.append(DeclIDs.begin(), DeclIDs.end());
return;
}
for (unsigned I = 0, N = DeclIDs.size(); I != N; ++I) {
NamedDecl *D = cast<NamedDecl>(GetDecl(DeclIDs[I]));
if (SemaObj) {
if (SemaObj->TUScope) {
// Introduce this declaration into the translation-unit scope
// and add it to the declaration chain for this identifier, so
// that (unqualified) name lookup will find it.
SemaObj->TUScope->AddDecl(D);
}
SemaObj->IdResolver.AddDeclToIdentifierChain(II, D);
} else {
// Queue this declaration so that it will be added to the
// translation unit scope and identifier's declaration chain
// once a Sema object is known.
PreloadedDecls.push_back(D);
}
}
}
IdentifierInfo *ASTReader::DecodeIdentifierInfo(unsigned ID) {
if (ID == 0)
return 0;
if (IdentifiersLoaded.empty()) {
Error("no identifier table in AST file");
return 0;
}
assert(PP && "Forgot to set Preprocessor ?");
ID -= 1;
if (!IdentifiersLoaded[ID]) {
GlobalIdentifierMapType::iterator I = GlobalIdentifierMap.find(ID + 1);
assert(I != GlobalIdentifierMap.end() && "Corrupted global identifier map");
unsigned Index = ID + I->second.second;
const char *Str = I->second.first->IdentifierTableData
+ I->second.first->IdentifierOffsets[Index];
// All of the strings in the AST file are preceded by a 16-bit length.
// Extract that 16-bit length to avoid having to execute strlen().
// NOTE: 'StrLenPtr' is an 'unsigned char*' so that we load bytes as
// unsigned integers. This is important to avoid integer overflow when
// we cast them to 'unsigned'.
const unsigned char *StrLenPtr = (const unsigned char*) Str - 2;
unsigned StrLen = (((unsigned) StrLenPtr[0])
| (((unsigned) StrLenPtr[1]) << 8)) - 1;
IdentifiersLoaded[ID]
= &PP->getIdentifierTable().get(llvm::StringRef(Str, StrLen));
if (DeserializationListener)
DeserializationListener->IdentifierRead(ID + 1, IdentifiersLoaded[ID]);
}
return IdentifiersLoaded[ID];
}
bool ASTReader::ReadSLocEntry(int ID) {
return ReadSLocEntryRecord(ID) != Success;
}
Selector ASTReader::DecodeSelector(unsigned ID) {
if (ID == 0)
return Selector();
if (ID > SelectorsLoaded.size()) {
Error("selector ID out of range in AST file");
return Selector();
}
if (SelectorsLoaded[ID - 1].getAsOpaquePtr() == 0) {
// Load this selector from the selector table.
GlobalSelectorMapType::iterator I = GlobalSelectorMap.find(ID);
assert(I != GlobalSelectorMap.end() && "Corrupted global selector map");
Module &F = *I->second.first;
ASTSelectorLookupTrait Trait(*this, F);
unsigned Idx = ID - 1 + I->second.second;
SelectorsLoaded[ID - 1] =
Trait.ReadKey(F.SelectorLookupTableData + F.SelectorOffsets[Idx], 0);
if (DeserializationListener)
DeserializationListener->SelectorRead(ID, SelectorsLoaded[ID - 1]);
}
return SelectorsLoaded[ID - 1];
}
Selector ASTReader::GetExternalSelector(uint32_t ID) {
return DecodeSelector(ID);
}
uint32_t ASTReader::GetNumExternalSelectors() {
// ID 0 (the null selector) is considered an external selector.
