blob: 2b7fcd07f9d0c431cdd00f081878c632c11f5c74 [file] [log] [blame]
//===--- Diagnostic.cpp - C Language Family Diagnostic Handling -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Diagnostic-related interfaces.
//
//===----------------------------------------------------------------------===//
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Lex/LexDiagnostic.h"
#include "clang/Parse/ParseDiagnostic.h"
#include "clang/AST/ASTDiagnostic.h"
#include "clang/Sema/SemaDiagnostic.h"
#include "clang/Frontend/FrontendDiagnostic.h"
#include "clang/Analysis/AnalysisDiagnostic.h"
#include "clang/Driver/DriverDiagnostic.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <vector>
#include <map>
#include <cstring>
using namespace clang;
//===----------------------------------------------------------------------===//
// Builtin Diagnostic information
//===----------------------------------------------------------------------===//
// Diagnostic classes.
enum {
CLASS_NOTE = 0x01,
CLASS_WARNING = 0x02,
CLASS_EXTENSION = 0x03,
CLASS_ERROR = 0x04
};
struct StaticDiagInfoRec {
unsigned short DiagID;
unsigned Mapping : 3;
unsigned Class : 3;
bool SFINAE : 1;
const char *Description;
const char *OptionGroup;
bool operator<(const StaticDiagInfoRec &RHS) const {
return DiagID < RHS.DiagID;
}
bool operator>(const StaticDiagInfoRec &RHS) const {
return DiagID > RHS.DiagID;
}
};
static const StaticDiagInfoRec StaticDiagInfo[] = {
#define DIAG(ENUM,CLASS,DEFAULT_MAPPING,DESC,GROUP,SFINAE) \
{ diag::ENUM, DEFAULT_MAPPING, CLASS, SFINAE, DESC, GROUP },
#include "clang/Basic/DiagnosticCommonKinds.inc"
#include "clang/Basic/DiagnosticDriverKinds.inc"
#include "clang/Basic/DiagnosticFrontendKinds.inc"
#include "clang/Basic/DiagnosticLexKinds.inc"
#include "clang/Basic/DiagnosticParseKinds.inc"
#include "clang/Basic/DiagnosticASTKinds.inc"
#include "clang/Basic/DiagnosticSemaKinds.inc"
#include "clang/Basic/DiagnosticAnalysisKinds.inc"
{ 0, 0, 0, 0, 0, 0}
};
#undef DIAG
/// GetDiagInfo - Return the StaticDiagInfoRec entry for the specified DiagID,
/// or null if the ID is invalid.
static const StaticDiagInfoRec *GetDiagInfo(unsigned DiagID) {
unsigned NumDiagEntries = sizeof(StaticDiagInfo)/sizeof(StaticDiagInfo[0])-1;
// If assertions are enabled, verify that the StaticDiagInfo array is sorted.
#ifndef NDEBUG
static bool IsFirst = true;
if (IsFirst) {
for (unsigned i = 1; i != NumDiagEntries; ++i) {
assert(StaticDiagInfo[i-1].DiagID != StaticDiagInfo[i].DiagID &&
"Diag ID conflict, the enums at the start of clang::diag (in "
"Diagnostic.h) probably need to be increased");
assert(StaticDiagInfo[i-1] < StaticDiagInfo[i] &&
"Improperly sorted diag info");
}
IsFirst = false;
}
#endif
// Search the diagnostic table with a binary search.
StaticDiagInfoRec Find = { DiagID, 0, 0, 0, 0, 0 };
const StaticDiagInfoRec *Found =
std::lower_bound(StaticDiagInfo, StaticDiagInfo + NumDiagEntries, Find);
if (Found == StaticDiagInfo + NumDiagEntries ||
Found->DiagID != DiagID)
return 0;
return Found;
}
static unsigned GetDefaultDiagMapping(unsigned DiagID) {
if (const StaticDiagInfoRec *Info = GetDiagInfo(DiagID))
return Info->Mapping;
return diag::MAP_FATAL;
}
/// getWarningOptionForDiag - Return the lowest-level warning option that
/// enables the specified diagnostic. If there is no -Wfoo flag that controls
/// the diagnostic, this returns null.
const char *Diagnostic::getWarningOptionForDiag(unsigned DiagID) {
if (const StaticDiagInfoRec *Info = GetDiagInfo(DiagID))
return Info->OptionGroup;
return 0;
}
Diagnostic::SFINAEResponse
Diagnostic::getDiagnosticSFINAEResponse(unsigned DiagID) {
if (const StaticDiagInfoRec *Info = GetDiagInfo(DiagID)) {
if (!Info->SFINAE)
return SFINAE_Report;
if (Info->Class == CLASS_ERROR)
return SFINAE_SubstitutionFailure;
// Suppress notes, warnings, and extensions;
return SFINAE_Suppress;
}
return SFINAE_Report;
}
/// getDiagClass - Return the class field of the diagnostic.
///
static unsigned getBuiltinDiagClass(unsigned DiagID) {
if (const StaticDiagInfoRec *Info = GetDiagInfo(DiagID))
return Info->Class;
return ~0U;
}
//===----------------------------------------------------------------------===//
// Custom Diagnostic information
//===----------------------------------------------------------------------===//
namespace clang {
namespace diag {
class CustomDiagInfo {
typedef std::pair<Diagnostic::Level, std::string> DiagDesc;
std::vector<DiagDesc> DiagInfo;
std::map<DiagDesc, unsigned> DiagIDs;
public:
/// getDescription - Return the description of the specified custom
/// diagnostic.
const char *getDescription(unsigned DiagID) const {
assert(this && DiagID-DIAG_UPPER_LIMIT < DiagInfo.size() &&
"Invalid diagnosic ID");
return DiagInfo[DiagID-DIAG_UPPER_LIMIT].second.c_str();
}
/// getLevel - Return the level of the specified custom diagnostic.
