| //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements semantic analysis for C++ expressions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Sema.h" |
| #include "SemaInit.h" |
| #include "Lookup.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/CXXInheritance.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/TypeLoc.h" |
| #include "clang/Basic/PartialDiagnostic.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/Parse/DeclSpec.h" |
| #include "clang/Parse/Template.h" |
| #include "llvm/ADT/STLExtras.h" |
| using namespace clang; |
| |
| Action::TypeTy *Sema::getDestructorName(SourceLocation TildeLoc, |
| IdentifierInfo &II, |
| SourceLocation NameLoc, |
| Scope *S, CXXScopeSpec &SS, |
| TypeTy *ObjectTypePtr, |
| bool EnteringContext) { |
| // Determine where to perform name lookup. |
| |
| // FIXME: This area of the standard is very messy, and the current |
| // wording is rather unclear about which scopes we search for the |
| // destructor name; see core issues 399 and 555. Issue 399 in |
| // particular shows where the current description of destructor name |
| // lookup is completely out of line with existing practice, e.g., |
| // this appears to be ill-formed: |
| // |
| // namespace N { |
| // template <typename T> struct S { |
| // ~S(); |
| // }; |
| // } |
| // |
| // void f(N::S<int>* s) { |
| // s->N::S<int>::~S(); |
| // } |
| // |
| // See also PR6358 and PR6359. |
| QualType SearchType; |
| DeclContext *LookupCtx = 0; |
| bool isDependent = false; |
| bool LookInScope = false; |
| |
| // If we have an object type, it's because we are in a |
| // pseudo-destructor-expression or a member access expression, and |
| // we know what type we're looking for. |
| if (ObjectTypePtr) |
| SearchType = GetTypeFromParser(ObjectTypePtr); |
| |
| if (SS.isSet()) { |
| NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); |
| |
| bool AlreadySearched = false; |
| bool LookAtPrefix = true; |
| if (!getLangOptions().CPlusPlus0x) { |
| // C++ [basic.lookup.qual]p6: |
| // If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier, |
| // the type-names are looked up as types in the scope designated by the |
| // nested-name-specifier. In a qualified-id of the form: |
| // |
| // ::[opt] nested-name-specifier ̃ class-name |
| // |
| // where the nested-name-specifier designates a namespace scope, and in |
| // a qualified-id of the form: |
| // |
| // ::opt nested-name-specifier class-name :: ̃ class-name |
| // |
| // the class-names are looked up as types in the scope designated by |
| // the nested-name-specifier. |
| // |
| // Here, we check the first case (completely) and determine whether the |
| // code below is permitted to look at the prefix of the |
| // nested-name-specifier (as we do in C++0x). |
| DeclContext *DC = computeDeclContext(SS, EnteringContext); |
| if (DC && DC->isFileContext()) { |
| AlreadySearched = true; |
| LookupCtx = DC; |
| isDependent = false; |
| } else if (DC && isa<CXXRecordDecl>(DC)) |
| LookAtPrefix = false; |
| } |
| |
| // C++0x [basic.lookup.qual]p6: |
| // If a pseudo-destructor-name (5.2.4) contains a |
| // nested-name-specifier, the type-names are looked up as types |
| // in the scope designated by the nested-name-specifier. Similarly, in |
| // a qualified-id of the form: |
| // |
| // :: [opt] nested-name-specifier[opt] class-name :: ~class-name |
| // |
| // the second class-name is looked up in the same scope as the first. |
| // |
| // To implement this, we look at the prefix of the |
| // nested-name-specifier we were given, and determine the lookup |
| // context from that. |
| // |
| // We also fold in the second case from the C++03 rules quoted further |
| // above. |
| NestedNameSpecifier *Prefix = 0; |
| if (AlreadySearched) { |
| // Nothing left to do. |
| } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) { |
| CXXScopeSpec PrefixSS; |
| PrefixSS.setScopeRep(Prefix); |
| LookupCtx = computeDeclContext(PrefixSS, EnteringContext); |
| isDependent = isDependentScopeSpecifier(PrefixSS); |
| } else if (getLangOptions().CPlusPlus0x && |
| (LookupCtx = computeDeclContext(SS, EnteringContext))) { |
| if (!LookupCtx->isTranslationUnit()) |
| LookupCtx = LookupCtx->getParent(); |
| isDependent = LookupCtx && LookupCtx->isDependentContext(); |
| } else if (ObjectTypePtr) { |
| LookupCtx = computeDeclContext(SearchType); |
| isDependent = SearchType->isDependentType(); |
| } else { |
| LookupCtx = computeDeclContext(SS, EnteringContext); |
| isDependent = LookupCtx && LookupCtx->isDependentContext(); |
| } |
| |
| LookInScope = false; |
| } else if (ObjectTypePtr) { |
| // C++ [basic.lookup.classref]p3: |
| // If the unqualified-id is ~type-name, the type-name is looked up |
| // in the context of the entire postfix-expression. If the type T |
| // of the object expression is of a class type C, the type-name is |
| // also looked up in the scope of class C. At least one of the |
| // lookups shall find a name that refers to (possibly |
| // cv-qualified) T. |
| LookupCtx = computeDeclContext(SearchType); |
| isDependent = SearchType->isDependentType(); |
| assert((isDependent || !SearchType->isIncompleteType()) && |
| "Caller should have completed object type"); |
| |
| LookInScope = true; |
| } else { |
| // Perform lookup into the current scope (only). |
| LookInScope = true; |
| } |
| |
| LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName); |
| for (unsigned Step = 0; Step != 2; ++Step) { |
| // Look for the name first in the computed lookup context (if we |
| // have one) and, if that fails to find a match, in the sope (if |
| // we're allowed to look there). |
| Found.clear(); |
| if (Step == 0 && LookupCtx) |
| LookupQualifiedName(Found, LookupCtx); |
| else if (Step == 1 && LookInScope && S) |
| LookupName(Found, S); |
| else |
| continue; |
| |
| // FIXME: Should we be suppressing ambiguities here? |
| if (Found.isAmbiguous()) |
| return 0; |
| |
| if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) { |
| QualType T = Context.getTypeDeclType(Type); |
| |
| if (SearchType.isNull() || SearchType->isDependentType() || |
| Context.hasSameUnqualifiedType(T, SearchType)) { |
| // We found our type! |
| |
| return T.getAsOpaquePtr(); |
| } |
| } |
| |
| // If the name that we found is a class template name, and it is |
| // the same name as the template name in the last part of the |
| // nested-name-specifier (if present) or the object type, then |
| // this is the destructor for that class. |
| // FIXME: This is a workaround until we get real drafting for core |
| // issue 399, for which there isn't even an obvious direction. |
| if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) { |
| QualType MemberOfType; |
| if (SS.isSet()) { |
| if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) { |
| // Figure out the type of the context, if it has one. |
| if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) |
| MemberOfType = Context.getTypeDeclType(Record); |
| } |
| } |
| if (MemberOfType.isNull()) |
| MemberOfType = SearchType; |
| |
| if (MemberOfType.isNull()) |
| continue; |
| |
| // We're referring into a class template specialization. If the |
| // class template we found is the same as the template being |
| // specialized, we found what we are looking for. |
| if (const RecordType *Record = MemberOfType->getAs<RecordType>()) { |
| if (ClassTemplateSpecializationDecl *Spec |
| = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) { |
| if (Spec->getSpecializedTemplate()->getCanonicalDecl() == |
| Template->getCanonicalDecl()) |
| return MemberOfType.getAsOpaquePtr(); |
| } |
| |
| continue; |
| } |
| |
| // We're referring to an unresolved class template |
| // specialization. Determine whether we class template we found |
| // is the same as the template being specialized or, if we don't |
| // know which template is being specialized, that it at least |
| // has the same name. |
| if (const TemplateSpecializationType *SpecType |
| = MemberOfType->getAs<TemplateSpecializationType>()) { |
| TemplateName SpecName = SpecType->getTemplateName(); |
| |
| // The class template we found is the same template being |
| // specialized. |
| if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) { |
| if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl()) |
| return MemberOfType.getAsOpaquePtr(); |
| |
| continue; |
| } |
| |
| // The class template we found has the same name as the |
| // (dependent) template name being specialized. |
| if (DependentTemplateName *DepTemplate |
| = SpecName.getAsDependentTemplateName()) { |
| if (DepTemplate->isIdentifier() && |
| DepTemplate->getIdentifier() == Template->getIdentifier()) |
| return MemberOfType.getAsOpaquePtr(); |
| |
| continue; |
| } |
| } |
| } |
| } |
| |
| if (isDependent) { |
| // We didn't find our type, but that's okay: it's dependent |
| // anyway. |
| NestedNameSpecifier *NNS = 0; |
| SourceRange Range; |
| if (SS.isSet()) { |
| NNS = (NestedNameSpecifier *)SS.getScopeRep(); |
| Range = SourceRange(SS.getRange().getBegin(), NameLoc); |
| } else { |
| NNS = NestedNameSpecifier::Create(Context, &II); |
| Range = SourceRange(NameLoc); |
| } |
| |
| return CheckTypenameType(ETK_None, NNS, II, Range).getAsOpaquePtr(); |
| } |
| |
| if (ObjectTypePtr) |
| Diag(NameLoc, diag::err_ident_in_pseudo_dtor_not_a_type) |
| << &II; |
| else |
| Diag(NameLoc, diag::err_destructor_class_name); |
| |
| return 0; |
| } |
| |
| /// \brief Build a C++ typeid expression with a type operand. |
| Sema::OwningExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, |
| SourceLocation TypeidLoc, |
| TypeSourceInfo *Operand, |
| SourceLocation RParenLoc) { |
| // C++ [expr.typeid]p4: |
| // The top-level cv-qualifiers of the lvalue expression or the type-id |
| // that is the operand of typeid are always ignored. |
| // If the type of the type-id is a class type or a reference to a class |
| // type, the class shall be completely-defined. |
| QualType T = Operand->getType().getNonReferenceType(); |
| if (T->getAs<RecordType>() && |
| RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) |
| return ExprError(); |
| |
| return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(), |
| Operand, |
| SourceRange(TypeidLoc, RParenLoc))); |
| } |
| |
| /// \brief Build a C++ typeid expression with an expression operand. |
| Sema::OwningExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, |
| SourceLocation TypeidLoc, |
| ExprArg Operand, |
| SourceLocation RParenLoc) { |
| bool isUnevaluatedOperand = true; |
| Expr *E = static_cast<Expr *>(Operand.get()); |
| if (E && !E->isTypeDependent()) { |
| QualType T = E->getType(); |
| if (const RecordType *RecordT = T->getAs<RecordType>()) { |
| CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl()); |
| // C++ [expr.typeid]p3: |
| // [...] If the type of the expression is a class type, the class |
| // shall be completely-defined. |
| if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) |
| return ExprError(); |
| |
| // C++ [expr.typeid]p3: |
| // When typeid is applied to an expression other than an lvalue of a |
| // polymorphic class type [...] [the] expression is an unevaluated |
| // operand. [...] |
| if (RecordD->isPolymorphic() && E->isLvalue(Context) == Expr::LV_Valid) { |
| isUnevaluatedOperand = false; |
| MaybeMarkVirtualMembersReferenced(TypeidLoc, RecordD); |
| } |
| } |
| |
| // C++ [expr.typeid]p4: |
| // [...] If the type of the type-id is a reference to a possibly |
| // cv-qualified type, the result of the typeid expression refers to a |
| // std::type_info object representing the cv-unqualified referenced |
| // type. |
| if (T.hasQualifiers()) { |
| ImpCastExprToType(E, T.getUnqualifiedType(), CastExpr::CK_NoOp, |
| E->isLvalue(Context)); |
| Operand.release(); |
| Operand = Owned(E); |
| } |
| } |
| |
| // If this is an unevaluated operand, clear out the set of |
| // declaration references we have been computing and eliminate any |
| // temporaries introduced in its computation. |
| if (isUnevaluatedOperand) |
| ExprEvalContexts.back().Context = Unevaluated; |
| |
| return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(), |
| Operand.takeAs<Expr>(), |
| SourceRange(TypeidLoc, RParenLoc))); |
| } |
| |
| /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression); |
| Action::OwningExprResult |
| Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc, |
| bool isType, void *TyOrExpr, SourceLocation RParenLoc) { |
| // Find the std::type_info type. |
| if (!StdNamespace) |
| return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); |
| |
| IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info"); |
| LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName); |
| LookupQualifiedName(R, StdNamespace); |
| RecordDecl *TypeInfoRecordDecl = R.getAsSingle<RecordDecl>(); |
| if (!TypeInfoRecordDecl) |
| return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); |
| |
| QualType TypeInfoType = Context.getTypeDeclType(TypeInfoRecordDecl); |
| |
| if (isType) { |
| // The operand is a type; handle it as such. |
| TypeSourceInfo *TInfo = 0; |
| QualType T = GetTypeFromParser(TyOrExpr, &TInfo); |
| if (T.isNull()) |
| return ExprError(); |
| |
| if (!TInfo) |
| TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); |
| |
| return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc); |
| } |
| |
| // The operand is an expression. |
| return BuildCXXTypeId(TypeInfoType, OpLoc, Owned((Expr*)TyOrExpr), RParenLoc); |
| } |
| |
| /// ActOnCXXBoolLiteral - Parse {true,false} literals. |
| Action::OwningExprResult |
| Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) { |
| assert((Kind == tok::kw_true || Kind == tok::kw_false) && |
| "Unknown C++ Boolean value!"); |