return getTotalNumSelectors() + 1;
}
DeclarationName
ASTReader::ReadDeclarationName(Module &F,
const RecordData &Record, unsigned &Idx) {
DeclarationName::NameKind Kind = (DeclarationName::NameKind)Record[Idx++];
switch (Kind) {
case DeclarationName::Identifier:
return DeclarationName(GetIdentifierInfo(Record, Idx));
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
return DeclarationName(GetSelector(Record, Idx));
case DeclarationName::CXXConstructorName:
return Context->DeclarationNames.getCXXConstructorName(
Context->getCanonicalType(readType(F, Record, Idx)));
case DeclarationName::CXXDestructorName:
return Context->DeclarationNames.getCXXDestructorName(
Context->getCanonicalType(readType(F, Record, Idx)));
case DeclarationName::CXXConversionFunctionName:
return Context->DeclarationNames.getCXXConversionFunctionName(
Context->getCanonicalType(readType(F, Record, Idx)));
case DeclarationName::CXXOperatorName:
return Context->DeclarationNames.getCXXOperatorName(
(OverloadedOperatorKind)Record[Idx++]);
case DeclarationName::CXXLiteralOperatorName:
return Context->DeclarationNames.getCXXLiteralOperatorName(
GetIdentifierInfo(Record, Idx));
case DeclarationName::CXXUsingDirective:
return DeclarationName::getUsingDirectiveName();
}
// Required to silence GCC warning
return DeclarationName();
}
void ASTReader::ReadDeclarationNameLoc(Module &F,
DeclarationNameLoc &DNLoc,
DeclarationName Name,
const RecordData &Record, unsigned &Idx) {
switch (Name.getNameKind()) {
case DeclarationName::CXXConstructorName:
case DeclarationName::CXXDestructorName:
case DeclarationName::CXXConversionFunctionName:
DNLoc.NamedType.TInfo = GetTypeSourceInfo(F, Record, Idx);
break;
case DeclarationName::CXXOperatorName:
DNLoc.CXXOperatorName.BeginOpNameLoc
= ReadSourceLocation(F, Record, Idx).getRawEncoding();
DNLoc.CXXOperatorName.EndOpNameLoc
= ReadSourceLocation(F, Record, Idx).getRawEncoding();
break;
case DeclarationName::CXXLiteralOperatorName:
DNLoc.CXXLiteralOperatorName.OpNameLoc
= ReadSourceLocation(F, Record, Idx).getRawEncoding();
break;
case DeclarationName::Identifier:
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
case DeclarationName::CXXUsingDirective:
break;
}
}
void ASTReader::ReadDeclarationNameInfo(Module &F,
DeclarationNameInfo &NameInfo,
const RecordData &Record, unsigned &Idx) {
NameInfo.setName(ReadDeclarationName(F, Record, Idx));
NameInfo.setLoc(ReadSourceLocation(F, Record, Idx));
DeclarationNameLoc DNLoc;
ReadDeclarationNameLoc(F, DNLoc, NameInfo.getName(), Record, Idx);
NameInfo.setInfo(DNLoc);
}
void ASTReader::ReadQualifierInfo(Module &F, QualifierInfo &Info,
const RecordData &Record, unsigned &Idx) {
Info.QualifierLoc = ReadNestedNameSpecifierLoc(F, Record, Idx);
unsigned NumTPLists = Record[Idx++];
Info.NumTemplParamLists = NumTPLists;
if (NumTPLists) {
Info.TemplParamLists = new (*Context) TemplateParameterList*[NumTPLists];
for (unsigned i=0; i != NumTPLists; ++i)
Info.TemplParamLists[i] = ReadTemplateParameterList(F, Record, Idx);
}
}
TemplateName
ASTReader::ReadTemplateName(Module &F, const RecordData &Record,
unsigned &Idx) {
TemplateName::NameKind Kind = (TemplateName::NameKind)Record[Idx++];
switch (Kind) {
case TemplateName::Template:
return TemplateName(ReadDeclAs<TemplateDecl>(F, Record, Idx));
case TemplateName::OverloadedTemplate: {
unsigned size = Record[Idx++];
UnresolvedSet<8> Decls;
while (size--)
Decls.addDecl(ReadDeclAs<NamedDecl>(F, Record, Idx));
return Context->getOverloadedTemplateName(Decls.begin(), Decls.end());
}
case TemplateName::QualifiedTemplate: {
NestedNameSpecifier *NNS = ReadNestedNameSpecifier(F, Record, Idx);