Diagnostic::Level getLevel(unsigned DiagID) const {
assert(this && DiagID-DIAG_UPPER_LIMIT < DiagInfo.size() &&
"Invalid diagnosic ID");
return DiagInfo[DiagID-DIAG_UPPER_LIMIT].first;
}
unsigned getOrCreateDiagID(Diagnostic::Level L, llvm::StringRef Message,
Diagnostic &Diags) {
DiagDesc D(L, Message);
// Check to see if it already exists.
std::map<DiagDesc, unsigned>::iterator I = DiagIDs.lower_bound(D);
if (I != DiagIDs.end() && I->first == D)
return I->second;
// If not, assign a new ID.
unsigned ID = DiagInfo.size()+DIAG_UPPER_LIMIT;
DiagIDs.insert(std::make_pair(D, ID));
DiagInfo.push_back(D);
return ID;
}
};
} // end diag namespace
} // end clang namespace
//===----------------------------------------------------------------------===//
// Common Diagnostic implementation
//===----------------------------------------------------------------------===//
static void DummyArgToStringFn(Diagnostic::ArgumentKind AK, intptr_t QT,
const char *Modifier, unsigned ML,
const char *Argument, unsigned ArgLen,
const Diagnostic::ArgumentValue *PrevArgs,
unsigned NumPrevArgs,
llvm::SmallVectorImpl<char> &Output,
void *Cookie) {
const char *Str = "<can't format argument>";
Output.append(Str, Str+strlen(Str));
}
Diagnostic::Diagnostic(DiagnosticClient *client) : Client(client) {
AllExtensionsSilenced = 0;
IgnoreAllWarnings = false;
WarningsAsErrors = false;
ErrorsAsFatal = false;
SuppressSystemWarnings = false;
SuppressAllDiagnostics = false;
ExtBehavior = Ext_Ignore;
ErrorOccurred = false;
FatalErrorOccurred = false;
NumDiagnostics = 0;
NumErrors = 0;
CustomDiagInfo = 0;
CurDiagID = ~0U;
LastDiagLevel = Ignored;
ArgToStringFn = DummyArgToStringFn;
ArgToStringCookie = 0;
DelayedDiagID = 0;
// Set all mappings to 'unset'.
DiagMappings BlankDiags(diag::DIAG_UPPER_LIMIT/2, 0);
DiagMappingsStack.push_back(BlankDiags);
}
Diagnostic::~Diagnostic() {
delete CustomDiagInfo;
}
void Diagnostic::pushMappings() {
// Avoids undefined behavior when the stack has to resize.
DiagMappingsStack.reserve(DiagMappingsStack.size() + 1);
DiagMappingsStack.push_back(DiagMappingsStack.back());
}
bool Diagnostic::popMappings() {
if (DiagMappingsStack.size() == 1)
return false;
DiagMappingsStack.pop_back();
return true;
}
/// getCustomDiagID - Return an ID for a diagnostic with the specified message
/// and level. If this is the first request for this diagnosic, it is
/// registered and created, otherwise the existing ID is returned.
unsigned Diagnostic::getCustomDiagID(Level L, llvm::StringRef Message) {
if (CustomDiagInfo == 0)
CustomDiagInfo = new diag::CustomDiagInfo();
return CustomDiagInfo->getOrCreateDiagID(L, Message, *this);
}
/// isBuiltinWarningOrExtension - Return true if the unmapped diagnostic
/// level of the specified diagnostic ID is a Warning or Extension.
/// This only works on builtin diagnostics, not custom ones, and is not legal to
/// call on NOTEs.
bool Diagnostic::isBuiltinWarningOrExtension(unsigned DiagID) {
return DiagID < diag::DIAG_UPPER_LIMIT &&
getBuiltinDiagClass(DiagID) != CLASS_ERROR;
}
/// \brief Determine whether the given built-in diagnostic ID is a
/// Note.
bool Diagnostic::isBuiltinNote(unsigned DiagID) {
return DiagID < diag::DIAG_UPPER_LIMIT &&
getBuiltinDiagClass(DiagID) == CLASS_NOTE;
}
/// isBuiltinExtensionDiag - Determine whether the given built-in diagnostic
/// ID is for an extension of some sort.
///
bool Diagnostic::isBuiltinExtensionDiag(unsigned DiagID) {
return DiagID < diag::DIAG_UPPER_LIMIT &&
getBuiltinDiagClass(DiagID) == CLASS_EXTENSION;
}
/// getDescription - Given a diagnostic ID, return a description of the
/// issue.
const char *Diagnostic::getDescription(unsigned DiagID) const {
if (const StaticDiagInfoRec *Info = GetDiagInfo(DiagID))
return Info->Description;
return CustomDiagInfo->getDescription(DiagID);
}
void Diagnostic::SetDelayedDiagnostic(unsigned DiagID, llvm::StringRef Arg1,
llvm::StringRef Arg2) {
if (DelayedDiagID)
return;
DelayedDiagID = DiagID;
DelayedDiagArg1 = Arg1.str();
DelayedDiagArg2 = Arg2.str();
}
void Diagnostic::ReportDelayed() {
Report(DelayedDiagID) << DelayedDiagArg1 << DelayedDiagArg2;
DelayedDiagID = 0;
DelayedDiagArg1.clear();
DelayedDiagArg2.clear();
}
/// getDiagnosticLevel - Based on the way the client configured the Diagnostic
/// object, classify the specified diagnostic ID into a Level, consumable by
/// the DiagnosticClient.
