| //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This coordinates the per-function state used while generating code. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "CodeGenFunction.h" | 
 | #include "CodeGenModule.h" | 
 | #include "CGCXXABI.h" | 
 | #include "CGDebugInfo.h" | 
 | #include "CGException.h" | 
 | #include "clang/Basic/TargetInfo.h" | 
 | #include "clang/AST/APValue.h" | 
 | #include "clang/AST/ASTContext.h" | 
 | #include "clang/AST/Decl.h" | 
 | #include "clang/AST/DeclCXX.h" | 
 | #include "clang/AST/StmtCXX.h" | 
 | #include "clang/Frontend/CodeGenOptions.h" | 
 | #include "llvm/Target/TargetData.h" | 
 | #include "llvm/Intrinsics.h" | 
 | using namespace clang; | 
 | using namespace CodeGen; | 
 |  | 
 | static void ResolveAllBranchFixups(CodeGenFunction &CGF, | 
 |                                    llvm::SwitchInst *Switch, | 
 |                                    llvm::BasicBlock *CleanupEntry); | 
 |  | 
 | CodeGenFunction::CodeGenFunction(CodeGenModule &cgm) | 
 |   : BlockFunction(cgm, *this, Builder), CGM(cgm), | 
 |     Target(CGM.getContext().Target), | 
 |     Builder(cgm.getModule().getContext()), | 
 |     NormalCleanupDest(0), EHCleanupDest(0), NextCleanupDestIndex(1), | 
 |     ExceptionSlot(0), DebugInfo(0), IndirectBranch(0), | 
 |     SwitchInsn(0), CaseRangeBlock(0), | 
 |     DidCallStackSave(false), UnreachableBlock(0), | 
 |     CXXThisDecl(0), CXXThisValue(0), CXXVTTDecl(0), CXXVTTValue(0), | 
 |     ConditionalBranchLevel(0), TerminateLandingPad(0), TerminateHandler(0), | 
 |     TrapBB(0) { | 
 |        | 
 |   // Get some frequently used types. | 
 |   LLVMPointerWidth = Target.getPointerWidth(0); | 
 |   llvm::LLVMContext &LLVMContext = CGM.getLLVMContext(); | 
 |   IntPtrTy = llvm::IntegerType::get(LLVMContext, LLVMPointerWidth); | 
 |   Int32Ty  = llvm::Type::getInt32Ty(LLVMContext); | 
 |   Int64Ty  = llvm::Type::getInt64Ty(LLVMContext); | 
 |        | 
 |   Exceptions = getContext().getLangOptions().Exceptions; | 
 |   CatchUndefined = getContext().getLangOptions().CatchUndefined; | 
 |   CGM.getCXXABI().getMangleContext().startNewFunction(); | 
 | } | 
 |  | 
 | ASTContext &CodeGenFunction::getContext() const { | 
 |   return CGM.getContext(); | 
 | } | 
 |  | 
 |  | 
 | const llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { | 
 |   return CGM.getTypes().ConvertTypeForMem(T); | 
 | } | 
 |  | 
 | const llvm::Type *CodeGenFunction::ConvertType(QualType T) { | 
 |   return CGM.getTypes().ConvertType(T); | 
 | } | 
 |  | 
 | bool CodeGenFunction::hasAggregateLLVMType(QualType T) { | 
 |   return T->isRecordType() || T->isArrayType() || T->isAnyComplexType() || | 
 |     T->isObjCObjectType(); | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitReturnBlock() { | 
 |   // For cleanliness, we try to avoid emitting the return block for | 
 |   // simple cases. | 
 |   llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); | 
 |  | 
 |   if (CurBB) { | 
 |     assert(!CurBB->getTerminator() && "Unexpected terminated block."); | 
 |  | 
 |     // We have a valid insert point, reuse it if it is empty or there are no | 
 |     // explicit jumps to the return block. | 
 |     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { | 
 |       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); | 
 |       delete ReturnBlock.getBlock(); | 
 |     } else | 
 |       EmitBlock(ReturnBlock.getBlock()); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Otherwise, if the return block is the target of a single direct | 
 |   // branch then we can just put the code in that block instead. This | 
 |   // cleans up functions which started with a unified return block. | 
 |   if (ReturnBlock.getBlock()->hasOneUse()) { | 
 |     llvm::BranchInst *BI = | 
 |       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin()); | 
 |     if (BI && BI->isUnconditional() && | 
 |         BI->getSuccessor(0) == ReturnBlock.getBlock()) { | 
 |       // Reset insertion point and delete the branch. | 
 |       Builder.SetInsertPoint(BI->getParent()); | 
 |       BI->eraseFromParent(); | 
 |       delete ReturnBlock.getBlock(); | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   // FIXME: We are at an unreachable point, there is no reason to emit the block | 
 |   // unless it has uses. However, we still need a place to put the debug | 
 |   // region.end for now. | 
 |  | 
 |   EmitBlock(ReturnBlock.getBlock()); | 
 | } | 
 |  | 
 | static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { | 
 |   if (!BB) return; | 
 |   if (!BB->use_empty()) | 
 |     return CGF.CurFn->getBasicBlockList().push_back(BB); | 
 |   delete BB; | 
 | } | 
 |  | 
 | void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { | 
 |   assert(BreakContinueStack.empty() && | 
 |          "mismatched push/pop in break/continue stack!"); | 
 |  | 
 |   // Emit function epilog (to return). | 
 |   EmitReturnBlock(); | 
 |  | 
 |   EmitFunctionInstrumentation("__cyg_profile_func_exit"); | 
 |  | 
 |   // Emit debug descriptor for function end. | 
 |   if (CGDebugInfo *DI = getDebugInfo()) { | 
 |     DI->setLocation(EndLoc); | 
 |     DI->EmitFunctionEnd(Builder); | 
 |   } | 
 |  | 
 |   EmitFunctionEpilog(*CurFnInfo); | 
 |   EmitEndEHSpec(CurCodeDecl); | 
 |  | 
 |   assert(EHStack.empty() && | 
 |          "did not remove all scopes from cleanup stack!"); | 
 |  | 
 |   // If someone did an indirect goto, emit the indirect goto block at the end of | 
 |   // the function. | 
 |   if (IndirectBranch) { | 
 |     EmitBlock(IndirectBranch->getParent()); | 
 |     Builder.ClearInsertionPoint(); | 
 |   } | 
 |    | 
 |   // Remove the AllocaInsertPt instruction, which is just a convenience for us. | 
 |   llvm::Instruction *Ptr = AllocaInsertPt; | 
 |   AllocaInsertPt = 0; | 
 |   Ptr->eraseFromParent(); | 
 |    | 
 |   // If someone took the address of a label but never did an indirect goto, we | 
 |   // made a zero entry PHI node, which is illegal, zap it now. | 
 |   if (IndirectBranch) { | 
 |     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); | 
 |     if (PN->getNumIncomingValues() == 0) { | 
 |       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); | 
 |       PN->eraseFromParent(); | 
 |     } | 
 |   } | 
 |  | 
 |   EmitIfUsed(*this, RethrowBlock.getBlock()); | 
 |   EmitIfUsed(*this, TerminateLandingPad); | 
 |   EmitIfUsed(*this, TerminateHandler); | 
 |   EmitIfUsed(*this, UnreachableBlock); | 
 |  | 
 |   if (CGM.getCodeGenOpts().EmitDeclMetadata) | 
 |     EmitDeclMetadata(); | 
 | } | 
 |  | 
 | /// ShouldInstrumentFunction - Return true if the current function should be | 
 | /// instrumented with __cyg_profile_func_* calls | 
 | bool CodeGenFunction::ShouldInstrumentFunction() { | 
 |   if (!CGM.getCodeGenOpts().InstrumentFunctions) | 
 |     return false; | 
 |   if (CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) | 
 |     return false; | 
 |   return true; | 
 | } | 
 |  | 
 | /// EmitFunctionInstrumentation - Emit LLVM code to call the specified | 
 | /// instrumentation function with the current function and the call site, if | 
 | /// function instrumentation is enabled. | 
 | void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { | 
 |   if (!ShouldInstrumentFunction()) | 
 |     return; | 
 |  | 
 |   const llvm::PointerType *PointerTy; | 
 |   const llvm::FunctionType *FunctionTy; | 
 |   std::vector<const llvm::Type*> ProfileFuncArgs; | 
 |  | 
 |   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); | 
 |   PointerTy = llvm::Type::getInt8PtrTy(VMContext); | 
 |   ProfileFuncArgs.push_back(PointerTy); | 
 |   ProfileFuncArgs.push_back(PointerTy); | 
 |   FunctionTy = llvm::FunctionType::get( | 
 |     llvm::Type::getVoidTy(VMContext), | 
 |     ProfileFuncArgs, false); | 
 |  | 
 |   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); | 
 |   llvm::CallInst *CallSite = Builder.CreateCall( | 
 |     CGM.getIntrinsic(llvm::Intrinsic::returnaddress, 0, 0), | 
 |     llvm::ConstantInt::get(Int32Ty, 0), | 
 |     "callsite"); | 
 |  | 
 |   Builder.CreateCall2(F, | 
