| //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | //  This file implements semantic analysis for declarations. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "clang/Sema/SemaInternal.h" | 
 | #include "clang/Sema/Initialization.h" | 
 | #include "clang/Sema/Lookup.h" | 
 | #include "clang/Sema/CXXFieldCollector.h" | 
 | #include "clang/Sema/Scope.h" | 
 | #include "clang/Sema/ScopeInfo.h" | 
 | #include "clang/AST/APValue.h" | 
 | #include "clang/AST/ASTConsumer.h" | 
 | #include "clang/AST/ASTContext.h" | 
 | #include "clang/AST/CXXInheritance.h" | 
 | #include "clang/AST/DeclCXX.h" | 
 | #include "clang/AST/DeclObjC.h" | 
 | #include "clang/AST/DeclTemplate.h" | 
 | #include "clang/AST/ExprCXX.h" | 
 | #include "clang/AST/StmtCXX.h" | 
 | #include "clang/Sema/DeclSpec.h" | 
 | #include "clang/Sema/ParsedTemplate.h" | 
 | #include "clang/Parse/ParseDiagnostic.h" | 
 | #include "clang/Basic/PartialDiagnostic.h" | 
 | #include "clang/Basic/SourceManager.h" | 
 | #include "clang/Basic/TargetInfo.h" | 
 | // FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's) | 
 | #include "clang/Lex/Preprocessor.h" | 
 | #include "clang/Lex/HeaderSearch.h" | 
 | #include "llvm/ADT/Triple.h" | 
 | #include <algorithm> | 
 | #include <cstring> | 
 | #include <functional> | 
 | using namespace clang; | 
 | using namespace sema; | 
 |  | 
 | Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) { | 
 |   return DeclGroupPtrTy::make(DeclGroupRef(Ptr)); | 
 | } | 
 |  | 
 | /// \brief If the identifier refers to a type name within this scope, | 
 | /// return the declaration of that type. | 
 | /// | 
 | /// This routine performs ordinary name lookup of the identifier II | 
 | /// within the given scope, with optional C++ scope specifier SS, to | 
 | /// determine whether the name refers to a type. If so, returns an | 
 | /// opaque pointer (actually a QualType) corresponding to that | 
 | /// type. Otherwise, returns NULL. | 
 | /// | 
 | /// If name lookup results in an ambiguity, this routine will complain | 
 | /// and then return NULL. | 
 | ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc, | 
 |                              Scope *S, CXXScopeSpec *SS, | 
 |                              bool isClassName, | 
 |                              ParsedType ObjectTypePtr) { | 
 |   // Determine where we will perform name lookup. | 
 |   DeclContext *LookupCtx = 0; | 
 |   if (ObjectTypePtr) { | 
 |     QualType ObjectType = ObjectTypePtr.get(); | 
 |     if (ObjectType->isRecordType()) | 
 |       LookupCtx = computeDeclContext(ObjectType); | 
 |   } else if (SS && SS->isNotEmpty()) { | 
 |     LookupCtx = computeDeclContext(*SS, false); | 
 |  | 
 |     if (!LookupCtx) { | 
 |       if (isDependentScopeSpecifier(*SS)) { | 
 |         // C++ [temp.res]p3: | 
 |         //   A qualified-id that refers to a type and in which the | 
 |         //   nested-name-specifier depends on a template-parameter (14.6.2) | 
 |         //   shall be prefixed by the keyword typename to indicate that the | 
 |         //   qualified-id denotes a type, forming an | 
 |         //   elaborated-type-specifier (7.1.5.3). | 
 |         // | 
 |         // We therefore do not perform any name lookup if the result would | 
 |         // refer to a member of an unknown specialization. | 
 |         if (!isClassName) | 
 |           return ParsedType(); | 
 |          | 
 |         // We know from the grammar that this name refers to a type, | 
 |         // so build a dependent node to describe the type. | 
 |         QualType T = | 
 |           CheckTypenameType(ETK_None, SS->getScopeRep(), II, | 
 |                             SourceLocation(), SS->getRange(), NameLoc); | 
 |         return ParsedType::make(T); | 
 |       } | 
 |        | 
 |       return ParsedType(); | 
 |     } | 
 |      | 
 |     if (!LookupCtx->isDependentContext() && | 
 |         RequireCompleteDeclContext(*SS, LookupCtx)) | 
 |       return ParsedType(); | 
 |   } | 
 |  | 
 |   // FIXME: LookupNestedNameSpecifierName isn't the right kind of | 
 |   // lookup for class-names. | 
 |   LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName : | 
 |                                       LookupOrdinaryName; | 
 |   LookupResult Result(*this, &II, NameLoc, Kind); | 
 |   if (LookupCtx) { | 
 |     // Perform "qualified" name lookup into the declaration context we | 
 |     // computed, which is either the type of the base of a member access | 
 |     // expression or the declaration context associated with a prior | 
 |     // nested-name-specifier. | 
 |     LookupQualifiedName(Result, LookupCtx); | 
 |  | 
 |     if (ObjectTypePtr && Result.empty()) { | 
 |       // C++ [basic.lookup.classref]p3: | 
 |       //   If the unqualified-id is ~type-name, the type-name is looked up | 
 |       //   in the context of the entire postfix-expression. If the type T of  | 
 |       //   the object expression is of a class type C, the type-name is also | 
 |       //   looked up in the scope of class C. At least one of the lookups shall | 
 |       //   find a name that refers to (possibly cv-qualified) T. | 
 |       LookupName(Result, S); | 
 |     } | 
 |   } else { | 
 |     // Perform unqualified name lookup. | 
 |     LookupName(Result, S); | 
 |   } | 
 |    | 
 |   NamedDecl *IIDecl = 0; | 
 |   switch (Result.getResultKind()) { | 
 |   case LookupResult::NotFound: | 
 |   case LookupResult::NotFoundInCurrentInstantiation: | 
 |   case LookupResult::FoundOverloaded: | 
 |   case LookupResult::FoundUnresolvedValue: | 
 |     Result.suppressDiagnostics(); | 
 |     return ParsedType(); | 
 |  | 
 |   case LookupResult::Ambiguous: | 
 |     // Recover from type-hiding ambiguities by hiding the type.  We'll | 
 |     // do the lookup again when looking for an object, and we can | 
 |     // diagnose the error then.  If we don't do this, then the error | 
 |     // about hiding the type will be immediately followed by an error | 
 |     // that only makes sense if the identifier was treated like a type. | 
 |     if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) { | 
 |       Result.suppressDiagnostics(); | 
 |       return ParsedType(); | 
 |     } | 
 |  | 
 |     // Look to see if we have a type anywhere in the list of results. | 
 |     for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end(); | 
 |          Res != ResEnd; ++Res) { | 
 |       if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) { | 
 |         if (!IIDecl || | 
 |             (*Res)->getLocation().getRawEncoding() < | 
 |               IIDecl->getLocation().getRawEncoding()) | 
 |           IIDecl = *Res; | 
 |       } | 
 |     } | 
 |  | 
 |     if (!IIDecl) { | 
 |       // None of the entities we found is a type, so there is no way | 
 |       // to even assume that the result is a type. In this case, don't | 
 |       // complain about the ambiguity. The parser will either try to | 
 |       // perform this lookup again (e.g., as an object name), which | 
 |       // will produce the ambiguity, or will complain that it expected | 
 |       // a type name. | 
 |       Result.suppressDiagnostics(); | 
 |       return ParsedType(); | 
 |     } | 
 |  | 
 |     // We found a type within the ambiguous lookup; diagnose the | 
 |     // ambiguity and then return that type. This might be the right | 
 |     // answer, or it might not be, but it suppresses any attempt to | 
 |     // perform the name lookup again. | 
 |     break; | 
 |  | 
 |   case LookupResult::Found: | 
 |     IIDecl = Result.getFoundDecl(); | 
 |     break; | 
 |   } | 
 |  | 
 |   assert(IIDecl && "Didn't find decl"); | 
 |  | 
 |   QualType T; | 
 |   if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) { | 
 |     DiagnoseUseOfDecl(IIDecl, NameLoc); | 
 |  | 
 |     if (T.isNull()) | 
 |       T = Context.getTypeDeclType(TD); | 
 |      | 
 |     if (SS) | 
 |       T = getElaboratedType(ETK_None, *SS, T); | 
 |      | 
 |   } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) { | 
 |     T = Context.getObjCInterfaceType(IDecl); | 
 |   } else { | 
 |     // If it's not plausibly a type, suppress diagnostics. | 
 |     Result.suppressDiagnostics(); | 
 |     return ParsedType(); | 
 |   } | 
 |  | 
 |   return ParsedType::make(T); | 
 | } | 
 |  | 
 | /// isTagName() - This method is called *for error recovery purposes only* | 
 | /// to determine if the specified name is a valid tag name ("struct foo").  If | 
 | /// so, this returns the TST for the tag corresponding to it (TST_enum, | 
 | /// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C | 
 | /// where the user forgot to specify the tag. | 
 | DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) { | 
 |   // Do a tag name lookup in this scope. | 
 |   LookupResult R(*this, &II, SourceLocation(), LookupTagName); | 
 |   LookupName(R, S, false); | 
 |   R.suppressDiagnostics(); | 
 |   if (R.getResultKind() == LookupResult::Found) | 
 |     if (const TagDecl *TD = R.getAsSingle<TagDecl>()) { | 
 |       switch (TD->getTagKind()) { | 
 |       default:         return DeclSpec::TST_unspecified; | 
 |       case TTK_Struct: return DeclSpec::TST_struct; | 
 |       case TTK_Union:  return DeclSpec::TST_union; | 
 |       case TTK_Class:  return DeclSpec::TST_class; | 
 |       case TTK_Enum:   return DeclSpec::TST_enum; | 
 |       } | 
 |     } | 
 |  | 
 |   return DeclSpec::TST_unspecified; | 
 | } | 
 |  | 
 | bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,  | 
 |                                    SourceLocation IILoc, | 
 |                                    Scope *S, | 
 |                                    CXXScopeSpec *SS, | 
 |                                    ParsedType &SuggestedType) { | 
 |   // We don't have anything to suggest (yet). | 
 |   SuggestedType = ParsedType(); | 
 |    | 
 |   // There may have been a typo in the name of the type. Look up typo | 
 |   // results, in case we have something that we can suggest. | 
 |   LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,  | 