Diagnostic::Level Diagnostic::getDiagnosticLevel(unsigned DiagID) const {
// Handle custom diagnostics, which cannot be mapped.
if (DiagID >= diag::DIAG_UPPER_LIMIT)
return CustomDiagInfo->getLevel(DiagID);
unsigned DiagClass = getBuiltinDiagClass(DiagID);
assert(DiagClass != CLASS_NOTE && "Cannot get diagnostic level of a note!");
return getDiagnosticLevel(DiagID, DiagClass);
}
/// getDiagnosticLevel - Based on the way the client configured the Diagnostic
/// object, classify the specified diagnostic ID into a Level, consumable by
/// the DiagnosticClient.
Diagnostic::Level
Diagnostic::getDiagnosticLevel(unsigned DiagID, unsigned DiagClass) const {
// Specific non-error diagnostics may be mapped to various levels from ignored
// to error. Errors can only be mapped to fatal.
Diagnostic::Level Result = Diagnostic::Fatal;
// Get the mapping information, if unset, compute it lazily.
unsigned MappingInfo = getDiagnosticMappingInfo((diag::kind)DiagID);
if (MappingInfo == 0) {
MappingInfo = GetDefaultDiagMapping(DiagID);
setDiagnosticMappingInternal(DiagID, MappingInfo, false);
}
switch (MappingInfo & 7) {
default: assert(0 && "Unknown mapping!");
case diag::MAP_IGNORE:
// Ignore this, unless this is an extension diagnostic and we're mapping
// them onto warnings or errors.
if (!isBuiltinExtensionDiag(DiagID) || // Not an extension
ExtBehavior == Ext_Ignore || // Extensions ignored anyway
(MappingInfo & 8) != 0) // User explicitly mapped it.
return Diagnostic::Ignored;
Result = Diagnostic::Warning;
if (ExtBehavior == Ext_Error) Result = Diagnostic::Error;
if (Result == Diagnostic::Error && ErrorsAsFatal)
Result = Diagnostic::Fatal;
break;
case diag::MAP_ERROR:
Result = Diagnostic::Error;
if (ErrorsAsFatal)
Result = Diagnostic::Fatal;
break;
case diag::MAP_FATAL:
Result = Diagnostic::Fatal;
break;
case diag::MAP_WARNING:
// If warnings are globally mapped to ignore or error, do it.
if (IgnoreAllWarnings)
return Diagnostic::Ignored;
Result = Diagnostic::Warning;
// If this is an extension diagnostic and we're in -pedantic-error mode, and
// if the user didn't explicitly map it, upgrade to an error.
if (ExtBehavior == Ext_Error &&
(MappingInfo & 8) == 0 &&
isBuiltinExtensionDiag(DiagID))
Result = Diagnostic::Error;
if (WarningsAsErrors)
Result = Diagnostic::Error;
if (Result == Diagnostic::Error && ErrorsAsFatal)
Result = Diagnostic::Fatal;
break;
case diag::MAP_WARNING_NO_WERROR:
// Diagnostics specified with -Wno-error=foo should be set to warnings, but
// not be adjusted by -Werror or -pedantic-errors.
Result = Diagnostic::Warning;
// If warnings are globally mapped to ignore or error, do it.
if (IgnoreAllWarnings)
return Diagnostic::Ignored;
break;
case diag::MAP_ERROR_NO_WFATAL:
// Diagnostics specified as -Wno-fatal-error=foo should be errors, but
// unaffected by -Wfatal-errors.
Result = Diagnostic::Error;
break;
}
// Okay, we're about to return this as a "diagnostic to emit" one last check:
// if this is any sort of extension warning, and if we're in an __extension__
// block, silence it.
if (AllExtensionsSilenced && isBuiltinExtensionDiag(DiagID))
return Diagnostic::Ignored;
return Result;
}
struct WarningOption {
const char *Name;
const short *Members;
const char *SubGroups;
};
#define GET_DIAG_ARRAYS
#include "clang/Basic/DiagnosticGroups.inc"
#undef GET_DIAG_ARRAYS
// Second the table of options, sorted by name for fast binary lookup.
static const WarningOption OptionTable[] = {
#define GET_DIAG_TABLE
#include "clang/Basic/DiagnosticGroups.inc"
#undef GET_DIAG_TABLE
};
static const size_t OptionTableSize =
sizeof(OptionTable) / sizeof(OptionTable[0]);
static bool WarningOptionCompare(const WarningOption &LHS,
const WarningOption &RHS) {
return strcmp(LHS.Name, RHS.Name) < 0;
}
static void MapGroupMembers(const WarningOption *Group, diag::Mapping Mapping,
Diagnostic &Diags) {
// Option exists, poke all the members of its diagnostic set.
if (const short *Member = Group->Members) {
for (; *Member != -1; ++Member)
Diags.setDiagnosticMapping(*Member, Mapping);
}
// Enable/disable all subgroups along with this one.
if (const char *SubGroups = Group->SubGroups) {
for (; *SubGroups != (char)-1; ++SubGroups)
MapGroupMembers(&OptionTable[(unsigned char)*SubGroups], Mapping, Diags);
}
}
/// setDiagnosticGroupMapping - Change an entire diagnostic group (e.g.
/// "unknown-pragmas" to have the specified mapping. This returns true and
/// ignores the request if "Group" was unknown, false otherwise.
bool Diagnostic::setDiagnosticGroupMapping(const char *Group,
diag::Mapping Map) {
WarningOption Key = { Group, 0, 0 };
const WarningOption *Found =
std::lower_bound(OptionTable, OptionTable + OptionTableSize, Key,
WarningOptionCompare);
if (Found == OptionTable + OptionTableSize ||
strcmp(Found->Name, Group) != 0)
return true; // Option not found.