 |                       llvm::ConstantExpr::getBitCast(CurFn, PointerTy), | 
 |                       CallSite); | 
 | } | 
 |  | 
 | void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, | 
 |                                     llvm::Function *Fn, | 
 |                                     const FunctionArgList &Args, | 
 |                                     SourceLocation StartLoc) { | 
 |   const Decl *D = GD.getDecl(); | 
 |    | 
 |   DidCallStackSave = false; | 
 |   CurCodeDecl = CurFuncDecl = D; | 
 |   FnRetTy = RetTy; | 
 |   CurFn = Fn; | 
 |   assert(CurFn->isDeclaration() && "Function already has body?"); | 
 |  | 
 |   // Pass inline keyword to optimizer if it appears explicitly on any | 
 |   // declaration. | 
 |   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) | 
 |     for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(), | 
 |            RE = FD->redecls_end(); RI != RE; ++RI) | 
 |       if (RI->isInlineSpecified()) { | 
 |         Fn->addFnAttr(llvm::Attribute::InlineHint); | 
 |         break; | 
 |       } | 
 |  | 
 |   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); | 
 |  | 
 |   // Create a marker to make it easy to insert allocas into the entryblock | 
 |   // later.  Don't create this with the builder, because we don't want it | 
 |   // folded. | 
 |   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); | 
 |   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); | 
 |   if (Builder.isNamePreserving()) | 
 |     AllocaInsertPt->setName("allocapt"); | 
 |  | 
 |   ReturnBlock = getJumpDestInCurrentScope("return"); | 
 |  | 
 |   Builder.SetInsertPoint(EntryBB); | 
 |  | 
 |   // Emit subprogram debug descriptor. | 
 |   if (CGDebugInfo *DI = getDebugInfo()) { | 
 |     // FIXME: what is going on here and why does it ignore all these | 
 |     // interesting type properties? | 
 |     QualType FnType = | 
 |       getContext().getFunctionType(RetTy, 0, 0, | 
 |                                    FunctionProtoType::ExtProtoInfo()); | 
 |  | 
 |     DI->setLocation(StartLoc); | 
 |     DI->EmitFunctionStart(GD, FnType, CurFn, Builder); | 
 |   } | 
 |  | 
 |   EmitFunctionInstrumentation("__cyg_profile_func_enter"); | 
 |  | 
 |   // FIXME: Leaked. | 
 |   // CC info is ignored, hopefully? | 
 |   CurFnInfo = &CGM.getTypes().getFunctionInfo(FnRetTy, Args, | 
 |                                               FunctionType::ExtInfo()); | 
 |  | 
 |   if (RetTy->isVoidType()) { | 
 |     // Void type; nothing to return. | 
 |     ReturnValue = 0; | 
 |   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && | 
 |              hasAggregateLLVMType(CurFnInfo->getReturnType())) { | 
 |     // Indirect aggregate return; emit returned value directly into sret slot. | 
 |     // This reduces code size, and affects correctness in C++. | 
 |     ReturnValue = CurFn->arg_begin(); | 
 |   } else { | 
 |     ReturnValue = CreateIRTemp(RetTy, "retval"); | 
 |   } | 
 |  | 
 |   EmitStartEHSpec(CurCodeDecl); | 
 |   EmitFunctionProlog(*CurFnInfo, CurFn, Args); | 
 |  | 
 |   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) | 
 |     CGM.getCXXABI().EmitInstanceFunctionProlog(*this); | 
 |  | 
 |   // If any of the arguments have a variably modified type, make sure to | 
 |   // emit the type size. | 
 |   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); | 
 |        i != e; ++i) { | 
 |     QualType Ty = i->second; | 
 |  | 
 |     if (Ty->isVariablyModifiedType()) | 
 |       EmitVLASize(Ty); | 
 |   } | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) { | 
 |   const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl()); | 
 |   assert(FD->getBody()); | 
 |   EmitStmt(FD->getBody()); | 
 | } | 
 |  | 
 | /// Tries to mark the given function nounwind based on the | 
 | /// non-existence of any throwing calls within it.  We believe this is | 
 | /// lightweight enough to do at -O0. | 
 | static void TryMarkNoThrow(llvm::Function *F) { | 
 |   // LLVM treats 'nounwind' on a function as part of the type, so we | 
 |   // can't do this on functions that can be overwritten. | 
 |   if (F->mayBeOverridden()) return; | 
 |  | 
 |   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) | 
 |     for (llvm::BasicBlock::iterator | 
 |            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) | 
 |       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) | 
 |         if (!Call->doesNotThrow()) | 
 |           return; | 
 |   F->setDoesNotThrow(true); | 
 | } | 
 |  | 
 | void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn) { | 
 |   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); | 
 |    | 
 |   // Check if we should generate debug info for this function. | 
 |   if (CGM.getDebugInfo() && !FD->hasAttr<NoDebugAttr>()) | 
 |     DebugInfo = CGM.getDebugInfo(); | 
 |  | 
 |   FunctionArgList Args; | 
 |   QualType ResTy = FD->getResultType(); | 
 |  | 
 |   CurGD = GD; | 
 |   if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance()) | 
 |     CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args); | 
 |  | 
 |   if (FD->getNumParams()) { | 
 |     const FunctionProtoType* FProto = FD->getType()->getAs<FunctionProtoType>(); | 
 |     assert(FProto && "Function def must have prototype!"); | 
 |  | 
 |     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) | 
 |       Args.push_back(std::make_pair(FD->getParamDecl(i), | 
 |                                     FProto->getArgType(i))); | 
 |   } | 
 |  | 
 |   SourceRange BodyRange; | 
 |   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); | 
 |  | 
 |   // Emit the standard function prologue. | 
 |   StartFunction(GD, ResTy, Fn, Args, BodyRange.getBegin()); | 
 |  | 
 |   // Generate the body of the function. | 
 |   if (isa<CXXDestructorDecl>(FD)) | 
 |     EmitDestructorBody(Args); | 
 |   else if (isa<CXXConstructorDecl>(FD)) | 
 |     EmitConstructorBody(Args); | 
 |   else | 
 |     EmitFunctionBody(Args); | 
 |  | 
 |   // Emit the standard function epilogue. | 
 |   FinishFunction(BodyRange.getEnd()); | 
 |  | 
 |   // If we haven't marked the function nothrow through other means, do | 
 |   // a quick pass now to see if we can. | 
 |   if (!CurFn->doesNotThrow()) | 
 |     TryMarkNoThrow(CurFn); | 
 | } | 
 |  | 
 | /// ContainsLabel - Return true if the statement contains a label in it.  If | 
 | /// this statement is not executed normally, it not containing a label means | 
 | /// that we can just remove the code. | 
 | bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { | 
 |   // Null statement, not a label! | 
 |   if (S == 0) return false; | 
 |  | 
 |   // If this is a label, we have to emit the code, consider something like: | 
 |   // if (0) {  ...  foo:  bar(); }  goto foo; | 
 |   if (isa<LabelStmt>(S)) | 
 |     return true; | 
 |  | 
 |   // If this is a case/default statement, and we haven't seen a switch, we have | 
 |   // to emit the code. | 
 |   if (isa<SwitchCase>(S) && !IgnoreCaseStmts) | 
 |     return true; | 
 |  | 
 |   // If this is a switch statement, we want to ignore cases below it. | 
 |   if (isa<SwitchStmt>(S)) | 
 |     IgnoreCaseStmts = true; | 
 |  | 
 |   // Scan subexpressions for verboten labels. | 
 |   for (Stmt::const_child_iterator I = S->child_begin(), E = S->child_end(); | 
 |        I != E; ++I) | 
 |     if (ContainsLabel(*I, IgnoreCaseStmts)) | 
 |       return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 |  | 
 | /// ConstantFoldsToSimpleInteger - If the sepcified expression does not fold to | 
 | /// a constant, or if it does but contains a label, return 0.  If it constant | 
 | /// folds to 'true' and does not contain a label, return 1, if it constant folds | 
 | /// to 'false' and does not contain a label, return -1. | 
 | int CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond) { | 
 |   // FIXME: Rename and handle conversion of other evaluatable things | 
 |   // to bool. | 
 |   Expr::EvalResult Result; | 
 |   if (!Cond->Evaluate(Result, getContext()) || !Result.Val.isInt() || | 
 |       Result.HasSideEffects) | 
 |     return 0;  // Not foldable, not integer or not fully evaluatable. | 