bool hasTemplKeyword = Record[Idx++];
TemplateDecl *Template = ReadDeclAs<TemplateDecl>(F, Record, Idx);
return Context->getQualifiedTemplateName(NNS, hasTemplKeyword, Template);
}
case TemplateName::DependentTemplate: {
NestedNameSpecifier *NNS = ReadNestedNameSpecifier(F, Record, Idx);
if (Record[Idx++]) // isIdentifier
return Context->getDependentTemplateName(NNS,
GetIdentifierInfo(Record, Idx));
return Context->getDependentTemplateName(NNS,
(OverloadedOperatorKind)Record[Idx++]);
}
case TemplateName::SubstTemplateTemplateParm: {
TemplateTemplateParmDecl *param
= ReadDeclAs<TemplateTemplateParmDecl>(F, Record, Idx);
if (!param) return TemplateName();
TemplateName replacement = ReadTemplateName(F, Record, Idx);
return Context->getSubstTemplateTemplateParm(param, replacement);
}
case TemplateName::SubstTemplateTemplateParmPack: {
TemplateTemplateParmDecl *Param
= ReadDeclAs<TemplateTemplateParmDecl>(F, Record, Idx);
if (!Param)
return TemplateName();
TemplateArgument ArgPack = ReadTemplateArgument(F, Record, Idx);
if (ArgPack.getKind() != TemplateArgument::Pack)
return TemplateName();
return Context->getSubstTemplateTemplateParmPack(Param, ArgPack);
}
}
assert(0 && "Unhandled template name kind!");
return TemplateName();
}
TemplateArgument
ASTReader::ReadTemplateArgument(Module &F,
const RecordData &Record, unsigned &Idx) {
TemplateArgument::ArgKind Kind = (TemplateArgument::ArgKind)Record[Idx++];
switch (Kind) {
case TemplateArgument::Null:
return TemplateArgument();
case TemplateArgument::Type:
return TemplateArgument(readType(F, Record, Idx));
case TemplateArgument::Declaration:
return TemplateArgument(ReadDecl(F, Record, Idx));
case TemplateArgument::Integral: {
llvm::APSInt Value = ReadAPSInt(Record, Idx);
QualType T = readType(F, Record, Idx);
return TemplateArgument(Value, T);
}
case TemplateArgument::Template:
return TemplateArgument(ReadTemplateName(F, Record, Idx));
case TemplateArgument::TemplateExpansion: {
TemplateName Name = ReadTemplateName(F, Record, Idx);
llvm::Optional<unsigned> NumTemplateExpansions;
if (unsigned NumExpansions = Record[Idx++])
NumTemplateExpansions = NumExpansions - 1;
return TemplateArgument(Name, NumTemplateExpansions);
}
case TemplateArgument::Expression:
return TemplateArgument(ReadExpr(F));
case TemplateArgument::Pack: {
unsigned NumArgs = Record[Idx++];
TemplateArgument *Args = new (*Context) TemplateArgument[NumArgs];
for (unsigned I = 0; I != NumArgs; ++I)
Args[I] = ReadTemplateArgument(F, Record, Idx);
return TemplateArgument(Args, NumArgs);
}
}
assert(0 && "Unhandled template argument kind!");
return TemplateArgument();
}
TemplateParameterList *
ASTReader::ReadTemplateParameterList(Module &F,
const RecordData &Record, unsigned &Idx) {
SourceLocation TemplateLoc = ReadSourceLocation(F, Record, Idx);
SourceLocation LAngleLoc = ReadSourceLocation(F, Record, Idx);
SourceLocation RAngleLoc = ReadSourceLocation(F, Record, Idx);
unsigned NumParams = Record[Idx++];
llvm::SmallVector<NamedDecl *, 16> Params;
Params.reserve(NumParams);
while (NumParams--)
Params.push_back(ReadDeclAs<NamedDecl>(F, Record, Idx));
TemplateParameterList* TemplateParams =
TemplateParameterList::Create(*Context, TemplateLoc, LAngleLoc,
Params.data(), Params.size(), RAngleLoc);
return TemplateParams;
}
void
ASTReader::
ReadTemplateArgumentList(llvm::SmallVector<TemplateArgument, 8> &TemplArgs,
Module &F, const RecordData &Record,
unsigned &Idx) {
unsigned NumTemplateArgs = Record[Idx++];
TemplArgs.reserve(NumTemplateArgs);
while (NumTemplateArgs--)
TemplArgs.push_back(ReadTemplateArgument(F, Record, Idx));
}
/// \brief Read a UnresolvedSet structure.