MapGroupMembers(Found, Map, *this);
return false;
}
/// ProcessDiag - This is the method used to report a diagnostic that is
/// finally fully formed.
bool Diagnostic::ProcessDiag() {
DiagnosticInfo Info(this);
if (SuppressAllDiagnostics)
return false;
// Figure out the diagnostic level of this message.
Diagnostic::Level DiagLevel;
unsigned DiagID = Info.getID();
// ShouldEmitInSystemHeader - True if this diagnostic should be produced even
// in a system header.
bool ShouldEmitInSystemHeader;
if (DiagID >= diag::DIAG_UPPER_LIMIT) {
// Handle custom diagnostics, which cannot be mapped.
DiagLevel = CustomDiagInfo->getLevel(DiagID);
// Custom diagnostics always are emitted in system headers.
ShouldEmitInSystemHeader = true;
} else {
// Get the class of the diagnostic. If this is a NOTE, map it onto whatever
// the diagnostic level was for the previous diagnostic so that it is
// filtered the same as the previous diagnostic.
unsigned DiagClass = getBuiltinDiagClass(DiagID);
if (DiagClass == CLASS_NOTE) {
DiagLevel = Diagnostic::Note;
ShouldEmitInSystemHeader = false; // extra consideration is needed
} else {
// If this is not an error and we are in a system header, we ignore it.
// Check the original Diag ID here, because we also want to ignore
// extensions and warnings in -Werror and -pedantic-errors modes, which
// *map* warnings/extensions to errors.
ShouldEmitInSystemHeader = DiagClass == CLASS_ERROR;
DiagLevel = getDiagnosticLevel(DiagID, DiagClass);
}
}
if (DiagLevel != Diagnostic::Note) {
// Record that a fatal error occurred only when we see a second
// non-note diagnostic. This allows notes to be attached to the
// fatal error, but suppresses any diagnostics that follow those
// notes.
if (LastDiagLevel == Diagnostic::Fatal)
FatalErrorOccurred = true;
LastDiagLevel = DiagLevel;
}
// If a fatal error has already been emitted, silence all subsequent
// diagnostics.
if (FatalErrorOccurred)
return false;
// If the client doesn't care about this message, don't issue it. If this is
// a note and the last real diagnostic was ignored, ignore it too.
if (DiagLevel == Diagnostic::Ignored ||
(DiagLevel == Diagnostic::Note && LastDiagLevel == Diagnostic::Ignored))
return false;
// If this diagnostic is in a system header and is not a clang error, suppress
// it.
if (SuppressSystemWarnings && !ShouldEmitInSystemHeader &&
Info.getLocation().isValid() &&
Info.getLocation().getInstantiationLoc().isInSystemHeader() &&
(DiagLevel != Diagnostic::Note || LastDiagLevel == Diagnostic::Ignored)) {
LastDiagLevel = Diagnostic::Ignored;
return false;
}
if (DiagLevel >= Diagnostic::Error) {
ErrorOccurred = true;
++NumErrors;
}
// Finally, report it.
Client->HandleDiagnostic(DiagLevel, Info);
if (Client->IncludeInDiagnosticCounts()) ++NumDiagnostics;
CurDiagID = ~0U;
return true;
}
bool DiagnosticBuilder::Emit() {
// If DiagObj is null, then its soul was stolen by the copy ctor
// or the user called Emit().
if (DiagObj == 0) return false;
// When emitting diagnostics, we set the final argument count into
// the Diagnostic object.
DiagObj->NumDiagArgs = NumArgs;
DiagObj->NumDiagRanges = NumRanges;
DiagObj->NumFixItHints = NumFixItHints;
// Process the diagnostic, sending the accumulated information to the
// DiagnosticClient.
bool Emitted = DiagObj->ProcessDiag();
// Clear out the current diagnostic object.
unsigned DiagID = DiagObj->CurDiagID;
DiagObj->Clear();
// If there was a delayed diagnostic, emit it now.
if (DiagObj->DelayedDiagID && DiagObj->DelayedDiagID != DiagID)
DiagObj->ReportDelayed();
// This diagnostic is dead.
DiagObj = 0;
return Emitted;
}
DiagnosticClient::~DiagnosticClient() {}
/// ModifierIs - Return true if the specified modifier matches specified string.
template <std::size_t StrLen>
static bool ModifierIs(const char *Modifier, unsigned ModifierLen,
const char (&Str)[StrLen]) {
return StrLen-1 == ModifierLen && !memcmp(Modifier, Str, StrLen-1);
}
/// ScanForward - Scans forward, looking for the given character, skipping
/// nested clauses and escaped characters.
static const char *ScanFormat(const char *I, const char *E, char Target) {
unsigned Depth = 0;
for ( ; I != E; ++I) {
if (Depth == 0 && *I == Target) return I;
if (Depth != 0 && *I == '}') Depth--;
if (*I == '%') {
I++;
if (I == E) break;
// Escaped characters get implicitly skipped here.
// Format specifier.
if (!isdigit(*I) && !ispunct(*I)) {
for (I++; I != E && !isdigit(*I) && *I != '{'; I++) ;
if (I == E) break;
if (*I == '{')
Depth++;
}
}
}
return E;
}
/// HandleSelectModifier - Handle the integer 'select' modifier. This is used
/// like this: %select{foo|bar|baz}2. This means that the integer argument
/// "%2" has a value from 0-2. If the value is 0, the diagnostic prints 'foo'.
/// If the value is 1, it prints 'bar'. If it has the value 2, it prints 'baz'.