 |  | 
 |   if (CodeGenFunction::ContainsLabel(Cond)) | 
 |     return 0;  // Contains a label. | 
 |  | 
 |   return Result.Val.getInt().getBoolValue() ? 1 : -1; | 
 | } | 
 |  | 
 |  | 
 | /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if | 
 | /// statement) to the specified blocks.  Based on the condition, this might try | 
 | /// to simplify the codegen of the conditional based on the branch. | 
 | /// | 
 | void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, | 
 |                                            llvm::BasicBlock *TrueBlock, | 
 |                                            llvm::BasicBlock *FalseBlock) { | 
 |   if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond)) | 
 |     return EmitBranchOnBoolExpr(PE->getSubExpr(), TrueBlock, FalseBlock); | 
 |  | 
 |   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { | 
 |     // Handle X && Y in a condition. | 
 |     if (CondBOp->getOpcode() == BO_LAnd) { | 
 |       // If we have "1 && X", simplify the code.  "0 && X" would have constant | 
 |       // folded if the case was simple enough. | 
 |       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == 1) { | 
 |         // br(1 && X) -> br(X). | 
 |         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); | 
 |       } | 
 |  | 
 |       // If we have "X && 1", simplify the code to use an uncond branch. | 
 |       // "X && 0" would have been constant folded to 0. | 
 |       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == 1) { | 
 |         // br(X && 1) -> br(X). | 
 |         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); | 
 |       } | 
 |  | 
 |       // Emit the LHS as a conditional.  If the LHS conditional is false, we | 
 |       // want to jump to the FalseBlock. | 
 |       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); | 
 |       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); | 
 |       EmitBlock(LHSTrue); | 
 |  | 
 |       // Any temporaries created here are conditional. | 
 |       BeginConditionalBranch(); | 
 |       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); | 
 |       EndConditionalBranch(); | 
 |  | 
 |       return; | 
 |     } else if (CondBOp->getOpcode() == BO_LOr) { | 
 |       // If we have "0 || X", simplify the code.  "1 || X" would have constant | 
 |       // folded if the case was simple enough. | 
 |       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == -1) { | 
 |         // br(0 || X) -> br(X). | 
 |         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); | 
 |       } | 
 |  | 
 |       // If we have "X || 0", simplify the code to use an uncond branch. | 
 |       // "X || 1" would have been constant folded to 1. | 
 |       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == -1) { | 
 |         // br(X || 0) -> br(X). | 
 |         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); | 
 |       } | 
 |  | 
 |       // Emit the LHS as a conditional.  If the LHS conditional is true, we | 
 |       // want to jump to the TrueBlock. | 
 |       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); | 
 |       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); | 
 |       EmitBlock(LHSFalse); | 
 |  | 
 |       // Any temporaries created here are conditional. | 
 |       BeginConditionalBranch(); | 
 |       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); | 
 |       EndConditionalBranch(); | 
 |  | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { | 
 |     // br(!x, t, f) -> br(x, f, t) | 
 |     if (CondUOp->getOpcode() == UO_LNot) | 
 |       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); | 
 |   } | 
 |  | 
 |   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { | 
 |     // Handle ?: operator. | 
 |  | 
 |     // Just ignore GNU ?: extension. | 
 |     if (CondOp->getLHS()) { | 
 |       // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) | 
 |       llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); | 
 |       llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); | 
 |       EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); | 
 |       EmitBlock(LHSBlock); | 
 |       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); | 
 |       EmitBlock(RHSBlock); | 
 |       EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   // Emit the code with the fully general case. | 
 |   llvm::Value *CondV = EvaluateExprAsBool(Cond); | 
 |   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); | 
 | } | 
 |  | 
 | /// ErrorUnsupported - Print out an error that codegen doesn't support the | 
 | /// specified stmt yet. | 
 | void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type, | 
 |                                        bool OmitOnError) { | 
 |   CGM.ErrorUnsupported(S, Type, OmitOnError); | 
 | } | 
 |  | 
 | void | 
 | CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { | 
 |   // Ignore empty classes in C++. | 
 |   if (getContext().getLangOptions().CPlusPlus) { | 
 |     if (const RecordType *RT = Ty->getAs<RecordType>()) { | 
 |       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) | 
 |         return; | 
 |     } | 
 |   } | 
 |  | 
 |   // Cast the dest ptr to the appropriate i8 pointer type. | 
 |   unsigned DestAS = | 
 |     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); | 
 |   const llvm::Type *BP = Builder.getInt8PtrTy(DestAS); | 
 |   if (DestPtr->getType() != BP) | 
 |     DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); | 
 |  | 
 |   // Get size and alignment info for this aggregate. | 
 |   std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); | 
 |   uint64_t Size = TypeInfo.first / 8; | 
 |   unsigned Align = TypeInfo.second / 8; | 
 |  | 
 |   // Don't bother emitting a zero-byte memset. | 
 |   if (Size == 0) | 
 |     return; | 
 |  | 
 |   llvm::ConstantInt *SizeVal = llvm::ConstantInt::get(IntPtrTy, Size); | 
 |  | 
 |   // If the type contains a pointer to data member we can't memset it to zero. | 
 |   // Instead, create a null constant and copy it to the destination. | 
 |   if (!CGM.getTypes().isZeroInitializable(Ty)) { | 
 |     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); | 
 |  | 
 |     llvm::GlobalVariable *NullVariable =  | 
 |       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), | 
 |                                /*isConstant=*/true,  | 
 |                                llvm::GlobalVariable::PrivateLinkage, | 
 |                                NullConstant, llvm::Twine()); | 
 |     llvm::Value *SrcPtr = | 
 |       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); | 
 |  | 
 |     // FIXME: variable-size types? | 
 |  | 
 |     // Get and call the appropriate llvm.memcpy overload. | 
 |     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align, false); | 
 |     return; | 
 |   }  | 
 |    | 
 |   // Otherwise, just memset the whole thing to zero.  This is legal | 
 |   // because in LLVM, all default initializers (other than the ones we just | 
 |   // handled above) are guaranteed to have a bit pattern of all zeros. | 
 |  | 
 |   // FIXME: Handle variable sized types. | 
 |   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, Align, false); | 
 | } | 
 |  | 
 | llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelStmt *L) { | 
 |   // Make sure that there is a block for the indirect goto. | 
 |   if (IndirectBranch == 0) | 
 |     GetIndirectGotoBlock(); | 
 |    | 
 |   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); | 
 |    | 
 |   // Make sure the indirect branch includes all of the address-taken blocks. | 
 |   IndirectBranch->addDestination(BB); | 
 |   return llvm::BlockAddress::get(CurFn, BB); | 
 | } | 
 |  | 
 | llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { | 
 |   // If we already made the indirect branch for indirect goto, return its block. | 
 |   if (IndirectBranch) return IndirectBranch->getParent(); | 
 |    | 
 |   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); | 
 |    | 
 |   const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(VMContext); | 
 |  | 
 |   // Create the PHI node that indirect gotos will add entries to. | 