void ASTReader::ReadUnresolvedSet(Module &F, UnresolvedSetImpl &Set,
const RecordData &Record, unsigned &Idx) {
unsigned NumDecls = Record[Idx++];
while (NumDecls--) {
NamedDecl *D = ReadDeclAs<NamedDecl>(F, Record, Idx);
AccessSpecifier AS = (AccessSpecifier)Record[Idx++];
Set.addDecl(D, AS);
}
}
CXXBaseSpecifier
ASTReader::ReadCXXBaseSpecifier(Module &F,
const RecordData &Record, unsigned &Idx) {
bool isVirtual = static_cast<bool>(Record[Idx++]);
bool isBaseOfClass = static_cast<bool>(Record[Idx++]);
AccessSpecifier AS = static_cast<AccessSpecifier>(Record[Idx++]);
bool inheritConstructors = static_cast<bool>(Record[Idx++]);
TypeSourceInfo *TInfo = GetTypeSourceInfo(F, Record, Idx);
SourceRange Range = ReadSourceRange(F, Record, Idx);
SourceLocation EllipsisLoc = ReadSourceLocation(F, Record, Idx);
CXXBaseSpecifier Result(Range, isVirtual, isBaseOfClass, AS, TInfo,
EllipsisLoc);
Result.setInheritConstructors(inheritConstructors);
return Result;
}
std::pair<CXXCtorInitializer **, unsigned>
ASTReader::ReadCXXCtorInitializers(Module &F, const RecordData &Record,
unsigned &Idx) {
CXXCtorInitializer **CtorInitializers = 0;
unsigned NumInitializers = Record[Idx++];
if (NumInitializers) {
ASTContext &C = *getContext();
CtorInitializers
= new (C) CXXCtorInitializer*[NumInitializers];
for (unsigned i=0; i != NumInitializers; ++i) {
TypeSourceInfo *BaseClassInfo = 0;
bool IsBaseVirtual = false;
FieldDecl *Member = 0;
IndirectFieldDecl *IndirectMember = 0;
CXXConstructorDecl *Target = 0;
CtorInitializerType Type = (CtorInitializerType)Record[Idx++];
switch (Type) {
case CTOR_INITIALIZER_BASE:
BaseClassInfo = GetTypeSourceInfo(F, Record, Idx);
IsBaseVirtual = Record[Idx++];
break;
case CTOR_INITIALIZER_DELEGATING:
Target = ReadDeclAs<CXXConstructorDecl>(F, Record, Idx);
break;
case CTOR_INITIALIZER_MEMBER:
Member = ReadDeclAs<FieldDecl>(F, Record, Idx);
break;
case CTOR_INITIALIZER_INDIRECT_MEMBER:
IndirectMember = ReadDeclAs<IndirectFieldDecl>(F, Record, Idx);
break;
}
SourceLocation MemberOrEllipsisLoc = ReadSourceLocation(F, Record, Idx);
Expr *Init = ReadExpr(F);
SourceLocation LParenLoc = ReadSourceLocation(F, Record, Idx);
SourceLocation RParenLoc = ReadSourceLocation(F, Record, Idx);
bool IsWritten = Record[Idx++];
unsigned SourceOrderOrNumArrayIndices;
llvm::SmallVector<VarDecl *, 8> Indices;
if (IsWritten) {
SourceOrderOrNumArrayIndices = Record[Idx++];
} else {
SourceOrderOrNumArrayIndices = Record[Idx++];
Indices.reserve(SourceOrderOrNumArrayIndices);
for (unsigned i=0; i != SourceOrderOrNumArrayIndices; ++i)
Indices.push_back(ReadDeclAs<VarDecl>(F, Record, Idx));
}
CXXCtorInitializer *BOMInit;
if (Type == CTOR_INITIALIZER_BASE) {
BOMInit = new (C) CXXCtorInitializer(C, BaseClassInfo, IsBaseVirtual,
LParenLoc, Init, RParenLoc,
MemberOrEllipsisLoc);
} else if (Type == CTOR_INITIALIZER_DELEGATING) {
BOMInit = new (C) CXXCtorInitializer(C, MemberOrEllipsisLoc, LParenLoc,
Target, Init, RParenLoc);
} else if (IsWritten) {
if (Member)
BOMInit = new (C) CXXCtorInitializer(C, Member, MemberOrEllipsisLoc,