| return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true, |
| Context.BoolTy, OpLoc)); |
| } |
| |
| /// ActOnCXXNullPtrLiteral - Parse 'nullptr'. |
| Action::OwningExprResult |
| Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) { |
| return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc)); |
| } |
| |
| /// ActOnCXXThrow - Parse throw expressions. |
| Action::OwningExprResult |
| Sema::ActOnCXXThrow(SourceLocation OpLoc, ExprArg E) { |
| Expr *Ex = E.takeAs<Expr>(); |
| if (Ex && !Ex->isTypeDependent() && CheckCXXThrowOperand(OpLoc, Ex)) |
| return ExprError(); |
| return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc)); |
| } |
| |
| /// CheckCXXThrowOperand - Validate the operand of a throw. |
| bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *&E) { |
| // C++ [except.throw]p3: |
| // A throw-expression initializes a temporary object, called the exception |
| // object, the type of which is determined by removing any top-level |
| // cv-qualifiers from the static type of the operand of throw and adjusting |
| // the type from "array of T" or "function returning T" to "pointer to T" |
| // or "pointer to function returning T", [...] |
| if (E->getType().hasQualifiers()) |
| ImpCastExprToType(E, E->getType().getUnqualifiedType(), CastExpr::CK_NoOp, |
| E->isLvalue(Context) == Expr::LV_Valid); |
| |
| DefaultFunctionArrayConversion(E); |
| |
| // If the type of the exception would be an incomplete type or a pointer |
| // to an incomplete type other than (cv) void the program is ill-formed. |
| QualType Ty = E->getType(); |
| bool isPointer = false; |
| if (const PointerType* Ptr = Ty->getAs<PointerType>()) { |
| Ty = Ptr->getPointeeType(); |
| isPointer = true; |
| } |
| if (!isPointer || !Ty->isVoidType()) { |
| if (RequireCompleteType(ThrowLoc, Ty, |
| PDiag(isPointer ? diag::err_throw_incomplete_ptr |
| : diag::err_throw_incomplete) |
| << E->getSourceRange())) |
| return true; |
| |
| if (RequireNonAbstractType(ThrowLoc, E->getType(), |
| PDiag(diag::err_throw_abstract_type) |
| << E->getSourceRange())) |
| return true; |
| } |
| |
| // Initialize the exception result. This implicitly weeds out |
| // abstract types or types with inaccessible copy constructors. |
| InitializedEntity Entity = |
| InitializedEntity::InitializeException(ThrowLoc, E->getType()); |
| OwningExprResult Res = PerformCopyInitialization(Entity, |
| SourceLocation(), |
| Owned(E)); |
| if (Res.isInvalid()) |
| return true; |
| E = Res.takeAs<Expr>(); |
| |
| if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { |
| // If we're throwing a polymorphic class, we need to make sure |
| // there is a vtable. |
| MaybeMarkVirtualMembersReferenced(ThrowLoc, |
| cast<CXXRecordDecl>(RecordTy->getDecl())); |
| } |
| |
| return false; |
| } |
| |
| Action::OwningExprResult Sema::ActOnCXXThis(SourceLocation ThisLoc) { |
| /// C++ 9.3.2: In the body of a non-static member function, the keyword this |
| /// is a non-lvalue expression whose value is the address of the object for |
| /// which the function is called. |
| |
| if (!isa<FunctionDecl>(CurContext)) |
| return ExprError(Diag(ThisLoc, diag::err_invalid_this_use)); |
| |
| if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) |
| if (MD->isInstance()) |
| return Owned(new (Context) CXXThisExpr(ThisLoc, |
| MD->getThisType(Context), |
| /*isImplicit=*/false)); |
| |
| return ExprError(Diag(ThisLoc, diag::err_invalid_this_use)); |
| } |
| |
| /// ActOnCXXTypeConstructExpr - Parse construction of a specified type. |
| /// Can be interpreted either as function-style casting ("int(x)") |
| /// or class type construction ("ClassType(x,y,z)") |
| /// or creation of a value-initialized type ("int()"). |
| Action::OwningExprResult |
| Sema::ActOnCXXTypeConstructExpr(SourceRange TypeRange, TypeTy *TypeRep, |
| SourceLocation LParenLoc, |
| MultiExprArg exprs, |
| SourceLocation *CommaLocs, |
| SourceLocation RParenLoc) { |
| if (!TypeRep) |
| return ExprError(); |
| |
| TypeSourceInfo *TInfo; |
| QualType Ty = GetTypeFromParser(TypeRep, &TInfo); |
| if (!TInfo) |
| TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation()); |
| unsigned NumExprs = exprs.size(); |
| Expr **Exprs = (Expr**)exprs.get(); |
| SourceLocation TyBeginLoc = TypeRange.getBegin(); |
| SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc); |
| |
| if (Ty->isDependentType() || |
| CallExpr::hasAnyTypeDependentArguments(Exprs, NumExprs)) { |
| exprs.release(); |
| |
| return Owned(CXXUnresolvedConstructExpr::Create(Context, |
| TypeRange.getBegin(), Ty, |
| LParenLoc, |
| Exprs, NumExprs, |
| RParenLoc)); |
| } |
| |
| if (Ty->isArrayType()) |
| return ExprError(Diag(TyBeginLoc, |
| diag::err_value_init_for_array_type) << FullRange); |
| if (!Ty->isVoidType() && |
| RequireCompleteType(TyBeginLoc, Ty, |
| PDiag(diag::err_invalid_incomplete_type_use) |
| << FullRange)) |
| return ExprError(); |
| |
| if (RequireNonAbstractType(TyBeginLoc, Ty, |
| diag::err_allocation_of_abstract_type)) |
| return ExprError(); |
| |
| |
| // C++ [expr.type.conv]p1: |
| // If the expression list is a single expression, the type conversion |
| // expression is equivalent (in definedness, and if defined in meaning) to the |
| // corresponding cast expression. |
| // |
| if (NumExprs == 1) { |
| CastExpr::CastKind Kind = CastExpr::CK_Unknown; |
| CXXBaseSpecifierArray BasePath; |
| if (CheckCastTypes(TypeRange, Ty, Exprs[0], Kind, BasePath, |
| /*FunctionalStyle=*/true)) |
| return ExprError(); |
| |
| exprs.release(); |
| |
| return Owned(new (Context) CXXFunctionalCastExpr(Ty.getNonReferenceType(), |
| TInfo, TyBeginLoc, Kind, |
| Exprs[0], BasePath, |
| RParenLoc)); |
| } |
| |
| if (const RecordType *RT = Ty->getAs<RecordType>()) { |
| CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); |
| |
| if (NumExprs > 1 || !Record->hasTrivialConstructor() || |
| !Record->hasTrivialDestructor()) { |
| InitializedEntity Entity = InitializedEntity::InitializeTemporary(Ty); |
| InitializationKind Kind |
| = NumExprs ? InitializationKind::CreateDirect(TypeRange.getBegin(), |
| LParenLoc, RParenLoc) |
| : InitializationKind::CreateValue(TypeRange.getBegin(), |
| LParenLoc, RParenLoc); |
| InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs); |
| OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, |
| move(exprs)); |
| |
| // FIXME: Improve AST representation? |
| return move(Result); |
| } |
| |
| // Fall through to value-initialize an object of class type that |
| // doesn't have a user-declared default constructor. |
| } |
| |
| // C++ [expr.type.conv]p1: |
| // If the expression list specifies more than a single value, the type shall |
| // be a class with a suitably declared constructor. |
| // |
| if (NumExprs > 1) |
| return ExprError(Diag(CommaLocs[0], |
| diag::err_builtin_func_cast_more_than_one_arg) |
| << FullRange); |
| |
| assert(NumExprs == 0 && "Expected 0 expressions"); |
| // C++ [expr.type.conv]p2: |
| // The expression T(), where T is a simple-type-specifier for a non-array |
| // complete object type or the (possibly cv-qualified) void type, creates an |
| // rvalue of the specified type, which is value-initialized. |
| // |
| exprs.release(); |
| return Owned(new (Context) CXXZeroInitValueExpr(Ty, TyBeginLoc, RParenLoc)); |
| } |
| |
| |
| /// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.: |
| /// @code new (memory) int[size][4] @endcode |
| /// or |
| /// @code ::new Foo(23, "hello") @endcode |
| /// For the interpretation of this heap of arguments, consult the base version. |
| Action::OwningExprResult |
| Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, |
| SourceLocation PlacementLParen, MultiExprArg PlacementArgs, |
| SourceLocation PlacementRParen, bool ParenTypeId, |
| Declarator &D, SourceLocation ConstructorLParen, |
| MultiExprArg ConstructorArgs, |
| SourceLocation ConstructorRParen) { |
| Expr *ArraySize = 0; |
| // If the specified type is an array, unwrap it and save the expression. |
| if (D.getNumTypeObjects() > 0 && |
| D.getTypeObject(0).Kind == DeclaratorChunk::Array) { |
| DeclaratorChunk &Chunk = D.getTypeObject(0); |
| if (Chunk.Arr.hasStatic) |
| return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new) |
| << D.getSourceRange()); |
| if (!Chunk.Arr.NumElts) |
| return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size) |
| << D.getSourceRange()); |
| |
| if (ParenTypeId) { |
| // Can't have dynamic array size when the type-id is in parentheses. |
| Expr *NumElts = (Expr *)Chunk.Arr.NumElts; |
| if (!NumElts->isTypeDependent() && !NumElts->isValueDependent() && |
| !NumElts->isIntegerConstantExpr(Context)) { |
| Diag(D.getTypeObject(0).Loc, diag::err_new_paren_array_nonconst) |
| << NumElts->getSourceRange(); |
| return ExprError(); |
| } |
| } |
| |
| ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts); |
| D.DropFirstTypeObject(); |
| } |
| |
| // Every dimension shall be of constant size. |
| if (ArraySize) { |
| for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) { |
| if (D.getTypeObject(I).Kind != DeclaratorChunk::Array) |
| break; |
| |
| DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr; |
| if (Expr *NumElts = (Expr *)Array.NumElts) { |
| if (!NumElts->isTypeDependent() && !NumElts->isValueDependent() && |
| !NumElts->isIntegerConstantExpr(Context)) { |
| Diag(D.getTypeObject(I).Loc, diag::err_new_array_nonconst) |
| << NumElts->getSourceRange(); |
| return ExprError(); |
| } |
| } |
| } |
| } |
| |
| //FIXME: Store TypeSourceInfo in CXXNew expression. |
| TypeSourceInfo *TInfo = 0; |
| QualType AllocType = GetTypeForDeclarator(D, /*Scope=*/0, &TInfo); |
| if (D.isInvalidType()) |
| return ExprError(); |
| |
| return BuildCXXNew(StartLoc, UseGlobal, |
| PlacementLParen, |
| move(PlacementArgs), |
| PlacementRParen, |
| ParenTypeId, |
| AllocType, |
| D.getSourceRange().getBegin(), |
| D.getSourceRange(), |
| Owned(ArraySize), |
| ConstructorLParen, |
| move(ConstructorArgs), |
| ConstructorRParen); |
| } |
| |
| Sema::OwningExprResult |
| Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal, |
| SourceLocation PlacementLParen, |
| MultiExprArg PlacementArgs, |
| SourceLocation PlacementRParen, |
| bool ParenTypeId, |
| QualType AllocType, |
| SourceLocation TypeLoc, |
| SourceRange TypeRange, |
| ExprArg ArraySizeE, |
| SourceLocation ConstructorLParen, |
| MultiExprArg ConstructorArgs, |
| SourceLocation ConstructorRParen) { |
| if (CheckAllocatedType(AllocType, TypeLoc, TypeRange)) |
| return ExprError(); |
| |
| QualType ResultType = Context.getPointerType(AllocType); |
| |
| // That every array dimension except the first is constant was already |
| // checked by the type check above. |
| |
| // C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral |
| // or enumeration type with a non-negative value." |
| Expr *ArraySize = (Expr *)ArraySizeE.get(); |
| if (ArraySize && !ArraySize->isTypeDependent()) { |
| QualType SizeType = ArraySize->getType(); |
| if (!SizeType->isIntegralType() && !SizeType->isEnumeralType()) |
| return ExprError(Diag(ArraySize->getSourceRange().getBegin(), |
| diag::err_array_size_not_integral) |
| << SizeType << ArraySize->getSourceRange()); |
| // Let's see if this is a constant < 0. If so, we reject it out of hand. |
| // We don't care about special rules, so we tell the machinery it's not |
| // evaluated - it gives us a result in more cases. |
| if (!ArraySize->isValueDependent()) { |
| llvm::APSInt Value; |
| if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) { |
| if (Value < llvm::APSInt( |
| llvm::APInt::getNullValue(Value.getBitWidth()), |
| Value.isUnsigned())) |
| return ExprError(Diag(ArraySize->getSourceRange().getBegin(), |
| diag::err_typecheck_negative_array_size) |
| << ArraySize->getSourceRange()); |
| } |
| } |
| |
| ImpCastExprToType(ArraySize, Context.getSizeType(), |
| CastExpr::CK_IntegralCast); |
| } |
| |
| FunctionDecl *OperatorNew = 0; |
| FunctionDecl *OperatorDelete = 0; |
| Expr **PlaceArgs = (Expr**)PlacementArgs.get(); |
| unsigned NumPlaceArgs = PlacementArgs.size(); |
| |
| if (!AllocType->isDependentType() && |
| !Expr::hasAnyTypeDependentArguments(PlaceArgs, NumPlaceArgs) && |
| FindAllocationFunctions(StartLoc, |
| SourceRange(PlacementLParen, PlacementRParen), |
| UseGlobal, AllocType, ArraySize, PlaceArgs, |
| NumPlaceArgs, OperatorNew, OperatorDelete)) |
| return ExprError(); |
| llvm::SmallVector<Expr *, 8> AllPlaceArgs; |
| if (OperatorNew) { |
| // Add default arguments, if any. |
| const FunctionProtoType *Proto = |
| OperatorNew->getType()->getAs<FunctionProtoType>(); |
| VariadicCallType CallType = |
| Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply; |
| |
| if (GatherArgumentsForCall(PlacementLParen, OperatorNew, |
| Proto, 1, PlaceArgs, NumPlaceArgs, |
| AllPlaceArgs, CallType)) |
| return ExprError(); |
| |
| NumPlaceArgs = AllPlaceArgs.size(); |
| if (NumPlaceArgs > 0) |
| PlaceArgs = &AllPlaceArgs[0]; |
| } |
| |
| bool Init = ConstructorLParen.isValid(); |
| // --- Choosing a constructor --- |
| CXXConstructorDecl *Constructor = 0; |
| Expr **ConsArgs = (Expr**)ConstructorArgs.get(); |
| unsigned NumConsArgs = ConstructorArgs.size(); |
| ASTOwningVector<&ActionBase::DeleteExpr> ConvertedConstructorArgs(*this); |
| |
| // Array 'new' can't have any initializers. |
| if (NumConsArgs && ArraySize) { |
| SourceRange InitRange(ConsArgs[0]->getLocStart(), |
| ConsArgs[NumConsArgs - 1]->getLocEnd()); |
| |
| Diag(StartLoc, diag::err_new_array_init_args) << InitRange; |
| return ExprError(); |
| } |
| |
| if (!AllocType->isDependentType() && |
| !Expr::hasAnyTypeDependentArguments(ConsArgs, NumConsArgs)) { |
| // C++0x [expr.new]p15: |
| // A new-expression that creates an object of type T initializes that |