/// This is very useful for certain classes of variant diagnostics.
static void HandleSelectModifier(const DiagnosticInfo &DInfo, unsigned ValNo,
const char *Argument, unsigned ArgumentLen,
llvm::SmallVectorImpl<char> &OutStr) {
const char *ArgumentEnd = Argument+ArgumentLen;
// Skip over 'ValNo' |'s.
while (ValNo) {
const char *NextVal = ScanFormat(Argument, ArgumentEnd, '|');
assert(NextVal != ArgumentEnd && "Value for integer select modifier was"
" larger than the number of options in the diagnostic string!");
Argument = NextVal+1; // Skip this string.
--ValNo;
}
// Get the end of the value. This is either the } or the |.
const char *EndPtr = ScanFormat(Argument, ArgumentEnd, '|');
// Recursively format the result of the select clause into the output string.
DInfo.FormatDiagnostic(Argument, EndPtr, OutStr);
}
/// HandleIntegerSModifier - Handle the integer 's' modifier. This adds the
/// letter 's' to the string if the value is not 1. This is used in cases like
/// this: "you idiot, you have %4 parameter%s4!".
static void HandleIntegerSModifier(unsigned ValNo,
llvm::SmallVectorImpl<char> &OutStr) {
if (ValNo != 1)
OutStr.push_back('s');
}
/// HandleOrdinalModifier - Handle the integer 'ord' modifier. This
/// prints the ordinal form of the given integer, with 1 corresponding
/// to the first ordinal. Currently this is hard-coded to use the
/// English form.
static void HandleOrdinalModifier(unsigned ValNo,
llvm::SmallVectorImpl<char> &OutStr) {
assert(ValNo != 0 && "ValNo must be strictly positive!");
llvm::raw_svector_ostream Out(OutStr);
// We could use text forms for the first N ordinals, but the numeric
// forms are actually nicer in diagnostics because they stand out.
Out << ValNo;
// It is critically important that we do this perfectly for
// user-written sequences with over 100 elements.
switch (ValNo % 100) {
case 11:
case 12:
case 13:
Out << "th"; return;
default:
switch (ValNo % 10) {
case 1: Out << "st"; return;
case 2: Out << "nd"; return;
case 3: Out << "rd"; return;
default: Out << "th"; return;
}
}
}
/// PluralNumber - Parse an unsigned integer and advance Start.
static unsigned PluralNumber(const char *&Start, const char *End) {
// Programming 101: Parse a decimal number :-)
unsigned Val = 0;
while (Start != End && *Start >= '0' && *Start <= '9') {
Val *= 10;
Val += *Start - '0';
++Start;
}
return Val;
}
/// TestPluralRange - Test if Val is in the parsed range. Modifies Start.
static bool TestPluralRange(unsigned Val, const char *&Start, const char *End) {
if (*Start != '[') {
unsigned Ref = PluralNumber(Start, End);
return Ref == Val;
}
++Start;
unsigned Low = PluralNumber(Start, End);
assert(*Start == ',' && "Bad plural expression syntax: expected ,");
++Start;
unsigned High = PluralNumber(Start, End);
assert(*Start == ']' && "Bad plural expression syntax: expected )");
++Start;
return Low <= Val && Val <= High;
}
/// EvalPluralExpr - Actual expression evaluator for HandlePluralModifier.
static bool EvalPluralExpr(unsigned ValNo, const char *Start, const char *End) {
// Empty condition?
if (*Start == ':')
return true;
while (1) {
char C = *Start;
if (C == '%') {
// Modulo expression
++Start;
unsigned Arg = PluralNumber(Start, End);
assert(*Start == '=' && "Bad plural expression syntax: expected =");
++Start;
unsigned ValMod = ValNo % Arg;
if (TestPluralRange(ValMod, Start, End))
return true;
} else {
assert((C == '[' || (C >= '0' && C <= '9')) &&
"Bad plural expression syntax: unexpected character");
// Range expression
if (TestPluralRange(ValNo, Start, End))
return true;
}
// Scan for next or-expr part.
Start = std::find(Start, End, ',');
if (Start == End)
break;
++Start;
}
return false;
}
/// HandlePluralModifier - Handle the integer 'plural' modifier. This is used
/// for complex plural forms, or in languages where all plurals are complex.
/// The syntax is: %plural{cond1:form1|cond2:form2|:form3}, where condn are
/// conditions that are tested in order, the form corresponding to the first
/// that applies being emitted. The empty condition is always true, making the
/// last form a default case.
/// Conditions are simple boolean expressions, where n is the number argument.
/// Here are the rules.
/// condition := expression | empty
/// empty := -> always true
/// expression := numeric [',' expression] -> logical or
/// numeric := range -> true if n in range
/// | '%' number '=' range -> true if n % number in range
/// range := number
/// | '[' number ',' number ']' -> ranges are inclusive both ends
///
/// Here are some examples from the GNU gettext manual written in this form:
/// English:
/// {1:form0|:form1}
/// Latvian:
/// {0:form2|%100=11,%10=0,%10=[2,9]:form1|:form0}
/// Gaeilge:
/// {1:form0|2:form1|:form2}
/// Romanian:
/// {1:form0|0,%100=[1,19]:form1|:form2}
/// Lithuanian:
/// {%10=0,%100=[10,19]:form2|%10=1:form0|:form1}
/// Russian (requires repeated form):
/// {%100=[11,14]:form2|%10=1:form0|%10=[2,4]:form1|:form2}
/// Slovak
/// {1:form0|[2,4]:form1|:form2}
/// Polish (requires repeated form):
/// {1:form0|%100=[10,20]:form2|%10=[2,4]:form1|:form2}
static void HandlePluralModifier(unsigned ValNo,
const char *Argument, unsigned ArgumentLen,
llvm::SmallVectorImpl<char> &OutStr) {
const char *ArgumentEnd = Argument + ArgumentLen;
while (1) {
assert(Argument < ArgumentEnd && "Plural expression didn't match.");
const char *ExprEnd = Argument;
while (*ExprEnd != ':') {
assert(ExprEnd != ArgumentEnd && "Plural missing expression end");
++ExprEnd;
}
if (EvalPluralExpr(ValNo, Argument, ExprEnd)) {
Argument = ExprEnd + 1;
ExprEnd = ScanFormat(Argument, ArgumentEnd, '|');
OutStr.append(Argument, ExprEnd);
return;
}
Argument = ScanFormat(Argument, ArgumentEnd - 1, '|') + 1;
}
}
/// FormatDiagnostic - Format this diagnostic into a string, substituting the
/// formal arguments into the %0 slots. The result is appended onto the Str
/// array.