 |                       NotForRedeclaration); | 
 |  | 
 |   if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) { | 
 |     if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) { | 
 |       if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) && | 
 |           !Result->isInvalidDecl()) { | 
 |         // We found a similarly-named type or interface; suggest that. | 
 |         if (!SS || !SS->isSet()) | 
 |           Diag(IILoc, diag::err_unknown_typename_suggest) | 
 |             << &II << Lookup.getLookupName() | 
 |             << FixItHint::CreateReplacement(SourceRange(IILoc), | 
 |                                             Result->getNameAsString()); | 
 |         else if (DeclContext *DC = computeDeclContext(*SS, false)) | 
 |           Diag(IILoc, diag::err_unknown_nested_typename_suggest)  | 
 |             << &II << DC << Lookup.getLookupName() << SS->getRange() | 
 |             << FixItHint::CreateReplacement(SourceRange(IILoc), | 
 |                                             Result->getNameAsString()); | 
 |         else | 
 |           llvm_unreachable("could not have corrected a typo here"); | 
 |  | 
 |         Diag(Result->getLocation(), diag::note_previous_decl) | 
 |           << Result->getDeclName(); | 
 |          | 
 |         SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS); | 
 |         return true; | 
 |       } | 
 |     } else if (Lookup.empty()) { | 
 |       // We corrected to a keyword. | 
 |       // FIXME: Actually recover with the keyword we suggest, and emit a fix-it. | 
 |       Diag(IILoc, diag::err_unknown_typename_suggest) | 
 |         << &II << Corrected; | 
 |       return true;       | 
 |     } | 
 |   } | 
 |  | 
 |   if (getLangOptions().CPlusPlus) { | 
 |     // See if II is a class template that the user forgot to pass arguments to. | 
 |     UnqualifiedId Name; | 
 |     Name.setIdentifier(&II, IILoc); | 
 |     CXXScopeSpec EmptySS; | 
 |     TemplateTy TemplateResult; | 
 |     bool MemberOfUnknownSpecialization; | 
 |     if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false, | 
 |                        Name, ParsedType(), true, TemplateResult, | 
 |                        MemberOfUnknownSpecialization) == TNK_Type_template) { | 
 |       TemplateName TplName = TemplateResult.getAsVal<TemplateName>(); | 
 |       Diag(IILoc, diag::err_template_missing_args) << TplName; | 
 |       if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) { | 
 |         Diag(TplDecl->getLocation(), diag::note_template_decl_here) | 
 |           << TplDecl->getTemplateParameters()->getSourceRange(); | 
 |       } | 
 |       return true; | 
 |     } | 
 |   } | 
 |  | 
 |   // FIXME: Should we move the logic that tries to recover from a missing tag | 
 |   // (struct, union, enum) from Parser::ParseImplicitInt here, instead? | 
 |    | 
 |   if (!SS || (!SS->isSet() && !SS->isInvalid())) | 
 |     Diag(IILoc, diag::err_unknown_typename) << &II; | 
 |   else if (DeclContext *DC = computeDeclContext(*SS, false)) | 
 |     Diag(IILoc, diag::err_typename_nested_not_found)  | 
 |       << &II << DC << SS->getRange(); | 
 |   else if (isDependentScopeSpecifier(*SS)) { | 
 |     Diag(SS->getRange().getBegin(), diag::err_typename_missing) | 
 |       << (NestedNameSpecifier *)SS->getScopeRep() << II.getName() | 
 |       << SourceRange(SS->getRange().getBegin(), IILoc) | 
 |       << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename "); | 
 |     SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get(); | 
 |   } else { | 
 |     assert(SS && SS->isInvalid() &&  | 
 |            "Invalid scope specifier has already been diagnosed"); | 
 |   } | 
 |    | 
 |   return true; | 
 | } | 
 |  | 
 | // Determines the context to return to after temporarily entering a | 
 | // context.  This depends in an unnecessarily complicated way on the | 
 | // exact ordering of callbacks from the parser. | 
 | DeclContext *Sema::getContainingDC(DeclContext *DC) { | 
 |  | 
 |   // Functions defined inline within classes aren't parsed until we've | 
 |   // finished parsing the top-level class, so the top-level class is | 
 |   // the context we'll need to return to. | 
 |   if (isa<FunctionDecl>(DC)) { | 
 |     DC = DC->getLexicalParent(); | 
 |  | 
 |     // A function not defined within a class will always return to its | 
 |     // lexical context. | 
 |     if (!isa<CXXRecordDecl>(DC)) | 
 |       return DC; | 
 |  | 
 |     // A C++ inline method/friend is parsed *after* the topmost class | 
 |     // it was declared in is fully parsed ("complete");  the topmost | 
 |     // class is the context we need to return to. | 
 |     while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent())) | 
 |       DC = RD; | 
 |  | 
 |     // Return the declaration context of the topmost class the inline method is | 
 |     // declared in. | 
 |     return DC; | 
 |   } | 
 |  | 
 |   // ObjCMethodDecls are parsed (for some reason) outside the context | 
 |   // of the class. | 
 |   if (isa<ObjCMethodDecl>(DC)) | 
 |     return DC->getLexicalParent()->getLexicalParent(); | 
 |  | 
 |   return DC->getLexicalParent(); | 
 | } | 
 |  | 
 | void Sema::PushDeclContext(Scope *S, DeclContext *DC) { | 
 |   assert(getContainingDC(DC) == CurContext && | 
 |       "The next DeclContext should be lexically contained in the current one."); | 
 |   CurContext = DC; | 
 |   S->setEntity(DC); | 
 | } | 
 |  | 
 | void Sema::PopDeclContext() { | 
 |   assert(CurContext && "DeclContext imbalance!"); | 
 |  | 
 |   CurContext = getContainingDC(CurContext); | 
 |   assert(CurContext && "Popped translation unit!"); | 
 | } | 
 |  | 
 | /// EnterDeclaratorContext - Used when we must lookup names in the context | 
 | /// of a declarator's nested name specifier. | 
 | /// | 
 | void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) { | 
 |   // C++0x [basic.lookup.unqual]p13: | 
 |   //   A name used in the definition of a static data member of class | 
 |   //   X (after the qualified-id of the static member) is looked up as | 
 |   //   if the name was used in a member function of X. | 
 |   // C++0x [basic.lookup.unqual]p14: | 
 |   //   If a variable member of a namespace is defined outside of the | 
 |   //   scope of its namespace then any name used in the definition of | 
 |   //   the variable member (after the declarator-id) is looked up as | 
 |   //   if the definition of the variable member occurred in its | 
 |   //   namespace. | 
 |   // Both of these imply that we should push a scope whose context | 
 |   // is the semantic context of the declaration.  We can't use | 
 |   // PushDeclContext here because that context is not necessarily | 
 |   // lexically contained in the current context.  Fortunately, | 
 |   // the containing scope should have the appropriate information. | 
 |  | 
 |   assert(!S->getEntity() && "scope already has entity"); | 
 |  | 
 | #ifndef NDEBUG | 
 |   Scope *Ancestor = S->getParent(); | 
 |   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent(); | 
 |   assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch"); | 
 | #endif | 
 |  | 
 |   CurContext = DC; | 
 |   S->setEntity(DC); | 
 | } | 
 |  | 
 | void Sema::ExitDeclaratorContext(Scope *S) { | 
 |   assert(S->getEntity() == CurContext && "Context imbalance!"); | 
 |  | 
 |   // Switch back to the lexical context.  The safety of this is | 
 |   // enforced by an assert in EnterDeclaratorContext. | 
 |   Scope *Ancestor = S->getParent(); | 
 |   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent(); | 
 |   CurContext = (DeclContext*) Ancestor->getEntity(); | 
 |  | 
 |   // We don't need to do anything with the scope, which is going to | 
 |   // disappear. | 
 | } | 
 |  | 
 | /// \brief Determine whether we allow overloading of the function | 
 | /// PrevDecl with another declaration. | 
 | /// | 
 | /// This routine determines whether overloading is possible, not | 
 | /// whether some new function is actually an overload. It will return | 
 | /// true in C++ (where we can always provide overloads) or, as an | 
 | /// extension, in C when the previous function is already an | 
 | /// overloaded function declaration or has the "overloadable" | 
 | /// attribute. | 
 | static bool AllowOverloadingOfFunction(LookupResult &Previous, | 
 |                                        ASTContext &Context) { | 
 |   if (Context.getLangOptions().CPlusPlus) | 
 |     return true; | 
 |  | 
 |   if (Previous.getResultKind() == LookupResult::FoundOverloaded) | 
 |     return true; | 
 |  | 
 |   return (Previous.getResultKind() == LookupResult::Found | 
 |           && Previous.getFoundDecl()->hasAttr<OverloadableAttr>()); | 
 | } | 
 |  | 
 | /// Add this decl to the scope shadowed decl chains. | 
 | void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) { | 
 |   // Move up the scope chain until we find the nearest enclosing | 
 |   // non-transparent context. The declaration will be introduced into this | 
 |   // scope. | 
 |   while (S->getEntity() && | 
 |          ((DeclContext *)S->getEntity())->isTransparentContext()) | 
 |     S = S->getParent(); | 
 |  | 
 |   // Add scoped declarations into their context, so that they can be | 
 |   // found later. Declarations without a context won't be inserted | 
 |   // into any context. | 
 |   if (AddToContext) | 
 |     CurContext->addDecl(D); | 
 |  | 
 |   // Out-of-line definitions shouldn't be pushed into scope in C++. | 
 |   // Out-of-line variable and function definitions shouldn't even in C. | 
 |   if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) && | 
 |       D->isOutOfLine()) | 
 |     return; | 
 |  | 
 |   // Template instantiations should also not be pushed into scope. | 
 |   if (isa<FunctionDecl>(D) && | 
 |       cast<FunctionDecl>(D)->isFunctionTemplateSpecialization()) | 
 |     return; | 
 |  | 
 |   // If this replaces anything in the current scope,  | 
 |   IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()), | 