 |   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, "indirect.goto.dest"); | 
 |    | 
 |   // Create the indirect branch instruction. | 
 |   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); | 
 |   return IndirectBranch->getParent(); | 
 | } | 
 |  | 
 | llvm::Value *CodeGenFunction::GetVLASize(const VariableArrayType *VAT) { | 
 |   llvm::Value *&SizeEntry = VLASizeMap[VAT->getSizeExpr()]; | 
 |  | 
 |   assert(SizeEntry && "Did not emit size for type"); | 
 |   return SizeEntry; | 
 | } | 
 |  | 
 | llvm::Value *CodeGenFunction::EmitVLASize(QualType Ty) { | 
 |   assert(Ty->isVariablyModifiedType() && | 
 |          "Must pass variably modified type to EmitVLASizes!"); | 
 |  | 
 |   EnsureInsertPoint(); | 
 |  | 
 |   if (const VariableArrayType *VAT = getContext().getAsVariableArrayType(Ty)) { | 
 |     // unknown size indication requires no size computation. | 
 |     if (!VAT->getSizeExpr()) | 
 |       return 0; | 
 |     llvm::Value *&SizeEntry = VLASizeMap[VAT->getSizeExpr()]; | 
 |  | 
 |     if (!SizeEntry) { | 
 |       const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); | 
 |  | 
 |       // Get the element size; | 
 |       QualType ElemTy = VAT->getElementType(); | 
 |       llvm::Value *ElemSize; | 
 |       if (ElemTy->isVariableArrayType()) | 
 |         ElemSize = EmitVLASize(ElemTy); | 
 |       else | 
 |         ElemSize = llvm::ConstantInt::get(SizeTy, | 
 |             getContext().getTypeSizeInChars(ElemTy).getQuantity()); | 
 |  | 
 |       llvm::Value *NumElements = EmitScalarExpr(VAT->getSizeExpr()); | 
 |       NumElements = Builder.CreateIntCast(NumElements, SizeTy, false, "tmp"); | 
 |  | 
 |       SizeEntry = Builder.CreateMul(ElemSize, NumElements); | 
 |     } | 
 |  | 
 |     return SizeEntry; | 
 |   } | 
 |  | 
 |   if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) { | 
 |     EmitVLASize(AT->getElementType()); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (const ParenType *PT = dyn_cast<ParenType>(Ty)) { | 
 |     EmitVLASize(PT->getInnerType()); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   const PointerType *PT = Ty->getAs<PointerType>(); | 
 |   assert(PT && "unknown VM type!"); | 
 |   EmitVLASize(PT->getPointeeType()); | 
 |   return 0; | 
 | } | 
 |  | 
 | llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { | 
 |   if (getContext().getBuiltinVaListType()->isArrayType()) | 
 |     return EmitScalarExpr(E); | 
 |   return EmitLValue(E).getAddress(); | 
 | } | 
 |  | 
 | /// Pops cleanup blocks until the given savepoint is reached. | 
 | void CodeGenFunction::PopCleanupBlocks(EHScopeStack::stable_iterator Old) { | 
 |   assert(Old.isValid()); | 
 |  | 
 |   while (EHStack.stable_begin() != Old) { | 
 |     EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin()); | 
 |  | 
 |     // As long as Old strictly encloses the scope's enclosing normal | 
 |     // cleanup, we're going to emit another normal cleanup which | 
 |     // fallthrough can propagate through. | 
 |     bool FallThroughIsBranchThrough = | 
 |       Old.strictlyEncloses(Scope.getEnclosingNormalCleanup()); | 
 |  | 
 |     PopCleanupBlock(FallThroughIsBranchThrough); | 
 |   } | 
 | } | 
 |  | 
 | static llvm::BasicBlock *CreateNormalEntry(CodeGenFunction &CGF, | 
 |                                            EHCleanupScope &Scope) { | 
 |   assert(Scope.isNormalCleanup()); | 
 |   llvm::BasicBlock *Entry = Scope.getNormalBlock(); | 
 |   if (!Entry) { | 
 |     Entry = CGF.createBasicBlock("cleanup"); | 
 |     Scope.setNormalBlock(Entry); | 
 |   } | 
 |   return Entry; | 
 | } | 
 |  | 
 | static llvm::BasicBlock *CreateEHEntry(CodeGenFunction &CGF, | 
 |                                        EHCleanupScope &Scope) { | 
 |   assert(Scope.isEHCleanup()); | 
 |   llvm::BasicBlock *Entry = Scope.getEHBlock(); | 
 |   if (!Entry) { | 
 |     Entry = CGF.createBasicBlock("eh.cleanup"); | 
 |     Scope.setEHBlock(Entry); | 
 |   } | 
 |   return Entry; | 
 | } | 
 |  | 
 | /// Transitions the terminator of the given exit-block of a cleanup to | 
 | /// be a cleanup switch. | 
 | static llvm::SwitchInst *TransitionToCleanupSwitch(CodeGenFunction &CGF, | 
 |                                                    llvm::BasicBlock *Block) { | 
 |   // If it's a branch, turn it into a switch whose default | 
 |   // destination is its original target. | 
 |   llvm::TerminatorInst *Term = Block->getTerminator(); | 
 |   assert(Term && "can't transition block without terminator"); | 
 |  | 
 |   if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) { | 
 |     assert(Br->isUnconditional()); | 
 |     llvm::LoadInst *Load = | 
 |       new llvm::LoadInst(CGF.getNormalCleanupDestSlot(), "cleanup.dest", Term); | 
 |     llvm::SwitchInst *Switch = | 
 |       llvm::SwitchInst::Create(Load, Br->getSuccessor(0), 4, Block); | 
 |     Br->eraseFromParent(); | 
 |     return Switch; | 
 |   } else { | 
 |     return cast<llvm::SwitchInst>(Term); | 
 |   } | 
 | } | 
 |  | 
 | /// Attempts to reduce a cleanup's entry block to a fallthrough.  This | 
 | /// is basically llvm::MergeBlockIntoPredecessor, except | 
 | /// simplified/optimized for the tighter constraints on cleanup blocks. | 
 | /// | 
 | /// Returns the new block, whatever it is. | 
 | static llvm::BasicBlock *SimplifyCleanupEntry(CodeGenFunction &CGF, | 
 |                                               llvm::BasicBlock *Entry) { | 
 |   llvm::BasicBlock *Pred = Entry->getSinglePredecessor(); | 
 |   if (!Pred) return Entry; | 
 |  | 
 |   llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Pred->getTerminator()); | 
 |   if (!Br || Br->isConditional()) return Entry; | 
 |   assert(Br->getSuccessor(0) == Entry); | 
 |  | 
 |   // If we were previously inserting at the end of the cleanup entry | 
 |   // block, we'll need to continue inserting at the end of the | 
 |   // predecessor. | 
 |   bool WasInsertBlock = CGF.Builder.GetInsertBlock() == Entry; | 
 |   assert(!WasInsertBlock || CGF.Builder.GetInsertPoint() == Entry->end()); | 
 |  | 
 |   // Kill the branch. | 
 |   Br->eraseFromParent(); | 
 |  | 
 |   // Merge the blocks. | 
 |   Pred->getInstList().splice(Pred->end(), Entry->getInstList()); | 
 |  | 
 |   // Kill the entry block. | 
 |   Entry->eraseFromParent(); | 
 |  | 
 |   if (WasInsertBlock) | 
 |     CGF.Builder.SetInsertPoint(Pred); | 
 |  | 
 |   return Pred; | 
 | } | 
 |  | 
 | static void EmitCleanup(CodeGenFunction &CGF, | 
 |                         EHScopeStack::Cleanup *Fn, | 
 |                         bool ForEH, | 
 |                         llvm::Value *ActiveFlag) { | 
 |   // EH cleanups always occur within a terminate scope. | 
 |   if (ForEH) CGF.EHStack.pushTerminate(); | 
 |  | 
 |   // If there's an active flag, load it and skip the cleanup if it's | 
 |   // false. | 
 |   llvm::BasicBlock *ContBB = 0; | 
 |   if (ActiveFlag) { | 
 |     ContBB = CGF.createBasicBlock("cleanup.done"); | 
 |     llvm::BasicBlock *CleanupBB = CGF.createBasicBlock("cleanup.action"); | 
 |     llvm::Value *IsActive | 
 |       = CGF.Builder.CreateLoad(ActiveFlag, "cleanup.is_active"); | 
 |     CGF.Builder.CreateCondBr(IsActive, CleanupBB, ContBB); | 
 |     CGF.EmitBlock(CleanupBB); | 
 |   } | 
 |  | 
 |   // Ask the cleanup to emit itself. | 
 |   Fn->Emit(CGF, ForEH); | 
 |   assert(CGF.HaveInsertPoint() && "cleanup ended with no insertion point?"); | 
 |  | 
 |   // Emit the continuation block if there was an active flag. | 
 |   if (ActiveFlag) | 
 |     CGF.EmitBlock(ContBB); | 
 |  | 
 |   // Leave the terminate scope. | 
 |   if (ForEH) CGF.EHStack.popTerminate(); | 
 | } | 
 |  | 
 | static void ForwardPrebranchedFallthrough(llvm::BasicBlock *Exit, | 
 |                                           llvm::BasicBlock *From, | 
 |                                           llvm::BasicBlock *To) { | 
 |   // Exit is the exit block of a cleanup, so it always terminates in | 
 |   // an unconditional branch or a switch. | 
 |   llvm::TerminatorInst *Term = Exit->getTerminator(); | 
 |  | 
 |   if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) { | 