void DiagnosticInfo::
FormatDiagnostic(llvm::SmallVectorImpl<char> &OutStr) const {
const char *DiagStr = getDiags()->getDescription(getID());
const char *DiagEnd = DiagStr+strlen(DiagStr);
FormatDiagnostic(DiagStr, DiagEnd, OutStr);
}
void DiagnosticInfo::
FormatDiagnostic(const char *DiagStr, const char *DiagEnd,
llvm::SmallVectorImpl<char> &OutStr) const {
/// FormattedArgs - Keep track of all of the arguments formatted by
/// ConvertArgToString and pass them into subsequent calls to
/// ConvertArgToString, allowing the implementation to avoid redundancies in
/// obvious cases.
llvm::SmallVector<Diagnostic::ArgumentValue, 8> FormattedArgs;
while (DiagStr != DiagEnd) {
if (DiagStr[0] != '%') {
// Append non-%0 substrings to Str if we have one.
const char *StrEnd = std::find(DiagStr, DiagEnd, '%');
OutStr.append(DiagStr, StrEnd);
DiagStr = StrEnd;
continue;
} else if (ispunct(DiagStr[1])) {
OutStr.push_back(DiagStr[1]); // %% -> %.
DiagStr += 2;
continue;
}
// Skip the %.
++DiagStr;
// This must be a placeholder for a diagnostic argument. The format for a
// placeholder is one of "%0", "%modifier0", or "%modifier{arguments}0".
// The digit is a number from 0-9 indicating which argument this comes from.
// The modifier is a string of digits from the set [-a-z]+, arguments is a
// brace enclosed string.
const char *Modifier = 0, *Argument = 0;
unsigned ModifierLen = 0, ArgumentLen = 0;
// Check to see if we have a modifier. If so eat it.
if (!isdigit(DiagStr[0])) {
Modifier = DiagStr;
while (DiagStr[0] == '-' ||
(DiagStr[0] >= 'a' && DiagStr[0] <= 'z'))
++DiagStr;
ModifierLen = DiagStr-Modifier;
// If we have an argument, get it next.
if (DiagStr[0] == '{') {
++DiagStr; // Skip {.
Argument = DiagStr;
DiagStr = ScanFormat(DiagStr, DiagEnd, '}');
assert(DiagStr != DiagEnd && "Mismatched {}'s in diagnostic string!");
ArgumentLen = DiagStr-Argument;
++DiagStr; // Skip }.
}
}
assert(isdigit(*DiagStr) && "Invalid format for argument in diagnostic");
unsigned ArgNo = *DiagStr++ - '0';
Diagnostic::ArgumentKind Kind = getArgKind(ArgNo);
switch (Kind) {
// ---- STRINGS ----
case Diagnostic::ak_std_string: {
const std::string &S = getArgStdStr(ArgNo);
assert(ModifierLen == 0 && "No modifiers for strings yet");
OutStr.append(S.begin(), S.end());
break;
}
case Diagnostic::ak_c_string: {
const char *S = getArgCStr(ArgNo);
assert(ModifierLen == 0 && "No modifiers for strings yet");
// Don't crash if get passed a null pointer by accident.
if (!S)
S = "(null)";
OutStr.append(S, S + strlen(S));
break;
}
// ---- INTEGERS ----
case Diagnostic::ak_sint: {
int Val = getArgSInt(ArgNo);
if (ModifierIs(Modifier, ModifierLen, "select")) {
HandleSelectModifier(*this, (unsigned)Val, Argument, ArgumentLen, OutStr);
} else if (ModifierIs(Modifier, ModifierLen, "s")) {
HandleIntegerSModifier(Val, OutStr);
} else if (ModifierIs(Modifier, ModifierLen, "plural")) {
HandlePluralModifier((unsigned)Val, Argument, ArgumentLen, OutStr);
} else if (ModifierIs(Modifier, ModifierLen, "ordinal")) {
HandleOrdinalModifier((unsigned)Val, OutStr);
} else {
assert(ModifierLen == 0 && "Unknown integer modifier");
llvm::raw_svector_ostream(OutStr) << Val;
}
break;
}
case Diagnostic::ak_uint: {
unsigned Val = getArgUInt(ArgNo);
if (ModifierIs(Modifier, ModifierLen, "select")) {
HandleSelectModifier(*this, Val, Argument, ArgumentLen, OutStr);
} else if (ModifierIs(Modifier, ModifierLen, "s")) {
HandleIntegerSModifier(Val, OutStr);
} else if (ModifierIs(Modifier, ModifierLen, "plural")) {
HandlePluralModifier((unsigned)Val, Argument, ArgumentLen, OutStr);
} else if (ModifierIs(Modifier, ModifierLen, "ordinal")) {
HandleOrdinalModifier(Val, OutStr);
} else {
assert(ModifierLen == 0 && "Unknown integer modifier");
llvm::raw_svector_ostream(OutStr) << Val;
}
break;
}
// ---- NAMES and TYPES ----
case Diagnostic::ak_identifierinfo: {
const IdentifierInfo *II = getArgIdentifier(ArgNo);
assert(ModifierLen == 0 && "No modifiers for strings yet");
// Don't crash if get passed a null pointer by accident.