| // object as follows: |
| InitializationKind Kind |
| // - If the new-initializer is omitted, the object is default- |
| // initialized (8.5); if no initialization is performed, |
| // the object has indeterminate value |
| = !Init? InitializationKind::CreateDefault(TypeLoc) |
| // - Otherwise, the new-initializer is interpreted according to the |
| // initialization rules of 8.5 for direct-initialization. |
| : InitializationKind::CreateDirect(TypeLoc, |
| ConstructorLParen, |
| ConstructorRParen); |
| |
| InitializedEntity Entity |
| = InitializedEntity::InitializeNew(StartLoc, AllocType); |
| InitializationSequence InitSeq(*this, Entity, Kind, ConsArgs, NumConsArgs); |
| OwningExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, |
| move(ConstructorArgs)); |
| if (FullInit.isInvalid()) |
| return ExprError(); |
| |
| // FullInit is our initializer; walk through it to determine if it's a |
| // constructor call, which CXXNewExpr handles directly. |
| if (Expr *FullInitExpr = (Expr *)FullInit.get()) { |
| if (CXXBindTemporaryExpr *Binder |
| = dyn_cast<CXXBindTemporaryExpr>(FullInitExpr)) |
| FullInitExpr = Binder->getSubExpr(); |
| if (CXXConstructExpr *Construct |
| = dyn_cast<CXXConstructExpr>(FullInitExpr)) { |
| Constructor = Construct->getConstructor(); |
| for (CXXConstructExpr::arg_iterator A = Construct->arg_begin(), |
| AEnd = Construct->arg_end(); |
| A != AEnd; ++A) |
| ConvertedConstructorArgs.push_back(A->Retain()); |
| } else { |
| // Take the converted initializer. |
| ConvertedConstructorArgs.push_back(FullInit.release()); |
| } |
| } else { |
| // No initialization required. |
| } |
| |
| // Take the converted arguments and use them for the new expression. |
| NumConsArgs = ConvertedConstructorArgs.size(); |
| ConsArgs = (Expr **)ConvertedConstructorArgs.take(); |
| } |
| |
| // Mark the new and delete operators as referenced. |
| if (OperatorNew) |
| MarkDeclarationReferenced(StartLoc, OperatorNew); |
| if (OperatorDelete) |
| MarkDeclarationReferenced(StartLoc, OperatorDelete); |
| |
| // FIXME: Also check that the destructor is accessible. (C++ 5.3.4p16) |
| |
| PlacementArgs.release(); |
| ConstructorArgs.release(); |
| ArraySizeE.release(); |
| return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew, |
| PlaceArgs, NumPlaceArgs, ParenTypeId, |
| ArraySize, Constructor, Init, |
| ConsArgs, NumConsArgs, OperatorDelete, |
| ResultType, StartLoc, |
| Init ? ConstructorRParen : |
| SourceLocation())); |
| } |
| |
| /// CheckAllocatedType - Checks that a type is suitable as the allocated type |
| /// in a new-expression. |
| /// dimension off and stores the size expression in ArraySize. |
| bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc, |
| SourceRange R) { |
| // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an |
| // abstract class type or array thereof. |
| if (AllocType->isFunctionType()) |
| return Diag(Loc, diag::err_bad_new_type) |
| << AllocType << 0 << R; |
| else if (AllocType->isReferenceType()) |
| return Diag(Loc, diag::err_bad_new_type) |
| << AllocType << 1 << R; |
| else if (!AllocType->isDependentType() && |
| RequireCompleteType(Loc, AllocType, |
| PDiag(diag::err_new_incomplete_type) |
| << R)) |
| return true; |
| else if (RequireNonAbstractType(Loc, AllocType, |
| diag::err_allocation_of_abstract_type)) |
| return true; |
| |
| return false; |
| } |
| |
| /// \brief Determine whether the given function is a non-placement |
| /// deallocation function. |
| static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) { |
| if (FD->isInvalidDecl()) |
| return false; |
| |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD)) |
| return Method->isUsualDeallocationFunction(); |
| |
| return ((FD->getOverloadedOperator() == OO_Delete || |
| FD->getOverloadedOperator() == OO_Array_Delete) && |
| FD->getNumParams() == 1); |
| } |
| |
| /// FindAllocationFunctions - Finds the overloads of operator new and delete |
| /// that are appropriate for the allocation. |
| bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range, |
| bool UseGlobal, QualType AllocType, |
| bool IsArray, Expr **PlaceArgs, |
| unsigned NumPlaceArgs, |
| FunctionDecl *&OperatorNew, |
| FunctionDecl *&OperatorDelete) { |
| // --- Choosing an allocation function --- |
| // C++ 5.3.4p8 - 14 & 18 |
| // 1) If UseGlobal is true, only look in the global scope. Else, also look |
| // in the scope of the allocated class. |
| // 2) If an array size is given, look for operator new[], else look for |
| // operator new. |
| // 3) The first argument is always size_t. Append the arguments from the |
| // placement form. |
| |
| llvm::SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs); |
| // We don't care about the actual value of this argument. |
| // FIXME: Should the Sema create the expression and embed it in the syntax |
| // tree? Or should the consumer just recalculate the value? |
| IntegerLiteral Size(llvm::APInt::getNullValue( |
| Context.Target.getPointerWidth(0)), |
| Context.getSizeType(), |
| SourceLocation()); |
| AllocArgs[0] = &Size; |
| std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1); |
| |
| // C++ [expr.new]p8: |
| // If the allocated type is a non-array type, the allocation |
| // function’s name is operator new and the deallocation function’s |
| // name is operator delete. If the allocated type is an array |
| // type, the allocation function’s name is operator new[] and the |
| // deallocation function’s name is operator delete[]. |
| DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName( |
| IsArray ? OO_Array_New : OO_New); |
| DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( |
| IsArray ? OO_Array_Delete : OO_Delete); |
| |
| if (AllocType->isRecordType() && !UseGlobal) { |
| CXXRecordDecl *Record |
| = cast<CXXRecordDecl>(AllocType->getAs<RecordType>()->getDecl()); |
| if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0], |
| AllocArgs.size(), Record, /*AllowMissing=*/true, |
| OperatorNew)) |
| return true; |
| } |
| if (!OperatorNew) { |
| // Didn't find a member overload. Look for a global one. |
| DeclareGlobalNewDelete(); |
| DeclContext *TUDecl = Context.getTranslationUnitDecl(); |
| if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0], |
| AllocArgs.size(), TUDecl, /*AllowMissing=*/false, |
| OperatorNew)) |
| return true; |
| } |
| |
| // We don't need an operator delete if we're running under |
| // -fno-exceptions. |
| if (!getLangOptions().Exceptions) { |
| OperatorDelete = 0; |
| return false; |
| } |
| |
| // FindAllocationOverload can change the passed in arguments, so we need to |
| // copy them back. |
| if (NumPlaceArgs > 0) |
| std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs); |
| |
| // C++ [expr.new]p19: |
| // |
| // If the new-expression begins with a unary :: operator, the |
| // deallocation function’s name is looked up in the global |
| // scope. Otherwise, if the allocated type is a class type T or an |
| // array thereof, the deallocation function’s name is looked up in |
| // the scope of T. If this lookup fails to find the name, or if |
| // the allocated type is not a class type or array thereof, the |
| // deallocation function’s name is looked up in the global scope. |
| LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName); |
| if (AllocType->isRecordType() && !UseGlobal) { |
| CXXRecordDecl *RD |
| = cast<CXXRecordDecl>(AllocType->getAs<RecordType>()->getDecl()); |
| LookupQualifiedName(FoundDelete, RD); |
| } |
| if (FoundDelete.isAmbiguous()) |
| return true; // FIXME: clean up expressions? |
| |
| if (FoundDelete.empty()) { |
| DeclareGlobalNewDelete(); |
| LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); |
| } |
| |
| FoundDelete.suppressDiagnostics(); |
| |
| llvm::SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches; |
| |
| if (NumPlaceArgs > 0) { |
| // C++ [expr.new]p20: |
| // A declaration of a placement deallocation function matches the |
| // declaration of a placement allocation function if it has the |
| // same number of parameters and, after parameter transformations |
| // (8.3.5), all parameter types except the first are |
| // identical. [...] |
| // |
| // To perform this comparison, we compute the function type that |
| // the deallocation function should have, and use that type both |
| // for template argument deduction and for comparison purposes. |
| QualType ExpectedFunctionType; |
| { |
| const FunctionProtoType *Proto |
| = OperatorNew->getType()->getAs<FunctionProtoType>(); |
| llvm::SmallVector<QualType, 4> ArgTypes; |
| ArgTypes.push_back(Context.VoidPtrTy); |
| for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I) |
| ArgTypes.push_back(Proto->getArgType(I)); |
| |
| ExpectedFunctionType |
| = Context.getFunctionType(Context.VoidTy, ArgTypes.data(), |
| ArgTypes.size(), |
| Proto->isVariadic(), |
| 0, false, false, 0, 0, |
| FunctionType::ExtInfo()); |
| } |
| |
| for (LookupResult::iterator D = FoundDelete.begin(), |
| DEnd = FoundDelete.end(); |
| D != DEnd; ++D) { |
| FunctionDecl *Fn = 0; |
| if (FunctionTemplateDecl *FnTmpl |
| = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) { |
| // Perform template argument deduction to try to match the |
| // expected function type. |
| TemplateDeductionInfo Info(Context, StartLoc); |
| if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info)) |
| continue; |
| } else |
| Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl()); |
| |
| if (Context.hasSameType(Fn->getType(), ExpectedFunctionType)) |
| Matches.push_back(std::make_pair(D.getPair(), Fn)); |
| } |
| } else { |
| // C++ [expr.new]p20: |
| // [...] Any non-placement deallocation function matches a |
| // non-placement allocation function. [...] |
| for (LookupResult::iterator D = FoundDelete.begin(), |
| DEnd = FoundDelete.end(); |
| D != DEnd; ++D) { |
| if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl())) |
| if (isNonPlacementDeallocationFunction(Fn)) |
| Matches.push_back(std::make_pair(D.getPair(), Fn)); |
| } |
| } |
| |
| // C++ [expr.new]p20: |
| // [...] If the lookup finds a single matching deallocation |
| // function, that function will be called; otherwise, no |
| // deallocation function will be called. |
| if (Matches.size() == 1) { |
| OperatorDelete = Matches[0].second; |
| |
| // C++0x [expr.new]p20: |
| // If the lookup finds the two-parameter form of a usual |
| // deallocation function (3.7.4.2) and that function, considered |
| // as a placement deallocation function, would have been |
| // selected as a match for the allocation function, the program |
| // is ill-formed. |
| if (NumPlaceArgs && getLangOptions().CPlusPlus0x && |
| isNonPlacementDeallocationFunction(OperatorDelete)) { |
| Diag(StartLoc, diag::err_placement_new_non_placement_delete) |
| << SourceRange(PlaceArgs[0]->getLocStart(), |
| PlaceArgs[NumPlaceArgs - 1]->getLocEnd()); |
| Diag(OperatorDelete->getLocation(), diag::note_previous_decl) |
| << DeleteName; |
| } else { |
| CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(), |
| Matches[0].first); |
| } |
| } |
| |
| return false; |
| } |
| |
| /// FindAllocationOverload - Find an fitting overload for the allocation |
| /// function in the specified scope. |
| bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range, |
| DeclarationName Name, Expr** Args, |
| unsigned NumArgs, DeclContext *Ctx, |
| bool AllowMissing, FunctionDecl *&Operator) { |
| LookupResult R(*this, Name, StartLoc, LookupOrdinaryName); |
| LookupQualifiedName(R, Ctx); |
| if (R.empty()) { |
| if (AllowMissing) |
| return false; |
| return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call) |
| << Name << Range; |
| } |
| |
| if (R.isAmbiguous()) |
| return true; |
| |
| R.suppressDiagnostics(); |
| |
| OverloadCandidateSet Candidates(StartLoc); |
| for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end(); |
| Alloc != AllocEnd; ++Alloc) { |
| // Even member operator new/delete are implicitly treated as |
| // static, so don't use AddMemberCandidate. |
| NamedDecl *D = (*Alloc)->getUnderlyingDecl(); |
| |
| if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { |
| AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(), |
| /*ExplicitTemplateArgs=*/0, Args, NumArgs, |
| Candidates, |
| /*SuppressUserConversions=*/false); |
| continue; |
| } |
| |
| FunctionDecl *Fn = cast<FunctionDecl>(D); |
| AddOverloadCandidate(Fn, Alloc.getPair(), Args, NumArgs, Candidates, |
| /*SuppressUserConversions=*/false); |
| } |
| |
| // Do the resolution. |
| OverloadCandidateSet::iterator Best; |
| switch(BestViableFunction(Candidates, StartLoc, Best)) { |
| case OR_Success: { |
| // Got one! |
| FunctionDecl *FnDecl = Best->Function; |
| // The first argument is size_t, and the first parameter must be size_t, |
| // too. This is checked on declaration and can be assumed. (It can't be |
| // asserted on, though, since invalid decls are left in there.) |
| // Watch out for variadic allocator function. |
| unsigned NumArgsInFnDecl = FnDecl->getNumParams(); |
| for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) { |
| OwningExprResult Result |
| = PerformCopyInitialization(InitializedEntity::InitializeParameter( |
| FnDecl->getParamDecl(i)), |
| SourceLocation(), |
| Owned(Args[i]->Retain())); |
| if (Result.isInvalid()) |
| return true; |
| |
| Args[i] = Result.takeAs<Expr>(); |
| } |
| Operator = FnDecl; |
| CheckAllocationAccess(StartLoc, Range, R.getNamingClass(), Best->FoundDecl); |
| return false; |
| } |
| |
| case OR_No_Viable_Function: |
| Diag(StartLoc, diag::err_ovl_no_viable_function_in_call) |
| << Name << Range; |
| PrintOverloadCandidates(Candidates, OCD_AllCandidates, Args, NumArgs); |
| return true; |
| |
| case OR_Ambiguous: |