 |     assert(Br->isUnconditional() && Br->getSuccessor(0) == From); | 
 |     Br->setSuccessor(0, To); | 
 |   } else { | 
 |     llvm::SwitchInst *Switch = cast<llvm::SwitchInst>(Term); | 
 |     for (unsigned I = 0, E = Switch->getNumSuccessors(); I != E; ++I) | 
 |       if (Switch->getSuccessor(I) == From) | 
 |         Switch->setSuccessor(I, To); | 
 |   } | 
 | } | 
 |  | 
 | /// Pops a cleanup block.  If the block includes a normal cleanup, the | 
 | /// current insertion point is threaded through the cleanup, as are | 
 | /// any branch fixups on the cleanup. | 
 | void CodeGenFunction::PopCleanupBlock(bool FallthroughIsBranchThrough) { | 
 |   assert(!EHStack.empty() && "cleanup stack is empty!"); | 
 |   assert(isa<EHCleanupScope>(*EHStack.begin()) && "top not a cleanup!"); | 
 |   EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin()); | 
 |   assert(Scope.getFixupDepth() <= EHStack.getNumBranchFixups()); | 
 |  | 
 |   // Remember activation information. | 
 |   bool IsActive = Scope.isActive(); | 
 |   llvm::Value *NormalActiveFlag = | 
 |     Scope.shouldTestFlagInNormalCleanup() ? Scope.getActiveFlag() : 0; | 
 |   llvm::Value *EHActiveFlag =  | 
 |     Scope.shouldTestFlagInEHCleanup() ? Scope.getActiveFlag() : 0; | 
 |  | 
 |   // Check whether we need an EH cleanup.  This is only true if we've | 
 |   // generated a lazy EH cleanup block. | 
 |   bool RequiresEHCleanup = Scope.hasEHBranches(); | 
 |  | 
 |   // Check the three conditions which might require a normal cleanup: | 
 |  | 
 |   // - whether there are branch fix-ups through this cleanup | 
 |   unsigned FixupDepth = Scope.getFixupDepth(); | 
 |   bool HasFixups = EHStack.getNumBranchFixups() != FixupDepth; | 
 |  | 
 |   // - whether there are branch-throughs or branch-afters | 
 |   bool HasExistingBranches = Scope.hasBranches(); | 
 |  | 
 |   // - whether there's a fallthrough | 
 |   llvm::BasicBlock *FallthroughSource = Builder.GetInsertBlock(); | 
 |   bool HasFallthrough = (FallthroughSource != 0 && IsActive); | 
 |  | 
 |   // Branch-through fall-throughs leave the insertion point set to the | 
 |   // end of the last cleanup, which points to the current scope.  The | 
 |   // rest of IR gen doesn't need to worry about this; it only happens | 
 |   // during the execution of PopCleanupBlocks(). | 
 |   bool HasPrebranchedFallthrough = | 
 |     (FallthroughSource && FallthroughSource->getTerminator()); | 
 |  | 
 |   // If this is a normal cleanup, then having a prebranched | 
 |   // fallthrough implies that the fallthrough source unconditionally | 
 |   // jumps here. | 
 |   assert(!Scope.isNormalCleanup() || !HasPrebranchedFallthrough || | 
 |          (Scope.getNormalBlock() && | 
 |           FallthroughSource->getTerminator()->getSuccessor(0) | 
 |             == Scope.getNormalBlock())); | 
 |  | 
 |   bool RequiresNormalCleanup = false; | 
 |   if (Scope.isNormalCleanup() && | 
 |       (HasFixups || HasExistingBranches || HasFallthrough)) { | 
 |     RequiresNormalCleanup = true; | 
 |   } | 
 |  | 
 |   // Even if we don't need the normal cleanup, we might still have | 
 |   // prebranched fallthrough to worry about. | 
 |   if (Scope.isNormalCleanup() && !RequiresNormalCleanup && | 
 |       HasPrebranchedFallthrough) { | 
 |     assert(!IsActive); | 
 |  | 
 |     llvm::BasicBlock *NormalEntry = Scope.getNormalBlock(); | 
 |  | 
 |     // If we're branching through this cleanup, just forward the | 
 |     // prebranched fallthrough to the next cleanup, leaving the insert | 
 |     // point in the old block. | 
 |     if (FallthroughIsBranchThrough) { | 
 |       EHScope &S = *EHStack.find(Scope.getEnclosingNormalCleanup()); | 
 |       llvm::BasicBlock *EnclosingEntry =  | 
 |         CreateNormalEntry(*this, cast<EHCleanupScope>(S)); | 
 |  | 
 |       ForwardPrebranchedFallthrough(FallthroughSource, | 
 |                                     NormalEntry, EnclosingEntry); | 
 |       assert(NormalEntry->use_empty() && | 
 |              "uses of entry remain after forwarding?"); | 
 |       delete NormalEntry; | 
 |  | 
 |     // Otherwise, we're branching out;  just emit the next block. | 
 |     } else { | 
 |       EmitBlock(NormalEntry); | 
 |       SimplifyCleanupEntry(*this, NormalEntry); | 
 |     } | 
 |   } | 
 |  | 
 |   // If we don't need the cleanup at all, we're done. | 
 |   if (!RequiresNormalCleanup && !RequiresEHCleanup) { | 
 |     EHStack.popCleanup(); // safe because there are no fixups | 
 |     assert(EHStack.getNumBranchFixups() == 0 || | 
 |            EHStack.hasNormalCleanups()); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Copy the cleanup emission data out.  Note that SmallVector | 
 |   // guarantees maximal alignment for its buffer regardless of its | 
 |   // type parameter. | 
 |   llvm::SmallVector<char, 8*sizeof(void*)> CleanupBuffer; | 
 |   CleanupBuffer.reserve(Scope.getCleanupSize()); | 
 |   memcpy(CleanupBuffer.data(), | 
 |          Scope.getCleanupBuffer(), Scope.getCleanupSize()); | 
 |   CleanupBuffer.set_size(Scope.getCleanupSize()); | 
 |   EHScopeStack::Cleanup *Fn = | 
 |     reinterpret_cast<EHScopeStack::Cleanup*>(CleanupBuffer.data()); | 
 |  | 
 |   // We want to emit the EH cleanup after the normal cleanup, but go | 
 |   // ahead and do the setup for the EH cleanup while the scope is still | 
 |   // alive. | 
 |   llvm::BasicBlock *EHEntry = 0; | 
 |   llvm::SmallVector<llvm::Instruction*, 2> EHInstsToAppend; | 
 |   if (RequiresEHCleanup) { | 
 |     EHEntry = CreateEHEntry(*this, Scope); | 
 |  | 
 |     // Figure out the branch-through dest if necessary. | 
 |     llvm::BasicBlock *EHBranchThroughDest = 0; | 
 |     if (Scope.hasEHBranchThroughs()) { | 
 |       assert(Scope.getEnclosingEHCleanup() != EHStack.stable_end()); | 
 |       EHScope &S = *EHStack.find(Scope.getEnclosingEHCleanup()); | 
 |       EHBranchThroughDest = CreateEHEntry(*this, cast<EHCleanupScope>(S)); | 
 |     } | 
 |  | 
 |     // If we have exactly one branch-after and no branch-throughs, we | 
 |     // can dispatch it without a switch. | 
 |     if (!Scope.hasEHBranchThroughs() && | 
 |         Scope.getNumEHBranchAfters() == 1) { | 
 |       assert(!EHBranchThroughDest); | 
 |  | 
 |       // TODO: remove the spurious eh.cleanup.dest stores if this edge | 
 |       // never went through any switches. | 
 |       llvm::BasicBlock *BranchAfterDest = Scope.getEHBranchAfterBlock(0); | 
 |       EHInstsToAppend.push_back(llvm::BranchInst::Create(BranchAfterDest)); | 
 |      | 
 |     // Otherwise, if we have any branch-afters, we need a switch. | 
 |     } else if (Scope.getNumEHBranchAfters()) { | 
 |       // The default of the switch belongs to the branch-throughs if | 
 |       // they exist. | 
 |       llvm::BasicBlock *Default = | 
 |         (EHBranchThroughDest ? EHBranchThroughDest : getUnreachableBlock()); | 
 |  | 
 |       const unsigned SwitchCapacity = Scope.getNumEHBranchAfters(); | 
 |  | 
 |       llvm::LoadInst *Load = | 
 |         new llvm::LoadInst(getEHCleanupDestSlot(), "cleanup.dest"); | 
 |       llvm::SwitchInst *Switch = | 
 |         llvm::SwitchInst::Create(Load, Default, SwitchCapacity); | 
 |  | 
 |       EHInstsToAppend.push_back(Load); | 
 |       EHInstsToAppend.push_back(Switch); | 
 |  | 
 |       for (unsigned I = 0, E = Scope.getNumEHBranchAfters(); I != E; ++I) | 
 |         Switch->addCase(Scope.getEHBranchAfterIndex(I), | 
 |                         Scope.getEHBranchAfterBlock(I)); | 
 |  | 
 |     // Otherwise, we have only branch-throughs; jump to the next EH | 
 |     // cleanup. | 
 |     } else { | 
 |       assert(EHBranchThroughDest); | 
 |       EHInstsToAppend.push_back(llvm::BranchInst::Create(EHBranchThroughDest)); | 
 |     } | 
 |   } | 
 |  | 
 |   if (!RequiresNormalCleanup) { | 
 |     EHStack.popCleanup(); | 
 |   } else { | 
 |     // If we have a fallthrough and no other need for the cleanup, | 
 |     // emit it directly. | 
 |     if (HasFallthrough && !HasPrebranchedFallthrough && | 
 |         !HasFixups && !HasExistingBranches) { | 
 |  | 
