blob: 65f1124e6328b9fcaa8ab8eb459f1e960fbaf274 [file] [log] [blame]
//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Declaration portions of the Parser interfaces.
//
//===----------------------------------------------------------------------===//
#include "clang/Parse/Parser.h"
#include "clang/Parse/DeclSpec.h"
#include "clang/Parse/Scope.h"
#include "llvm/ADT/SmallSet.h"
using namespace clang;
//===----------------------------------------------------------------------===//
// C99 6.7: Declarations.
//===----------------------------------------------------------------------===//
/// ParseTypeName
/// type-name: [C99 6.7.6]
/// specifier-qualifier-list abstract-declarator[opt]
Parser::TypeTy *Parser::ParseTypeName() {
// Parse the common declaration-specifiers piece.
DeclSpec DS;
ParseSpecifierQualifierList(DS);
// Parse the abstract-declarator, if present.
Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
ParseDeclarator(DeclaratorInfo);
return Actions.ActOnTypeName(CurScope, DeclaratorInfo).Val;
}
/// ParseAttributes - Parse a non-empty attributes list.
///
/// [GNU] attributes:
/// attribute
/// attributes attribute
///
/// [GNU] attribute:
/// '__attribute__' '(' '(' attribute-list ')' ')'
///
/// [GNU] attribute-list:
/// attrib
/// attribute_list ',' attrib
///
/// [GNU] attrib:
/// empty
/// attrib-name
/// attrib-name '(' identifier ')'
/// attrib-name '(' identifier ',' nonempty-expr-list ')'
/// attrib-name '(' argument-expression-list [C99 6.5.2] ')'
///
/// [GNU] attrib-name:
/// identifier
/// typespec
/// typequal
/// storageclass
///
/// FIXME: The GCC grammar/code for this construct implies we need two
/// token lookahead. Comment from gcc: "If they start with an identifier
/// which is followed by a comma or close parenthesis, then the arguments
/// start with that identifier; otherwise they are an expression list."
///
/// At the moment, I am not doing 2 token lookahead. I am also unaware of
/// any attributes that don't work (based on my limited testing). Most
/// attributes are very simple in practice. Until we find a bug, I don't see
/// a pressing need to implement the 2 token lookahead.
AttributeList *Parser::ParseAttributes() {
assert(Tok.is(tok::kw___attribute) && "Not an attribute list!");
AttributeList *CurrAttr = 0;
while (Tok.is(tok::kw___attribute)) {
ConsumeToken();
if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
"attribute")) {
SkipUntil(tok::r_paren, true); // skip until ) or ;
return CurrAttr;
}
if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
SkipUntil(tok::r_paren, true); // skip until ) or ;
return CurrAttr;
}
// Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
Tok.is(tok::comma)) {
if (Tok.is(tok::comma)) {
// allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
ConsumeToken();
continue;
}
// we have an identifier or declaration specifier (const, int, etc.)
IdentifierInfo *AttrName = Tok.getIdentifierInfo();
SourceLocation AttrNameLoc = ConsumeToken();
// check if we have a "paramterized" attribute
if (Tok.is(tok::l_paren)) {
ConsumeParen(); // ignore the left paren loc for now
if (Tok.is(tok::identifier)) {
IdentifierInfo *ParmName = Tok.getIdentifierInfo();
SourceLocation ParmLoc = ConsumeToken();
if (Tok.is(tok::r_paren)) {
// __attribute__(( mode(byte) ))
ConsumeParen(); // ignore the right paren loc for now
CurrAttr = new AttributeList(AttrName, AttrNameLoc,
ParmName, ParmLoc, 0, 0, CurrAttr);
} else if (Tok.is(tok::comma)) {
ConsumeToken();
// __attribute__(( format(printf, 1, 2) ))
llvm::SmallVector<ExprTy*, 8> ArgExprs;
bool ArgExprsOk = true;
// now parse the non-empty comma separated list of expressions
while (1) {
ExprResult ArgExpr = ParseAssignmentExpression();
if (ArgExpr.isInvalid) {
ArgExprsOk = false;
SkipUntil(tok::r_paren);
break;
} else {
ArgExprs.push_back(ArgExpr.Val);
}
if (Tok.isNot(tok::comma))
break;
ConsumeToken(); // Eat the comma, move to the next argument
}
if (ArgExprsOk && Tok.is(tok::r_paren)) {
ConsumeParen(); // ignore the right paren loc for now
CurrAttr = new AttributeList(AttrName, AttrNameLoc, ParmName,
ParmLoc, &ArgExprs[0], ArgExprs.size(), CurrAttr);
}
}
} else { // not an identifier
// parse a possibly empty comma separated list of expressions
if (Tok.is(tok::r_paren)) {
// __attribute__(( nonnull() ))
ConsumeParen(); // ignore the right paren loc for now
CurrAttr = new AttributeList(AttrName, AttrNameLoc,
0, SourceLocation(), 0, 0, CurrAttr);
} else {
// __attribute__(( aligned(16) ))
llvm::SmallVector<ExprTy*, 8> ArgExprs;
bool ArgExprsOk = true;
// now parse the list of expressions
while (1) {
ExprResult ArgExpr = ParseAssignmentExpression();
if (ArgExpr.isInvalid) {
ArgExprsOk = false;
SkipUntil(tok::r_paren);
break;
} else {
ArgExprs.push_back(ArgExpr.Val);
}
if (Tok.isNot(tok::comma))
break;
ConsumeToken(); // Eat the comma, move to the next argument
}
// Match the ')'.
if (ArgExprsOk && Tok.is(tok::r_paren)) {
ConsumeParen(); // ignore the right paren loc for now
CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0,
SourceLocation(), &ArgExprs[0], ArgExprs.size(),
CurrAttr);
}
}
}
} else {
CurrAttr = new AttributeList(AttrName, AttrNameLoc,
0, SourceLocation(), 0, 0, CurrAttr);
}
}
if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
SkipUntil(tok::r_paren, false);
if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
SkipUntil(tok::r_paren, false);
}
return CurrAttr;
}
/// ParseDeclaration - Parse a full 'declaration', which consists of
/// declaration-specifiers, some number of declarators, and a semicolon.