if (!II) {
const char *S = "(null)";
OutStr.append(S, S + strlen(S));
continue;
}
llvm::raw_svector_ostream(OutStr) << '\'' << II->getName() << '\'';
break;
}
case Diagnostic::ak_qualtype:
case Diagnostic::ak_declarationname:
case Diagnostic::ak_nameddecl:
case Diagnostic::ak_nestednamespec:
case Diagnostic::ak_declcontext:
getDiags()->ConvertArgToString(Kind, getRawArg(ArgNo),
Modifier, ModifierLen,
Argument, ArgumentLen,
FormattedArgs.data(), FormattedArgs.size(),
OutStr);
break;
}
// Remember this argument info for subsequent formatting operations. Turn
// std::strings into a null terminated string to make it be the same case as
// all the other ones.
if (Kind != Diagnostic::ak_std_string)
FormattedArgs.push_back(std::make_pair(Kind, getRawArg(ArgNo)));
else
FormattedArgs.push_back(std::make_pair(Diagnostic::ak_c_string,
(intptr_t)getArgStdStr(ArgNo).c_str()));
}
}
StoredDiagnostic::StoredDiagnostic() { }
StoredDiagnostic::StoredDiagnostic(Diagnostic::Level Level,
llvm::StringRef Message)
: Level(Level), Loc(), Message(Message) { }
StoredDiagnostic::StoredDiagnostic(Diagnostic::Level Level,
const DiagnosticInfo &Info)
: Level(Level), Loc(Info.getLocation())
{
llvm::SmallString<64> Message;
Info.FormatDiagnostic(Message);
this->Message.assign(Message.begin(), Message.end());
Ranges.reserve(Info.getNumRanges());
for (unsigned I = 0, N = Info.getNumRanges(); I != N; ++I)
Ranges.push_back(Info.getRange(I));
FixIts.reserve(Info.getNumFixItHints());
for (unsigned I = 0, N = Info.getNumFixItHints(); I != N; ++I)
FixIts.push_back(Info.getFixItHint(I));
}
StoredDiagnostic::~StoredDiagnostic() { }
static void WriteUnsigned(llvm::raw_ostream &OS, unsigned Value) {
OS.write((const char *)&Value, sizeof(unsigned));
}
static void WriteString(llvm::raw_ostream &OS, llvm::StringRef String) {
WriteUnsigned(OS, String.size());
OS.write(String.data(), String.size());
}
static void WriteSourceLocation(llvm::raw_ostream &OS,
SourceManager *SM,
SourceLocation Location) {
if (!SM || Location.isInvalid()) {
// If we don't have a source manager or this location is invalid,
// just write an invalid location.
WriteUnsigned(OS, 0);
WriteUnsigned(OS, 0);
WriteUnsigned(OS, 0);
return;
}
Location = SM->getInstantiationLoc(Location);
std::pair<FileID, unsigned> Decomposed = SM->getDecomposedLoc(Location);
WriteString(OS, SM->getFileEntryForID(Decomposed.first)->getName());
WriteUnsigned(OS, SM->getLineNumber(Decomposed.first, Decomposed.second));
WriteUnsigned(OS, SM->getColumnNumber(Decomposed.first, Decomposed.second));
}
void StoredDiagnostic::Serialize(llvm::raw_ostream &OS) const {
SourceManager *SM = 0;
if (getLocation().isValid())
SM = &const_cast<SourceManager &>(getLocation().getManager());
// Write a short header to help identify diagnostics.
OS << (char)0x06 << (char)0x07;
// Write the diagnostic level and location.
WriteUnsigned(OS, (unsigned)Level);
WriteSourceLocation(OS, SM, getLocation());
// Write the diagnostic message.
llvm::SmallString<64> Message;
WriteString(OS, getMessage());
// Count the number of ranges that don't point into macros, since
// only simple file ranges serialize well.
unsigned NumNonMacroRanges = 0;
for (range_iterator R = range_begin(), REnd = range_end(); R != REnd; ++R) {
if (R->getBegin().isMacroID() || R->getEnd().isMacroID())
continue;
++NumNonMacroRanges;
}
// Write the ranges.
WriteUnsigned(OS, NumNonMacroRanges);
if (NumNonMacroRanges) {
for (range_iterator R = range_begin(), REnd = range_end(); R != REnd; ++R) {
if (R->getBegin().isMacroID() || R->getEnd().isMacroID())
continue;
WriteSourceLocation(OS, SM, R->getBegin());
WriteSourceLocation(OS, SM, R->getEnd());
}
}
// Determine if all of the fix-its involve rewrites with simple file
// locations (not in macro instantiations). If so, we can write
// fix-it information.
unsigned NumFixIts = 0;
for (fixit_iterator F = fixit_begin(), FEnd = fixit_end(); F != FEnd; ++F) {
if (F->RemoveRange.isValid() &&
(F->RemoveRange.getBegin().isMacroID() ||
F->RemoveRange.getEnd().isMacroID())) {
NumFixIts = 0;
break;
}
if (F->InsertionLoc.isValid() && F->InsertionLoc.isMacroID()) {
NumFixIts = 0;
break;
}
++NumFixIts;
}
// Write the fix-its.