 |       // Fixups can cause us to optimistically create a normal block, | 
 |       // only to later have no real uses for it.  Just delete it in | 
 |       // this case. | 
 |       // TODO: we can potentially simplify all the uses after this. | 
 |       if (Scope.getNormalBlock()) { | 
 |         Scope.getNormalBlock()->replaceAllUsesWith(getUnreachableBlock()); | 
 |         delete Scope.getNormalBlock(); | 
 |       } | 
 |  | 
 |       EHStack.popCleanup(); | 
 |  | 
 |       EmitCleanup(*this, Fn, /*ForEH*/ false, NormalActiveFlag); | 
 |  | 
 |     // Otherwise, the best approach is to thread everything through | 
 |     // the cleanup block and then try to clean up after ourselves. | 
 |     } else { | 
 |       // Force the entry block to exist. | 
 |       llvm::BasicBlock *NormalEntry = CreateNormalEntry(*this, Scope); | 
 |  | 
 |       // I.  Set up the fallthrough edge in. | 
 |  | 
 |       // If there's a fallthrough, we need to store the cleanup | 
 |       // destination index.  For fall-throughs this is always zero. | 
 |       if (HasFallthrough) { | 
 |         if (!HasPrebranchedFallthrough) | 
 |           Builder.CreateStore(Builder.getInt32(0), getNormalCleanupDestSlot()); | 
 |  | 
 |       // Otherwise, clear the IP if we don't have fallthrough because | 
 |       // the cleanup is inactive.  We don't need to save it because | 
 |       // it's still just FallthroughSource. | 
 |       } else if (FallthroughSource) { | 
 |         assert(!IsActive && "source without fallthrough for active cleanup"); | 
 |         Builder.ClearInsertionPoint(); | 
 |       } | 
 |  | 
 |       // II.  Emit the entry block.  This implicitly branches to it if | 
 |       // we have fallthrough.  All the fixups and existing branches | 
 |       // should already be branched to it. | 
 |       EmitBlock(NormalEntry); | 
 |  | 
 |       // III.  Figure out where we're going and build the cleanup | 
 |       // epilogue. | 
 |  | 
 |       bool HasEnclosingCleanups = | 
 |         (Scope.getEnclosingNormalCleanup() != EHStack.stable_end()); | 
 |  | 
 |       // Compute the branch-through dest if we need it: | 
 |       //   - if there are branch-throughs threaded through the scope | 
 |       //   - if fall-through is a branch-through | 
 |       //   - if there are fixups that will be optimistically forwarded | 
 |       //     to the enclosing cleanup | 
 |       llvm::BasicBlock *BranchThroughDest = 0; | 
 |       if (Scope.hasBranchThroughs() || | 
 |           (FallthroughSource && FallthroughIsBranchThrough) || | 
 |           (HasFixups && HasEnclosingCleanups)) { | 
 |         assert(HasEnclosingCleanups); | 
 |         EHScope &S = *EHStack.find(Scope.getEnclosingNormalCleanup()); | 
 |         BranchThroughDest = CreateNormalEntry(*this, cast<EHCleanupScope>(S)); | 
 |       } | 
 |  | 
 |       llvm::BasicBlock *FallthroughDest = 0; | 
 |       llvm::SmallVector<llvm::Instruction*, 2> InstsToAppend; | 
 |  | 
 |       // If there's exactly one branch-after and no other threads, | 
 |       // we can route it without a switch. | 
 |       if (!Scope.hasBranchThroughs() && !HasFixups && !HasFallthrough && | 
 |           Scope.getNumBranchAfters() == 1) { | 
 |         assert(!BranchThroughDest || !IsActive); | 
 |  | 
 |         // TODO: clean up the possibly dead stores to the cleanup dest slot. | 
 |         llvm::BasicBlock *BranchAfter = Scope.getBranchAfterBlock(0); | 
 |         InstsToAppend.push_back(llvm::BranchInst::Create(BranchAfter)); | 
 |  | 
 |       // Build a switch-out if we need it: | 
 |       //   - if there are branch-afters threaded through the scope | 
 |       //   - if fall-through is a branch-after | 
 |       //   - if there are fixups that have nowhere left to go and | 
 |       //     so must be immediately resolved | 
 |       } else if (Scope.getNumBranchAfters() || | 
 |                  (HasFallthrough && !FallthroughIsBranchThrough) || | 
 |                  (HasFixups && !HasEnclosingCleanups)) { | 
 |  | 
 |         llvm::BasicBlock *Default = | 
 |           (BranchThroughDest ? BranchThroughDest : getUnreachableBlock()); | 
 |  | 
 |         // TODO: base this on the number of branch-afters and fixups | 
 |         const unsigned SwitchCapacity = 10; | 
 |  | 
 |         llvm::LoadInst *Load = | 
 |           new llvm::LoadInst(getNormalCleanupDestSlot(), "cleanup.dest"); | 
 |         llvm::SwitchInst *Switch = | 
 |           llvm::SwitchInst::Create(Load, Default, SwitchCapacity); | 
 |  | 
 |         InstsToAppend.push_back(Load); | 
 |         InstsToAppend.push_back(Switch); | 
 |  | 
 |         // Branch-after fallthrough. | 
 |         if (FallthroughSource && !FallthroughIsBranchThrough) { | 
 |           FallthroughDest = createBasicBlock("cleanup.cont"); | 
 |           if (HasFallthrough) | 
 |             Switch->addCase(Builder.getInt32(0), FallthroughDest); | 
 |         } | 
 |  | 
 |         for (unsigned I = 0, E = Scope.getNumBranchAfters(); I != E; ++I) { | 
 |           Switch->addCase(Scope.getBranchAfterIndex(I), | 
 |                           Scope.getBranchAfterBlock(I)); | 
 |         } | 
 |  | 
 |         // If there aren't any enclosing cleanups, we can resolve all | 
 |         // the fixups now. | 
 |         if (HasFixups && !HasEnclosingCleanups) | 
 |           ResolveAllBranchFixups(*this, Switch, NormalEntry); | 
 |       } else { | 
 |         // We should always have a branch-through destination in this case. | 
 |         assert(BranchThroughDest); | 
 |         InstsToAppend.push_back(llvm::BranchInst::Create(BranchThroughDest)); | 
 |       } | 
 |  | 
 |       // IV.  Pop the cleanup and emit it. | 
 |       EHStack.popCleanup(); | 
 |       assert(EHStack.hasNormalCleanups() == HasEnclosingCleanups); | 
 |  | 
 |       EmitCleanup(*this, Fn, /*ForEH*/ false, NormalActiveFlag); | 
 |  | 
 |       // Append the prepared cleanup prologue from above. | 
 |       llvm::BasicBlock *NormalExit = Builder.GetInsertBlock(); | 
 |       for (unsigned I = 0, E = InstsToAppend.size(); I != E; ++I) | 
 |         NormalExit->getInstList().push_back(InstsToAppend[I]); | 
 |  | 
 |       // Optimistically hope that any fixups will continue falling through. | 
 |       for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups(); | 
 |            I < E; ++I) { | 
 |         BranchFixup &Fixup = CGF.EHStack.getBranchFixup(I); | 
 |         if (!Fixup.Destination) continue; | 
 |         if (!Fixup.OptimisticBranchBlock) { | 
 |           new llvm::StoreInst(Builder.getInt32(Fixup.DestinationIndex), | 
 |                               getNormalCleanupDestSlot(), | 
 |                               Fixup.InitialBranch); | 
 |           Fixup.InitialBranch->setSuccessor(0, NormalEntry); | 
 |         } | 
 |         Fixup.OptimisticBranchBlock = NormalExit; | 
 |       } | 
 |  | 
 |       // V.  Set up the fallthrough edge out. | 
 |        | 
 |       // Case 1: a fallthrough source exists but shouldn't branch to | 
 |       // the cleanup because the cleanup is inactive. | 
 |       if (!HasFallthrough && FallthroughSource) { | 
 |         assert(!IsActive); | 
 |  | 
 |         // If we have a prebranched fallthrough, that needs to be | 
 |         // forwarded to the right block. | 
 |         if (HasPrebranchedFallthrough) { | 
 |           llvm::BasicBlock *Next; | 
 |           if (FallthroughIsBranchThrough) { | 
 |             Next = BranchThroughDest; | 
 |             assert(!FallthroughDest); | 
 |           } else { | 
 |             Next = FallthroughDest; | 
 |           } | 
 |  | 
 |           ForwardPrebranchedFallthrough(FallthroughSource, NormalEntry, Next); | 
 |         } | 
 |         Builder.SetInsertPoint(FallthroughSource); | 
 |  | 
 |       // Case 2: a fallthrough source exists and should branch to the | 
 |       // cleanup, but we're not supposed to branch through to the next | 
 |       // cleanup. | 
 |       } else if (HasFallthrough && FallthroughDest) { | 
 |         assert(!FallthroughIsBranchThrough); | 
 |         EmitBlock(FallthroughDest); | 
 |  | 