/// 'Context' should be a Declarator::TheContext value.
///
/// declaration: [C99 6.7]
/// block-declaration ->
/// simple-declaration
/// others [FIXME]
/// [C++] namespace-definition
/// others... [FIXME]
///
Parser::DeclTy *Parser::ParseDeclaration(unsigned Context) {
switch (Tok.getKind()) {
case tok::kw_namespace:
return ParseNamespace(Context);
default:
return ParseSimpleDeclaration(Context);
}
}
/// simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
/// declaration-specifiers init-declarator-list[opt] ';'
///[C90/C++]init-declarator-list ';' [TODO]
/// [OMP] threadprivate-directive [TODO]
Parser::DeclTy *Parser::ParseSimpleDeclaration(unsigned Context) {
// Parse the common declaration-specifiers piece.
DeclSpec DS;
ParseDeclarationSpecifiers(DS);
// C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
// declaration-specifiers init-declarator-list[opt] ';'
if (Tok.is(tok::semi)) {
ConsumeToken();
return Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
}
Declarator DeclaratorInfo(DS, (Declarator::TheContext)Context);
ParseDeclarator(DeclaratorInfo);
return ParseInitDeclaratorListAfterFirstDeclarator(DeclaratorInfo);
}
/// ParseInitDeclaratorListAfterFirstDeclarator - Parse 'declaration' after
/// parsing 'declaration-specifiers declarator'. This method is split out this
/// way to handle the ambiguity between top-level function-definitions and
/// declarations.
///
/// init-declarator-list: [C99 6.7]
/// init-declarator
/// init-declarator-list ',' init-declarator
/// init-declarator: [C99 6.7]
/// declarator
/// declarator '=' initializer
/// [GNU] declarator simple-asm-expr[opt] attributes[opt]
/// [GNU] declarator simple-asm-expr[opt] attributes[opt] '=' initializer
///
Parser::DeclTy *Parser::
ParseInitDeclaratorListAfterFirstDeclarator(Declarator &D) {
// Declarators may be grouped together ("int X, *Y, Z();"). Provide info so
// that they can be chained properly if the actions want this.
Parser::DeclTy *LastDeclInGroup = 0;
// At this point, we know that it is not a function definition. Parse the
// rest of the init-declarator-list.
while (1) {
// If a simple-asm-expr is present, parse it.
if (Tok.is(tok::kw_asm))
ParseSimpleAsm();
// If attributes are present, parse them.
if (Tok.is(tok::kw___attribute))
D.AddAttributes(ParseAttributes());
// Inform the current actions module that we just parsed this declarator.
// FIXME: pass asm & attributes.
LastDeclInGroup = Actions.ActOnDeclarator(CurScope, D, LastDeclInGroup);
// Parse declarator '=' initializer.
ExprResult Init;
if (Tok.is(tok::equal)) {
ConsumeToken();
Init = ParseInitializer();
if (Init.isInvalid) {
SkipUntil(tok::semi);
return 0;
}
Actions.AddInitializerToDecl(LastDeclInGroup, Init.Val);
}
// If we don't have a comma, it is either the end of the list (a ';') or an
// error, bail out.
if (Tok.isNot(tok::comma))
break;
// Consume the comma.
ConsumeToken();
// Parse the next declarator.
D.clear();
ParseDeclarator(D);
}
if (Tok.is(tok::semi)) {
ConsumeToken();
return Actions.FinalizeDeclaratorGroup(CurScope, LastDeclInGroup);
}
// If this is an ObjC2 for-each loop, this is a successful declarator
// parse. The syntax for these looks like:
// 'for' '(' declaration 'in' expr ')' statement
if (D.getContext() == Declarator::ForContext && isTokIdentifier_in()) {
return Actions.FinalizeDeclaratorGroup(CurScope, LastDeclInGroup);
}
Diag(Tok, diag::err_parse_error);
// Skip to end of block or statement
SkipUntil(tok::r_brace, true, true);
if (Tok.is(tok::semi))
ConsumeToken();
return 0;
}
/// ParseSpecifierQualifierList
/// specifier-qualifier-list:
/// type-specifier specifier-qualifier-list[opt]
/// type-qualifier specifier-qualifier-list[opt]
/// [GNU] attributes specifier-qualifier-list[opt]
///
void Parser::ParseSpecifierQualifierList(DeclSpec &DS) {
/// specifier-qualifier-list is a subset of declaration-specifiers. Just
/// parse declaration-specifiers and complain about extra stuff.
ParseDeclarationSpecifiers(DS);
// Validate declspec for type-name.
unsigned Specs = DS.getParsedSpecifiers();
if (Specs == DeclSpec::PQ_None)
Diag(Tok, diag::err_typename_requires_specqual);
// Issue diagnostic and remove storage class if present.
if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
if (DS.getStorageClassSpecLoc().isValid())
Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
else
Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass);
DS.ClearStorageClassSpecs();
}
// Issue diagnostic and remove function specfier if present.
if (Specs & DeclSpec::PQ_FunctionSpecifier) {
Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
DS.ClearFunctionSpecs();
}
}
/// ParseDeclarationSpecifiers
/// declaration-specifiers: [C99 6.7]
/// storage-class-specifier declaration-specifiers[opt]
/// type-specifier declaration-specifiers[opt]
/// type-qualifier declaration-specifiers[opt]
/// [C99] function-specifier declaration-specifiers[opt]
/// [GNU] attributes declaration-specifiers[opt]
///
/// storage-class-specifier: [C99 6.7.1]
/// 'typedef'
/// 'extern'
/// 'static'
/// 'auto'
/// 'register'
/// [GNU] '__thread'
/// type-specifier: [C99 6.7.2]
/// 'void'
/// 'char'
/// 'short'
/// 'int'
/// 'long'
/// 'float'
/// 'double'
/// 'signed'
/// 'unsigned'
/// struct-or-union-specifier
/// enum-specifier
/// typedef-name
/// [C++] 'bool'
/// [C99] '_Bool'
/// [C99] '_Complex'
/// [C99] '_Imaginary' // Removed in TC2?