| Diag(StartLoc, diag::err_ovl_ambiguous_call) |
| << Name << Range; |
| PrintOverloadCandidates(Candidates, OCD_ViableCandidates, Args, NumArgs); |
| return true; |
| |
| case OR_Deleted: |
| Diag(StartLoc, diag::err_ovl_deleted_call) |
| << Best->Function->isDeleted() |
| << Name << Range; |
| PrintOverloadCandidates(Candidates, OCD_AllCandidates, Args, NumArgs); |
| return true; |
| } |
| assert(false && "Unreachable, bad result from BestViableFunction"); |
| return true; |
| } |
| |
| |
| /// DeclareGlobalNewDelete - Declare the global forms of operator new and |
| /// delete. These are: |
| /// @code |
| /// void* operator new(std::size_t) throw(std::bad_alloc); |
| /// void* operator new[](std::size_t) throw(std::bad_alloc); |
| /// void operator delete(void *) throw(); |
| /// void operator delete[](void *) throw(); |
| /// @endcode |
| /// Note that the placement and nothrow forms of new are *not* implicitly |
| /// declared. Their use requires including \<new\>. |
| void Sema::DeclareGlobalNewDelete() { |
| if (GlobalNewDeleteDeclared) |
| return; |
| |
| // C++ [basic.std.dynamic]p2: |
| // [...] The following allocation and deallocation functions (18.4) are |
| // implicitly declared in global scope in each translation unit of a |
| // program |
| // |
| // void* operator new(std::size_t) throw(std::bad_alloc); |
| // void* operator new[](std::size_t) throw(std::bad_alloc); |
| // void operator delete(void*) throw(); |
| // void operator delete[](void*) throw(); |
| // |
| // These implicit declarations introduce only the function names operator |
| // new, operator new[], operator delete, operator delete[]. |
| // |
| // Here, we need to refer to std::bad_alloc, so we will implicitly declare |
| // "std" or "bad_alloc" as necessary to form the exception specification. |
| // However, we do not make these implicit declarations visible to name |
| // lookup. |
| if (!StdNamespace) { |
| // The "std" namespace has not yet been defined, so build one implicitly. |
| StdNamespace = NamespaceDecl::Create(Context, |
| Context.getTranslationUnitDecl(), |
| SourceLocation(), |
| &PP.getIdentifierTable().get("std")); |
| StdNamespace->setImplicit(true); |
| } |
| |
| if (!StdBadAlloc) { |
| // The "std::bad_alloc" class has not yet been declared, so build it |
| // implicitly. |
| StdBadAlloc = CXXRecordDecl::Create(Context, TagDecl::TK_class, |
| StdNamespace, |
| SourceLocation(), |
| &PP.getIdentifierTable().get("bad_alloc"), |
| SourceLocation(), 0); |
| StdBadAlloc->setImplicit(true); |
| } |
| |
| GlobalNewDeleteDeclared = true; |
| |
| QualType VoidPtr = Context.getPointerType(Context.VoidTy); |
| QualType SizeT = Context.getSizeType(); |
| bool AssumeSaneOperatorNew = getLangOptions().AssumeSaneOperatorNew; |
| |
| DeclareGlobalAllocationFunction( |
| Context.DeclarationNames.getCXXOperatorName(OO_New), |
| VoidPtr, SizeT, AssumeSaneOperatorNew); |
| DeclareGlobalAllocationFunction( |
| Context.DeclarationNames.getCXXOperatorName(OO_Array_New), |
| VoidPtr, SizeT, AssumeSaneOperatorNew); |
| DeclareGlobalAllocationFunction( |
| Context.DeclarationNames.getCXXOperatorName(OO_Delete), |
| Context.VoidTy, VoidPtr); |
| DeclareGlobalAllocationFunction( |
| Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete), |
| Context.VoidTy, VoidPtr); |
| } |
| |
| /// DeclareGlobalAllocationFunction - Declares a single implicit global |
| /// allocation function if it doesn't already exist. |
| void Sema::DeclareGlobalAllocationFunction(DeclarationName Name, |
| QualType Return, QualType Argument, |
| bool AddMallocAttr) { |
| DeclContext *GlobalCtx = Context.getTranslationUnitDecl(); |
| |
| // Check if this function is already declared. |
| { |
| DeclContext::lookup_iterator Alloc, AllocEnd; |
| for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name); |
| Alloc != AllocEnd; ++Alloc) { |
| // Only look at non-template functions, as it is the predefined, |
| // non-templated allocation function we are trying to declare here. |
| if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) { |
| QualType InitialParamType = |
| Context.getCanonicalType( |
| Func->getParamDecl(0)->getType().getUnqualifiedType()); |
| // FIXME: Do we need to check for default arguments here? |
| if (Func->getNumParams() == 1 && InitialParamType == Argument) |
| return; |
| } |
| } |
| } |
| |
| QualType BadAllocType; |
| bool HasBadAllocExceptionSpec |
| = (Name.getCXXOverloadedOperator() == OO_New || |
| Name.getCXXOverloadedOperator() == OO_Array_New); |
| if (HasBadAllocExceptionSpec) { |
| assert(StdBadAlloc && "Must have std::bad_alloc declared"); |
| BadAllocType = Context.getTypeDeclType(StdBadAlloc); |
| } |
| |
| QualType FnType = Context.getFunctionType(Return, &Argument, 1, false, 0, |
| true, false, |
| HasBadAllocExceptionSpec? 1 : 0, |
| &BadAllocType, |
| FunctionType::ExtInfo()); |
| FunctionDecl *Alloc = |
| FunctionDecl::Create(Context, GlobalCtx, SourceLocation(), Name, |
| FnType, /*TInfo=*/0, FunctionDecl::None, |
| FunctionDecl::None, false, true); |
| Alloc->setImplicit(); |
| |
| if (AddMallocAttr) |
| Alloc->addAttr(::new (Context) MallocAttr()); |
| |
| ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(), |
| 0, Argument, /*TInfo=*/0, |
| VarDecl::None, |
| VarDecl::None, 0); |
| Alloc->setParams(&Param, 1); |
| |
| // FIXME: Also add this declaration to the IdentifierResolver, but |
| // make sure it is at the end of the chain to coincide with the |
| // global scope. |
| ((DeclContext *)TUScope->getEntity())->addDecl(Alloc); |
| } |
| |
| bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD, |
| DeclarationName Name, |
| FunctionDecl* &Operator) { |
| LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName); |
| // Try to find operator delete/operator delete[] in class scope. |
| LookupQualifiedName(Found, RD); |
| |
| if (Found.isAmbiguous()) |
| return true; |
| |
| for (LookupResult::iterator F = Found.begin(), FEnd = Found.end(); |
| F != FEnd; ++F) { |
| if (CXXMethodDecl *Delete = dyn_cast<CXXMethodDecl>(*F)) |
| if (Delete->isUsualDeallocationFunction()) { |
| Operator = Delete; |
| return false; |
| } |
| } |
| |
| // We did find operator delete/operator delete[] declarations, but |
| // none of them were suitable. |
| if (!Found.empty()) { |
| Diag(StartLoc, diag::err_no_suitable_delete_member_function_found) |
| << Name << RD; |
| |
| for (LookupResult::iterator F = Found.begin(), FEnd = Found.end(); |
| F != FEnd; ++F) { |
| Diag((*F)->getLocation(), diag::note_member_declared_here) |
| << Name; |
| } |
| |
| return true; |
| } |
| |
| // Look for a global declaration. |
| DeclareGlobalNewDelete(); |
| DeclContext *TUDecl = Context.getTranslationUnitDecl(); |
| |
| CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation()); |
| Expr* DeallocArgs[1]; |
| DeallocArgs[0] = &Null; |
| if (FindAllocationOverload(StartLoc, SourceRange(), Name, |
| DeallocArgs, 1, TUDecl, /*AllowMissing=*/false, |
| Operator)) |
| return true; |
| |
| assert(Operator && "Did not find a deallocation function!"); |
| return false; |
| } |
| |
| /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in: |
| /// @code ::delete ptr; @endcode |
| /// or |
| /// @code delete [] ptr; @endcode |
| Action::OwningExprResult |
| Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, |
| bool ArrayForm, ExprArg Operand) { |
| // C++ [expr.delete]p1: |
| // The operand shall have a pointer type, or a class type having a single |
| // conversion function to a pointer type. The result has type void. |
| // |
| // DR599 amends "pointer type" to "pointer to object type" in both cases. |
| |
| FunctionDecl *OperatorDelete = 0; |
| |
| Expr *Ex = (Expr *)Operand.get(); |
| if (!Ex->isTypeDependent()) { |
| QualType Type = Ex->getType(); |
| |
| if (const RecordType *Record = Type->getAs<RecordType>()) { |
| llvm::SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions; |
| |
| CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()); |
| const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions(); |
| for (UnresolvedSetImpl::iterator I = Conversions->begin(), |
| E = Conversions->end(); I != E; ++I) { |
| NamedDecl *D = I.getDecl(); |
| if (isa<UsingShadowDecl>(D)) |
| D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
| |
| // Skip over templated conversion functions; they aren't considered. |
| if (isa<FunctionTemplateDecl>(D)) |
| continue; |
| |
| CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); |
| |
| QualType ConvType = Conv->getConversionType().getNonReferenceType(); |
| if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) |
| if (ConvPtrType->getPointeeType()->isObjectType()) |
| ObjectPtrConversions.push_back(Conv); |
| } |
| if (ObjectPtrConversions.size() == 1) { |
| // We have a single conversion to a pointer-to-object type. Perform |
| // that conversion. |
| // TODO: don't redo the conversion calculation. |
| Operand.release(); |
| if (!PerformImplicitConversion(Ex, |
| ObjectPtrConversions.front()->getConversionType(), |
| AA_Converting)) { |
| Operand = Owned(Ex); |
| Type = Ex->getType(); |
| } |
| } |
| else if (ObjectPtrConversions.size() > 1) { |
| Diag(StartLoc, diag::err_ambiguous_delete_operand) |
| << Type << Ex->getSourceRange(); |
| for (unsigned i= 0; i < ObjectPtrConversions.size(); i++) |
| NoteOverloadCandidate(ObjectPtrConversions[i]); |
| return ExprError(); |
| } |
| } |
| |
| if (!Type->isPointerType()) |
| return ExprError(Diag(StartLoc, diag::err_delete_operand) |
| << Type << Ex->getSourceRange()); |
| |
| QualType Pointee = Type->getAs<PointerType>()->getPointeeType(); |
| if (Pointee->isFunctionType() || Pointee->isVoidType()) |
| return ExprError(Diag(StartLoc, diag::err_delete_operand) |
| << Type << Ex->getSourceRange()); |
| else if (!Pointee->isDependentType() && |
| RequireCompleteType(StartLoc, Pointee, |
| PDiag(diag::warn_delete_incomplete) |
| << Ex->getSourceRange())) |
| return ExprError(); |
| |
| // C++ [expr.delete]p2: |
| // [Note: a pointer to a const type can be the operand of a |
| // delete-expression; it is not necessary to cast away the constness |
| // (5.2.11) of the pointer expression before it is used as the operand |
| // of the delete-expression. ] |
| ImpCastExprToType(Ex, Context.getPointerType(Context.VoidTy), |
| CastExpr::CK_NoOp); |
| |
| // Update the operand. |
| Operand.take(); |
| Operand = ExprArg(*this, Ex); |
| |
| DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( |
| ArrayForm ? OO_Array_Delete : OO_Delete); |
| |
| if (const RecordType *RT = Pointee->getAs<RecordType>()) { |
| CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); |
| |
| if (!UseGlobal && |
| FindDeallocationFunction(StartLoc, RD, DeleteName, OperatorDelete)) |
| return ExprError(); |
| |
| if (!RD->hasTrivialDestructor()) |
| if (const CXXDestructorDecl *Dtor = RD->getDestructor(Context)) |
| MarkDeclarationReferenced(StartLoc, |
| const_cast<CXXDestructorDecl*>(Dtor)); |
| } |
| |
| if (!OperatorDelete) { |
| // Look for a global declaration. |
| DeclareGlobalNewDelete(); |
| DeclContext *TUDecl = Context.getTranslationUnitDecl(); |
| if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName, |
| &Ex, 1, TUDecl, /*AllowMissing=*/false, |
| OperatorDelete)) |
| return ExprError(); |
| } |
| |
| MarkDeclarationReferenced(StartLoc, OperatorDelete); |
| |
| // FIXME: Check access and ambiguity of operator delete and destructor. |
| } |
| |
| Operand.release(); |
| return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm, |
| OperatorDelete, Ex, StartLoc)); |
| } |
| |
| /// \brief Check the use of the given variable as a C++ condition in an if, |
| /// while, do-while, or switch statement. |
| Action::OwningExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar, |
| SourceLocation StmtLoc, |
| bool ConvertToBoolean) { |
| QualType T = ConditionVar->getType(); |
| |
| // C++ [stmt.select]p2: |
| // The declarator shall not specify a function or an array. |
| if (T->isFunctionType()) |
| return ExprError(Diag(ConditionVar->getLocation(), |
| diag::err_invalid_use_of_function_type) |
| << ConditionVar->getSourceRange()); |
| else if (T->isArrayType()) |
| return ExprError(Diag(ConditionVar->getLocation(), |
| diag::err_invalid_use_of_array_type) |
| << ConditionVar->getSourceRange()); |
| |
| Expr *Condition = DeclRefExpr::Create(Context, 0, SourceRange(), ConditionVar, |
| ConditionVar->getLocation(), |
| ConditionVar->getType().getNonReferenceType()); |
| if (ConvertToBoolean && CheckBooleanCondition(Condition, StmtLoc)) { |
| Condition->Destroy(Context); |
| return ExprError(); |
| } |
| |
| return Owned(Condition); |
| } |
| |
| /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid. |
| bool Sema::CheckCXXBooleanCondition(Expr *&CondExpr) { |
| // C++ 6.4p4: |
| // The value of a condition that is an initialized declaration in a statement |
| // other than a switch statement is the value of the declared variable |
| // implicitly converted to type bool. If that conversion is ill-formed, the |
| // program is ill-formed. |
| // The value of a condition that is an expression is the value of the |
| // expression, implicitly converted to bool. |
| // |
| return PerformContextuallyConvertToBool(CondExpr); |
| } |
| |
| /// Helper function to determine whether this is the (deprecated) C++ |
| /// conversion from a string literal to a pointer to non-const char or |
| /// non-const wchar_t (for narrow and wide string literals, |
| /// respectively). |
| bool |
| Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) { |
| // Look inside the implicit cast, if it exists. |
| if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From)) |
| From = Cast->getSubExpr(); |
| |
| // A string literal (2.13.4) that is not a wide string literal can |