 |       // Case 3: a fallthrough source exists and should branch to the | 
 |       // cleanup and then through to the next. | 
 |       } else if (HasFallthrough) { | 
 |         // Everything is already set up for this. | 
 |  | 
 |       // Case 4: no fallthrough source exists. | 
 |       } else { | 
 |         Builder.ClearInsertionPoint(); | 
 |       } | 
 |  | 
 |       // VI.  Assorted cleaning. | 
 |  | 
 |       // Check whether we can merge NormalEntry into a single predecessor. | 
 |       // This might invalidate (non-IR) pointers to NormalEntry. | 
 |       llvm::BasicBlock *NewNormalEntry = | 
 |         SimplifyCleanupEntry(*this, NormalEntry); | 
 |  | 
 |       // If it did invalidate those pointers, and NormalEntry was the same | 
 |       // as NormalExit, go back and patch up the fixups. | 
 |       if (NewNormalEntry != NormalEntry && NormalEntry == NormalExit) | 
 |         for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups(); | 
 |                I < E; ++I) | 
 |           CGF.EHStack.getBranchFixup(I).OptimisticBranchBlock = NewNormalEntry; | 
 |     } | 
 |   } | 
 |  | 
 |   assert(EHStack.hasNormalCleanups() || EHStack.getNumBranchFixups() == 0); | 
 |  | 
 |   // Emit the EH cleanup if required. | 
 |   if (RequiresEHCleanup) { | 
 |     CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); | 
 |  | 
 |     EmitBlock(EHEntry); | 
 |     EmitCleanup(*this, Fn, /*ForEH*/ true, EHActiveFlag); | 
 |  | 
 |     // Append the prepared cleanup prologue from above. | 
 |     llvm::BasicBlock *EHExit = Builder.GetInsertBlock(); | 
 |     for (unsigned I = 0, E = EHInstsToAppend.size(); I != E; ++I) | 
 |       EHExit->getInstList().push_back(EHInstsToAppend[I]); | 
 |  | 
 |     Builder.restoreIP(SavedIP); | 
 |  | 
 |     SimplifyCleanupEntry(*this, EHEntry); | 
 |   } | 
 | } | 
 |  | 
 | /// Terminate the current block by emitting a branch which might leave | 
 | /// the current cleanup-protected scope.  The target scope may not yet | 
 | /// be known, in which case this will require a fixup. | 
 | /// | 
 | /// As a side-effect, this method clears the insertion point. | 
 | void CodeGenFunction::EmitBranchThroughCleanup(JumpDest Dest) { | 
 |   assert(Dest.getScopeDepth().encloses(EHStack.getInnermostNormalCleanup()) | 
 |          && "stale jump destination"); | 
 |  | 
 |   if (!HaveInsertPoint()) | 
 |     return; | 
 |  | 
 |   // Create the branch. | 
 |   llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock()); | 
 |  | 
 |   // Calculate the innermost active normal cleanup. | 
 |   EHScopeStack::stable_iterator | 
 |     TopCleanup = EHStack.getInnermostActiveNormalCleanup(); | 
 |  | 
 |   // If we're not in an active normal cleanup scope, or if the | 
 |   // destination scope is within the innermost active normal cleanup | 
 |   // scope, we don't need to worry about fixups. | 
 |   if (TopCleanup == EHStack.stable_end() || | 
 |       TopCleanup.encloses(Dest.getScopeDepth())) { // works for invalid | 
 |     Builder.ClearInsertionPoint(); | 
 |     return; | 
 |   } | 
 |  | 
 |   // If we can't resolve the destination cleanup scope, just add this | 
 |   // to the current cleanup scope as a branch fixup. | 
 |   if (!Dest.getScopeDepth().isValid()) { | 
 |     BranchFixup &Fixup = EHStack.addBranchFixup(); | 
 |     Fixup.Destination = Dest.getBlock(); | 
 |     Fixup.DestinationIndex = Dest.getDestIndex(); | 
 |     Fixup.InitialBranch = BI; | 
 |     Fixup.OptimisticBranchBlock = 0; | 
 |  | 
 |     Builder.ClearInsertionPoint(); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Otherwise, thread through all the normal cleanups in scope. | 
 |  | 
 |   // Store the index at the start. | 
 |   llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex()); | 
 |   new llvm::StoreInst(Index, getNormalCleanupDestSlot(), BI); | 
 |  | 
 |   // Adjust BI to point to the first cleanup block. | 
 |   { | 
 |     EHCleanupScope &Scope = | 
 |       cast<EHCleanupScope>(*EHStack.find(TopCleanup)); | 
 |     BI->setSuccessor(0, CreateNormalEntry(*this, Scope)); | 
 |   } | 
 |  | 
 |   // Add this destination to all the scopes involved. | 
 |   EHScopeStack::stable_iterator I = TopCleanup; | 
 |   EHScopeStack::stable_iterator E = Dest.getScopeDepth(); | 
 |   if (E.strictlyEncloses(I)) { | 
 |     while (true) { | 
 |       EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(I)); | 
 |       assert(Scope.isNormalCleanup()); | 
 |       I = Scope.getEnclosingNormalCleanup(); | 
 |  | 
 |       // If this is the last cleanup we're propagating through, tell it | 
 |       // that there's a resolved jump moving through it. | 
 |       if (!E.strictlyEncloses(I)) { | 
 |         Scope.addBranchAfter(Index, Dest.getBlock()); | 
 |         break; | 
 |       } | 
 |  | 
 |       // Otherwise, tell the scope that there's a jump propoagating | 
 |       // through it.  If this isn't new information, all the rest of | 
 |       // the work has been done before. | 
 |       if (!Scope.addBranchThrough(Dest.getBlock())) | 
 |         break; | 
 |     } | 
 |   } | 
 |    | 
 |   Builder.ClearInsertionPoint(); | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitBranchThroughEHCleanup(UnwindDest Dest) { | 
 |   // We should never get invalid scope depths for an UnwindDest; that | 
 |   // implies that the destination wasn't set up correctly. | 
 |   assert(Dest.getScopeDepth().isValid() && "invalid scope depth on EH dest?"); | 
 |  | 
 |   if (!HaveInsertPoint()) | 
 |     return; | 
 |  | 
 |   // Create the branch. | 
 |   llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock()); | 
 |  | 
 |   // Calculate the innermost active cleanup. | 
 |   EHScopeStack::stable_iterator | 
 |     InnermostCleanup = EHStack.getInnermostActiveEHCleanup(); | 
 |  | 
 |   // If the destination is in the same EH cleanup scope as us, we | 
 |   // don't need to thread through anything. | 
 |   if (InnermostCleanup.encloses(Dest.getScopeDepth())) { | 
 |     Builder.ClearInsertionPoint(); | 
 |     return; | 
 |   } | 
 |   assert(InnermostCleanup != EHStack.stable_end()); | 
 |  | 
 |   // Store the index at the start. | 
 |   llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex()); | 
 |   new llvm::StoreInst(Index, getEHCleanupDestSlot(), BI); | 
 |  | 
 |   // Adjust BI to point to the first cleanup block. | 
 |   { | 
 |     EHCleanupScope &Scope = | 
 |       cast<EHCleanupScope>(*EHStack.find(InnermostCleanup)); | 
 |     BI->setSuccessor(0, CreateEHEntry(*this, Scope)); | 
 |   } | 
 |    | 
 |   // Add this destination to all the scopes involved. | 
 |   for (EHScopeStack::stable_iterator | 
 |          I = InnermostCleanup, E = Dest.getScopeDepth(); ; ) { | 
 |     assert(E.strictlyEncloses(I)); | 
 |     EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(I)); | 
 |     assert(Scope.isEHCleanup()); | 
 |     I = Scope.getEnclosingEHCleanup(); | 
 |  | 
 |     // If this is the last cleanup we're propagating through, add this | 
 |     // as a branch-after. | 
 |     if (I == E) { | 
 |       Scope.addEHBranchAfter(Index, Dest.getBlock()); | 
 |       break; | 
 |     } | 
 |  | 
 |     // Otherwise, add it as a branch-through.  If this isn't new | 
 |     // information, all the rest of the work has been done before. | 
 |     if (!Scope.addEHBranchThrough(Dest.getBlock())) | 
 |       break; | 
 |   } | 
 |    | 
 |   Builder.ClearInsertionPoint(); | 
 | } | 
 |  | 
 | /// All the branch fixups on the EH stack have propagated out past the | 
 | /// outermost normal cleanup; resolve them all by adding cases to the | 
 | /// given switch instruction. | 
 | static void ResolveAllBranchFixups(CodeGenFunction &CGF, | 
 |                                    llvm::SwitchInst *Switch, | 
 |                                    llvm::BasicBlock *CleanupEntry) { | 
 |   llvm::SmallPtrSet<llvm::BasicBlock*, 4> CasesAdded; | 
 |  | 
 |   for (unsigned I = 0, E = CGF.EHStack.getNumBranchFixups(); I != E; ++I) { | 
 |     // Skip this fixup if its destination isn't set. | 
 |     BranchFixup &Fixup = CGF.EHStack.getBranchFixup(I); | 
 |     if (Fixup.Destination == 0) continue; | 