/// [GNU] '_Decimal32'
/// [GNU] '_Decimal64'
/// [GNU] '_Decimal128'
/// [GNU] typeof-specifier
/// [OBJC] class-name objc-protocol-refs[opt] [TODO]
/// [OBJC] typedef-name objc-protocol-refs[opt] [TODO]
/// type-qualifier:
/// 'const'
/// 'volatile'
/// [C99] 'restrict'
/// function-specifier: [C99 6.7.4]
/// [C99] 'inline'
///
void Parser::ParseDeclarationSpecifiers(DeclSpec &DS) {
DS.SetRangeStart(Tok.getLocation());
while (1) {
int isInvalid = false;
const char *PrevSpec = 0;
SourceLocation Loc = Tok.getLocation();
switch (Tok.getKind()) {
// typedef-name
case tok::identifier:
// This identifier can only be a typedef name if we haven't already seen
// a type-specifier. Without this check we misparse:
// typedef int X; struct Y { short X; }; as 'short int'.
if (!DS.hasTypeSpecifier()) {
// It has to be available as a typedef too!
if (void *TypeRep = Actions.isTypeName(*Tok.getIdentifierInfo(),
CurScope)) {
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typedef, Loc, PrevSpec,
TypeRep);
if (isInvalid)
break;
// FIXME: restrict this to "id" and ObjC classnames.
DS.SetRangeEnd(Tok.getLocation());
ConsumeToken(); // The identifier
if (Tok.is(tok::less)) {
SourceLocation endProtoLoc;
llvm::SmallVector<IdentifierInfo *, 8> ProtocolRefs;
ParseObjCProtocolReferences(ProtocolRefs, endProtoLoc);
llvm::SmallVector<DeclTy *, 8> *ProtocolDecl =
new llvm::SmallVector<DeclTy *, 8>;
DS.setProtocolQualifiers(ProtocolDecl);
Actions.FindProtocolDeclaration(Loc,
&ProtocolRefs[0], ProtocolRefs.size(),
*ProtocolDecl);
}
continue;
}
}
// FALL THROUGH.
default:
// If this is not a declaration specifier token, we're done reading decl
// specifiers. First verify that DeclSpec's are consistent.
DS.Finish(Diags, PP.getSourceManager(), getLang());
return;
// GNU attributes support.
case tok::kw___attribute:
DS.AddAttributes(ParseAttributes());
continue;
// storage-class-specifier
case tok::kw_typedef:
isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_typedef, Loc, PrevSpec);
break;
case tok::kw_extern:
if (DS.isThreadSpecified())
Diag(Tok, diag::ext_thread_before, "extern");
isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_extern, Loc, PrevSpec);
break;
case tok::kw___private_extern__:
isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_private_extern, Loc,
PrevSpec);
break;
case tok::kw_static:
if (DS.isThreadSpecified())
Diag(Tok, diag::ext_thread_before, "static");
isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_static, Loc, PrevSpec);
break;
case tok::kw_auto:
isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_auto, Loc, PrevSpec);
break;
case tok::kw_register:
isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_register, Loc, PrevSpec);
break;
case tok::kw___thread:
isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec)*2;
break;
// type-specifiers
case tok::kw_short:
isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec);
break;
case tok::kw_long:
if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec);
else
isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec);
break;
case tok::kw_signed:
isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec);
break;
case tok::kw_unsigned:
isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec);
break;
case tok::kw__Complex:
isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec);
break;
case tok::kw__Imaginary:
isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec);
break;
case tok::kw_void:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec);
break;
case tok::kw_char:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec);
break;
case tok::kw_int:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec);
break;
case tok::kw_float:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec);
break;
case tok::kw_double:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec);
break;
case tok::kw_bool: // [C++ 2.11p1]
case tok::kw__Bool:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec);
break;
case tok::kw__Decimal32:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec);
break;
case tok::kw__Decimal64:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec);
break;
case tok::kw__Decimal128:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec);
break;
case tok::kw_class:
case tok::kw_struct:
case tok::kw_union:
ParseClassSpecifier(DS);
continue;
case tok::kw_enum:
ParseEnumSpecifier(DS);
continue;
// GNU typeof support.
case tok::kw_typeof:
ParseTypeofSpecifier(DS);
continue;
// type-qualifier
case tok::kw_const:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_const , Loc, PrevSpec,
getLang())*2;
break;
case tok::kw_volatile:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
getLang())*2;
break;
case tok::kw_restrict:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
getLang())*2;
break;
// function-specifier
case tok::kw_inline:
isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec);
break;
}
// If the specifier combination wasn't legal, issue a diagnostic.
if (isInvalid) {
assert(PrevSpec && "Method did not return previous specifier!");
if (isInvalid == 1) // Error.
Diag(Tok, diag::err_invalid_decl_spec_combination, PrevSpec);
else // extwarn.
Diag(Tok, diag::ext_duplicate_declspec, PrevSpec);
}
DS.SetRangeEnd(Tok.getLocation());
ConsumeToken();
}
}
/// ParseTag - Parse "struct-or-union-or-class-or-enum identifier[opt]", where
/// the first token has already been read and has been turned into an instance
/// of DeclSpec::TST (TagType). This returns true if there is an error parsing,
/// otherwise it returns false and fills in Decl.
bool Parser::ParseTag(DeclTy *&Decl, unsigned TagType, SourceLocation StartLoc){
AttributeList *Attr = 0;
// If attributes exist after tag, parse them.
if (Tok.is(tok::kw___attribute))
Attr = ParseAttributes();
// Must have either 'struct name' or 'struct {...}'.
if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace)) {
Diag(Tok, diag::err_expected_ident_lbrace);
// Skip the rest of this declarator, up until the comma or semicolon.
SkipUntil(tok::comma, true);
return true;
}
// If an identifier is present, consume and remember it.
IdentifierInfo *Name = 0;
SourceLocation NameLoc;
if (Tok.is(tok::identifier)) {
Name = Tok.getIdentifierInfo();
NameLoc = ConsumeToken();
}
// There are three options here. If we have 'struct foo;', then this is a
// forward declaration. If we have 'struct foo {...' then this is a
// definition. Otherwise we have something like 'struct foo xyz', a reference.