| // be converted to an rvalue of type "pointer to char"; a wide |
| // string literal can be converted to an rvalue of type "pointer |
| // to wchar_t" (C++ 4.2p2). |
| if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From)) |
| if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) |
| if (const BuiltinType *ToPointeeType |
| = ToPtrType->getPointeeType()->getAs<BuiltinType>()) { |
| // This conversion is considered only when there is an |
| // explicit appropriate pointer target type (C++ 4.2p2). |
| if (!ToPtrType->getPointeeType().hasQualifiers() && |
| ((StrLit->isWide() && ToPointeeType->isWideCharType()) || |
| (!StrLit->isWide() && |
| (ToPointeeType->getKind() == BuiltinType::Char_U || |
| ToPointeeType->getKind() == BuiltinType::Char_S)))) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static Sema::OwningExprResult BuildCXXCastArgument(Sema &S, |
| SourceLocation CastLoc, |
| QualType Ty, |
| CastExpr::CastKind Kind, |
| CXXMethodDecl *Method, |
| Sema::ExprArg Arg) { |
| Expr *From = Arg.takeAs<Expr>(); |
| |
| switch (Kind) { |
| default: assert(0 && "Unhandled cast kind!"); |
| case CastExpr::CK_ConstructorConversion: { |
| ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(S); |
| |
| if (S.CompleteConstructorCall(cast<CXXConstructorDecl>(Method), |
| Sema::MultiExprArg(S, (void **)&From, 1), |
| CastLoc, ConstructorArgs)) |
| return S.ExprError(); |
| |
| Sema::OwningExprResult Result = |
| S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method), |
| move_arg(ConstructorArgs)); |
| if (Result.isInvalid()) |
| return S.ExprError(); |
| |
| return S.MaybeBindToTemporary(Result.takeAs<Expr>()); |
| } |
| |
| case CastExpr::CK_UserDefinedConversion: { |
| assert(!From->getType()->isPointerType() && "Arg can't have pointer type!"); |
| |
| // Create an implicit call expr that calls it. |
| // FIXME: pass the FoundDecl for the user-defined conversion here |
| CXXMemberCallExpr *CE = S.BuildCXXMemberCallExpr(From, Method, Method); |
| return S.MaybeBindToTemporary(CE); |
| } |
| } |
| } |
| |
| /// PerformImplicitConversion - Perform an implicit conversion of the |
| /// expression From to the type ToType using the pre-computed implicit |
| /// conversion sequence ICS. Returns true if there was an error, false |
| /// otherwise. The expression From is replaced with the converted |
| /// expression. Action is the kind of conversion we're performing, |
| /// used in the error message. |
| bool |
| Sema::PerformImplicitConversion(Expr *&From, QualType ToType, |
| const ImplicitConversionSequence &ICS, |
| AssignmentAction Action, bool IgnoreBaseAccess) { |
| switch (ICS.getKind()) { |
| case ImplicitConversionSequence::StandardConversion: |
| if (PerformImplicitConversion(From, ToType, ICS.Standard, Action, |
| IgnoreBaseAccess)) |
| return true; |
| break; |
| |
| case ImplicitConversionSequence::UserDefinedConversion: { |
| |
| FunctionDecl *FD = ICS.UserDefined.ConversionFunction; |
| CastExpr::CastKind CastKind = CastExpr::CK_Unknown; |
| QualType BeforeToType; |
| if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) { |
| CastKind = CastExpr::CK_UserDefinedConversion; |
| |
| // If the user-defined conversion is specified by a conversion function, |
| // the initial standard conversion sequence converts the source type to |
| // the implicit object parameter of the conversion function. |
| BeforeToType = Context.getTagDeclType(Conv->getParent()); |
| } else if (const CXXConstructorDecl *Ctor = |
| dyn_cast<CXXConstructorDecl>(FD)) { |
| CastKind = CastExpr::CK_ConstructorConversion; |
| // Do no conversion if dealing with ... for the first conversion. |
| if (!ICS.UserDefined.EllipsisConversion) { |
| // If the user-defined conversion is specified by a constructor, the |
| // initial standard conversion sequence converts the source type to the |
| // type required by the argument of the constructor |
| BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType(); |
| } |
| } |
| else |
| assert(0 && "Unknown conversion function kind!"); |
| // Whatch out for elipsis conversion. |
| if (!ICS.UserDefined.EllipsisConversion) { |
| if (PerformImplicitConversion(From, BeforeToType, |
| ICS.UserDefined.Before, AA_Converting, |
| IgnoreBaseAccess)) |
| return true; |
| } |
| |
| OwningExprResult CastArg |
| = BuildCXXCastArgument(*this, |
| From->getLocStart(), |
| ToType.getNonReferenceType(), |
| CastKind, cast<CXXMethodDecl>(FD), |
| Owned(From)); |
| |
| if (CastArg.isInvalid()) |
| return true; |
| |
| From = CastArg.takeAs<Expr>(); |
| |
| return PerformImplicitConversion(From, ToType, ICS.UserDefined.After, |
| AA_Converting, IgnoreBaseAccess); |
| } |
| |
| case ImplicitConversionSequence::AmbiguousConversion: |
| DiagnoseAmbiguousConversion(ICS, From->getExprLoc(), |
| PDiag(diag::err_typecheck_ambiguous_condition) |
| << From->getSourceRange()); |
| return true; |
| |
| case ImplicitConversionSequence::EllipsisConversion: |
| assert(false && "Cannot perform an ellipsis conversion"); |
| return false; |
| |
| case ImplicitConversionSequence::BadConversion: |
| return true; |
| } |
| |
| // Everything went well. |
| return false; |
| } |
| |
| /// PerformImplicitConversion - Perform an implicit conversion of the |
| /// expression From to the type ToType by following the standard |
| /// conversion sequence SCS. Returns true if there was an error, false |
| /// otherwise. The expression From is replaced with the converted |
| /// expression. Flavor is the context in which we're performing this |
| /// conversion, for use in error messages. |
| bool |
| Sema::PerformImplicitConversion(Expr *&From, QualType ToType, |
| const StandardConversionSequence& SCS, |
| AssignmentAction Action, bool IgnoreBaseAccess) { |
| // Overall FIXME: we are recomputing too many types here and doing far too |
| // much extra work. What this means is that we need to keep track of more |
| // information that is computed when we try the implicit conversion initially, |
| // so that we don't need to recompute anything here. |
| QualType FromType = From->getType(); |
| |
| if (SCS.CopyConstructor) { |
| // FIXME: When can ToType be a reference type? |
| assert(!ToType->isReferenceType()); |
| if (SCS.Second == ICK_Derived_To_Base) { |
| ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this); |
| if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor), |
| MultiExprArg(*this, (void **)&From, 1), |
| /*FIXME:ConstructLoc*/SourceLocation(), |
| ConstructorArgs)) |
| return true; |
| OwningExprResult FromResult = |
| BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(), |
| ToType, SCS.CopyConstructor, |
| move_arg(ConstructorArgs)); |
| if (FromResult.isInvalid()) |
| return true; |
| From = FromResult.takeAs<Expr>(); |
| return false; |
| } |
| OwningExprResult FromResult = |
| BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(), |
| ToType, SCS.CopyConstructor, |
| MultiExprArg(*this, (void**)&From, 1)); |
| |
| if (FromResult.isInvalid()) |
| return true; |
| |
| From = FromResult.takeAs<Expr>(); |
| return false; |
| } |
| |
| // Resolve overloaded function references. |
| if (Context.hasSameType(FromType, Context.OverloadTy)) { |
| DeclAccessPair Found; |
| FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, |
| true, Found); |
| if (!Fn) |
| return true; |
| |
| if (DiagnoseUseOfDecl(Fn, From->getSourceRange().getBegin())) |
| return true; |
| |
| From = FixOverloadedFunctionReference(From, Found, Fn); |
| FromType = From->getType(); |
| } |
| |
| // Perform the first implicit conversion. |
| switch (SCS.First) { |
| case ICK_Identity: |
| case ICK_Lvalue_To_Rvalue: |
| // Nothing to do. |
| break; |
| |
| case ICK_Array_To_Pointer: |
| FromType = Context.getArrayDecayedType(FromType); |
| ImpCastExprToType(From, FromType, CastExpr::CK_ArrayToPointerDecay); |
| break; |
| |
| case ICK_Function_To_Pointer: |
| FromType = Context.getPointerType(FromType); |
| ImpCastExprToType(From, FromType, CastExpr::CK_FunctionToPointerDecay); |
| break; |
| |
| default: |
| assert(false && "Improper first standard conversion"); |
| break; |
| } |
| |
| // Perform the second implicit conversion |
| switch (SCS.Second) { |
| case ICK_Identity: |
| // If both sides are functions (or pointers/references to them), there could |
| // be incompatible exception declarations. |
| if (CheckExceptionSpecCompatibility(From, ToType)) |
| return true; |
| // Nothing else to do. |
| break; |
| |
| case ICK_NoReturn_Adjustment: |
| // If both sides are functions (or pointers/references to them), there could |
| // be incompatible exception declarations. |
| if (CheckExceptionSpecCompatibility(From, ToType)) |
| return true; |
| |
| ImpCastExprToType(From, Context.getNoReturnType(From->getType(), false), |
| CastExpr::CK_NoOp); |
| break; |
| |
| case ICK_Integral_Promotion: |
| case ICK_Integral_Conversion: |
| ImpCastExprToType(From, ToType, CastExpr::CK_IntegralCast); |
| break; |
| |
| case ICK_Floating_Promotion: |
| case ICK_Floating_Conversion: |
| ImpCastExprToType(From, ToType, CastExpr::CK_FloatingCast); |
| break; |
| |
| case ICK_Complex_Promotion: |
| case ICK_Complex_Conversion: |
| ImpCastExprToType(From, ToType, CastExpr::CK_Unknown); |
| break; |
| |
| case ICK_Floating_Integral: |
| if (ToType->isFloatingType()) |
| ImpCastExprToType(From, ToType, CastExpr::CK_IntegralToFloating); |
| else |
| ImpCastExprToType(From, ToType, CastExpr::CK_FloatingToIntegral); |
| break; |
| |
| case ICK_Complex_Real: |
| ImpCastExprToType(From, ToType, CastExpr::CK_Unknown); |
| break; |
| |
| case ICK_Compatible_Conversion: |
| ImpCastExprToType(From, ToType, CastExpr::CK_NoOp); |
| break; |
| |
| case ICK_Pointer_Conversion: { |
| if (SCS.IncompatibleObjC) { |
| // Diagnose incompatible Objective-C conversions |
| Diag(From->getSourceRange().getBegin(), |
| diag::ext_typecheck_convert_incompatible_pointer) |
| << From->getType() << ToType << Action |
| << From->getSourceRange(); |
| } |
| |
| |
| CastExpr::CastKind Kind = CastExpr::CK_Unknown; |
| CXXBaseSpecifierArray BasePath; |
| if (CheckPointerConversion(From, ToType, Kind, BasePath, IgnoreBaseAccess)) |
| return true; |
| ImpCastExprToType(From, ToType, Kind, /*isLvalue=*/false, BasePath); |
| break; |
| } |
| |
| case ICK_Pointer_Member: { |
| CastExpr::CastKind Kind = CastExpr::CK_Unknown; |
| CXXBaseSpecifierArray BasePath; |
| if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, |
| IgnoreBaseAccess)) |
| return true; |
| if (CheckExceptionSpecCompatibility(From, ToType)) |
| return true; |
| ImpCastExprToType(From, ToType, Kind, /*isLvalue=*/false, BasePath); |
| break; |
| } |
| case ICK_Boolean_Conversion: { |
| CastExpr::CastKind Kind = CastExpr::CK_Unknown; |
| if (FromType->isMemberPointerType()) |
| Kind = CastExpr::CK_MemberPointerToBoolean; |
| |
| ImpCastExprToType(From, Context.BoolTy, Kind); |
| break; |
| } |
| |
| case ICK_Derived_To_Base: |
| if (CheckDerivedToBaseConversion(From->getType(), |
| ToType.getNonReferenceType(), |
| From->getLocStart(), |
| From->getSourceRange(), 0, |
| IgnoreBaseAccess)) |
| return true; |
| ImpCastExprToType(From, ToType.getNonReferenceType(), |
| CastExpr::CK_DerivedToBase); |
| break; |
| |
| default: |
| assert(false && "Improper second standard conversion"); |
| break; |
| } |
| |
| switch (SCS.Third) { |
| case ICK_Identity: |
| // Nothing to do. |
| break; |
| |
| case ICK_Qualification: |
| // FIXME: Not sure about lvalue vs rvalue here in the presence of rvalue |
| // references. |
| ImpCastExprToType(From, ToType.getNonReferenceType(), |
| CastExpr::CK_NoOp, ToType->isLValueReferenceType()); |
| |
| if (SCS.DeprecatedStringLiteralToCharPtr) |
| Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion) |
| << ToType.getNonReferenceType(); |
| |
| break; |
| |
| default: |
| assert(false && "Improper second standard conversion"); |
| break; |
| } |
| |
| return false; |
| } |
| |
| Sema::OwningExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait OTT, |
| SourceLocation KWLoc, |
| SourceLocation LParen, |
| TypeTy *Ty, |
| SourceLocation RParen) { |
| QualType T = GetTypeFromParser(Ty); |
| |
| // According to http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html |
| // all traits except __is_class, __is_enum and __is_union require a the type |
| // to be complete. |
| if (OTT != UTT_IsClass && OTT != UTT_IsEnum && OTT != UTT_IsUnion) { |
| if (RequireCompleteType(KWLoc, T, |
| diag::err_incomplete_type_used_in_type_trait_expr)) |
| return ExprError(); |
| } |
| |
| // There is no point in eagerly computing the value. The traits are designed |
| // to be used from type trait templates, so Ty will be a template parameter |
| // 99% of the time. |
| return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, OTT, T, |
| RParen, Context.BoolTy)); |
| } |
| |
| QualType Sema::CheckPointerToMemberOperands( |
| Expr *&lex, Expr *&rex, SourceLocation Loc, bool isIndirect) { |
| const char *OpSpelling = isIndirect ? "->*" : ".*"; |
| // C++ 5.5p2 |
| // The binary operator .* [p3: ->*] binds its second operand, which shall |
| // be of type "pointer to member of T" (where T is a completely-defined |
| // class type) [...] |
| QualType RType = rex->getType(); |
| const MemberPointerType *MemPtr = RType->getAs<MemberPointerType>(); |
| if (!MemPtr) { |
| Diag(Loc, diag::err_bad_memptr_rhs) |
| << OpSpelling << RType << rex->getSourceRange(); |
| return QualType(); |
| } |
| |
| QualType Class(MemPtr->getClass(), 0); |
| |
| if (RequireCompleteType(Loc, Class, diag::err_memptr_rhs_to_incomplete)) |
| return QualType(); |
| |
| // C++ 5.5p2 |
| // [...] to its first operand, which shall be of class T or of a class of |
| // which T is an unambiguous and accessible base class. [p3: a pointer to |