LParenLoc, Init, RParenLoc);
else
BOMInit = new (C) CXXCtorInitializer(C, IndirectMember,
MemberOrEllipsisLoc, LParenLoc,
Init, RParenLoc);
} else {
BOMInit = CXXCtorInitializer::Create(C, Member, MemberOrEllipsisLoc,
LParenLoc, Init, RParenLoc,
Indices.data(), Indices.size());
}
if (IsWritten)
BOMInit->setSourceOrder(SourceOrderOrNumArrayIndices);
CtorInitializers[i] = BOMInit;
}
}
return std::make_pair(CtorInitializers, NumInitializers);
}
NestedNameSpecifier *
ASTReader::ReadNestedNameSpecifier(Module &F,
const RecordData &Record, unsigned &Idx) {
unsigned N = Record[Idx++];
NestedNameSpecifier *NNS = 0, *Prev = 0;
for (unsigned I = 0; I != N; ++I) {
NestedNameSpecifier::SpecifierKind Kind
= (NestedNameSpecifier::SpecifierKind)Record[Idx++];
switch (Kind) {
case NestedNameSpecifier::Identifier: {
IdentifierInfo *II = GetIdentifierInfo(Record, Idx);
NNS = NestedNameSpecifier::Create(*Context, Prev, II);
break;
}
case NestedNameSpecifier::Namespace: {
NamespaceDecl *NS = ReadDeclAs<NamespaceDecl>(F, Record, Idx);
NNS = NestedNameSpecifier::Create(*Context, Prev, NS);
break;
}
case NestedNameSpecifier::NamespaceAlias: {
NamespaceAliasDecl *Alias =ReadDeclAs<NamespaceAliasDecl>(F, Record, Idx);
NNS = NestedNameSpecifier::Create(*Context, Prev, Alias);
break;
}
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate: {
const Type *T = readType(F, Record, Idx).getTypePtrOrNull();
if (!T)
return 0;
bool Template = Record[Idx++];
NNS = NestedNameSpecifier::Create(*Context, Prev, Template, T);
break;
}
case NestedNameSpecifier::Global: {
NNS = NestedNameSpecifier::GlobalSpecifier(*Context);
// No associated value, and there can't be a prefix.
break;
}
}
Prev = NNS;
}
return NNS;
}
NestedNameSpecifierLoc
ASTReader::ReadNestedNameSpecifierLoc(Module &F, const RecordData &Record,
unsigned &Idx) {
unsigned N = Record[Idx++];
NestedNameSpecifierLocBuilder Builder;
for (unsigned I = 0; I != N; ++I) {
NestedNameSpecifier::SpecifierKind Kind
= (NestedNameSpecifier::SpecifierKind)Record[Idx++];
switch (Kind) {
case NestedNameSpecifier::Identifier: {
IdentifierInfo *II = GetIdentifierInfo(Record, Idx);
SourceRange Range = ReadSourceRange(F, Record, Idx);
Builder.Extend(*Context, II, Range.getBegin(), Range.getEnd());
break;
}
case NestedNameSpecifier::Namespace: {
NamespaceDecl *NS = ReadDeclAs<NamespaceDecl>(F, Record, Idx);
SourceRange Range = ReadSourceRange(F, Record, Idx);
Builder.Extend(*Context, NS, Range.getBegin(), Range.getEnd());
break;
}
case NestedNameSpecifier::NamespaceAlias: {
NamespaceAliasDecl *Alias =ReadDeclAs<NamespaceAliasDecl>(F, Record, Idx);
SourceRange Range = ReadSourceRange(F, Record, Idx);
Builder.Extend(*Context, Alias, Range.getBegin(), Range.getEnd());
break;
}
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate: {
bool Template = Record[Idx++];
TypeSourceInfo *T = GetTypeSourceInfo(F, Record, Idx);
if (!T)
return NestedNameSpecifierLoc();
SourceLocation ColonColonLoc = ReadSourceLocation(F, Record, Idx);
// FIXME: 'template' keyword location not saved anywhere, so we fake it.