//
// This is needed to handle stuff like this right (C99 6.7.2.3p11):
// struct foo {..}; void bar() { struct foo; } <- new foo in bar.
// struct foo {..}; void bar() { struct foo x; } <- use of old foo.
//
Action::TagKind TK;
if (Tok.is(tok::l_brace))
TK = Action::TK_Definition;
else if (Tok.is(tok::semi))
TK = Action::TK_Declaration;
else
TK = Action::TK_Reference;
Decl = Actions.ActOnTag(CurScope, TagType, TK, StartLoc, Name, NameLoc, Attr);
return false;
}
/// ParseStructDeclaration - Parse a struct declaration without the terminating
/// semicolon.
///
/// struct-declaration:
/// specifier-qualifier-list struct-declarator-list
/// [GNU] __extension__ struct-declaration
/// [GNU] specifier-qualifier-list
/// struct-declarator-list:
/// struct-declarator
/// struct-declarator-list ',' struct-declarator
/// [GNU] struct-declarator-list ',' attributes[opt] struct-declarator
/// struct-declarator:
/// declarator
/// [GNU] declarator attributes[opt]
/// declarator[opt] ':' constant-expression
/// [GNU] declarator[opt] ':' constant-expression attributes[opt]
///
void Parser::
ParseStructDeclaration(DeclSpec &DS,
llvm::SmallVectorImpl<FieldDeclarator> &Fields) {
// FIXME: When __extension__ is specified, disable extension diagnostics.
while (Tok.is(tok::kw___extension__))
ConsumeToken();
// Parse the common specifier-qualifiers-list piece.
SourceLocation DSStart = Tok.getLocation();
ParseSpecifierQualifierList(DS);
// TODO: Does specifier-qualifier list correctly check that *something* is
// specified?
// If there are no declarators, issue a warning.
if (Tok.is(tok::semi)) {
Diag(DSStart, diag::w_no_declarators);
return;
}
// Read struct-declarators until we find the semicolon.
Fields.push_back(FieldDeclarator(DS));
while (1) {
FieldDeclarator &DeclaratorInfo = Fields.back();
/// struct-declarator: declarator
/// struct-declarator: declarator[opt] ':' constant-expression
if (Tok.isNot(tok::colon))
ParseDeclarator(DeclaratorInfo.D);
if (Tok.is(tok::colon)) {
ConsumeToken();
ExprResult Res = ParseConstantExpression();
if (Res.isInvalid)
SkipUntil(tok::semi, true, true);
else
DeclaratorInfo.BitfieldSize = Res.Val;
}
// If attributes exist after the declarator, parse them.
if (Tok.is(tok::kw___attribute))
DeclaratorInfo.D.AddAttributes(ParseAttributes());
// If we don't have a comma, it is either the end of the list (a ';')
// or an error, bail out.
if (Tok.isNot(tok::comma))
return;
// Consume the comma.
ConsumeToken();
// Parse the next declarator.
Fields.push_back(FieldDeclarator(DS));
// Attributes are only allowed on the second declarator.
if (Tok.is(tok::kw___attribute))
Fields.back().D.AddAttributes(ParseAttributes());
}
}
/// ParseStructUnionBody
/// struct-contents:
/// struct-declaration-list
/// [EXT] empty
/// [GNU] "struct-declaration-list" without terminatoring ';'
/// struct-declaration-list:
/// struct-declaration
/// struct-declaration-list struct-declaration
/// [OBC] '@' 'defs' '(' class-name ')' [TODO]
///
void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
unsigned TagType, DeclTy *TagDecl) {
SourceLocation LBraceLoc = ConsumeBrace();
// Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
// C++.
if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
Diag(Tok, diag::ext_empty_struct_union_enum,
DeclSpec::getSpecifierName((DeclSpec::TST)TagType));
llvm::SmallVector<DeclTy*, 32> FieldDecls;
llvm::SmallVector<FieldDeclarator, 8> FieldDeclarators;
// While we still have something to read, read the declarations in the struct.
while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
// Each iteration of this loop reads one struct-declaration.
// Check for extraneous top-level semicolon.
if (Tok.is(tok::semi)) {
Diag(Tok, diag::ext_extra_struct_semi);
ConsumeToken();
continue;
}
// Parse all the comma separated declarators.
DeclSpec DS;
FieldDeclarators.clear();
ParseStructDeclaration(DS, FieldDeclarators);
// Convert them all to fields.
for (unsigned i = 0, e = FieldDeclarators.size(); i != e; ++i) {
FieldDeclarator &FD = FieldDeclarators[i];
// Install the declarator into the current TagDecl.
DeclTy *Field = Actions.ActOnField(CurScope,
DS.getSourceRange().getBegin(),
FD.D, FD.BitfieldSize);
FieldDecls.push_back(Field);
}
if (Tok.is(tok::semi)) {
ConsumeToken();
} else if (Tok.is(tok::r_brace)) {
Diag(Tok.getLocation(), diag::ext_expected_semi_decl_list);
break;
} else {
Diag(Tok, diag::err_expected_semi_decl_list);
// Skip to end of block or statement
SkipUntil(tok::r_brace, true, true);
}
}
SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
Actions.ActOnFields(CurScope,
RecordLoc,TagDecl,&FieldDecls[0],FieldDecls.size(),
LBraceLoc, RBraceLoc);
AttributeList *AttrList = 0;
// If attributes exist after struct contents, parse them.
if (Tok.is(tok::kw___attribute))
AttrList = ParseAttributes(); // FIXME: where should I put them?
}
/// ParseEnumSpecifier
/// enum-specifier: [C99 6.7.2.2]
/// 'enum' identifier[opt] '{' enumerator-list '}'
/// [C99] 'enum' identifier[opt] '{' enumerator-list ',' '}'
/// [GNU] 'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
/// '}' attributes[opt]
/// 'enum' identifier
/// [GNU] 'enum' attributes[opt] identifier
void Parser::ParseEnumSpecifier(DeclSpec &DS) {
assert(Tok.is(tok::kw_enum) && "Not an enum specifier");
SourceLocation StartLoc = ConsumeToken();
// Parse the tag portion of this.