| // such a class] |
| QualType LType = lex->getType(); |
| if (isIndirect) { |
| if (const PointerType *Ptr = LType->getAs<PointerType>()) |
| LType = Ptr->getPointeeType().getNonReferenceType(); |
| else { |
| Diag(Loc, diag::err_bad_memptr_lhs) |
| << OpSpelling << 1 << LType |
| << FixItHint::CreateReplacement(SourceRange(Loc), ".*"); |
| return QualType(); |
| } |
| } |
| |
| if (!Context.hasSameUnqualifiedType(Class, LType)) { |
| // If we want to check the hierarchy, we need a complete type. |
| if (RequireCompleteType(Loc, LType, PDiag(diag::err_bad_memptr_lhs) |
| << OpSpelling << (int)isIndirect)) { |
| return QualType(); |
| } |
| CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, |
| /*DetectVirtual=*/false); |
| // FIXME: Would it be useful to print full ambiguity paths, or is that |
| // overkill? |
| if (!IsDerivedFrom(LType, Class, Paths) || |
| Paths.isAmbiguous(Context.getCanonicalType(Class))) { |
| Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling |
| << (int)isIndirect << lex->getType(); |
| return QualType(); |
| } |
| // Cast LHS to type of use. |
| QualType UseType = isIndirect ? Context.getPointerType(Class) : Class; |
| bool isLValue = !isIndirect && lex->isLvalue(Context) == Expr::LV_Valid; |
| |
| CXXBaseSpecifierArray BasePath; |
| BuildBasePathArray(Paths, BasePath); |
| ImpCastExprToType(lex, UseType, CastExpr::CK_DerivedToBase, isLValue, |
| BasePath); |
| } |
| |
| if (isa<CXXZeroInitValueExpr>(rex->IgnoreParens())) { |
| // Diagnose use of pointer-to-member type which when used as |
| // the functional cast in a pointer-to-member expression. |
| Diag(Loc, diag::err_pointer_to_member_type) << isIndirect; |
| return QualType(); |
| } |
| // C++ 5.5p2 |
| // The result is an object or a function of the type specified by the |
| // second operand. |
| // The cv qualifiers are the union of those in the pointer and the left side, |
| // in accordance with 5.5p5 and 5.2.5. |
| // FIXME: This returns a dereferenced member function pointer as a normal |
| // function type. However, the only operation valid on such functions is |
| // calling them. There's also a GCC extension to get a function pointer to the |
| // thing, which is another complication, because this type - unlike the type |
| // that is the result of this expression - takes the class as the first |
| // argument. |
| // We probably need a "MemberFunctionClosureType" or something like that. |
| QualType Result = MemPtr->getPointeeType(); |
| Result = Context.getCVRQualifiedType(Result, LType.getCVRQualifiers()); |
| return Result; |
| } |
| |
| /// \brief Try to convert a type to another according to C++0x 5.16p3. |
| /// |
| /// This is part of the parameter validation for the ? operator. If either |
| /// value operand is a class type, the two operands are attempted to be |
| /// converted to each other. This function does the conversion in one direction. |
| /// It returns true if the program is ill-formed and has already been diagnosed |
| /// as such. |
| static bool TryClassUnification(Sema &Self, Expr *From, Expr *To, |
| SourceLocation QuestionLoc, |
| bool &HaveConversion, |
| QualType &ToType) { |
| HaveConversion = false; |
| ToType = To->getType(); |
| |
| InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(), |
| SourceLocation()); |
| // C++0x 5.16p3 |
| // The process for determining whether an operand expression E1 of type T1 |
| // can be converted to match an operand expression E2 of type T2 is defined |
| // as follows: |
| // -- If E2 is an lvalue: |
| bool ToIsLvalue = (To->isLvalue(Self.Context) == Expr::LV_Valid); |
| if (ToIsLvalue) { |
| // E1 can be converted to match E2 if E1 can be implicitly converted to |
| // type "lvalue reference to T2", subject to the constraint that in the |
| // conversion the reference must bind directly to E1. |
| QualType T = Self.Context.getLValueReferenceType(ToType); |
| InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); |
| |
| InitializationSequence InitSeq(Self, Entity, Kind, &From, 1); |
| if (InitSeq.isDirectReferenceBinding()) { |
| ToType = T; |
| HaveConversion = true; |
| return false; |
| } |
| |
| if (InitSeq.isAmbiguous()) |
| return InitSeq.Diagnose(Self, Entity, Kind, &From, 1); |
| } |
| |
| // -- If E2 is an rvalue, or if the conversion above cannot be done: |
| // -- if E1 and E2 have class type, and the underlying class types are |
| // the same or one is a base class of the other: |
| QualType FTy = From->getType(); |
| QualType TTy = To->getType(); |
| const RecordType *FRec = FTy->getAs<RecordType>(); |
| const RecordType *TRec = TTy->getAs<RecordType>(); |
| bool FDerivedFromT = FRec && TRec && FRec != TRec && |
| Self.IsDerivedFrom(FTy, TTy); |
| if (FRec && TRec && |
| (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) { |
| // E1 can be converted to match E2 if the class of T2 is the |
| // same type as, or a base class of, the class of T1, and |
| // [cv2 > cv1]. |
| if (FRec == TRec || FDerivedFromT) { |
| if (TTy.isAtLeastAsQualifiedAs(FTy)) { |
| InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); |
| InitializationSequence InitSeq(Self, Entity, Kind, &From, 1); |
| if (InitSeq.getKind() != InitializationSequence::FailedSequence) { |
| HaveConversion = true; |
| return false; |
| } |
| |
| if (InitSeq.isAmbiguous()) |
| return InitSeq.Diagnose(Self, Entity, Kind, &From, 1); |
| } |
| } |
| |
| return false; |
| } |
| |
| // -- Otherwise: E1 can be converted to match E2 if E1 can be |
| // implicitly converted to the type that expression E2 would have |
| // if E2 were converted to an rvalue (or the type it has, if E2 is |
| // an rvalue). |
| // |
| // This actually refers very narrowly to the lvalue-to-rvalue conversion, not |
| // to the array-to-pointer or function-to-pointer conversions. |
| if (!TTy->getAs<TagType>()) |
| TTy = TTy.getUnqualifiedType(); |
| |
| InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); |
| InitializationSequence InitSeq(Self, Entity, Kind, &From, 1); |
| HaveConversion = InitSeq.getKind() != InitializationSequence::FailedSequence; |
| ToType = TTy; |
| if (InitSeq.isAmbiguous()) |
| return InitSeq.Diagnose(Self, Entity, Kind, &From, 1); |
| |
| return false; |
| } |
| |
| /// \brief Try to find a common type for two according to C++0x 5.16p5. |
| /// |
| /// This is part of the parameter validation for the ? operator. If either |
| /// value operand is a class type, overload resolution is used to find a |
| /// conversion to a common type. |
| static bool FindConditionalOverload(Sema &Self, Expr *&LHS, Expr *&RHS, |
| SourceLocation Loc) { |
| Expr *Args[2] = { LHS, RHS }; |
| OverloadCandidateSet CandidateSet(Loc); |
| Self.AddBuiltinOperatorCandidates(OO_Conditional, Loc, Args, 2, CandidateSet); |
| |
| OverloadCandidateSet::iterator Best; |
| switch (Self.BestViableFunction(CandidateSet, Loc, Best)) { |
| case OR_Success: |
| // We found a match. Perform the conversions on the arguments and move on. |
| if (Self.PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0], |
| Best->Conversions[0], Sema::AA_Converting) || |
| Self.PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1], |
| Best->Conversions[1], Sema::AA_Converting)) |
| break; |
| return false; |
| |
| case OR_No_Viable_Function: |
| Self.Diag(Loc, diag::err_typecheck_cond_incompatible_operands) |
| << LHS->getType() << RHS->getType() |
| << LHS->getSourceRange() << RHS->getSourceRange(); |
| return true; |
| |
| case OR_Ambiguous: |
| Self.Diag(Loc, diag::err_conditional_ambiguous_ovl) |
| << LHS->getType() << RHS->getType() |
| << LHS->getSourceRange() << RHS->getSourceRange(); |
| // FIXME: Print the possible common types by printing the return types of |
| // the viable candidates. |
| break; |
| |
| case OR_Deleted: |
| assert(false && "Conditional operator has only built-in overloads"); |
| break; |
| } |
| return true; |
| } |
| |
| /// \brief Perform an "extended" implicit conversion as returned by |
| /// TryClassUnification. |
| static bool ConvertForConditional(Sema &Self, Expr *&E, QualType T) { |
| InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); |
| InitializationKind Kind = InitializationKind::CreateCopy(E->getLocStart(), |
| SourceLocation()); |
| InitializationSequence InitSeq(Self, Entity, Kind, &E, 1); |
| Sema::OwningExprResult Result = InitSeq.Perform(Self, Entity, Kind, |
| Sema::MultiExprArg(Self, (void **)&E, 1)); |
| if (Result.isInvalid()) |
| return true; |
| |
| E = Result.takeAs<Expr>(); |
| return false; |
| } |
| |
| /// \brief Check the operands of ?: under C++ semantics. |
| /// |
| /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y |
| /// extension. In this case, LHS == Cond. (But they're not aliases.) |
| QualType Sema::CXXCheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS, |
| SourceLocation QuestionLoc) { |
| // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++ |
| // interface pointers. |
| |
| // C++0x 5.16p1 |
| // The first expression is contextually converted to bool. |
| if (!Cond->isTypeDependent()) { |
| if (CheckCXXBooleanCondition(Cond)) |
| return QualType(); |
| } |
| |
| // Either of the arguments dependent? |
| if (LHS->isTypeDependent() || RHS->isTypeDependent()) |
| return Context.DependentTy; |
| |
| // C++0x 5.16p2 |
| // If either the second or the third operand has type (cv) void, ... |
| QualType LTy = LHS->getType(); |
| QualType RTy = RHS->getType(); |
| bool LVoid = LTy->isVoidType(); |
| bool RVoid = RTy->isVoidType(); |
| if (LVoid || RVoid) { |
| // ... then the [l2r] conversions are performed on the second and third |
| // operands ... |
| DefaultFunctionArrayLvalueConversion(LHS); |
| DefaultFunctionArrayLvalueConversion(RHS); |
| LTy = LHS->getType(); |
| RTy = RHS->getType(); |
| |
| // ... and one of the following shall hold: |
| // -- The second or the third operand (but not both) is a throw- |
| // expression; the result is of the type of the other and is an rvalue. |
| bool LThrow = isa<CXXThrowExpr>(LHS); |
| bool RThrow = isa<CXXThrowExpr>(RHS); |
| if (LThrow && !RThrow) |
| return RTy; |
| if (RThrow && !LThrow) |
| return LTy; |
| |
| // -- Both the second and third operands have type void; the result is of |
| // type void and is an rvalue. |
| if (LVoid && RVoid) |
| return Context.VoidTy; |
| |
| // Neither holds, error. |
| Diag(QuestionLoc, diag::err_conditional_void_nonvoid) |
| << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1) |
| << LHS->getSourceRange() << RHS->getSourceRange(); |
| return QualType(); |
| } |
| |
| // Neither is void. |
| |
| // C++0x 5.16p3 |
| // Otherwise, if the second and third operand have different types, and |
| // either has (cv) class type, and attempt is made to convert each of those |
| // operands to the other. |
| if (!Context.hasSameType(LTy, RTy) && |
| (LTy->isRecordType() || RTy->isRecordType())) { |
| ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft; |
| // These return true if a single direction is already ambiguous. |
| QualType L2RType, R2LType; |
| bool HaveL2R, HaveR2L; |
| if (TryClassUnification(*this, LHS, RHS, QuestionLoc, HaveL2R, L2RType)) |
| return QualType(); |
| if (TryClassUnification(*this, RHS, LHS, QuestionLoc, HaveR2L, R2LType)) |
| return QualType(); |
| |
| // If both can be converted, [...] the program is ill-formed. |
| if (HaveL2R && HaveR2L) { |
| Diag(QuestionLoc, diag::err_conditional_ambiguous) |
| << LTy << RTy << LHS->getSourceRange() << RHS->getSourceRange(); |
| return QualType(); |
| } |
| |
| // If exactly one conversion is possible, that conversion is applied to |
| // the chosen operand and the converted operands are used in place of the |
| // original operands for the remainder of this section. |
| if (HaveL2R) { |
| if (ConvertForConditional(*this, LHS, L2RType)) |
| return QualType(); |
| LTy = LHS->getType(); |
| } else if (HaveR2L) { |
| if (ConvertForConditional(*this, RHS, R2LType)) |
| return QualType(); |
| RTy = RHS->getType(); |
| } |
| } |
| |
| // C++0x 5.16p4 |
| // If the second and third operands are lvalues and have the same type, |
| // the result is of that type [...] |
| bool Same = Context.hasSameType(LTy, RTy); |
| if (Same && LHS->isLvalue(Context) == Expr::LV_Valid && |
| RHS->isLvalue(Context) == Expr::LV_Valid) |
| return LTy; |
| |
| // C++0x 5.16p5 |
| // Otherwise, the result is an rvalue. If the second and third operands |
| // do not have the same type, and either has (cv) class type, ... |
| if (!Same && (LTy->isRecordType() || RTy->isRecordType())) { |
| // ... overload resolution is used to determine the conversions (if any) |
| // to be applied to the operands. If the overload resolution fails, the |
| // program is ill-formed. |
| if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc)) |
| return QualType(); |
| } |
| |
| // C++0x 5.16p6 |
| // LValue-to-rvalue, array-to-pointer, and function-to-pointer standard |
| // conversions are performed on the second and third operands. |
| DefaultFunctionArrayLvalueConversion(LHS); |
| DefaultFunctionArrayLvalueConversion(RHS); |
| LTy = LHS->getType(); |
| RTy = RHS->getType(); |
| |
| // After those conversions, one of the following shall hold: |
| // -- The second and third operands have the same type; the result |
| // is of that type. |
| if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) |
| return LTy; |
| |
| // -- The second and third operands have arithmetic or enumeration type; |
| // the usual arithmetic conversions are performed to bring them to a |
| // common type, and the result is of that type. |
| if (LTy->isArithmeticType() && RTy->isArithmeticType()) { |
| UsualArithmeticConversions(LHS, RHS); |
| return LHS->getType(); |
| } |
| |