WriteUnsigned(OS, NumFixIts);
for (fixit_iterator F = fixit_begin(), FEnd = fixit_end(); F != FEnd; ++F) {
WriteSourceLocation(OS, SM, F->RemoveRange.getBegin());
WriteSourceLocation(OS, SM, F->RemoveRange.getEnd());
WriteSourceLocation(OS, SM, F->InsertionLoc);
WriteString(OS, F->CodeToInsert);
}
}
static bool ReadUnsigned(const char *&Memory, const char *MemoryEnd,
unsigned &Value) {
if (Memory + sizeof(unsigned) > MemoryEnd)
return true;
memmove(&Value, Memory, sizeof(unsigned));
Memory += sizeof(unsigned);
return false;
}
static bool ReadSourceLocation(FileManager &FM, SourceManager &SM,
const char *&Memory, const char *MemoryEnd,
SourceLocation &Location) {
// Read the filename.
unsigned FileNameLen = 0;
if (ReadUnsigned(Memory, MemoryEnd, FileNameLen) ||
Memory + FileNameLen > MemoryEnd)
return true;
llvm::StringRef FileName(Memory, FileNameLen);
Memory += FileNameLen;
// Read the line, column.
unsigned Line = 0, Column = 0;
if (ReadUnsigned(Memory, MemoryEnd, Line) ||
ReadUnsigned(Memory, MemoryEnd, Column))
return true;
if (FileName.empty()) {
Location = SourceLocation();
return false;
}
const FileEntry *File = FM.getFile(FileName);
if (!File)
return true;
// Make sure that this file has an entry in the source manager.
if (!SM.hasFileInfo(File))
SM.createFileID(File, SourceLocation(), SrcMgr::C_User);
Location = SM.getLocation(File, Line, Column);
return false;
}
StoredDiagnostic
StoredDiagnostic::Deserialize(FileManager &FM, SourceManager &SM,
const char *&Memory, const char *MemoryEnd) {
while (true) {
if (Memory == MemoryEnd)
return StoredDiagnostic();
if (*Memory != 0x06) {
++Memory;
continue;
}
++Memory;
if (Memory == MemoryEnd)
return StoredDiagnostic();
if (*Memory != 0x07) {
++Memory;
continue;
}
// We found the header. We're done.
++Memory;
break;
}
// Read the severity level.
unsigned Level = 0;
if (ReadUnsigned(Memory, MemoryEnd, Level) || Level > Diagnostic::Fatal)
return StoredDiagnostic();
// Read the source location.
SourceLocation Location;
if (ReadSourceLocation(FM, SM, Memory, MemoryEnd, Location))
return StoredDiagnostic();
// Read the diagnostic text.
if (Memory == MemoryEnd)
return StoredDiagnostic();
unsigned MessageLen = 0;
if (ReadUnsigned(Memory, MemoryEnd, MessageLen) ||
Memory + MessageLen > MemoryEnd)
return StoredDiagnostic();
llvm::StringRef Message(Memory, MessageLen);
Memory += MessageLen;
// At this point, we have enough information to form a diagnostic. Do so.
StoredDiagnostic Diag;
Diag.Level = (Diagnostic::Level)Level;
Diag.Loc = FullSourceLoc(Location, SM);
Diag.Message = Message;
if (Memory == MemoryEnd)
return Diag;
// Read the source ranges.
unsigned NumSourceRanges = 0;
if (ReadUnsigned(Memory, MemoryEnd, NumSourceRanges))
return Diag;
for (unsigned I = 0; I != NumSourceRanges; ++I) {
SourceLocation Begin, End;
if (ReadSourceLocation(FM, SM, Memory, MemoryEnd, Begin) ||
ReadSourceLocation(FM, SM, Memory, MemoryEnd, End))
return Diag;
Diag.Ranges.push_back(SourceRange(Begin, End));
}
// Read the fix-it hints.
unsigned NumFixIts = 0;
if (ReadUnsigned(Memory, MemoryEnd, NumFixIts))
return Diag;
for (unsigned I = 0; I != NumFixIts; ++I) {
SourceLocation RemoveBegin, RemoveEnd, InsertionLoc;
unsigned InsertLen = 0;
if (ReadSourceLocation(FM, SM, Memory, MemoryEnd, RemoveBegin) ||
ReadSourceLocation(FM, SM, Memory, MemoryEnd, RemoveEnd) ||
ReadSourceLocation(FM, SM, Memory, MemoryEnd, InsertionLoc) ||
ReadUnsigned(Memory, MemoryEnd, InsertLen) ||
Memory + InsertLen > MemoryEnd) {
Diag.FixIts.clear();
return Diag;
}
FixItHint Hint;
Hint.RemoveRange = SourceRange(RemoveBegin, RemoveEnd);
Hint.InsertionLoc = InsertionLoc;
Hint.CodeToInsert.assign(Memory, Memory + InsertLen);
Memory += InsertLen;
Diag.FixIts.push_back(Hint);
}
return Diag;
}
/// IncludeInDiagnosticCounts - This method (whose default implementation
/// returns true) indicates whether the diagnostics handled by this
/// DiagnosticClient should be included in the number of diagnostics
/// reported by Diagnostic.
bool DiagnosticClient::IncludeInDiagnosticCounts() const { return true; }
PartialDiagnostic::StorageAllocator::StorageAllocator() {
for (unsigned I = 0; I != NumCached; ++I)
FreeList[I] = Cached + I;
NumFreeListEntries = NumCached;
}
PartialDiagnostic::StorageAllocator::~StorageAllocator() {
assert(NumFreeListEntries == NumCached && "A partial is on the lamb");
}