DeclTy *TagDecl;
if (ParseTag(TagDecl, DeclSpec::TST_enum, StartLoc))
return;
if (Tok.is(tok::l_brace))
ParseEnumBody(StartLoc, TagDecl);
// TODO: semantic analysis on the declspec for enums.
const char *PrevSpec = 0;
if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc, PrevSpec, TagDecl))
Diag(StartLoc, diag::err_invalid_decl_spec_combination, PrevSpec);
}
/// ParseEnumBody - Parse a {} enclosed enumerator-list.
/// enumerator-list:
/// enumerator
/// enumerator-list ',' enumerator
/// enumerator:
/// enumeration-constant
/// enumeration-constant '=' constant-expression
/// enumeration-constant:
/// identifier
///
void Parser::ParseEnumBody(SourceLocation StartLoc, DeclTy *EnumDecl) {
SourceLocation LBraceLoc = ConsumeBrace();
// C does not allow an empty enumerator-list, C++ does [dcl.enum].
if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
Diag(Tok, diag::ext_empty_struct_union_enum, "enum");
llvm::SmallVector<DeclTy*, 32> EnumConstantDecls;
DeclTy *LastEnumConstDecl = 0;
// Parse the enumerator-list.
while (Tok.is(tok::identifier)) {
IdentifierInfo *Ident = Tok.getIdentifierInfo();
SourceLocation IdentLoc = ConsumeToken();
SourceLocation EqualLoc;
ExprTy *AssignedVal = 0;
if (Tok.is(tok::equal)) {
EqualLoc = ConsumeToken();
ExprResult Res = ParseConstantExpression();
if (Res.isInvalid)
SkipUntil(tok::comma, tok::r_brace, true, true);
else
AssignedVal = Res.Val;
}
// Install the enumerator constant into EnumDecl.
DeclTy *EnumConstDecl = Actions.ActOnEnumConstant(CurScope, EnumDecl,
LastEnumConstDecl,
IdentLoc, Ident,
EqualLoc, AssignedVal);
EnumConstantDecls.push_back(EnumConstDecl);
LastEnumConstDecl = EnumConstDecl;
if (Tok.isNot(tok::comma))
break;
SourceLocation CommaLoc = ConsumeToken();
if (Tok.isNot(tok::identifier) && !getLang().C99)
Diag(CommaLoc, diag::ext_c99_enumerator_list_comma);
}
// Eat the }.
MatchRHSPunctuation(tok::r_brace, LBraceLoc);
Actions.ActOnEnumBody(StartLoc, EnumDecl, &EnumConstantDecls[0],
EnumConstantDecls.size());
DeclTy *AttrList = 0;
// If attributes exist after the identifier list, parse them.
if (Tok.is(tok::kw___attribute))
AttrList = ParseAttributes(); // FIXME: where do they do?
}
/// isTypeSpecifierQualifier - Return true if the current token could be the
/// start of a type-qualifier-list.
bool Parser::isTypeQualifier() const {
switch (Tok.getKind()) {
default: return false;
// type-qualifier
case tok::kw_const:
case tok::kw_volatile:
case tok::kw_restrict:
return true;
}
}
/// isTypeSpecifierQualifier - Return true if the current token could be the
/// start of a specifier-qualifier-list.
bool Parser::isTypeSpecifierQualifier() const {
switch (Tok.getKind()) {
default: return false;
// GNU attributes support.
case tok::kw___attribute:
// GNU typeof support.
case tok::kw_typeof:
// type-specifiers
case tok::kw_short:
case tok::kw_long:
case tok::kw_signed:
case tok::kw_unsigned:
case tok::kw__Complex:
case tok::kw__Imaginary:
case tok::kw_void:
case tok::kw_char:
case tok::kw_int:
case tok::kw_float:
case tok::kw_double:
case tok::kw_bool:
case tok::kw__Bool:
case tok::kw__Decimal32:
case tok::kw__Decimal64:
case tok::kw__Decimal128:
// struct-or-union-specifier (C99) or class-specifier (C++)
case tok::kw_class:
case tok::kw_struct:
case tok::kw_union:
// enum-specifier
case tok::kw_enum:
// type-qualifier
case tok::kw_const:
case tok::kw_volatile:
case tok::kw_restrict:
return true;
// typedef-name
case tok::identifier:
return Actions.isTypeName(*Tok.getIdentifierInfo(), CurScope) != 0;
}
}
/// isDeclarationSpecifier() - Return true if the current token is part of a
/// declaration specifier.
bool Parser::isDeclarationSpecifier() const {
switch (Tok.getKind()) {
default: return false;
// storage-class-specifier
case tok::kw_typedef:
case tok::kw_extern:
case tok::kw___private_extern__:
case tok::kw_static:
case tok::kw_auto:
case tok::kw_register:
case tok::kw___thread:
// type-specifiers
case tok::kw_short:
case tok::kw_long:
case tok::kw_signed:
case tok::kw_unsigned:
case tok::kw__Complex:
case tok::kw__Imaginary:
case tok::kw_void:
case tok::kw_char:
case tok::kw_int:
case tok::kw_float:
case tok::kw_double:
case tok::kw_bool:
case tok::kw__Bool:
case tok::kw__Decimal32:
case tok::kw__Decimal64:
case tok::kw__Decimal128:
// struct-or-union-specifier (C99) or class-specifier (C++)
case tok::kw_class:
case tok::kw_struct:
case tok::kw_union:
// enum-specifier
case tok::kw_enum:
// type-qualifier
case tok::kw_const:
case tok::kw_volatile:
case tok::kw_restrict:
// function-specifier
case tok::kw_inline:
// GNU typeof support.
case tok::kw_typeof:
// GNU attributes.
case tok::kw___attribute:
return true;
// typedef-name
case tok::identifier:
return Actions.isTypeName(*Tok.getIdentifierInfo(), CurScope) != 0;
}
}
/// ParseTypeQualifierListOpt
/// type-qualifier-list: [C99 6.7.5]
/// type-qualifier
/// [GNU] attributes
/// type-qualifier-list type-qualifier
/// [GNU] type-qualifier-list attributes
///
void Parser::ParseTypeQualifierListOpt(DeclSpec &DS) {
while (1) {
int isInvalid = false;
const char *PrevSpec = 0;
SourceLocation Loc = Tok.getLocation();
switch (Tok.getKind()) {
default:
// If this is not a type-qualifier token, we're done reading type
// qualifiers. First verify that DeclSpec's are consistent.