| // -- The second and third operands have pointer type, or one has pointer |
| // type and the other is a null pointer constant; pointer conversions |
| // and qualification conversions are performed to bring them to their |
| // composite pointer type. The result is of the composite pointer type. |
| // -- The second and third operands have pointer to member type, or one has |
| // pointer to member type and the other is a null pointer constant; |
| // pointer to member conversions and qualification conversions are |
| // performed to bring them to a common type, whose cv-qualification |
| // shall match the cv-qualification of either the second or the third |
| // operand. The result is of the common type. |
| bool NonStandardCompositeType = false; |
| QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS, |
| isSFINAEContext()? 0 : &NonStandardCompositeType); |
| if (!Composite.isNull()) { |
| if (NonStandardCompositeType) |
| Diag(QuestionLoc, |
| diag::ext_typecheck_cond_incompatible_operands_nonstandard) |
| << LTy << RTy << Composite |
| << LHS->getSourceRange() << RHS->getSourceRange(); |
| |
| return Composite; |
| } |
| |
| // Similarly, attempt to find composite type of two objective-c pointers. |
| Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc); |
| if (!Composite.isNull()) |
| return Composite; |
| |
| Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) |
| << LHS->getType() << RHS->getType() |
| << LHS->getSourceRange() << RHS->getSourceRange(); |
| return QualType(); |
| } |
| |
| /// \brief Find a merged pointer type and convert the two expressions to it. |
| /// |
| /// This finds the composite pointer type (or member pointer type) for @p E1 |
| /// and @p E2 according to C++0x 5.9p2. It converts both expressions to this |
| /// type and returns it. |
| /// It does not emit diagnostics. |
| /// |
| /// \param Loc The location of the operator requiring these two expressions to |
| /// be converted to the composite pointer type. |
| /// |
| /// If \p NonStandardCompositeType is non-NULL, then we are permitted to find |
| /// a non-standard (but still sane) composite type to which both expressions |
| /// can be converted. When such a type is chosen, \c *NonStandardCompositeType |
| /// will be set true. |
| QualType Sema::FindCompositePointerType(SourceLocation Loc, |
| Expr *&E1, Expr *&E2, |
| bool *NonStandardCompositeType) { |
| if (NonStandardCompositeType) |
| *NonStandardCompositeType = false; |
| |
| assert(getLangOptions().CPlusPlus && "This function assumes C++"); |
| QualType T1 = E1->getType(), T2 = E2->getType(); |
| |
| if (!T1->isAnyPointerType() && !T1->isMemberPointerType() && |
| !T2->isAnyPointerType() && !T2->isMemberPointerType()) |
| return QualType(); |
| |
| // C++0x 5.9p2 |
| // Pointer conversions and qualification conversions are performed on |
| // pointer operands to bring them to their composite pointer type. If |
| // one operand is a null pointer constant, the composite pointer type is |
| // the type of the other operand. |
| if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { |
| if (T2->isMemberPointerType()) |
| ImpCastExprToType(E1, T2, CastExpr::CK_NullToMemberPointer); |
| else |
| ImpCastExprToType(E1, T2, CastExpr::CK_IntegralToPointer); |
| return T2; |
| } |
| if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { |
| if (T1->isMemberPointerType()) |
| ImpCastExprToType(E2, T1, CastExpr::CK_NullToMemberPointer); |
| else |
| ImpCastExprToType(E2, T1, CastExpr::CK_IntegralToPointer); |
| return T1; |
| } |
| |
| // Now both have to be pointers or member pointers. |
| if ((!T1->isPointerType() && !T1->isMemberPointerType()) || |
| (!T2->isPointerType() && !T2->isMemberPointerType())) |
| return QualType(); |
| |
| // Otherwise, of one of the operands has type "pointer to cv1 void," then |
| // the other has type "pointer to cv2 T" and the composite pointer type is |
| // "pointer to cv12 void," where cv12 is the union of cv1 and cv2. |
| // Otherwise, the composite pointer type is a pointer type similar to the |
| // type of one of the operands, with a cv-qualification signature that is |
| // the union of the cv-qualification signatures of the operand types. |
| // In practice, the first part here is redundant; it's subsumed by the second. |
| // What we do here is, we build the two possible composite types, and try the |
| // conversions in both directions. If only one works, or if the two composite |
| // types are the same, we have succeeded. |
| // FIXME: extended qualifiers? |
| typedef llvm::SmallVector<unsigned, 4> QualifierVector; |
| QualifierVector QualifierUnion; |
| typedef llvm::SmallVector<std::pair<const Type *, const Type *>, 4> |
| ContainingClassVector; |
| ContainingClassVector MemberOfClass; |
| QualType Composite1 = Context.getCanonicalType(T1), |
| Composite2 = Context.getCanonicalType(T2); |
| unsigned NeedConstBefore = 0; |
| do { |
| const PointerType *Ptr1, *Ptr2; |
| if ((Ptr1 = Composite1->getAs<PointerType>()) && |
| (Ptr2 = Composite2->getAs<PointerType>())) { |
| Composite1 = Ptr1->getPointeeType(); |
| Composite2 = Ptr2->getPointeeType(); |
| |
| // If we're allowed to create a non-standard composite type, keep track |
| // of where we need to fill in additional 'const' qualifiers. |
| if (NonStandardCompositeType && |
| Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers()) |
| NeedConstBefore = QualifierUnion.size(); |
| |
| QualifierUnion.push_back( |
| Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers()); |
| MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0)); |
| continue; |
| } |
| |
| const MemberPointerType *MemPtr1, *MemPtr2; |
| if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) && |
| (MemPtr2 = Composite2->getAs<MemberPointerType>())) { |
| Composite1 = MemPtr1->getPointeeType(); |
| Composite2 = MemPtr2->getPointeeType(); |
| |
| // If we're allowed to create a non-standard composite type, keep track |
| // of where we need to fill in additional 'const' qualifiers. |
| if (NonStandardCompositeType && |
| Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers()) |
| NeedConstBefore = QualifierUnion.size(); |
| |
| QualifierUnion.push_back( |
| Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers()); |
| MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(), |
| MemPtr2->getClass())); |
| continue; |
| } |
| |
| // FIXME: block pointer types? |
| |
| // Cannot unwrap any more types. |
| break; |
| } while (true); |
| |
| if (NeedConstBefore && NonStandardCompositeType) { |
| // Extension: Add 'const' to qualifiers that come before the first qualifier |
| // mismatch, so that our (non-standard!) composite type meets the |
| // requirements of C++ [conv.qual]p4 bullet 3. |
| for (unsigned I = 0; I != NeedConstBefore; ++I) { |
| if ((QualifierUnion[I] & Qualifiers::Const) == 0) { |
| QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const; |
| *NonStandardCompositeType = true; |
| } |
| } |
| } |
| |
| // Rewrap the composites as pointers or member pointers with the union CVRs. |
| ContainingClassVector::reverse_iterator MOC |
| = MemberOfClass.rbegin(); |
| for (QualifierVector::reverse_iterator |
| I = QualifierUnion.rbegin(), |
| E = QualifierUnion.rend(); |
| I != E; (void)++I, ++MOC) { |
| Qualifiers Quals = Qualifiers::fromCVRMask(*I); |
| if (MOC->first && MOC->second) { |
| // Rebuild member pointer type |
| Composite1 = Context.getMemberPointerType( |
| Context.getQualifiedType(Composite1, Quals), |
| MOC->first); |
| Composite2 = Context.getMemberPointerType( |
| Context.getQualifiedType(Composite2, Quals), |
| MOC->second); |
| } else { |
| // Rebuild pointer type |
| Composite1 |
| = Context.getPointerType(Context.getQualifiedType(Composite1, Quals)); |
| Composite2 |
| = Context.getPointerType(Context.getQualifiedType(Composite2, Quals)); |
| } |
| } |
| |
| // Try to convert to the first composite pointer type. |
| InitializedEntity Entity1 |
| = InitializedEntity::InitializeTemporary(Composite1); |
| InitializationKind Kind |
| = InitializationKind::CreateCopy(Loc, SourceLocation()); |
| InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1); |
| InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1); |
| |
| if (E1ToC1 && E2ToC1) { |
| // Conversion to Composite1 is viable. |
| if (!Context.hasSameType(Composite1, Composite2)) { |
| // Composite2 is a different type from Composite1. Check whether |
| // Composite2 is also viable. |
| InitializedEntity Entity2 |
| = InitializedEntity::InitializeTemporary(Composite2); |
| InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1); |
| InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1); |
| if (E1ToC2 && E2ToC2) { |
| // Both Composite1 and Composite2 are viable and are different; |
| // this is an ambiguity. |
| return QualType(); |
| } |
| } |
| |
| // Convert E1 to Composite1 |
| OwningExprResult E1Result |
| = E1ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,(void**)&E1,1)); |
| if (E1Result.isInvalid()) |
| return QualType(); |
| E1 = E1Result.takeAs<Expr>(); |
| |
| // Convert E2 to Composite1 |
| OwningExprResult E2Result |
| = E2ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,(void**)&E2,1)); |
| if (E2Result.isInvalid()) |
| return QualType(); |
| E2 = E2Result.takeAs<Expr>(); |
| |
| return Composite1; |
| } |
| |
| // Check whether Composite2 is viable. |
| InitializedEntity Entity2 |
| = InitializedEntity::InitializeTemporary(Composite2); |
| InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1); |
| InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1); |
| if (!E1ToC2 || !E2ToC2) |
| return QualType(); |
| |
| // Convert E1 to Composite2 |
| OwningExprResult E1Result |
| = E1ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, (void**)&E1, 1)); |
| if (E1Result.isInvalid()) |
| return QualType(); |
| E1 = E1Result.takeAs<Expr>(); |
| |
| // Convert E2 to Composite2 |
| OwningExprResult E2Result |
| = E2ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, (void**)&E2, 1)); |
| if (E2Result.isInvalid()) |
| return QualType(); |
| E2 = E2Result.takeAs<Expr>(); |
| |
| return Composite2; |
| } |
| |
| Sema::OwningExprResult Sema::MaybeBindToTemporary(Expr *E) { |
| if (!Context.getLangOptions().CPlusPlus) |
| return Owned(E); |
| |
| assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?"); |
| |
| const RecordType *RT = E->getType()->getAs<RecordType>(); |
| if (!RT) |
| return Owned(E); |
| |
| // If this is the result of a call expression, our source might |
| // actually be a reference, in which case we shouldn't bind. |
| if (CallExpr *CE = dyn_cast<CallExpr>(E)) { |
| QualType Ty = CE->getCallee()->getType(); |
| if (const PointerType *PT = Ty->getAs<PointerType>()) |
| Ty = PT->getPointeeType(); |
| else if (const BlockPointerType *BPT = Ty->getAs<BlockPointerType>()) |
| Ty = BPT->getPointeeType(); |
| |
| const FunctionType *FTy = Ty->getAs<FunctionType>(); |
| if (FTy->getResultType()->isReferenceType()) |
| return Owned(E); |
| } |
| |
| // That should be enough to guarantee that this type is complete. |
| // If it has a trivial destructor, we can avoid the extra copy. |
| CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); |
| if (RD->hasTrivialDestructor()) |
| return Owned(E); |
| |
| CXXTemporary *Temp = CXXTemporary::Create(Context, |
| RD->getDestructor(Context)); |
| ExprTemporaries.push_back(Temp); |
| if (CXXDestructorDecl *Destructor = |
| const_cast<CXXDestructorDecl*>(RD->getDestructor(Context))) { |
| MarkDeclarationReferenced(E->getExprLoc(), Destructor); |
| CheckDestructorAccess(E->getExprLoc(), Destructor, |
| PDiag(diag::err_access_dtor_temp) |
| << E->getType()); |
| } |
| // FIXME: Add the temporary to the temporaries vector. |
| return Owned(CXXBindTemporaryExpr::Create(Context, Temp, E)); |
| } |
| |
| Expr *Sema::MaybeCreateCXXExprWithTemporaries(Expr *SubExpr) { |
| assert(SubExpr && "sub expression can't be null!"); |
| |
| // Check any implicit conversions within the expression. |
| CheckImplicitConversions(SubExpr); |
| |
| unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries; |
| assert(ExprTemporaries.size() >= FirstTemporary); |
| if (ExprTemporaries.size() == FirstTemporary) |
| return SubExpr; |
| |
| Expr *E = CXXExprWithTemporaries::Create(Context, SubExpr, |
| &ExprTemporaries[FirstTemporary], |
| ExprTemporaries.size() - FirstTemporary); |
| ExprTemporaries.erase(ExprTemporaries.begin() + FirstTemporary, |
| ExprTemporaries.end()); |
| |
| return E; |
| } |
| |
| Sema::OwningExprResult |
| Sema::MaybeCreateCXXExprWithTemporaries(OwningExprResult SubExpr) { |
| if (SubExpr.isInvalid()) |
| return ExprError(); |
| |
| return Owned(MaybeCreateCXXExprWithTemporaries(SubExpr.takeAs<Expr>())); |
| } |
| |
| FullExpr Sema::CreateFullExpr(Expr *SubExpr) { |
| unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries; |
| assert(ExprTemporaries.size() >= FirstTemporary); |
| |
| unsigned NumTemporaries = ExprTemporaries.size() - FirstTemporary; |
| CXXTemporary **Temporaries = |
| NumTemporaries == 0 ? 0 : &ExprTemporaries[FirstTemporary]; |
| |
| FullExpr E = FullExpr::Create(Context, SubExpr, Temporaries, NumTemporaries); |
| |
| ExprTemporaries.erase(ExprTemporaries.begin() + FirstTemporary, |
| ExprTemporaries.end()); |
| |
| return E; |
| } |
| |
| Sema::OwningExprResult |
| Sema::ActOnStartCXXMemberReference(Scope *S, ExprArg Base, SourceLocation OpLoc, |
| tok::TokenKind OpKind, TypeTy *&ObjectType, |
| bool &MayBePseudoDestructor) { |
| // Since this might be a postfix expression, get rid of ParenListExprs. |
| Base = MaybeConvertParenListExprToParenExpr(S, move(Base)); |
| |
| Expr *BaseExpr = (Expr*)Base.get(); |
| assert(BaseExpr && "no record expansion"); |
| |
