| //=== BasicValueFactory.cpp - Basic values for Path Sens analysis --*- C++ -*-// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines BasicValueFactory, a class that manages the lifetime |
| // of APSInt objects and symbolic constraints used by GRExprEngine |
| // and related classes. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Analysis/PathSensitive/BasicValueFactory.h" |
| |
| using namespace clang; |
| |
| void CompoundValData::Profile(llvm::FoldingSetNodeID& ID, QualType T, |
| llvm::ImmutableList<SVal> L) { |
| T.Profile(ID); |
| ID.AddPointer(L.getInternalPointer()); |
| } |
| |
| typedef std::pair<SVal, uintptr_t> SValData; |
| typedef std::pair<SVal, SVal> SValPair; |
| |
| namespace llvm { |
| template<> struct FoldingSetTrait<SValData> { |
| static inline void Profile(const SValData& X, llvm::FoldingSetNodeID& ID) { |
| X.first.Profile(ID); |
| ID.AddPointer( (void*) X.second); |
| } |
| }; |
| |
| template<> struct FoldingSetTrait<SValPair> { |
| static inline void Profile(const SValPair& X, llvm::FoldingSetNodeID& ID) { |
| X.first.Profile(ID); |
| X.second.Profile(ID); |
| } |
| }; |
| } |
| |
| typedef llvm::FoldingSet<llvm::FoldingSetNodeWrapper<SValData> > |
| PersistentSValsTy; |
| |
| typedef llvm::FoldingSet<llvm::FoldingSetNodeWrapper<SValPair> > |
| PersistentSValPairsTy; |
| |
| BasicValueFactory::~BasicValueFactory() { |
| // Note that the dstor for the contents of APSIntSet will never be called, |
| // so we iterate over the set and invoke the dstor for each APSInt. This |
| // frees an aux. memory allocated to represent very large constants. |
| for (APSIntSetTy::iterator I=APSIntSet.begin(), E=APSIntSet.end(); I!=E; ++I) |
| I->getValue().~APSInt(); |
| |
| delete (PersistentSValsTy*) PersistentSVals; |
| delete (PersistentSValPairsTy*) PersistentSValPairs; |
| } |
| |
| const llvm::APSInt& BasicValueFactory::getValue(const llvm::APSInt& X) { |
| llvm::FoldingSetNodeID ID; |
| void* InsertPos; |
| typedef llvm::FoldingSetNodeWrapper<llvm::APSInt> FoldNodeTy; |
| |
| X.Profile(ID); |
| FoldNodeTy* P = APSIntSet.FindNodeOrInsertPos(ID, InsertPos); |
| |
| if (!P) { |
| P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>(); |
| new (P) FoldNodeTy(X); |
| APSIntSet.InsertNode(P, InsertPos); |
| } |
| |
| return *P; |
| } |
| |
| const llvm::APSInt& BasicValueFactory::getValue(const llvm::APInt& X, |
| bool isUnsigned) { |
| llvm::APSInt V(X, isUnsigned); |
| return getValue(V); |
| } |
| |
| const llvm::APSInt& BasicValueFactory::getValue(uint64_t X, unsigned BitWidth, |
| bool isUnsigned) { |
| llvm::APSInt V(BitWidth, isUnsigned); |
| V = X; |
| return getValue(V); |
| } |
| |
| const llvm::APSInt& BasicValueFactory::getValue(uint64_t X, QualType T) { |
| |
| unsigned bits = Ctx.getTypeSize(T); |
| llvm::APSInt V(bits, T->isUnsignedIntegerType()); |
| V = X; |
| return getValue(V); |
| } |
| |
| const SymIntConstraint& |
| BasicValueFactory::getConstraint(SymbolRef sym, BinaryOperator::Opcode Op, |
| const llvm::APSInt& V) { |
| |
| llvm::FoldingSetNodeID ID; |
| SymIntConstraint::Profile(ID, sym, Op, V); |
| void* InsertPos; |
| |
| SymIntConstraint* C = SymIntCSet.FindNodeOrInsertPos(ID, InsertPos); |
| |
| if (!C) { |
| C = (SymIntConstraint*) BPAlloc.Allocate<SymIntConstraint>(); |
| new (C) SymIntConstraint(sym, Op, V); |
| SymIntCSet.InsertNode(C, InsertPos); |
| } |
| |
| return *C; |
| } |
| |
| const CompoundValData* |
| BasicValueFactory::getCompoundValData(QualType T, |
| llvm::ImmutableList<SVal> Vals) { |
| |
| llvm::FoldingSetNodeID ID; |
| CompoundValData::Profile(ID, T, Vals); |
| void* InsertPos; |
| |
| CompoundValData* D = CompoundValDataSet.FindNodeOrInsertPos(ID, InsertPos); |
| |
| if (!D) { |
| D = (CompoundValData*) BPAlloc.Allocate<CompoundValData>(); |
| new (D) CompoundValData(T, Vals); |
| CompoundValDataSet.InsertNode(D, InsertPos); |