 |                                IEnd = IdResolver.end(); | 
 |   for (; I != IEnd; ++I) { | 
 |     if (S->isDeclScope(*I) && D->declarationReplaces(*I)) { | 
 |       S->RemoveDecl(*I); | 
 |       IdResolver.RemoveDecl(*I); | 
 |  | 
 |       // Should only need to replace one decl. | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   S->AddDecl(D); | 
 |   IdResolver.AddDecl(D); | 
 | } | 
 |  | 
 | bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) { | 
 |   return IdResolver.isDeclInScope(D, Ctx, Context, S); | 
 | } | 
 |  | 
 | Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) { | 
 |   DeclContext *TargetDC = DC->getPrimaryContext(); | 
 |   do { | 
 |     if (DeclContext *ScopeDC = (DeclContext*) S->getEntity()) | 
 |       if (ScopeDC->getPrimaryContext() == TargetDC) | 
 |         return S; | 
 |   } while ((S = S->getParent())); | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | static bool isOutOfScopePreviousDeclaration(NamedDecl *, | 
 |                                             DeclContext*, | 
 |                                             ASTContext&); | 
 |  | 
 | /// Filters out lookup results that don't fall within the given scope | 
 | /// as determined by isDeclInScope. | 
 | static void FilterLookupForScope(Sema &SemaRef, LookupResult &R, | 
 |                                  DeclContext *Ctx, Scope *S, | 
 |                                  bool ConsiderLinkage) { | 
 |   LookupResult::Filter F = R.makeFilter(); | 
 |   while (F.hasNext()) { | 
 |     NamedDecl *D = F.next(); | 
 |  | 
 |     if (SemaRef.isDeclInScope(D, Ctx, S)) | 
 |       continue; | 
 |  | 
 |     if (ConsiderLinkage && | 
 |         isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context)) | 
 |       continue; | 
 |      | 
 |     F.erase(); | 
 |   } | 
 |  | 
 |   F.done(); | 
 | } | 
 |  | 
 | static bool isUsingDecl(NamedDecl *D) { | 
 |   return isa<UsingShadowDecl>(D) || | 
 |          isa<UnresolvedUsingTypenameDecl>(D) || | 
 |          isa<UnresolvedUsingValueDecl>(D); | 
 | } | 
 |  | 
 | /// Removes using shadow declarations from the lookup results. | 
 | static void RemoveUsingDecls(LookupResult &R) { | 
 |   LookupResult::Filter F = R.makeFilter(); | 
 |   while (F.hasNext()) | 
 |     if (isUsingDecl(F.next())) | 
 |       F.erase(); | 
 |  | 
 |   F.done(); | 
 | } | 
 |  | 
 | /// \brief Check for this common pattern: | 
 | /// @code | 
 | /// class S { | 
 | ///   S(const S&); // DO NOT IMPLEMENT | 
 | ///   void operator=(const S&); // DO NOT IMPLEMENT | 
 | /// }; | 
 | /// @endcode | 
 | static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) { | 
 |   // FIXME: Should check for private access too but access is set after we get | 
 |   // the decl here. | 
 |   if (D->isThisDeclarationADefinition()) | 
 |     return false; | 
 |  | 
 |   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) | 
 |     return CD->isCopyConstructor(); | 
 |   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) | 
 |     return Method->isCopyAssignmentOperator(); | 
 |   return false; | 
 | } | 
 |  | 
 | bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const { | 
 |   assert(D); | 
 |  | 
 |   if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>()) | 
 |     return false; | 
 |  | 
 |   // Ignore class templates. | 
 |   if (D->getDeclContext()->isDependentContext()) | 
 |     return false; | 
 |  | 
 |   // We warn for unused decls internal to the translation unit. | 
 |   if (D->getLinkage() == ExternalLinkage) | 
 |     return false; | 
 |  | 
 |   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | 
 |     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) | 
 |       return false; | 
 |  | 
 |     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { | 
 |       if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD)) | 
 |         return false; | 
 |     } else { | 
 |       // 'static inline' functions are used in headers; don't warn. | 
 |       if (FD->getStorageClass() == SC_Static && | 
 |           FD->isInlineSpecified()) | 
 |         return false; | 
 |     } | 
 |  | 
 |     if (FD->isThisDeclarationADefinition()) | 
 |       return !Context.DeclMustBeEmitted(FD); | 
 |     return true; | 
 |   } | 
 |  | 
 |   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { | 
 |     if (VD->isStaticDataMember() && | 
 |         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) | 
 |       return false; | 
 |  | 
 |     if ( VD->isFileVarDecl() && | 
 |         !VD->getType().isConstant(Context)) | 
 |       return !Context.DeclMustBeEmitted(VD); | 
 |   } | 
 |  | 
 |    return false; | 
 |  } | 
 |  | 
 |  void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) { | 
 |   if (!D) | 
 |     return; | 
 |  | 
 |   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | 
 |     const FunctionDecl *First = FD->getFirstDeclaration(); | 
 |     if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First)) | 
 |       return; // First should already be in the vector. | 
 |   } | 
 |  | 
 |   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { | 
 |     const VarDecl *First = VD->getFirstDeclaration(); | 
 |     if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First)) | 
 |       return; // First should already be in the vector. | 
 |   } | 
 |  | 
 |    if (ShouldWarnIfUnusedFileScopedDecl(D)) | 
 |      UnusedFileScopedDecls.push_back(D); | 
 |  } | 
 |  | 
 | static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) { | 
 |   if (D->isInvalidDecl()) | 
 |     return false; | 
 |  | 
 |   if (D->isUsed() || D->hasAttr<UnusedAttr>()) | 
 |     return false; | 
 |  | 
 |   // White-list anything that isn't a local variable. | 
 |   if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) || | 
 |       !D->getDeclContext()->isFunctionOrMethod()) | 
 |     return false; | 
 |  | 
 |   // Types of valid local variables should be complete, so this should succeed. | 
 |   if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) { | 
 |  | 
 |     // White-list anything with an __attribute__((unused)) type. | 
 |     QualType Ty = VD->getType(); | 
 |  | 
 |     // Only look at the outermost level of typedef. | 
 |     if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) { | 
 |       if (TT->getDecl()->hasAttr<UnusedAttr>()) | 
 |         return false; | 
 |     } | 
 |  | 
 |     // If we failed to complete the type for some reason, or if the type is | 
 |     // dependent, don't diagnose the variable.  | 
 |     if (Ty->isIncompleteType() || Ty->isDependentType()) | 
 |       return false; | 
 |  | 
 |     if (const TagType *TT = Ty->getAs<TagType>()) { | 
 |       const TagDecl *Tag = TT->getDecl(); | 
 |       if (Tag->hasAttr<UnusedAttr>()) | 
 |         return false; | 
 |  | 
 |       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) { | 
 |         // FIXME: Checking for the presence of a user-declared constructor | 
 |         // isn't completely accurate; we'd prefer to check that the initializer | 
 |         // has no side effects. | 
 |         if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor()) | 
 |           return false; | 
 |       } | 
 |     } | 
 |  | 
 |     // TODO: __attribute__((unused)) templates? | 
 |   } | 
 |    | 
 |   return true; | 
 | } | 
 |  | 
 | void Sema::DiagnoseUnusedDecl(const NamedDecl *D) { | 
 |   if (!ShouldDiagnoseUnusedDecl(D)) | 
 |     return; | 
 |    | 
 |   if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable()) | 
 |     Diag(D->getLocation(), diag::warn_unused_exception_param) | 
 |     << D->getDeclName(); | 
 |   else | 
 |     Diag(D->getLocation(), diag::warn_unused_variable)  | 
 |     << D->getDeclName(); | 
 | } | 
 |  | 
 | void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) { | 
 |   if (S->decl_empty()) return; | 
 |   assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && | 
 |          "Scope shouldn't contain decls!"); | 
 |  | 
 |   for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end(); | 
 |        I != E; ++I) { | 
 |     Decl *TmpD = (*I); | 
 |     assert(TmpD && "This decl didn't get pushed??"); | 
 |  | 
 |     assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?"); | 
 |     NamedDecl *D = cast<NamedDecl>(TmpD); | 
 |  | 
 |     if (!D->getDeclName()) continue; | 
 |  | 
 |     // Diagnose unused variables in this scope. | 
 |     if (S->getNumErrorsAtStart() == getDiagnostics().getNumErrors()) | 
 |       DiagnoseUnusedDecl(D); | 
 |      | 
 |     // Remove this name from our lexical scope. | 
 |     IdResolver.RemoveDecl(D); | 
 |   } | 
 | } | 
 |  | 
 | /// \brief Look for an Objective-C class in the translation unit. | 
 | /// | 
 | /// \param Id The name of the Objective-C class we're looking for. If | 
 | /// typo-correction fixes this name, the Id will be updated | 
 | /// to the fixed name. | 
 | /// | 
 | /// \param IdLoc The location of the name in the translation unit. | 
 | /// | 
 | /// \param TypoCorrection If true, this routine will attempt typo correction | 
 | /// if there is no class with the given name. | 
 | /// | 
 | /// \returns The declaration of the named Objective-C class, or NULL if the | 
 | /// class could not be found. | 
 | ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id, | 
 |                                               SourceLocation IdLoc, | 
 |                                               bool TypoCorrection) { | 
 |   // The third "scope" argument is 0 since we aren't enabling lazy built-in | 
 |   // creation from this context. | 
 |   NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName); | 
 |  | 
 |   if (!IDecl && TypoCorrection) { | 
 |     // Perform typo correction at the given location, but only if we | 
 |     // find an Objective-C class name. | 
 |     LookupResult R(*this, Id, IdLoc, LookupOrdinaryName); | 
 |     if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) && | 
 |         (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) { | 
 |       Diag(IdLoc, diag::err_undef_interface_suggest) | 