| QualType BaseType = BaseExpr->getType(); |
| MayBePseudoDestructor = false; |
| if (BaseType->isDependentType()) { |
| // If we have a pointer to a dependent type and are using the -> operator, |
| // the object type is the type that the pointer points to. We might still |
| // have enough information about that type to do something useful. |
| if (OpKind == tok::arrow) |
| if (const PointerType *Ptr = BaseType->getAs<PointerType>()) |
| BaseType = Ptr->getPointeeType(); |
| |
| ObjectType = BaseType.getAsOpaquePtr(); |
| MayBePseudoDestructor = true; |
| return move(Base); |
| } |
| |
| // C++ [over.match.oper]p8: |
| // [...] When operator->returns, the operator-> is applied to the value |
| // returned, with the original second operand. |
| if (OpKind == tok::arrow) { |
| // The set of types we've considered so far. |
| llvm::SmallPtrSet<CanQualType,8> CTypes; |
| llvm::SmallVector<SourceLocation, 8> Locations; |
| CTypes.insert(Context.getCanonicalType(BaseType)); |
| |
| while (BaseType->isRecordType()) { |
| Base = BuildOverloadedArrowExpr(S, move(Base), OpLoc); |
| BaseExpr = (Expr*)Base.get(); |
| if (BaseExpr == NULL) |
| return ExprError(); |
| if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(BaseExpr)) |
| Locations.push_back(OpCall->getDirectCallee()->getLocation()); |
| BaseType = BaseExpr->getType(); |
| CanQualType CBaseType = Context.getCanonicalType(BaseType); |
| if (!CTypes.insert(CBaseType)) { |
| Diag(OpLoc, diag::err_operator_arrow_circular); |
| for (unsigned i = 0; i < Locations.size(); i++) |
| Diag(Locations[i], diag::note_declared_at); |
| return ExprError(); |
| } |
| } |
| |
| if (BaseType->isPointerType()) |
| BaseType = BaseType->getPointeeType(); |
| } |
| |
| // We could end up with various non-record types here, such as extended |
| // vector types or Objective-C interfaces. Just return early and let |
| // ActOnMemberReferenceExpr do the work. |
| if (!BaseType->isRecordType()) { |
| // C++ [basic.lookup.classref]p2: |
| // [...] If the type of the object expression is of pointer to scalar |
| // type, the unqualified-id is looked up in the context of the complete |
| // postfix-expression. |
| // |
| // This also indicates that we should be parsing a |
| // pseudo-destructor-name. |
| ObjectType = 0; |
| MayBePseudoDestructor = true; |
| return move(Base); |
| } |
| |
| // The object type must be complete (or dependent). |
| if (!BaseType->isDependentType() && |
| RequireCompleteType(OpLoc, BaseType, |
| PDiag(diag::err_incomplete_member_access))) |
| return ExprError(); |
| |
| // C++ [basic.lookup.classref]p2: |
| // If the id-expression in a class member access (5.2.5) is an |
| // unqualified-id, and the type of the object expression is of a class |
| // type C (or of pointer to a class type C), the unqualified-id is looked |
| // up in the scope of class C. [...] |
| ObjectType = BaseType.getAsOpaquePtr(); |
| return move(Base); |
| } |
| |
| Sema::OwningExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc, |
| ExprArg MemExpr) { |
| Expr *E = (Expr *) MemExpr.get(); |
| SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc); |
| Diag(E->getLocStart(), diag::err_dtor_expr_without_call) |
| << isa<CXXPseudoDestructorExpr>(E) |
| << FixItHint::CreateInsertion(ExpectedLParenLoc, "()"); |
| |
| return ActOnCallExpr(/*Scope*/ 0, |
| move(MemExpr), |
| /*LPLoc*/ ExpectedLParenLoc, |
| Sema::MultiExprArg(*this, 0, 0), |
| /*CommaLocs*/ 0, |
| /*RPLoc*/ ExpectedLParenLoc); |
| } |
| |
| Sema::OwningExprResult Sema::BuildPseudoDestructorExpr(ExprArg Base, |
| SourceLocation OpLoc, |
| tok::TokenKind OpKind, |
| const CXXScopeSpec &SS, |
| TypeSourceInfo *ScopeTypeInfo, |
| SourceLocation CCLoc, |
| SourceLocation TildeLoc, |
| PseudoDestructorTypeStorage Destructed, |
| bool HasTrailingLParen) { |
| TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo(); |
| |
| // C++ [expr.pseudo]p2: |
| // The left-hand side of the dot operator shall be of scalar type. The |
| // left-hand side of the arrow operator shall be of pointer to scalar type. |
| // This scalar type is the object type. |
| Expr *BaseE = (Expr *)Base.get(); |
| QualType ObjectType = BaseE->getType(); |
| if (OpKind == tok::arrow) { |
| if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) { |
| ObjectType = Ptr->getPointeeType(); |
| } else if (!BaseE->isTypeDependent()) { |
| // The user wrote "p->" when she probably meant "p."; fix it. |
| Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) |
| << ObjectType << true |
| << FixItHint::CreateReplacement(OpLoc, "."); |
| if (isSFINAEContext()) |
| return ExprError(); |
| |
| OpKind = tok::period; |
| } |
| } |
| |
| if (!ObjectType->isDependentType() && !ObjectType->isScalarType()) { |
| Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar) |
| << ObjectType << BaseE->getSourceRange(); |
| return ExprError(); |
| } |
| |
| // C++ [expr.pseudo]p2: |
| // [...] The cv-unqualified versions of the object type and of the type |
| // designated by the pseudo-destructor-name shall be the same type. |
| if (DestructedTypeInfo) { |
| QualType DestructedType = DestructedTypeInfo->getType(); |
| SourceLocation DestructedTypeStart |
| = DestructedTypeInfo->getTypeLoc().getSourceRange().getBegin(); |
| if (!DestructedType->isDependentType() && !ObjectType->isDependentType() && |
| !Context.hasSameUnqualifiedType(DestructedType, ObjectType)) { |
| Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch) |
| << ObjectType << DestructedType << BaseE->getSourceRange() |
| << DestructedTypeInfo->getTypeLoc().getSourceRange(); |
| |
| // Recover by setting the destructed type to the object type. |
| DestructedType = ObjectType; |
| DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType, |
| DestructedTypeStart); |
| Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); |
| } |
| } |
| |
| // C++ [expr.pseudo]p2: |
| // [...] Furthermore, the two type-names in a pseudo-destructor-name of the |
| // form |
| // |
| // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name |
| // |
| // shall designate the same scalar type. |
| if (ScopeTypeInfo) { |
| QualType ScopeType = ScopeTypeInfo->getType(); |
| if (!ScopeType->isDependentType() && !ObjectType->isDependentType() && |
| !Context.hasSameType(ScopeType, ObjectType)) { |
| |
| Diag(ScopeTypeInfo->getTypeLoc().getSourceRange().getBegin(), |
| diag::err_pseudo_dtor_type_mismatch) |
| << ObjectType << ScopeType << BaseE->getSourceRange() |
| << ScopeTypeInfo->getTypeLoc().getSourceRange(); |
| |
| ScopeType = QualType(); |
| ScopeTypeInfo = 0; |
| } |
| } |
| |
| OwningExprResult Result |
| = Owned(new (Context) CXXPseudoDestructorExpr(Context, |
| Base.takeAs<Expr>(), |
| OpKind == tok::arrow, |
| OpLoc, |
| (NestedNameSpecifier *) SS.getScopeRep(), |
| SS.getRange(), |
| ScopeTypeInfo, |
| CCLoc, |
| TildeLoc, |
| Destructed)); |
| |
| if (HasTrailingLParen) |
| return move(Result); |
| |
| return DiagnoseDtorReference(Destructed.getLocation(), move(Result)); |
| } |
| |
| Sema::OwningExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, ExprArg Base, |
| SourceLocation OpLoc, |
| tok::TokenKind OpKind, |
| CXXScopeSpec &SS, |
| UnqualifiedId &FirstTypeName, |
| SourceLocation CCLoc, |
| SourceLocation TildeLoc, |
| UnqualifiedId &SecondTypeName, |
| bool HasTrailingLParen) { |
| assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId || |
| FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) && |
| "Invalid first type name in pseudo-destructor"); |
| assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId || |
| SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) && |
| "Invalid second type name in pseudo-destructor"); |
| |
| Expr *BaseE = (Expr *)Base.get(); |
| |
| // C++ [expr.pseudo]p2: |
| // The left-hand side of the dot operator shall be of scalar type. The |
| // left-hand side of the arrow operator shall be of pointer to scalar type. |
| // This scalar type is the object type. |
| QualType ObjectType = BaseE->getType(); |
| if (OpKind == tok::arrow) { |
| if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) { |
| ObjectType = Ptr->getPointeeType(); |
| } else if (!ObjectType->isDependentType()) { |
| // The user wrote "p->" when she probably meant "p."; fix it. |
| Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) |
| << ObjectType << true |
| << FixItHint::CreateReplacement(OpLoc, "."); |
| if (isSFINAEContext()) |
| return ExprError(); |
| |
| OpKind = tok::period; |
| } |
| } |
| |
| // Compute the object type that we should use for name lookup purposes. Only |
| // record types and dependent types matter. |
| void *ObjectTypePtrForLookup = 0; |
| if (!SS.isSet()) { |
| ObjectTypePtrForLookup = (void *)ObjectType->getAs<RecordType>(); |
| if (!ObjectTypePtrForLookup && ObjectType->isDependentType()) |
| ObjectTypePtrForLookup = Context.DependentTy.getAsOpaquePtr(); |
| } |
| |
| // Convert the name of the type being destructed (following the ~) into a |
| // type (with source-location information). |
| QualType DestructedType; |
| TypeSourceInfo *DestructedTypeInfo = 0; |
| PseudoDestructorTypeStorage Destructed; |
| if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) { |
| TypeTy *T = getTypeName(*SecondTypeName.Identifier, |
| SecondTypeName.StartLocation, |
| S, &SS, true, ObjectTypePtrForLookup); |
| if (!T && |
| ((SS.isSet() && !computeDeclContext(SS, false)) || |
| (!SS.isSet() && ObjectType->isDependentType()))) { |
| // The name of the type being destroyed is a dependent name, and we |
| // couldn't find anything useful in scope. Just store the identifier and |
| // it's location, and we'll perform (qualified) name lookup again at |
| // template instantiation time. |
| Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier, |
| SecondTypeName.StartLocation); |
| } else if (!T) { |
| Diag(SecondTypeName.StartLocation, |
| diag::err_pseudo_dtor_destructor_non_type) |
| << SecondTypeName.Identifier << ObjectType; |
| if (isSFINAEContext()) |
| return ExprError(); |
| |
| // Recover by assuming we had the right type all along. |
| DestructedType = ObjectType; |
| } else |
| DestructedType = GetTypeFromParser(T, &DestructedTypeInfo); |
| } else { |
| // Resolve the template-id to a type. |
| TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId; |
| ASTTemplateArgsPtr TemplateArgsPtr(*this, |
| TemplateId->getTemplateArgs(), |
| TemplateId->NumArgs); |
| TypeResult T = ActOnTemplateIdType(TemplateTy::make(TemplateId->Template), |
| TemplateId->TemplateNameLoc, |
| TemplateId->LAngleLoc, |
| TemplateArgsPtr, |
| TemplateId->RAngleLoc); |
| if (T.isInvalid() || !T.get()) { |
| // Recover by assuming we had the right type all along. |
| DestructedType = ObjectType; |
| } else |
| DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo); |
| } |
| |
| // If we've performed some kind of recovery, (re-)build the type source |
| // information. |
| if (!DestructedType.isNull()) { |
| if (!DestructedTypeInfo) |
| DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType, |
| SecondTypeName.StartLocation); |
| Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); |
| } |
| |
| // Convert the name of the scope type (the type prior to '::') into a type. |
| TypeSourceInfo *ScopeTypeInfo = 0; |
| QualType ScopeType; |
| if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId || |
| FirstTypeName.Identifier) { |
| if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) { |
| TypeTy *T = getTypeName(*FirstTypeName.Identifier, |
| FirstTypeName.StartLocation, |
| S, &SS, false, ObjectTypePtrForLookup); |
| if (!T) { |
| Diag(FirstTypeName.StartLocation, |
| diag::err_pseudo_dtor_destructor_non_type) |
| << FirstTypeName.Identifier << ObjectType; |
| |
| if (isSFINAEContext()) |
| return ExprError(); |
| |
| // Just drop this type. It's unnecessary anyway. |
| ScopeType = QualType(); |
| } else |
| ScopeType = GetTypeFromParser(T, &ScopeTypeInfo); |
| } else { |
| // Resolve the template-id to a type. |
| TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId; |
| ASTTemplateArgsPtr TemplateArgsPtr(*this, |
| TemplateId->getTemplateArgs(), |
| TemplateId->NumArgs); |
| TypeResult T = ActOnTemplateIdType(TemplateTy::make(TemplateId->Template), |
| TemplateId->TemplateNameLoc, |
| TemplateId->LAngleLoc, |
| TemplateArgsPtr, |
| TemplateId->RAngleLoc); |
| if (T.isInvalid() || !T.get()) { |
| // Recover by dropping this type. |
| ScopeType = QualType(); |
| } else |
| ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo); |
| } |
| } |
| |
| if (!ScopeType.isNull() && !ScopeTypeInfo) |
| ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType, |
| FirstTypeName.StartLocation); |
| |
| |
| return BuildPseudoDestructorExpr(move(Base), OpLoc, OpKind, SS, |
| ScopeTypeInfo, CCLoc, TildeLoc, |
| Destructed, HasTrailingLParen); |
| } |
| |
| CXXMemberCallExpr *Sema::BuildCXXMemberCallExpr(Expr *Exp, |
| NamedDecl *FoundDecl, |
| CXXMethodDecl *Method) { |
| if (PerformObjectArgumentInitialization(Exp, /*Qualifier=*/0, |
| FoundDecl, Method)) |
| assert(0 && "Calling BuildCXXMemberCallExpr with invalid call?"); |
| |
| MemberExpr *ME = |
| new (Context) MemberExpr(Exp, /*IsArrow=*/false, Method, |
| SourceLocation(), Method->getType()); |
| QualType ResultType = Method->getResultType().getNonReferenceType(); |
| MarkDeclarationReferenced(Exp->getLocStart(), Method); |
| CXXMemberCallExpr *CE = |
| new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType, |
| Exp->getLocEnd()); |
| return CE; |
| } |
| |
| Sema::OwningExprResult Sema::ActOnFinishFullExpr(ExprArg Arg) { |
| Expr *FullExpr = Arg.takeAs<Expr>(); |
| if (FullExpr) |
| FullExpr = MaybeCreateCXXExprWithTemporaries(FullExpr); |
| else |
| return ExprError(); |
| |
| return Owned(FullExpr); |
| } |