Builder.Extend(*Context,
Template? T->getTypeLoc().getBeginLoc() : SourceLocation(),
T->getTypeLoc(), ColonColonLoc);
break;
}
case NestedNameSpecifier::Global: {
SourceLocation ColonColonLoc = ReadSourceLocation(F, Record, Idx);
Builder.MakeGlobal(*Context, ColonColonLoc);
break;
}
}
}
return Builder.getWithLocInContext(*Context);
}
SourceRange
ASTReader::ReadSourceRange(Module &F, const RecordData &Record,
unsigned &Idx) {
SourceLocation beg = ReadSourceLocation(F, Record, Idx);
SourceLocation end = ReadSourceLocation(F, Record, Idx);
return SourceRange(beg, end);
}
/// \brief Read an integral value
llvm::APInt ASTReader::ReadAPInt(const RecordData &Record, unsigned &Idx) {
unsigned BitWidth = Record[Idx++];
unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
llvm::APInt Result(BitWidth, NumWords, &Record[Idx]);
Idx += NumWords;
return Result;
}
/// \brief Read a signed integral value
llvm::APSInt ASTReader::ReadAPSInt(const RecordData &Record, unsigned &Idx) {
bool isUnsigned = Record[Idx++];
return llvm::APSInt(ReadAPInt(Record, Idx), isUnsigned);
}
/// \brief Read a floating-point value
llvm::APFloat ASTReader::ReadAPFloat(const RecordData &Record, unsigned &Idx) {
return llvm::APFloat(ReadAPInt(Record, Idx));
}
// \brief Read a string
std::string ASTReader::ReadString(const RecordData &Record, unsigned &Idx) {
unsigned Len = Record[Idx++];
std::string Result(Record.data() + Idx, Record.data() + Idx + Len);
Idx += Len;
return Result;
}
VersionTuple ASTReader::ReadVersionTuple(const RecordData &Record,
unsigned &Idx) {
unsigned Major = Record[Idx++];
unsigned Minor = Record[Idx++];
unsigned Subminor = Record[Idx++];
if (Minor == 0)
return VersionTuple(Major);
if (Subminor == 0)
return VersionTuple(Major, Minor - 1);
return VersionTuple(Major, Minor - 1, Subminor - 1);
}
CXXTemporary *ASTReader::ReadCXXTemporary(Module &F,
const RecordData &Record,
unsigned &Idx) {
CXXDestructorDecl *Decl = ReadDeclAs<CXXDestructorDecl>(F, Record, Idx);
return CXXTemporary::Create(*Context, Decl);
}
DiagnosticBuilder ASTReader::Diag(unsigned DiagID) {
return Diag(SourceLocation(), DiagID);
}
DiagnosticBuilder ASTReader::Diag(SourceLocation Loc, unsigned DiagID) {
return Diags.Report(Loc, DiagID);
}
/// \brief Retrieve the identifier table associated with the
/// preprocessor.
IdentifierTable &ASTReader::getIdentifierTable() {
assert(PP && "Forgot to set Preprocessor ?");
return PP->getIdentifierTable();
}
/// \brief Record that the given ID maps to the given switch-case
/// statement.
void ASTReader::RecordSwitchCaseID(SwitchCase *SC, unsigned ID) {
assert(SwitchCaseStmts[ID] == 0 && "Already have a SwitchCase with this ID");
SwitchCaseStmts[ID] = SC;
}
/// \brief Retrieve the switch-case statement with the given ID.
SwitchCase *ASTReader::getSwitchCaseWithID(unsigned ID) {
assert(SwitchCaseStmts[ID] != 0 && "No SwitchCase with this ID");
return SwitchCaseStmts[ID];
}
void ASTReader::ClearSwitchCaseIDs() {
SwitchCaseStmts.clear();
}
void ASTReader::FinishedDeserializing() {
assert(NumCurrentElementsDeserializing &&
"FinishedDeserializing not paired with StartedDeserializing");
if (NumCurrentElementsDeserializing == 1) {
// If any identifiers with corresponding top-level declarations have
// been loaded, load those declarations now.
while (!PendingIdentifierInfos.empty()) {
SetGloballyVisibleDecls(PendingIdentifierInfos.front().II,
PendingIdentifierInfos.front().DeclIDs, true);
PendingIdentifierInfos.pop_front();
}
// Ready to load previous declarations of Decls that were delayed.
while (!PendingPreviousDecls.empty()) {
loadAndAttachPreviousDecl(PendingPreviousDecls.front().first,
PendingPreviousDecls.front().second);
PendingPreviousDecls.pop_front();
}
// We are not in recursive loading, so it's safe to pass the "interesting"
// decls to the consumer.