 |         << Id << IDecl->getDeclName()  | 
 |         << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString()); | 
 |       Diag(IDecl->getLocation(), diag::note_previous_decl) | 
 |         << IDecl->getDeclName(); | 
 |        | 
 |       Id = IDecl->getIdentifier(); | 
 |     } | 
 |   } | 
 |  | 
 |   return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl); | 
 | } | 
 |  | 
 | /// getNonFieldDeclScope - Retrieves the innermost scope, starting | 
 | /// from S, where a non-field would be declared. This routine copes | 
 | /// with the difference between C and C++ scoping rules in structs and | 
 | /// unions. For example, the following code is well-formed in C but | 
 | /// ill-formed in C++: | 
 | /// @code | 
 | /// struct S6 { | 
 | ///   enum { BAR } e; | 
 | /// }; | 
 | /// | 
 | /// void test_S6() { | 
 | ///   struct S6 a; | 
 | ///   a.e = BAR; | 
 | /// } | 
 | /// @endcode | 
 | /// For the declaration of BAR, this routine will return a different | 
 | /// scope. The scope S will be the scope of the unnamed enumeration | 
 | /// within S6. In C++, this routine will return the scope associated | 
 | /// with S6, because the enumeration's scope is a transparent | 
 | /// context but structures can contain non-field names. In C, this | 
 | /// routine will return the translation unit scope, since the | 
 | /// enumeration's scope is a transparent context and structures cannot | 
 | /// contain non-field names. | 
 | Scope *Sema::getNonFieldDeclScope(Scope *S) { | 
 |   while (((S->getFlags() & Scope::DeclScope) == 0) || | 
 |          (S->getEntity() && | 
 |           ((DeclContext *)S->getEntity())->isTransparentContext()) || | 
 |          (S->isClassScope() && !getLangOptions().CPlusPlus)) | 
 |     S = S->getParent(); | 
 |   return S; | 
 | } | 
 |  | 
 | /// LazilyCreateBuiltin - The specified Builtin-ID was first used at | 
 | /// file scope.  lazily create a decl for it. ForRedeclaration is true | 
 | /// if we're creating this built-in in anticipation of redeclaring the | 
 | /// built-in. | 
 | NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid, | 
 |                                      Scope *S, bool ForRedeclaration, | 
 |                                      SourceLocation Loc) { | 
 |   Builtin::ID BID = (Builtin::ID)bid; | 
 |  | 
 |   ASTContext::GetBuiltinTypeError Error; | 
 |   QualType R = Context.GetBuiltinType(BID, Error); | 
 |   switch (Error) { | 
 |   case ASTContext::GE_None: | 
 |     // Okay | 
 |     break; | 
 |  | 
 |   case ASTContext::GE_Missing_stdio: | 
 |     if (ForRedeclaration) | 
 |       Diag(Loc, diag::err_implicit_decl_requires_stdio) | 
 |         << Context.BuiltinInfo.GetName(BID); | 
 |     return 0; | 
 |  | 
 |   case ASTContext::GE_Missing_setjmp: | 
 |     if (ForRedeclaration) | 
 |       Diag(Loc, diag::err_implicit_decl_requires_setjmp) | 
 |         << Context.BuiltinInfo.GetName(BID); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) { | 
 |     Diag(Loc, diag::ext_implicit_lib_function_decl) | 
 |       << Context.BuiltinInfo.GetName(BID) | 
 |       << R; | 
 |     if (Context.BuiltinInfo.getHeaderName(BID) && | 
 |         Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl) | 
 |           != Diagnostic::Ignored) | 
 |       Diag(Loc, diag::note_please_include_header) | 
 |         << Context.BuiltinInfo.getHeaderName(BID) | 
 |         << Context.BuiltinInfo.GetName(BID); | 
 |   } | 
 |  | 
 |   FunctionDecl *New = FunctionDecl::Create(Context, | 
 |                                            Context.getTranslationUnitDecl(), | 
 |                                            Loc, II, R, /*TInfo=*/0, | 
 |                                            SC_Extern, | 
 |                                            SC_None, false, | 
 |                                            /*hasPrototype=*/true); | 
 |   New->setImplicit(); | 
 |  | 
 |   // Create Decl objects for each parameter, adding them to the | 
 |   // FunctionDecl. | 
 |   if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) { | 
 |     llvm::SmallVector<ParmVarDecl*, 16> Params; | 
 |     for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) | 
 |       Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0, | 
 |                                            FT->getArgType(i), /*TInfo=*/0, | 
 |                                            SC_None, SC_None, 0)); | 
 |     New->setParams(Params.data(), Params.size()); | 
 |   } | 
 |  | 
 |   AddKnownFunctionAttributes(New); | 
 |  | 
 |   // TUScope is the translation-unit scope to insert this function into. | 
 |   // FIXME: This is hideous. We need to teach PushOnScopeChains to | 
 |   // relate Scopes to DeclContexts, and probably eliminate CurContext | 
 |   // entirely, but we're not there yet. | 
 |   DeclContext *SavedContext = CurContext; | 
 |   CurContext = Context.getTranslationUnitDecl(); | 
 |   PushOnScopeChains(New, TUScope); | 
 |   CurContext = SavedContext; | 
 |   return New; | 
 | } | 
 |  | 
 | /// MergeTypeDefDecl - We just parsed a typedef 'New' which has the | 
 | /// same name and scope as a previous declaration 'Old'.  Figure out | 
 | /// how to resolve this situation, merging decls or emitting | 
 | /// diagnostics as appropriate. If there was an error, set New to be invalid. | 
 | /// | 
 | void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) { | 
 |   // If the new decl is known invalid already, don't bother doing any | 
 |   // merging checks. | 
 |   if (New->isInvalidDecl()) return; | 
 |  | 
 |   // Allow multiple definitions for ObjC built-in typedefs. | 
 |   // FIXME: Verify the underlying types are equivalent! | 
 |   if (getLangOptions().ObjC1) { | 
 |     const IdentifierInfo *TypeID = New->getIdentifier(); | 
 |     switch (TypeID->getLength()) { | 
 |     default: break; | 
 |     case 2: | 
 |       if (!TypeID->isStr("id")) | 
 |         break; | 
 |       Context.ObjCIdRedefinitionType = New->getUnderlyingType(); | 
 |       // Install the built-in type for 'id', ignoring the current definition. | 
 |       New->setTypeForDecl(Context.getObjCIdType().getTypePtr()); | 
 |       return; | 
 |     case 5: | 
 |       if (!TypeID->isStr("Class")) | 
 |         break; | 
 |       Context.ObjCClassRedefinitionType = New->getUnderlyingType(); | 
 |       // Install the built-in type for 'Class', ignoring the current definition. | 
 |       New->setTypeForDecl(Context.getObjCClassType().getTypePtr()); | 
 |       return; | 
 |     case 3: | 
 |       if (!TypeID->isStr("SEL")) | 
 |         break; | 
 |       Context.ObjCSelRedefinitionType = New->getUnderlyingType(); | 
 |       // Install the built-in type for 'SEL', ignoring the current definition. | 
 |       New->setTypeForDecl(Context.getObjCSelType().getTypePtr()); | 
 |       return; | 
 |     case 8: | 
 |       if (!TypeID->isStr("Protocol")) | 
 |         break; | 
 |       Context.setObjCProtoType(New->getUnderlyingType()); | 
 |       return; | 
 |     } | 
 |     // Fall through - the typedef name was not a builtin type. | 
 |   } | 
 |  | 
 |   // Verify the old decl was also a type. | 
 |   TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>(); | 
 |   if (!Old) { | 
 |     Diag(New->getLocation(), diag::err_redefinition_different_kind) | 
 |       << New->getDeclName(); | 
 |  | 
 |     NamedDecl *OldD = OldDecls.getRepresentativeDecl(); | 
 |     if (OldD->getLocation().isValid()) | 
 |       Diag(OldD->getLocation(), diag::note_previous_definition); | 
 |  | 
 |     return New->setInvalidDecl(); | 
 |   } | 
 |  | 
 |   // If the old declaration is invalid, just give up here. | 
 |   if (Old->isInvalidDecl()) | 
 |     return New->setInvalidDecl(); | 
 |  | 
 |   // Determine the "old" type we'll use for checking and diagnostics. | 
 |   QualType OldType; | 
 |   if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old)) | 
 |     OldType = OldTypedef->getUnderlyingType(); | 
 |   else | 
 |     OldType = Context.getTypeDeclType(Old); | 
 |  | 
 |   // If the typedef types are not identical, reject them in all languages and | 
 |   // with any extensions enabled. | 
 |  | 
 |   if (OldType != New->getUnderlyingType() && | 
 |       Context.getCanonicalType(OldType) != | 
 |       Context.getCanonicalType(New->getUnderlyingType())) { | 
 |     Diag(New->getLocation(), diag::err_redefinition_different_typedef) | 
 |       << New->getUnderlyingType() << OldType; | 
 |     if (Old->getLocation().isValid()) | 
 |       Diag(Old->getLocation(), diag::note_previous_definition); | 
 |     return New->setInvalidDecl(); | 
 |   } | 
 |  | 
 |   // The types match.  Link up the redeclaration chain if the old | 
 |   // declaration was a typedef. | 
 |   // FIXME: this is a potential source of wierdness if the type | 
 |   // spellings don't match exactly. | 
 |   if (isa<TypedefDecl>(Old)) | 
 |     New->setPreviousDeclaration(cast<TypedefDecl>(Old)); | 
 |  | 
 |   if (getLangOptions().Microsoft) | 
 |     return; | 
 |  | 
 |   if (getLangOptions().CPlusPlus) { | 
 |     // C++ [dcl.typedef]p2: | 
 |     //   In a given non-class scope, a typedef specifier can be used to | 
 |     //   redefine the name of any type declared in that scope to refer | 
 |     //   to the type to which it already refers. | 
 |     if (!isa<CXXRecordDecl>(CurContext)) | 
 |       return; | 
 |  | 
 |     // C++0x [dcl.typedef]p4: | 
 |     //   In a given class scope, a typedef specifier can be used to redefine  | 
 |     //   any class-name declared in that scope that is not also a typedef-name | 
 |     //   to refer to the type to which it already refers. | 
 |     // | 
 |     // This wording came in via DR424, which was a correction to the | 
 |     // wording in DR56, which accidentally banned code like: | 
 |     // | 
 |     //   struct S { | 
 |     //     typedef struct A { } A; | 
 |     //   }; | 
 |     // | 
 |     // in the C++03 standard. We implement the C++0x semantics, which | 
 |     // allow the above but disallow | 
 |     // | 
 |     //   struct S { | 