DS.Finish(Diags, PP.getSourceManager(), getLang());
return;
case tok::kw_const:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_const , Loc, PrevSpec,
getLang())*2;
break;
case tok::kw_volatile:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
getLang())*2;
break;
case tok::kw_restrict:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
getLang())*2;
break;
case tok::kw___attribute:
DS.AddAttributes(ParseAttributes());
continue; // do *not* consume the next token!
}
// If the specifier combination wasn't legal, issue a diagnostic.
if (isInvalid) {
assert(PrevSpec && "Method did not return previous specifier!");
if (isInvalid == 1) // Error.
Diag(Tok, diag::err_invalid_decl_spec_combination, PrevSpec);
else // extwarn.
Diag(Tok, diag::ext_duplicate_declspec, PrevSpec);
}
ConsumeToken();
}
}
/// ParseDeclarator - Parse and verify a newly-initialized declarator.
///
void Parser::ParseDeclarator(Declarator &D) {
/// This implements the 'declarator' production in the C grammar, then checks
/// for well-formedness and issues diagnostics.
ParseDeclaratorInternal(D);
}
/// ParseDeclaratorInternal
/// declarator: [C99 6.7.5]
/// pointer[opt] direct-declarator
/// [C++] '&' declarator [C++ 8p4, dcl.decl]
/// [GNU] '&' restrict[opt] attributes[opt] declarator
///
/// pointer: [C99 6.7.5]
/// '*' type-qualifier-list[opt]
/// '*' type-qualifier-list[opt] pointer
///
void Parser::ParseDeclaratorInternal(Declarator &D) {
tok::TokenKind Kind = Tok.getKind();
// Not a pointer or C++ reference.
if (Kind != tok::star && (Kind != tok::amp || !getLang().CPlusPlus))
return ParseDirectDeclarator(D);
// Otherwise, '*' -> pointer or '&' -> reference.
SourceLocation Loc = ConsumeToken(); // Eat the * or &.
if (Kind == tok::star) {
// Is a pointer.
DeclSpec DS;
ParseTypeQualifierListOpt(DS);
// Recursively parse the declarator.
ParseDeclaratorInternal(D);
// Remember that we parsed a pointer type, and remember the type-quals.
D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
DS.TakeAttributes()));
} else {
// Is a reference
DeclSpec DS;
// C++ 8.3.2p1: cv-qualified references are ill-formed except when the
// cv-qualifiers are introduced through the use of a typedef or of a
// template type argument, in which case the cv-qualifiers are ignored.
//
// [GNU] Retricted references are allowed.
// [GNU] Attributes on references are allowed.
ParseTypeQualifierListOpt(DS);
if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
Diag(DS.getConstSpecLoc(),
diag::err_invalid_reference_qualifier_application,
"const");
if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
Diag(DS.getVolatileSpecLoc(),
diag::err_invalid_reference_qualifier_application,
"volatile");
}
// Recursively parse the declarator.
ParseDeclaratorInternal(D);
// Remember that we parsed a reference type. It doesn't have type-quals.
D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
DS.TakeAttributes()));
}
}
/// ParseDirectDeclarator
/// direct-declarator: [C99 6.7.5]
/// identifier
/// '(' declarator ')'
/// [GNU] '(' attributes declarator ')'
/// [C90] direct-declarator '[' constant-expression[opt] ']'
/// [C99] direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
/// [C99] direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
/// [C99] direct-declarator '[' type-qual-list 'static' assignment-expr ']'
/// [C99] direct-declarator '[' type-qual-list[opt] '*' ']'
/// direct-declarator '(' parameter-type-list ')'
/// direct-declarator '(' identifier-list[opt] ')'
/// [GNU] direct-declarator '(' parameter-forward-declarations
/// parameter-type-list[opt] ')'
///
void Parser::ParseDirectDeclarator(Declarator &D) {
// Parse the first direct-declarator seen.
if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
assert(Tok.getIdentifierInfo() && "Not an identifier?");
D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
ConsumeToken();
} else if (Tok.is(tok::l_paren)) {
// direct-declarator: '(' declarator ')'
// direct-declarator: '(' attributes declarator ')'
// Example: 'char (*X)' or 'int (*XX)(void)'
ParseParenDeclarator(D);
} else if (D.mayOmitIdentifier()) {
// This could be something simple like "int" (in which case the declarator
// portion is empty), if an abstract-declarator is allowed.
D.SetIdentifier(0, Tok.getLocation());
} else {
// Expected identifier or '('.
Diag(Tok, diag::err_expected_ident_lparen);
D.SetIdentifier(0, Tok.getLocation());
}
assert(D.isPastIdentifier() &&
"Haven't past the location of the identifier yet?");
while (1) {
if (Tok.is(tok::l_paren)) {
ParseFunctionDeclarator(ConsumeParen(), D);
} else if (Tok.is(tok::l_square)) {
ParseBracketDeclarator(D);
} else {
break;
}
}
}
/// ParseParenDeclarator - We parsed the declarator D up to a paren. This is
/// only called before the identifier, so these are most likely just grouping
/// parens for precedence. If we find that these are actually function
/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
///
/// direct-declarator:
/// '(' declarator ')'
/// [GNU] '(' attributes declarator ')'
///
void Parser::ParseParenDeclarator(Declarator &D) {
SourceLocation StartLoc = ConsumeParen();
assert(!D.isPastIdentifier() && "Should be called before passing identifier");
// If we haven't past the identifier yet (or where the identifier would be
// stored, if this is an abstract declarator), then this is probably just
// grouping parens. However, if this could be an abstract-declarator, then
// this could also be the start of function arguments (consider 'void()').
bool isGrouping;
if (!D.mayOmitIdentifier()) {
// If this can't be an abstract-declarator, this *must* be a grouping
// paren, because we haven't seen the identifier yet.
isGrouping = true;
} else if (Tok.is(tok::r_paren) || // 'int()' is a function.
isDeclarationSpecifier()) { // 'int(int)' is a function.