| } |
| |
| return D; |
| } |
| |
| const llvm::APSInt* |
| BasicValueFactory::EvaluateAPSInt(BinaryOperator::Opcode Op, |
| const llvm::APSInt& V1, const llvm::APSInt& V2) { |
| |
| switch (Op) { |
| default: |
| assert (false && "Invalid Opcode."); |
| |
| case BinaryOperator::Mul: |
| return &getValue( V1 * V2 ); |
| |
| case BinaryOperator::Div: |
| return &getValue( V1 / V2 ); |
| |
| case BinaryOperator::Rem: |
| return &getValue( V1 % V2 ); |
| |
| case BinaryOperator::Add: |
| return &getValue( V1 + V2 ); |
| |
| case BinaryOperator::Sub: |
| return &getValue( V1 - V2 ); |
| |
| case BinaryOperator::Shl: { |
| |
| // FIXME: This logic should probably go higher up, where we can |
| // test these conditions symbolically. |
| |
| // FIXME: Expand these checks to include all undefined behavior. |
| |
| if (V2.isSigned() && V2.isNegative()) |
| return NULL; |
| |
| uint64_t Amt = V2.getZExtValue(); |
| |
| if (Amt > V1.getBitWidth()) |
| return NULL; |
| |
| return &getValue( V1.operator<<( (unsigned) Amt )); |
| } |
| |
| case BinaryOperator::Shr: { |
| |
| // FIXME: This logic should probably go higher up, where we can |
| // test these conditions symbolically. |
| |
| // FIXME: Expand these checks to include all undefined behavior. |
| |
| if (V2.isSigned() && V2.isNegative()) |
| return NULL; |
| |
| uint64_t Amt = V2.getZExtValue(); |
| |
| if (Amt > V1.getBitWidth()) |
| return NULL; |
| |
| return &getValue( V1.operator>>( (unsigned) Amt )); |
| } |
| |
| case BinaryOperator::LT: |
| return &getTruthValue( V1 < V2 ); |
| |
| case BinaryOperator::GT: |
| return &getTruthValue( V1 > V2 ); |
| |
| case BinaryOperator::LE: |
| return &getTruthValue( V1 <= V2 ); |
| |
| case BinaryOperator::GE: |
| return &getTruthValue( V1 >= V2 ); |
| |
| case BinaryOperator::EQ: |
| return &getTruthValue( V1 == V2 ); |
| |
| case BinaryOperator::NE: |
| return &getTruthValue( V1 != V2 ); |
| |
| // Note: LAnd, LOr, Comma are handled specially by higher-level logic. |
| |
| case BinaryOperator::And: |
| return &getValue( V1 & V2 ); |
| |
| case BinaryOperator::Or: |
| return &getValue( V1 | V2 ); |
| |
| case BinaryOperator::Xor: |
| return &getValue( V1 ^ V2 ); |
| } |
| } |
| |
| |
| const std::pair<SVal, uintptr_t>& |
| BasicValueFactory::getPersistentSValWithData(const SVal& V, uintptr_t Data) { |
| |
| // Lazily create the folding set. |
| if (!PersistentSVals) PersistentSVals = new PersistentSValsTy(); |
| |
| llvm::FoldingSetNodeID ID; |
| void* InsertPos; |
| V.Profile(ID); |
| ID.AddPointer((void*) Data); |
| |
| PersistentSValsTy& Map = *((PersistentSValsTy*) PersistentSVals); |
| |
| typedef llvm::FoldingSetNodeWrapper<SValData> FoldNodeTy; |
| FoldNodeTy* P = Map.FindNodeOrInsertPos(ID, InsertPos); |
| |
| if (!P) { |
| P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>(); |
| new (P) FoldNodeTy(std::make_pair(V, Data)); |
| Map.InsertNode(P, InsertPos); |
| } |
| |
| return P->getValue(); |
| } |
| |
| const std::pair<SVal, SVal>& |
| BasicValueFactory::getPersistentSValPair(const SVal& V1, const SVal& V2) { |
| |
| // Lazily create the folding set. |
| if (!PersistentSValPairs) PersistentSValPairs = new PersistentSValPairsTy(); |
| |
| llvm::FoldingSetNodeID ID; |
| void* InsertPos; |
| V1.Profile(ID); |
| V2.Profile(ID); |
| |
| PersistentSValPairsTy& Map = *((PersistentSValPairsTy*) PersistentSValPairs); |
| |
| typedef llvm::FoldingSetNodeWrapper<SValPair> FoldNodeTy; |
| FoldNodeTy* P = Map.FindNodeOrInsertPos(ID, InsertPos); |
| |
| if (!P) { |
| P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>(); |
| new (P) FoldNodeTy(std::make_pair(V1, V2)); |
| Map.InsertNode(P, InsertPos); |
| } |
| |
| return P->getValue(); |
| } |
| |
| const SVal* BasicValueFactory::getPersistentSVal(SVal X) { |
| return &getPersistentSValWithData(X, 0).first; |
| } |
| |
| |