 |     //     typedef int I; | 
 |     //     typedef int I; | 
 |     //   }; | 
 |     // | 
 |     // since that was the intent of DR56. | 
 |     if (!isa<TypedefDecl >(Old)) | 
 |       return; | 
 |  | 
 |     Diag(New->getLocation(), diag::err_redefinition) | 
 |       << New->getDeclName(); | 
 |     Diag(Old->getLocation(), diag::note_previous_definition); | 
 |     return New->setInvalidDecl(); | 
 |   } | 
 |  | 
 |   // If we have a redefinition of a typedef in C, emit a warning.  This warning | 
 |   // is normally mapped to an error, but can be controlled with | 
 |   // -Wtypedef-redefinition.  If either the original or the redefinition is | 
 |   // in a system header, don't emit this for compatibility with GCC. | 
 |   if (getDiagnostics().getSuppressSystemWarnings() && | 
 |       (Context.getSourceManager().isInSystemHeader(Old->getLocation()) || | 
 |        Context.getSourceManager().isInSystemHeader(New->getLocation()))) | 
 |     return; | 
 |  | 
 |   Diag(New->getLocation(), diag::warn_redefinition_of_typedef) | 
 |     << New->getDeclName(); | 
 |   Diag(Old->getLocation(), diag::note_previous_definition); | 
 |   return; | 
 | } | 
 |  | 
 | /// DeclhasAttr - returns true if decl Declaration already has the target | 
 | /// attribute. | 
 | static bool | 
 | DeclHasAttr(const Decl *D, const Attr *A) { | 
 |   const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A); | 
 |   for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i) | 
 |     if ((*i)->getKind() == A->getKind()) { | 
 |       // FIXME: Don't hardcode this check | 
 |       if (OA && isa<OwnershipAttr>(*i)) | 
 |         return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind(); | 
 |       return true; | 
 |     } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// MergeDeclAttributes - append attributes from the Old decl to the New one. | 
 | static void MergeDeclAttributes(Decl *New, Decl *Old, ASTContext &C) { | 
 |   if (!Old->hasAttrs()) | 
 |     return; | 
 |   // Ensure that any moving of objects within the allocated map is done before | 
 |   // we process them. | 
 |   if (!New->hasAttrs()) | 
 |     New->setAttrs(AttrVec()); | 
 |   for (Decl::attr_iterator i = Old->attr_begin(), e = Old->attr_end(); i != e; | 
 |        ++i) { | 
 |     // FIXME: Make this more general than just checking for Overloadable. | 
 |     if (!DeclHasAttr(New, *i) && (*i)->getKind() != attr::Overloadable) { | 
 |       Attr *NewAttr = (*i)->clone(C); | 
 |       NewAttr->setInherited(true); | 
 |       New->addAttr(NewAttr); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | namespace { | 
 |  | 
 | /// Used in MergeFunctionDecl to keep track of function parameters in | 
 | /// C. | 
 | struct GNUCompatibleParamWarning { | 
 |   ParmVarDecl *OldParm; | 
 |   ParmVarDecl *NewParm; | 
 |   QualType PromotedType; | 
 | }; | 
 |  | 
 | } | 
 |  | 
 | /// getSpecialMember - get the special member enum for a method. | 
 | Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) { | 
 |   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { | 
 |     if (Ctor->isCopyConstructor()) | 
 |       return Sema::CXXCopyConstructor; | 
 |      | 
 |     return Sema::CXXConstructor; | 
 |   }  | 
 |    | 
 |   if (isa<CXXDestructorDecl>(MD)) | 
 |     return Sema::CXXDestructor; | 
 |    | 
 |   assert(MD->isCopyAssignmentOperator() &&  | 
 |          "Must have copy assignment operator"); | 
 |   return Sema::CXXCopyAssignment; | 
 | } | 
 |  | 
 | /// canRedefineFunction - checks if a function can be redefined. Currently, | 
 | /// only extern inline functions can be redefined, and even then only in | 
 | /// GNU89 mode. | 
 | static bool canRedefineFunction(const FunctionDecl *FD, | 
 |                                 const LangOptions& LangOpts) { | 
 |   return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus && | 
 |           FD->isInlineSpecified() && | 
 |           FD->getStorageClass() == SC_Extern); | 
 | } | 
 |  | 
 | /// MergeFunctionDecl - We just parsed a function 'New' from | 
 | /// declarator D which has the same name and scope as a previous | 
 | /// declaration 'Old'.  Figure out how to resolve this situation, | 
 | /// merging decls or emitting diagnostics as appropriate. | 
 | /// | 
 | /// In C++, New and Old must be declarations that are not | 
 | /// overloaded. Use IsOverload to determine whether New and Old are | 
 | /// overloaded, and to select the Old declaration that New should be | 
 | /// merged with. | 
 | /// | 
 | /// Returns true if there was an error, false otherwise. | 
 | bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) { | 
 |   // Verify the old decl was also a function. | 
 |   FunctionDecl *Old = 0; | 
 |   if (FunctionTemplateDecl *OldFunctionTemplate | 
 |         = dyn_cast<FunctionTemplateDecl>(OldD)) | 
 |     Old = OldFunctionTemplate->getTemplatedDecl(); | 
 |   else | 
 |     Old = dyn_cast<FunctionDecl>(OldD); | 
 |   if (!Old) { | 
 |     if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) { | 
 |       Diag(New->getLocation(), diag::err_using_decl_conflict_reverse); | 
 |       Diag(Shadow->getTargetDecl()->getLocation(), | 
 |            diag::note_using_decl_target); | 
 |       Diag(Shadow->getUsingDecl()->getLocation(), | 
 |            diag::note_using_decl) << 0; | 
 |       return true; | 
 |     } | 
 |  | 
 |     Diag(New->getLocation(), diag::err_redefinition_different_kind) | 
 |       << New->getDeclName(); | 
 |     Diag(OldD->getLocation(), diag::note_previous_definition); | 
 |     return true; | 
 |   } | 
 |  | 
 |   // Determine whether the previous declaration was a definition, | 
 |   // implicit declaration, or a declaration. | 
 |   diag::kind PrevDiag; | 
 |   if (Old->isThisDeclarationADefinition()) | 
 |     PrevDiag = diag::note_previous_definition; | 
 |   else if (Old->isImplicit()) | 
 |     PrevDiag = diag::note_previous_implicit_declaration; | 
 |   else | 
 |     PrevDiag = diag::note_previous_declaration; | 
 |  | 
 |   QualType OldQType = Context.getCanonicalType(Old->getType()); | 
 |   QualType NewQType = Context.getCanonicalType(New->getType()); | 
 |  | 
 |   // Don't complain about this if we're in GNU89 mode and the old function | 
 |   // is an extern inline function. | 
 |   if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) && | 
 |       New->getStorageClass() == SC_Static && | 
 |       Old->getStorageClass() != SC_Static && | 
 |       !canRedefineFunction(Old, getLangOptions())) { | 
 |     Diag(New->getLocation(), diag::err_static_non_static) | 
 |       << New; | 
 |     Diag(Old->getLocation(), PrevDiag); | 
 |     return true; | 
 |   } | 
 |  | 
 |   // If a function is first declared with a calling convention, but is | 
 |   // later declared or defined without one, the second decl assumes the | 
 |   // calling convention of the first. | 
 |   // | 
 |   // For the new decl, we have to look at the NON-canonical type to tell the | 
 |   // difference between a function that really doesn't have a calling | 
 |   // convention and one that is declared cdecl. That's because in | 
 |   // canonicalization (see ASTContext.cpp), cdecl is canonicalized away | 
 |   // because it is the default calling convention. | 
 |   // | 
 |   // Note also that we DO NOT return at this point, because we still have | 
 |   // other tests to run. | 
 |   const FunctionType *OldType = OldQType->getAs<FunctionType>(); | 
 |   const FunctionType *NewType = New->getType()->getAs<FunctionType>(); | 
 |   const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo(); | 
 |   const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo(); | 
 |   if (OldTypeInfo.getCC() != CC_Default && | 
 |       NewTypeInfo.getCC() == CC_Default) { | 
 |     NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC()); | 
 |     New->setType(NewQType); | 
 |     NewQType = Context.getCanonicalType(NewQType); | 
 |   } else if (!Context.isSameCallConv(OldTypeInfo.getCC(), | 
 |                                      NewTypeInfo.getCC())) { | 
 |     // Calling conventions really aren't compatible, so complain. | 
 |     Diag(New->getLocation(), diag::err_cconv_change) | 
 |       << FunctionType::getNameForCallConv(NewTypeInfo.getCC()) | 
 |       << (OldTypeInfo.getCC() == CC_Default) | 
 |       << (OldTypeInfo.getCC() == CC_Default ? "" : | 
 |           FunctionType::getNameForCallConv(OldTypeInfo.getCC())); | 
 |     Diag(Old->getLocation(), diag::note_previous_declaration); | 
 |     return true; | 
 |   } | 
 |  | 
 |   // FIXME: diagnose the other way around? | 
 |   if (OldType->getNoReturnAttr() && !NewType->getNoReturnAttr()) { | 
 |     NewQType = Context.getNoReturnType(NewQType); | 
 |     New->setType(NewQType); | 
 |     assert(NewQType.isCanonical()); | 
 |   } | 
 |  | 
 |   // Merge regparm attribute. | 
 |   if (OldType->getRegParmType() != NewType->getRegParmType()) { | 
 |     if (NewType->getRegParmType()) { | 
 |       Diag(New->getLocation(), diag::err_regparm_mismatch) | 
 |         << NewType->getRegParmType() | 
 |         << OldType->getRegParmType(); | 
 |       Diag(Old->getLocation(), diag::note_previous_declaration);       | 
 |       return true; | 
 |     } | 
 |      | 
 |     NewQType = Context.getRegParmType(NewQType, OldType->getRegParmType()); | 
 |     New->setType(NewQType); | 
 |     assert(NewQType.isCanonical());     | 
 |   } | 
 |    | 
 |   if (getLangOptions().CPlusPlus) { | 
 |     // (C++98 13.1p2): | 
 |     //   Certain function declarations cannot be overloaded: | 
 |     //     -- Function declarations that differ only in the return type | 
 |     //        cannot be overloaded. | 
 |     QualType OldReturnType | 
 |       = cast<FunctionType>(OldQType.getTypePtr())->getResultType(); | 
 |     QualType NewReturnType | 
 |       = cast<FunctionType>(NewQType.getTypePtr())->getResultType(); | 
 |     QualType ResQT; | 
 |     if (OldReturnType != NewReturnType) { | 
 |       if (NewReturnType->isObjCObjectPointerType() | 
 |           && OldReturnType->isObjCObjectPointerType()) | 