// This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
// considered to be a type, not a K&R identifier-list.
isGrouping = false;
} else {
// Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
isGrouping = true;
}
// If this is a grouping paren, handle:
// direct-declarator: '(' declarator ')'
// direct-declarator: '(' attributes declarator ')'
if (isGrouping) {
if (Tok.is(tok::kw___attribute))
D.AddAttributes(ParseAttributes());
ParseDeclaratorInternal(D);
// Match the ')'.
MatchRHSPunctuation(tok::r_paren, StartLoc);
return;
}
// Okay, if this wasn't a grouping paren, it must be the start of a function
// argument list. Recognize that this declarator will never have an
// identifier (and remember where it would have been), then fall through to
// the handling of argument lists.
D.SetIdentifier(0, Tok.getLocation());
ParseFunctionDeclarator(StartLoc, D);
}
/// ParseFunctionDeclarator - We are after the identifier and have parsed the
/// declarator D up to a paren, which indicates that we are parsing function
/// arguments.
///
/// This method also handles this portion of the grammar:
/// parameter-type-list: [C99 6.7.5]
/// parameter-list
/// parameter-list ',' '...'
///
/// parameter-list: [C99 6.7.5]
/// parameter-declaration
/// parameter-list ',' parameter-declaration
///
/// parameter-declaration: [C99 6.7.5]
/// declaration-specifiers declarator
/// [C++] declaration-specifiers declarator '=' assignment-expression
/// [GNU] declaration-specifiers declarator attributes
/// declaration-specifiers abstract-declarator[opt]
/// [C++] declaration-specifiers abstract-declarator[opt]
/// '=' assignment-expression
/// [GNU] declaration-specifiers abstract-declarator[opt] attributes
///
void Parser::ParseFunctionDeclarator(SourceLocation LParenLoc, Declarator &D) {
// lparen is already consumed!
assert(D.isPastIdentifier() && "Should not call before identifier!");
// Okay, this is the parameter list of a function definition, or it is an
// identifier list of a K&R-style function.
if (Tok.is(tok::r_paren)) {
// Remember that we parsed a function type, and remember the attributes.
// int() -> no prototype, no '...'.
D.AddTypeInfo(DeclaratorChunk::getFunction(/*prototype*/ false,
/*variadic*/ false,
/*arglist*/ 0, 0, LParenLoc));
ConsumeParen(); // Eat the closing ')'.
return;
} else if (Tok.is(tok::identifier) &&
// K&R identifier lists can't have typedefs as identifiers, per
// C99 6.7.5.3p11.
!Actions.isTypeName(*Tok.getIdentifierInfo(), CurScope)) {
// Identifier list. Note that '(' identifier-list ')' is only allowed for
// normal declarators, not for abstract-declarators.
return ParseFunctionDeclaratorIdentifierList(LParenLoc, D);
}
// Finally, a normal, non-empty parameter type list.
// Build up an array of information about the parsed arguments.
llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
// Enter function-declaration scope, limiting any declarators to the
// function prototype scope, including parameter declarators.
EnterScope(Scope::DeclScope);
bool IsVariadic = false;
while (1) {
if (Tok.is(tok::ellipsis)) {
IsVariadic = true;
// Check to see if this is "void(...)" which is not allowed.
if (ParamInfo.empty()) {
// Otherwise, parse parameter type list. If it starts with an
// ellipsis, diagnose the malformed function.
Diag(Tok, diag::err_ellipsis_first_arg);
IsVariadic = false; // Treat this like 'void()'.
}
ConsumeToken(); // Consume the ellipsis.
break;
}
SourceLocation DSStart = Tok.getLocation();
// Parse the declaration-specifiers.
DeclSpec DS;
ParseDeclarationSpecifiers(DS);
// Parse the declarator. This is "PrototypeContext", because we must
// accept either 'declarator' or 'abstract-declarator' here.
Declarator ParmDecl(DS, Declarator::PrototypeContext);
ParseDeclarator(ParmDecl);
// Parse GNU attributes, if present.
if (Tok.is(tok::kw___attribute))
ParmDecl.AddAttributes(ParseAttributes());
// Remember this parsed parameter in ParamInfo.
IdentifierInfo *ParmII = ParmDecl.getIdentifier();
// If no parameter was specified, verify that *something* was specified,
// otherwise we have a missing type and identifier.
if (DS.getParsedSpecifiers() == DeclSpec::PQ_None &&
ParmDecl.getIdentifier() == 0 && ParmDecl.getNumTypeObjects() == 0) {
// Completely missing, emit error.
Diag(DSStart, diag::err_missing_param);
} else {
// Otherwise, we have something. Add it and let semantic analysis try
// to grok it and add the result to the ParamInfo we are building.
// Inform the actions module about the parameter declarator, so it gets
// added to the current scope.
DeclTy *Param = Actions.ActOnParamDeclarator(CurScope, ParmDecl);
// Parse the default argument, if any. We parse the default
// arguments in all dialects; the semantic analysis in
// ActOnParamDefaultArgument will reject the default argument in
// C.
if (Tok.is(tok::equal)) {
SourceLocation EqualLoc = Tok.getLocation();
// Consume the '='.
ConsumeToken();
// Parse the default argument
ExprResult DefArgResult = ParseAssignmentExpression();
if (DefArgResult.isInvalid) {
SkipUntil(tok::comma, tok::r_paren, true, true);
} else {
// Inform the actions module about the default argument
Actions.ActOnParamDefaultArgument(Param, EqualLoc, DefArgResult.Val);
}
}
ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
ParmDecl.getIdentifierLoc(), Param));
}
// If the next token is a comma, consume it and keep reading arguments.
if (Tok.isNot(tok::comma)) break;
// Consume the comma.
ConsumeToken();
}
// Leave prototype scope.
ExitScope();
// Remember that we parsed a function type, and remember the attributes.