 |  | 
 |     // If there isn't an OptimisticBranchBlock, then InitialBranch is | 
 |     // still pointing directly to its destination; forward it to the | 
 |     // appropriate cleanup entry.  This is required in the specific | 
 |     // case of | 
 |     //   { std::string s; goto lbl; } | 
 |     //   lbl: | 
 |     // i.e. where there's an unresolved fixup inside a single cleanup | 
 |     // entry which we're currently popping. | 
 |     if (Fixup.OptimisticBranchBlock == 0) { | 
 |       new llvm::StoreInst(CGF.Builder.getInt32(Fixup.DestinationIndex), | 
 |                           CGF.getNormalCleanupDestSlot(), | 
 |                           Fixup.InitialBranch); | 
 |       Fixup.InitialBranch->setSuccessor(0, CleanupEntry); | 
 |     } | 
 |  | 
 |     // Don't add this case to the switch statement twice. | 
 |     if (!CasesAdded.insert(Fixup.Destination)) continue; | 
 |  | 
 |     Switch->addCase(CGF.Builder.getInt32(Fixup.DestinationIndex), | 
 |                     Fixup.Destination); | 
 |   } | 
 |  | 
 |   CGF.EHStack.clearFixups(); | 
 | } | 
 |  | 
 | void CodeGenFunction::ResolveBranchFixups(llvm::BasicBlock *Block) { | 
 |   assert(Block && "resolving a null target block"); | 
 |   if (!EHStack.getNumBranchFixups()) return; | 
 |  | 
 |   assert(EHStack.hasNormalCleanups() && | 
 |          "branch fixups exist with no normal cleanups on stack"); | 
 |  | 
 |   llvm::SmallPtrSet<llvm::BasicBlock*, 4> ModifiedOptimisticBlocks; | 
 |   bool ResolvedAny = false; | 
 |  | 
 |   for (unsigned I = 0, E = EHStack.getNumBranchFixups(); I != E; ++I) { | 
 |     // Skip this fixup if its destination doesn't match. | 
 |     BranchFixup &Fixup = EHStack.getBranchFixup(I); | 
 |     if (Fixup.Destination != Block) continue; | 
 |  | 
 |     Fixup.Destination = 0; | 
 |     ResolvedAny = true; | 
 |  | 
 |     // If it doesn't have an optimistic branch block, LatestBranch is | 
 |     // already pointing to the right place. | 
 |     llvm::BasicBlock *BranchBB = Fixup.OptimisticBranchBlock; | 
 |     if (!BranchBB) | 
 |       continue; | 
 |  | 
 |     // Don't process the same optimistic branch block twice. | 
 |     if (!ModifiedOptimisticBlocks.insert(BranchBB)) | 
 |       continue; | 
 |  | 
 |     llvm::SwitchInst *Switch = TransitionToCleanupSwitch(*this, BranchBB); | 
 |  | 
 |     // Add a case to the switch. | 
 |     Switch->addCase(Builder.getInt32(Fixup.DestinationIndex), Block); | 
 |   } | 
 |  | 
 |   if (ResolvedAny) | 
 |     EHStack.popNullFixups(); | 
 | } | 
 |  | 
 | static bool IsUsedAsNormalCleanup(EHScopeStack &EHStack, | 
 |                                   EHScopeStack::stable_iterator C) { | 
 |   // If we needed a normal block for any reason, that counts. | 
 |   if (cast<EHCleanupScope>(*EHStack.find(C)).getNormalBlock()) | 
 |     return true; | 
 |  | 
 |   // Check whether any enclosed cleanups were needed. | 
 |   for (EHScopeStack::stable_iterator | 
 |          I = EHStack.getInnermostNormalCleanup(); | 
 |          I != C; ) { | 
 |     assert(C.strictlyEncloses(I)); | 
 |     EHCleanupScope &S = cast<EHCleanupScope>(*EHStack.find(I)); | 
 |     if (S.getNormalBlock()) return true; | 
 |     I = S.getEnclosingNormalCleanup(); | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | static bool IsUsedAsEHCleanup(EHScopeStack &EHStack, | 
 |                               EHScopeStack::stable_iterator C) { | 
 |   // If we needed an EH block for any reason, that counts. | 
 |   if (cast<EHCleanupScope>(*EHStack.find(C)).getEHBlock()) | 
 |     return true; | 
 |  | 
 |   // Check whether any enclosed cleanups were needed. | 
 |   for (EHScopeStack::stable_iterator | 
 |          I = EHStack.getInnermostEHCleanup(); I != C; ) { | 
 |     assert(C.strictlyEncloses(I)); | 
 |     EHCleanupScope &S = cast<EHCleanupScope>(*EHStack.find(I)); | 
 |     if (S.getEHBlock()) return true; | 
 |     I = S.getEnclosingEHCleanup(); | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | enum ForActivation_t { | 
 |   ForActivation, | 
 |   ForDeactivation | 
 | }; | 
 |  | 
 | /// The given cleanup block is changing activation state.  Configure a | 
 | /// cleanup variable if necessary. | 
 | /// | 
 | /// It would be good if we had some way of determining if there were | 
 | /// extra uses *after* the change-over point. | 
 | static void SetupCleanupBlockActivation(CodeGenFunction &CGF, | 
 |                                         EHScopeStack::stable_iterator C, | 
 |                                         ForActivation_t Kind) { | 
 |   EHCleanupScope &Scope = cast<EHCleanupScope>(*CGF.EHStack.find(C)); | 
 |  | 
 |   // We always need the flag if we're activating the cleanup, because | 
 |   // we have to assume that the current location doesn't necessarily | 
 |   // dominate all future uses of the cleanup. | 
 |   bool NeedFlag = (Kind == ForActivation); | 
 |  | 
 |   // Calculate whether the cleanup was used: | 
 |  | 
 |   //   - as a normal cleanup | 
 |   if (Scope.isNormalCleanup() && IsUsedAsNormalCleanup(CGF.EHStack, C)) { | 
 |     Scope.setTestFlagInNormalCleanup(); | 
 |     NeedFlag = true; | 
 |   } | 
 |  | 
 |   //  - as an EH cleanup | 
 |   if (Scope.isEHCleanup() && IsUsedAsEHCleanup(CGF.EHStack, C)) { | 
 |     Scope.setTestFlagInEHCleanup(); | 
 |     NeedFlag = true; | 
 |   } | 
 |  | 
 |   // If it hasn't yet been used as either, we're done. | 
 |   if (!NeedFlag) return; | 
 |  | 
 |   llvm::AllocaInst *Var = Scope.getActiveFlag(); | 
 |   if (!Var) { | 
 |     Var = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), "cleanup.isactive"); | 
 |     Scope.setActiveFlag(Var); | 
 |  | 
 |     // Initialize to true or false depending on whether it was | 
 |     // active up to this point. | 
 |     CGF.InitTempAlloca(Var, CGF.Builder.getInt1(Kind == ForDeactivation)); | 
 |   } | 
 |  | 
 |   CGF.Builder.CreateStore(CGF.Builder.getInt1(Kind == ForActivation), Var); | 
 | } | 
 |  | 
 | /// Activate a cleanup that was created in an inactivated state. | 
 | void CodeGenFunction::ActivateCleanupBlock(EHScopeStack::stable_iterator C) { | 
 |   assert(C != EHStack.stable_end() && "activating bottom of stack?"); | 
 |   EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(C)); | 
 |   assert(!Scope.isActive() && "double activation"); | 
 |  | 
 |   SetupCleanupBlockActivation(*this, C, ForActivation); | 
 |  | 
 |   Scope.setActive(true); | 
 | } | 
 |  | 
 | /// Deactive a cleanup that was created in an active state. | 
 | void CodeGenFunction::DeactivateCleanupBlock(EHScopeStack::stable_iterator C) { | 
 |   assert(C != EHStack.stable_end() && "deactivating bottom of stack?"); | 
 |   EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(C)); | 
 |   assert(Scope.isActive() && "double deactivation"); | 
 |  | 
 |   // If it's the top of the stack, just pop it. | 
 |   if (C == EHStack.stable_begin()) { | 
 |     // If it's a normal cleanup, we need to pretend that the | 
 |     // fallthrough is unreachable. | 
 |     CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); | 
 |     PopCleanupBlock(); | 
 |     Builder.restoreIP(SavedIP); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Otherwise, follow the general case. | 
 |   SetupCleanupBlockActivation(*this, C, ForDeactivation); | 
 |  | 
 |   Scope.setActive(false); | 
 | } | 
 |  | 
 | llvm::Value *CodeGenFunction::getNormalCleanupDestSlot() { | 
 |   if (!NormalCleanupDest) | 
 |     NormalCleanupDest = | 
 |       CreateTempAlloca(Builder.getInt32Ty(), "cleanup.dest.slot"); | 
 |   return NormalCleanupDest; | 
 | } | 
 |  | 
 | llvm::Value *CodeGenFunction::getEHCleanupDestSlot() { | 
 |   if (!EHCleanupDest) | 
 |     EHCleanupDest = | 
 |       CreateTempAlloca(Builder.getInt32Ty(), "eh.cleanup.dest.slot"); | 
 |   return EHCleanupDest; | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,  | 
 |                                               llvm::Constant *Init) { | 
 |   assert (Init && "Invalid DeclRefExpr initializer!"); | 
 |   if (CGDebugInfo *Dbg = getDebugInfo()) | 
 |     Dbg->EmitGlobalVariable(E->getDecl(), Init); | 
 | } |