 |         ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType); | 
 |       if (ResQT.isNull()) { | 
 |         Diag(New->getLocation(), diag::err_ovl_diff_return_type); | 
 |         Diag(Old->getLocation(), PrevDiag) << Old << Old->getType(); | 
 |         return true; | 
 |       } | 
 |       else | 
 |         NewQType = ResQT; | 
 |     } | 
 |  | 
 |     const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old); | 
 |     CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New); | 
 |     if (OldMethod && NewMethod) { | 
 |       // Preserve triviality. | 
 |       NewMethod->setTrivial(OldMethod->isTrivial()); | 
 |  | 
 |       bool isFriend = NewMethod->getFriendObjectKind(); | 
 |  | 
 |       if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) { | 
 |         //    -- Member function declarations with the same name and the | 
 |         //       same parameter types cannot be overloaded if any of them | 
 |         //       is a static member function declaration. | 
 |         if (OldMethod->isStatic() || NewMethod->isStatic()) { | 
 |           Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member); | 
 |           Diag(Old->getLocation(), PrevDiag) << Old << Old->getType(); | 
 |           return true; | 
 |         } | 
 |        | 
 |         // C++ [class.mem]p1: | 
 |         //   [...] A member shall not be declared twice in the | 
 |         //   member-specification, except that a nested class or member | 
 |         //   class template can be declared and then later defined. | 
 |         unsigned NewDiag; | 
 |         if (isa<CXXConstructorDecl>(OldMethod)) | 
 |           NewDiag = diag::err_constructor_redeclared; | 
 |         else if (isa<CXXDestructorDecl>(NewMethod)) | 
 |           NewDiag = diag::err_destructor_redeclared; | 
 |         else if (isa<CXXConversionDecl>(NewMethod)) | 
 |           NewDiag = diag::err_conv_function_redeclared; | 
 |         else | 
 |           NewDiag = diag::err_member_redeclared; | 
 |  | 
 |         Diag(New->getLocation(), NewDiag); | 
 |         Diag(Old->getLocation(), PrevDiag) << Old << Old->getType(); | 
 |  | 
 |       // Complain if this is an explicit declaration of a special | 
 |       // member that was initially declared implicitly. | 
 |       // | 
 |       // As an exception, it's okay to befriend such methods in order | 
 |       // to permit the implicit constructor/destructor/operator calls. | 
 |       } else if (OldMethod->isImplicit()) { | 
 |         if (isFriend) { | 
 |           NewMethod->setImplicit(); | 
 |         } else { | 
 |           Diag(NewMethod->getLocation(), | 
 |                diag::err_definition_of_implicitly_declared_member)  | 
 |             << New << getSpecialMember(OldMethod); | 
 |           return true; | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // (C++98 8.3.5p3): | 
 |     //   All declarations for a function shall agree exactly in both the | 
 |     //   return type and the parameter-type-list. | 
 |     // attributes should be ignored when comparing. | 
 |     if (Context.getNoReturnType(OldQType, false) == | 
 |         Context.getNoReturnType(NewQType, false)) | 
 |       return MergeCompatibleFunctionDecls(New, Old); | 
 |  | 
 |     // Fall through for conflicting redeclarations and redefinitions. | 
 |   } | 
 |  | 
 |   // C: Function types need to be compatible, not identical. This handles | 
 |   // duplicate function decls like "void f(int); void f(enum X);" properly. | 
 |   if (!getLangOptions().CPlusPlus && | 
 |       Context.typesAreCompatible(OldQType, NewQType)) { | 
 |     const FunctionType *OldFuncType = OldQType->getAs<FunctionType>(); | 
 |     const FunctionType *NewFuncType = NewQType->getAs<FunctionType>(); | 
 |     const FunctionProtoType *OldProto = 0; | 
 |     if (isa<FunctionNoProtoType>(NewFuncType) && | 
 |         (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) { | 
 |       // The old declaration provided a function prototype, but the | 
 |       // new declaration does not. Merge in the prototype. | 
 |       assert(!OldProto->hasExceptionSpec() && "Exception spec in C"); | 
 |       llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(), | 
 |                                                  OldProto->arg_type_end()); | 
 |       NewQType = Context.getFunctionType(NewFuncType->getResultType(), | 
 |                                          ParamTypes.data(), ParamTypes.size(), | 
 |                                          OldProto->isVariadic(), | 
 |                                          OldProto->getTypeQuals(), | 
 |                                          false, false, 0, 0, | 
 |                                          OldProto->getExtInfo()); | 
 |       New->setType(NewQType); | 
 |       New->setHasInheritedPrototype(); | 
 |  | 
 |       // Synthesize a parameter for each argument type. | 
 |       llvm::SmallVector<ParmVarDecl*, 16> Params; | 
 |       for (FunctionProtoType::arg_type_iterator | 
 |              ParamType = OldProto->arg_type_begin(), | 
 |              ParamEnd = OldProto->arg_type_end(); | 
 |            ParamType != ParamEnd; ++ParamType) { | 
 |         ParmVarDecl *Param = ParmVarDecl::Create(Context, New, | 
 |                                                  SourceLocation(), 0, | 
 |                                                  *ParamType, /*TInfo=*/0, | 
 |                                                  SC_None, SC_None, | 
 |                                                  0); | 
 |         Param->setImplicit(); | 
 |         Params.push_back(Param); | 
 |       } | 
 |  | 
 |       New->setParams(Params.data(), Params.size()); | 
 |     } | 
 |  | 
 |     return MergeCompatibleFunctionDecls(New, Old); | 
 |   } | 
 |  | 
 |   // GNU C permits a K&R definition to follow a prototype declaration | 
 |   // if the declared types of the parameters in the K&R definition | 
 |   // match the types in the prototype declaration, even when the | 
 |   // promoted types of the parameters from the K&R definition differ | 
 |   // from the types in the prototype. GCC then keeps the types from | 
 |   // the prototype. | 
 |   // | 
 |   // If a variadic prototype is followed by a non-variadic K&R definition, | 
 |   // the K&R definition becomes variadic.  This is sort of an edge case, but | 
 |   // it's legal per the standard depending on how you read C99 6.7.5.3p15 and | 
 |   // C99 6.9.1p8. | 
 |   if (!getLangOptions().CPlusPlus && | 
 |       Old->hasPrototype() && !New->hasPrototype() && | 
 |       New->getType()->getAs<FunctionProtoType>() && | 
 |       Old->getNumParams() == New->getNumParams()) { | 
 |     llvm::SmallVector<QualType, 16> ArgTypes; | 
 |     llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings; | 
 |     const FunctionProtoType *OldProto | 
 |       = Old->getType()->getAs<FunctionProtoType>(); | 
 |     const FunctionProtoType *NewProto | 
 |       = New->getType()->getAs<FunctionProtoType>(); | 
 |  | 
 |     // Determine whether this is the GNU C extension. | 
 |     QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(), | 
 |                                                NewProto->getResultType()); | 
 |     bool LooseCompatible = !MergedReturn.isNull(); | 
 |     for (unsigned Idx = 0, End = Old->getNumParams(); | 
 |          LooseCompatible && Idx != End; ++Idx) { | 
 |       ParmVarDecl *OldParm = Old->getParamDecl(Idx); | 
 |       ParmVarDecl *NewParm = New->getParamDecl(Idx); | 
 |       if (Context.typesAreCompatible(OldParm->getType(), | 
 |                                      NewProto->getArgType(Idx))) { | 
 |         ArgTypes.push_back(NewParm->getType()); | 
 |       } else if (Context.typesAreCompatible(OldParm->getType(), | 
 |                                             NewParm->getType(), | 
 |                                             /*CompareUnqualified=*/true)) { | 
 |         GNUCompatibleParamWarning Warn | 
 |           = { OldParm, NewParm, NewProto->getArgType(Idx) }; | 
 |         Warnings.push_back(Warn); | 
 |         ArgTypes.push_back(NewParm->getType()); | 
 |       } else | 
 |         LooseCompatible = false; | 
 |     } | 
 |  | 
 |     if (LooseCompatible) { | 
 |       for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) { | 
 |         Diag(Warnings[Warn].NewParm->getLocation(), | 
 |              diag::ext_param_promoted_not_compatible_with_prototype) | 
 |           << Warnings[Warn].PromotedType | 
 |           << Warnings[Warn].OldParm->getType(); | 
 |         if (Warnings[Warn].OldParm->getLocation().isValid()) | 
 |           Diag(Warnings[Warn].OldParm->getLocation(), | 
 |                diag::note_previous_declaration); | 
 |       } | 
 |  | 
 |       New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0], | 
 |                                            ArgTypes.size(), | 
 |                                            OldProto->isVariadic(), 0, | 
 |                                            false, false, 0, 0, | 
 |                                            OldProto->getExtInfo())); | 
 |       return MergeCompatibleFunctionDecls(New, Old); | 
 |     } | 
 |  | 
 |     // Fall through to diagnose conflicting types. | 
 |   } | 
 |  | 
 |   // A function that has already been declared has been redeclared or defined | 
 |   // with a different type- show appropriate diagnostic | 
 |   if (unsigned BuiltinID = Old->getBuiltinID()) { | 
 |     // The user has declared a builtin function with an incompatible | 
 |     // signature. | 
 |     if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) { | 
 |       // The function the user is redeclaring is a library-defined | 
 |       // function like 'malloc' or 'printf'. Warn about the | 
 |       // redeclaration, then pretend that we don't know about this | 
 |       // library built-in. | 
 |       Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New; | 
 |       Diag(Old->getLocation(), diag::note_previous_builtin_declaration) | 