if (Consumer)
PassInterestingDeclsToConsumer();
assert(PendingForwardRefs.size() == 0 &&
"Some forward refs did not get linked to the definition!");
}
--NumCurrentElementsDeserializing;
}
ASTReader::ASTReader(Preprocessor &PP, ASTContext *Context,
StringRef isysroot, bool DisableValidation,
bool DisableStatCache)
: Listener(new PCHValidator(PP, *this)), DeserializationListener(0),
SourceMgr(PP.getSourceManager()), FileMgr(PP.getFileManager()),
Diags(PP.getDiagnostics()), SemaObj(0), PP(&PP), Context(Context),
Consumer(0), FirstInSource(0), RelocatablePCH(false), isysroot(isysroot),
DisableValidation(DisableValidation),
DisableStatCache(DisableStatCache), NumStatHits(0), NumStatMisses(0),
NumSLocEntriesRead(0), TotalNumSLocEntries(0),
NumStatementsRead(0), TotalNumStatements(0), NumMacrosRead(0),
TotalNumMacros(0), NumSelectorsRead(0), NumMethodPoolEntriesRead(0),
NumMethodPoolMisses(0), TotalNumMethodPoolEntries(0),
NumLexicalDeclContextsRead(0), TotalLexicalDeclContexts(0),
NumVisibleDeclContextsRead(0), TotalVisibleDeclContexts(0),
TotalModulesSizeInBits(0), NumCurrentElementsDeserializing(0),
NumCXXBaseSpecifiersLoaded(0)
{
SourceMgr.setExternalSLocEntrySource(this);
}
ASTReader::ASTReader(SourceManager &SourceMgr, FileManager &FileMgr,
Diagnostic &Diags, StringRef isysroot,
bool DisableValidation, bool DisableStatCache)
: DeserializationListener(0), SourceMgr(SourceMgr), FileMgr(FileMgr),
Diags(Diags), SemaObj(0), PP(0), Context(0), Consumer(0), FirstInSource(0),
RelocatablePCH(false), isysroot(isysroot),
DisableValidation(DisableValidation), DisableStatCache(DisableStatCache),
NumStatHits(0), NumStatMisses(0), NumSLocEntriesRead(0),
TotalNumSLocEntries(0), NumStatementsRead(0),
TotalNumStatements(0), NumMacrosRead(0), TotalNumMacros(0),
NumSelectorsRead(0), NumMethodPoolEntriesRead(0), NumMethodPoolMisses(0),
TotalNumMethodPoolEntries(0), NumLexicalDeclContextsRead(0),
TotalLexicalDeclContexts(0), NumVisibleDeclContextsRead(0),
TotalVisibleDeclContexts(0), TotalModulesSizeInBits(0),
NumCurrentElementsDeserializing(0), NumCXXBaseSpecifiersLoaded(0)
{
SourceMgr.setExternalSLocEntrySource(this);
}
ASTReader::~ASTReader() {
for (unsigned i = 0, e = Chain.size(); i != e; ++i)
delete Chain[e - i - 1];
// Delete all visible decl lookup tables
for (DeclContextOffsetsMap::iterator I = DeclContextOffsets.begin(),
E = DeclContextOffsets.end();
I != E; ++I) {
for (DeclContextInfos::iterator J = I->second.begin(), F = I->second.end();
J != F; ++J) {
if (J->NameLookupTableData)
delete static_cast<ASTDeclContextNameLookupTable*>(
J->NameLookupTableData);
}
}
for (DeclContextVisibleUpdatesPending::iterator
I = PendingVisibleUpdates.begin(),
E = PendingVisibleUpdates.end();
I != E; ++I) {
for (DeclContextVisibleUpdates::iterator J = I->second.begin(),
F = I->second.end();
J != F; ++J)
delete static_cast<ASTDeclContextNameLookupTable*>(*J);
}
}
Module::Module(ModuleKind Kind)
: Kind(Kind), SizeInBits(0), LocalNumSLocEntries(0), SLocEntryBaseID(0),
SLocEntryBaseOffset(0), SLocEntryOffsets(0),
SLocFileOffsets(0), LocalNumIdentifiers(0),
IdentifierOffsets(0), IdentifierTableData(0),
IdentifierLookupTable(0), LocalNumMacroDefinitions(0),
MacroDefinitionOffsets(0), LocalNumHeaderFileInfos(0),
HeaderFileInfoTableData(0), HeaderFileInfoTable(0),
LocalNumSelectors(0), SelectorOffsets(0),
SelectorLookupTableData(0), SelectorLookupTable(0), LocalNumDecls(0),
DeclOffsets(0), LocalNumCXXBaseSpecifiers(0), CXXBaseSpecifiersOffsets(0),
LocalNumTypes(0), TypeOffsets(0), StatCache(0),
NumPreallocatedPreprocessingEntities(0), NextInSource(0)
{}
Module::~Module() {
delete static_cast<ASTIdentifierLookupTable *>(IdentifierLookupTable);
delete static_cast<HeaderFileInfoLookupTable *>(HeaderFileInfoTable);
delete static_cast<ASTSelectorLookupTable *>(SelectorLookupTable);
}