D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/true, IsVariadic,
&ParamInfo[0], ParamInfo.size(),
LParenLoc));
// If we have the closing ')', eat it and we're done.
MatchRHSPunctuation(tok::r_paren, LParenLoc);
}
/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
/// we found a K&R-style identifier list instead of a type argument list. The
/// current token is known to be the first identifier in the list.
///
/// identifier-list: [C99 6.7.5]
/// identifier
/// identifier-list ',' identifier
///
void Parser::ParseFunctionDeclaratorIdentifierList(SourceLocation LParenLoc,
Declarator &D) {
// Build up an array of information about the parsed arguments.
llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
// If there was no identifier specified for the declarator, either we are in
// an abstract-declarator, or we are in a parameter declarator which was found
// to be abstract. In abstract-declarators, identifier lists are not valid:
// diagnose this.
if (!D.getIdentifier())
Diag(Tok, diag::ext_ident_list_in_param);
// Tok is known to be the first identifier in the list. Remember this
// identifier in ParamInfo.
ParamsSoFar.insert(Tok.getIdentifierInfo());
ParamInfo.push_back(DeclaratorChunk::ParamInfo(Tok.getIdentifierInfo(),
Tok.getLocation(), 0));
ConsumeToken(); // eat the first identifier.
while (Tok.is(tok::comma)) {
// Eat the comma.
ConsumeToken();
// If this isn't an identifier, report the error and skip until ')'.
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_expected_ident);
SkipUntil(tok::r_paren);
return;
}
IdentifierInfo *ParmII = Tok.getIdentifierInfo();
// Reject 'typedef int y; int test(x, y)', but continue parsing.
if (Actions.isTypeName(*ParmII, CurScope))
Diag(Tok, diag::err_unexpected_typedef_ident, ParmII->getName());
// Verify that the argument identifier has not already been mentioned.
if (!ParamsSoFar.insert(ParmII)) {
Diag(Tok.getLocation(), diag::err_param_redefinition, ParmII->getName());
} else {
// Remember this identifier in ParamInfo.
ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
Tok.getLocation(), 0));
}
// Eat the identifier.
ConsumeToken();
}
// Remember that we parsed a function type, and remember the attributes. This
// function type is always a K&R style function type, which is not varargs and
// has no prototype.
D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/false, /*varargs*/false,
&ParamInfo[0], ParamInfo.size(),
LParenLoc));
// If we have the closing ')', eat it and we're done.
MatchRHSPunctuation(tok::r_paren, LParenLoc);
}
/// [C90] direct-declarator '[' constant-expression[opt] ']'
/// [C99] direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
/// [C99] direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
/// [C99] direct-declarator '[' type-qual-list 'static' assignment-expr ']'
/// [C99] direct-declarator '[' type-qual-list[opt] '*' ']'
void Parser::ParseBracketDeclarator(Declarator &D) {
SourceLocation StartLoc = ConsumeBracket();
// If valid, this location is the position where we read the 'static' keyword.
SourceLocation StaticLoc;
if (Tok.is(tok::kw_static))
StaticLoc = ConsumeToken();
// If there is a type-qualifier-list, read it now.
DeclSpec DS;
ParseTypeQualifierListOpt(DS);
// If we haven't already read 'static', check to see if there is one after the
// type-qualifier-list.
if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
StaticLoc = ConsumeToken();
// Handle "direct-declarator [ type-qual-list[opt] * ]".
bool isStar = false;
ExprResult NumElements(false);
// Handle the case where we have '[*]' as the array size. However, a leading
// star could be the start of an expression, for example 'X[*p + 4]'. Verify
// the the token after the star is a ']'. Since stars in arrays are
// infrequent, use of lookahead is not costly here.
if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
ConsumeToken(); // Eat the '*'.
if (StaticLoc.isValid())
Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
StaticLoc = SourceLocation(); // Drop the static.
isStar = true;
} else if (Tok.isNot(tok::r_square)) {
// Parse the assignment-expression now.
NumElements = ParseAssignmentExpression();
}
// If there was an error parsing the assignment-expression, recover.
if (NumElements.isInvalid) {
// If the expression was invalid, skip it.
SkipUntil(tok::r_square);
return;
}
MatchRHSPunctuation(tok::r_square, StartLoc);
// If C99 isn't enabled, emit an ext-warn if the arg list wasn't empty and if
// it was not a constant expression.
if (!getLang().C99) {
// TODO: check C90 array constant exprness.
if (isStar || StaticLoc.isValid() ||
0/*TODO: NumElts is not a C90 constantexpr */)
Diag(StartLoc, diag::ext_c99_array_usage);
}
// Remember that we parsed a pointer type, and remember the type-quals.
D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
StaticLoc.isValid(), isStar,
NumElements.Val, StartLoc));
}
/// [GNU] typeof-specifier:
/// typeof ( expressions )
/// typeof ( type-name )
///
void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
SourceLocation StartLoc = ConsumeToken();
if (Tok.isNot(tok::l_paren)) {
Diag(Tok, diag::err_expected_lparen_after, BuiltinII->getName());
return;
}
SourceLocation LParenLoc = ConsumeParen(), RParenLoc;
if (isTypeSpecifierQualifier()) {
TypeTy *Ty = ParseTypeName();
assert(Ty && "Parser::ParseTypeofSpecifier(): missing type");
if (Tok.isNot(tok::r_paren)) {
MatchRHSPunctuation(tok::r_paren, LParenLoc);
return;
}
RParenLoc = ConsumeParen();
const char *PrevSpec = 0;
// Check for duplicate type specifiers (e.g. "int typeof(int)").
if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec, Ty))
Diag(StartLoc, diag::err_invalid_decl_spec_combination, PrevSpec);
} else { // we have an expression.
ExprResult Result = ParseExpression();
if (Result.isInvalid || Tok.isNot(tok::r_paren)) {
MatchRHSPunctuation(tok::r_paren, LParenLoc);
return;
}
RParenLoc = ConsumeParen();
const char *PrevSpec = 0;
// Check for duplicate type specifiers (e.g. "int typeof(int)").
if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
Result.Val))
Diag(StartLoc, diag::err_invalid_decl_spec_combination, PrevSpec);
}
}