 |         << Old << Old->getType(); | 
 |       New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin); | 
 |       Old->setInvalidDecl(); | 
 |       return false; | 
 |     } | 
 |  | 
 |     PrevDiag = diag::note_previous_builtin_declaration; | 
 |   } | 
 |  | 
 |   Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName(); | 
 |   Diag(Old->getLocation(), PrevDiag) << Old << Old->getType(); | 
 |   return true; | 
 | } | 
 |  | 
 | /// \brief Completes the merge of two function declarations that are | 
 | /// known to be compatible. | 
 | /// | 
 | /// This routine handles the merging of attributes and other | 
 | /// properties of function declarations form the old declaration to | 
 | /// the new declaration, once we know that New is in fact a | 
 | /// redeclaration of Old. | 
 | /// | 
 | /// \returns false | 
 | bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) { | 
 |   // Merge the attributes | 
 |   MergeDeclAttributes(New, Old, Context); | 
 |  | 
 |   // Merge the storage class. | 
 |   if (Old->getStorageClass() != SC_Extern && | 
 |       Old->getStorageClass() != SC_None) | 
 |     New->setStorageClass(Old->getStorageClass()); | 
 |  | 
 |   // Merge "pure" flag. | 
 |   if (Old->isPure()) | 
 |     New->setPure(); | 
 |  | 
 |   // Merge the "deleted" flag. | 
 |   if (Old->isDeleted()) | 
 |     New->setDeleted(); | 
 |  | 
 |   if (getLangOptions().CPlusPlus) | 
 |     return MergeCXXFunctionDecl(New, Old); | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// MergeVarDecl - We just parsed a variable 'New' which has the same name | 
 | /// and scope as a previous declaration 'Old'.  Figure out how to resolve this | 
 | /// situation, merging decls or emitting diagnostics as appropriate. | 
 | /// | 
 | /// Tentative definition rules (C99 6.9.2p2) are checked by | 
 | /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative | 
 | /// definitions here, since the initializer hasn't been attached. | 
 | /// | 
 | void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) { | 
 |   // If the new decl is already invalid, don't do any other checking. | 
 |   if (New->isInvalidDecl()) | 
 |     return; | 
 |  | 
 |   // Verify the old decl was also a variable. | 
 |   VarDecl *Old = 0; | 
 |   if (!Previous.isSingleResult() || | 
 |       !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) { | 
 |     Diag(New->getLocation(), diag::err_redefinition_different_kind) | 
 |       << New->getDeclName(); | 
 |     Diag(Previous.getRepresentativeDecl()->getLocation(), | 
 |          diag::note_previous_definition); | 
 |     return New->setInvalidDecl(); | 
 |   } | 
 |  | 
 |   // C++ [class.mem]p1: | 
 |   //   A member shall not be declared twice in the member-specification [...] | 
 |   //  | 
 |   // Here, we need only consider static data members. | 
 |   if (Old->isStaticDataMember() && !New->isOutOfLine()) { | 
 |     Diag(New->getLocation(), diag::err_duplicate_member)  | 
 |       << New->getIdentifier(); | 
 |     Diag(Old->getLocation(), diag::note_previous_declaration); | 
 |     New->setInvalidDecl(); | 
 |   } | 
 |    | 
 |   MergeDeclAttributes(New, Old, Context); | 
 |  | 
 |   // Merge the types | 
 |   QualType MergedT; | 
 |   if (getLangOptions().CPlusPlus) { | 
 |     if (Context.hasSameType(New->getType(), Old->getType())) | 
 |       MergedT = New->getType(); | 
 |     // C++ [basic.link]p10: | 
 |     //   [...] the types specified by all declarations referring to a given | 
 |     //   object or function shall be identical, except that declarations for an | 
 |     //   array object can specify array types that differ by the presence or | 
 |     //   absence of a major array bound (8.3.4). | 
 |     else if (Old->getType()->isIncompleteArrayType() && | 
 |              New->getType()->isArrayType()) { | 
 |       CanQual<ArrayType> OldArray | 
 |         = Context.getCanonicalType(Old->getType())->getAs<ArrayType>(); | 
 |       CanQual<ArrayType> NewArray | 
 |         = Context.getCanonicalType(New->getType())->getAs<ArrayType>(); | 
 |       if (OldArray->getElementType() == NewArray->getElementType()) | 
 |         MergedT = New->getType(); | 
 |     } else if (Old->getType()->isArrayType() && | 
 |              New->getType()->isIncompleteArrayType()) { | 
 |       CanQual<ArrayType> OldArray | 
 |         = Context.getCanonicalType(Old->getType())->getAs<ArrayType>(); | 
 |       CanQual<ArrayType> NewArray | 
 |         = Context.getCanonicalType(New->getType())->getAs<ArrayType>(); | 
 |       if (OldArray->getElementType() == NewArray->getElementType()) | 
 |         MergedT = Old->getType(); | 
 |     } else if (New->getType()->isObjCObjectPointerType() | 
 |                && Old->getType()->isObjCObjectPointerType()) { | 
 |         MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType()); | 
 |     } | 
 |   } else { | 
 |     MergedT = Context.mergeTypes(New->getType(), Old->getType()); | 
 |   } | 
 |   if (MergedT.isNull()) { | 
 |     Diag(New->getLocation(), diag::err_redefinition_different_type) | 
 |       << New->getDeclName(); | 
 |     Diag(Old->getLocation(), diag::note_previous_definition); | 
 |     return New->setInvalidDecl(); | 
 |   } | 
 |   New->setType(MergedT); | 
 |  | 
 |   // C99 6.2.2p4: Check if we have a static decl followed by a non-static. | 
 |   if (New->getStorageClass() == SC_Static && | 
 |       (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) { | 
 |     Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName(); | 
 |     Diag(Old->getLocation(), diag::note_previous_definition); | 
 |     return New->setInvalidDecl(); | 
 |   } | 
 |   // C99 6.2.2p4: | 
 |   //   For an identifier declared with the storage-class specifier | 
 |   //   extern in a scope in which a prior declaration of that | 
 |   //   identifier is visible,23) if the prior declaration specifies | 
 |   //   internal or external linkage, the linkage of the identifier at | 
 |   //   the later declaration is the same as the linkage specified at | 
 |   //   the prior declaration. If no prior declaration is visible, or | 
 |   //   if the prior declaration specifies no linkage, then the | 
 |   //   identifier has external linkage. | 
 |   if (New->hasExternalStorage() && Old->hasLinkage()) | 
 |     /* Okay */; | 
 |   else if (New->getStorageClass() != SC_Static && | 
 |            Old->getStorageClass() == SC_Static) { | 
 |     Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName(); | 
 |     Diag(Old->getLocation(), diag::note_previous_definition); | 
 |     return New->setInvalidDecl(); | 
 |   } | 
 |  | 
 |   // Variables with external linkage are analyzed in FinalizeDeclaratorGroup. | 
 |  | 
 |   // FIXME: The test for external storage here seems wrong? We still | 
 |   // need to check for mismatches. | 
 |   if (!New->hasExternalStorage() && !New->isFileVarDecl() && | 
 |       // Don't complain about out-of-line definitions of static members. | 
 |       !(Old->getLexicalDeclContext()->isRecord() && | 
 |         !New->getLexicalDeclContext()->isRecord())) { | 
 |     Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName(); | 
 |     Diag(Old->getLocation(), diag::note_previous_definition); | 
 |     return New->setInvalidDecl(); | 
 |   } | 
 |  | 
 |   if (New->isThreadSpecified() && !Old->isThreadSpecified()) { | 
 |     Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName(); | 
 |     Diag(Old->getLocation(), diag::note_previous_definition); | 
 |   } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) { | 
 |     Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName(); | 
 |     Diag(Old->getLocation(), diag::note_previous_definition); | 
 |   } | 
 |  | 
 |   // C++ doesn't have tentative definitions, so go right ahead and check here. | 
 |   const VarDecl *Def; | 
 |   if (getLangOptions().CPlusPlus && | 
 |       New->isThisDeclarationADefinition() == VarDecl::Definition && | 
 |       (Def = Old->getDefinition())) { | 
 |     Diag(New->getLocation(), diag::err_redefinition) | 
 |       << New->getDeclName(); | 
 |     Diag(Def->getLocation(), diag::note_previous_definition); | 
 |     New->setInvalidDecl(); | 
 |     return; | 
 |   } | 
 |   // c99 6.2.2 P4. | 
 |   // For an identifier declared with the storage-class specifier extern in a | 
 |   // scope in which a prior declaration of that identifier is visible, if  | 
 |   // the prior declaration specifies internal or external linkage, the linkage  | 
 |   // of the identifier at the later declaration is the same as the linkage  | 
 |   // specified at the prior declaration. | 
 |   // FIXME. revisit this code. | 
 |   if (New->hasExternalStorage() && | 
 |       Old->getLinkage() == InternalLinkage && | 
 |       New->getDeclContext() == Old->getDeclContext()) | 
 |     New->setStorageClass(Old->getStorageClass()); | 
 |  | 
 |   // Keep a chain of previous declarations. | 
 |   New->setPreviousDeclaration(Old); | 
 |  | 
 |   // Inherit access appropriately. | 
 |   New->setAccess(Old->getAccess()); | 
 | } | 
 |  | 
 | /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with | 
 | /// no declarator (e.g. "struct foo;") is parsed. | 
 | Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, | 
 |                                             DeclSpec &DS) { | 
 |   // FIXME: Error on inline/virtual/explicit | 
 |   // FIXME: Warn on useless __thread | 
 |   // FIXME: Warn on useless const/volatile | 
 |   // FIXME: Warn on useless static/extern/typedef/private_extern/mutable | 
 |   // FIXME: Warn on useless attributes | 
 |   Decl *TagD = 0; | 
 |   TagDecl *Tag = 0; | 
 |   if (DS.getTypeSpecType() == DeclSpec::TST_class || | 
 |       DS.getTypeSpecType() == DeclSpec::TST_struct || | 
 |       DS.getTypeSpecType() == DeclSpec::TST_union || | 
 |       DS.getTypeSpecType() == DeclSpec::TST_enum) { | 
 |     TagD = DS.getRepAsDecl(); | 
 |  | 
 |     if (!TagD) // We probably had an error | 
 |       return 0; | 
 |  | 
 |     // Note that the above type specs guarantee that the | 
 |     // type rep is a Decl, whereas in many of the others | 
 |     // it's a Type. | 
 |     Tag = dyn_cast<TagDecl>(TagD); | 
 |   } | 
 |  | 
 |   if (unsigned TypeQuals = DS.getTypeQualifiers()) { | 
 |     // Enforce C99 6.7.3p2: "Types other than pointer types derived from object | 
 |     // or incomplete types shall not be restrict-qualified." | 
 |     if (TypeQuals & DeclSpec::TQ_restrict) | 
 |       Diag(DS.getRestrictSpecLoc(), | 
 |            diag::err_typecheck_invalid_restrict_not_pointer_noarg) | 
 |            << DS.getSourceRange(); | 
 |   } | 
 |  | 
 |   if (DS.isFriendSpecified()) { | 
 |     // If we're dealing with a class template decl, assume that the | 
 |     // template routines are handling it. | 
 |     if (TagD && isa<ClassTemplateDecl>(TagD)) | 
 |       return 0; | 
 |     return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0)); | 
 |   } | 
 |           | 
 |   if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) { | 
 |     ProcessDeclAttributeList(S, Record, DS.getAttributes()); | 
 |      | 
 |     if (!Record->getDeclName() && Record->isDefinition() && | 
 |         DS.getStorageClassSpec() != DeclSpec::SCS_typedef) { | 
 |       if (getLangOptions().CPlusPlus || | 
 |           Record->getDeclContext()->isRecord()) | 
 |         return BuildAnonymousStructOrUnion(S, DS, AS, Record); | 
 |  | 
 |       Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators) | 
 |         << DS.getSourceRange(); | 
 |     } | 
 |  | 
 |     // Microsoft allows unnamed struct/union fields. Don't complain | 
 |     // about them. | 
 |     // FIXME: Should we support Microsoft's extensions in this area? | 
 |     if (Record->getDeclName() && getLangOptions().Microsoft) | 
 |       return Tag; | 
 |   } | 
 |    | 
 |   if (getLangOptions().CPlusPlus &&  | 
 |       DS.getStorageClassSpec() != DeclSpec::SCS_typedef) | 
 |     if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag)) | 
 |       if (Enum->enumerator_begin() == Enum->enumerator_end() && | 
 |           !Enum->getIdentifier() && !Enum->isInvalidDecl()) | 
 |         Diag(Enum->getLocation(), diag::ext_no_declarators) | 
 |           << DS.getSourceRange(); | 
 |        | 
 |   if (!DS.isMissingDeclaratorOk() && | 
 |       DS.getTypeSpecType() != DeclSpec::TST_error) { | 
 |     // Warn about typedefs of enums without names, since this is an | 
 |     // extension in both Microsoft and GNU. | 
 |     if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef && | 
 |         Tag && isa<EnumDecl>(Tag)) { | 
 |       Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name) | 
 |         << DS.getSourceRange(); | 
 |       return Tag; | 
 |     } | 
 |  | 
 |     Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators) | 
 |       << DS.getSourceRange(); | 
 |   } | 
 |  | 
 |   return TagD; | 
 | } | 
 |  | 
 | /// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec. | 
 | /// builds a statement for it and returns it so it is evaluated. | 
 | StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) { | 
 |   StmtResult R; | 
 |   if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) { | 
 |     Expr *Exp = DS.getRepAsExpr(); | 
 |     QualType Ty = Exp->getType(); | 
 |     if (Ty->isPointerType()) { | 
 |       do | 
 |         Ty = Ty->getAs<PointerType>()->getPointeeType(); | 
 |       while (Ty->isPointerType()); | 
 |     } | 
 |     if (Ty->isVariableArrayType()) { | 
 |       R = ActOnExprStmt(MakeFullExpr(Exp)); | 
 |     } | 
 |   } | 
 |   return R; | 
 | } | 
 |  | 
 | /// We are trying to inject an anonymous member into the given scope; | 
 | /// check if there's an existing declaration that can't be overloaded. | 
 | /// | 
 | /// \return true if this is a forbidden redeclaration | 
 | static bool CheckAnonMemberRedeclaration(Sema &SemaRef, | 
 |                                          Scope *S, | 
 |                                          DeclContext *Owner, | 
 |                                          DeclarationName Name, | 
 |                                          SourceLocation NameLoc, | 
 |                                          unsigned diagnostic) { | 
 |   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName, | 
 |                  Sema::ForRedeclaration); | 
 |   if (!SemaRef.LookupName(R, S)) return false; | 
 |  | 
 |   if (R.getAsSingle<TagDecl>()) | 
 |     return false; | 
 |  | 
 |   // Pick a representative declaration. | 
 |   NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl(); | 
 |   assert(PrevDecl && "Expected a non-null Decl"); | 
 |  | 
 |   if (!SemaRef.isDeclInScope(PrevDecl, Owner, S)) | 
 |     return false; | 
 |  | 
 |   SemaRef.Diag(NameLoc, diagnostic) << Name; | 
 |   SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// InjectAnonymousStructOrUnionMembers - Inject the members of the | 
 | /// anonymous struct or union AnonRecord into the owning context Owner | 
 | /// and scope S. This routine will be invoked just after we realize | 
 | /// that an unnamed union or struct is actually an anonymous union or | 
 | /// struct, e.g., | 
 | /// | 
 | /// @code | 
 | /// union { | 
 | ///   int i; | 
 | ///   float f; | 
 | /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and | 
 | ///    // f into the surrounding scope.x | 
 | /// @endcode | 
 | /// | 
 | /// This routine is recursive, injecting the names of nested anonymous | 
 | /// structs/unions into the owning context and scope as well. | 
 | static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, | 
 |                                                 DeclContext *Owner, | 
 |                                                 RecordDecl *AnonRecord, | 
 |                                                 AccessSpecifier AS) { | 
 |   unsigned diagKind | 
 |     = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl | 
 |                             : diag::err_anonymous_struct_member_redecl; | 
 |  | 
 |   bool Invalid = false; | 
 |   for (RecordDecl::field_iterator F = AnonRecord->field_begin(), | 
 |                                FEnd = AnonRecord->field_end(); | 
 |        F != FEnd; ++F) { | 
 |     if ((*F)->getDeclName()) { | 
 |       if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, (*F)->getDeclName(), | 
 |                                        (*F)->getLocation(), diagKind)) { | 
 |         // C++ [class.union]p2: | 
 |         //   The names of the members of an anonymous union shall be | 
 |         //   distinct from the names of any other entity in the | 
 |         //   scope in which the anonymous union is declared. | 
 |         Invalid = true; | 
 |       } else { | 
 |         // C++ [class.union]p2: | 
 |         //   For the purpose of name lookup, after the anonymous union | 
 |         //   definition, the members of the anonymous union are | 
 |         //   considered to have been defined in the scope in which the | 
 |         //   anonymous union is declared. | 
 |         Owner->makeDeclVisibleInContext(*F); | 
 |         S->AddDecl(*F); | 
 |         SemaRef.IdResolver.AddDecl(*F); | 
 |  | 
 |         // That includes picking up the appropriate access specifier. | 
 |         if (AS != AS_none) (*F)->setAccess(AS); | 
 |       } | 
 |     } else if (const RecordType *InnerRecordType | 
 |                  = (*F)->getType()->getAs<RecordType>()) { | 
 |       RecordDecl *InnerRecord = InnerRecordType->getDecl(); | 
 |       if (InnerRecord->isAnonymousStructOrUnion()) | 
 |         Invalid = Invalid || | 
 |           InjectAnonymousStructOrUnionMembers(SemaRef, S, Owner, | 
 |                                               InnerRecord, AS); | 
 |     } | 
 |   } | 
 |  | 
 |   return Invalid; | 
 | } | 
 |  | 
 | /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to | 
 | /// a VarDecl::StorageClass. Any error reporting is up to the caller: | 
 | /// illegal input values are mapped to SC_None. | 
 | static StorageClass | 
 | StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) { | 
 |   switch (StorageClassSpec) { | 
 |   case DeclSpec::SCS_unspecified:    return SC_None; | 
 |   case DeclSpec::SCS_extern:         return SC_Extern; | 
 |   case DeclSpec::SCS_static:         return SC_Static; | 
 |   case DeclSpec::SCS_auto:           return SC_Auto; | 
 |   case DeclSpec::SCS_register:       return SC_Register; | 
 |   case DeclSpec::SCS_private_extern: return SC_PrivateExtern; | 
 |     // Illegal SCSs map to None: error reporting is up to the caller. | 
 |   case DeclSpec::SCS_mutable:        // Fall through. | 
 |   case DeclSpec::SCS_typedef:        return SC_None; | 
 |   } | 
 |   llvm_unreachable("unknown storage class specifier"); | 
 | } | 
 |  | 
 | /// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to | 
 | /// a StorageClass. Any error reporting is up to the caller: | 
 | /// illegal input values are mapped to SC_None. | 
 | static StorageClass | 
 | StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) { | 
 |   switch (StorageClassSpec) { | 
 |   case DeclSpec::SCS_unspecified:    return SC_None; | 
 |   case DeclSpec::SCS_extern:         return SC_Extern; | 
 |   case DeclSpec::SCS_static:         return SC_Static; | 
 |   case DeclSpec::SCS_private_extern: return SC_PrivateExtern; | 
 |     // Illegal SCSs map to None: error reporting is up to the caller. | 
 |   case DeclSpec::SCS_auto:           // Fall through. | 
 |   case DeclSpec::SCS_mutable:        // Fall through. | 
 |   case DeclSpec::SCS_register:       // Fall through. | 
 |   case DeclSpec::SCS_typedef:        return SC_None; | 
 |   } | 
 |   llvm_unreachable("unknown storage class specifier"); | 
 | } | 
 |  | 
 | /// ActOnAnonymousStructOrUnion - Handle the declaration of an | 
 | /// anonymous structure or union. Anonymous unions are a C++ feature | 
 | /// (C++ [class.union]) and a GNU C extension; anonymous structures | 
 | /// are a GNU C and GNU C++ extension. | 
 | Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS, | 
 |                                              AccessSpecifier AS, | 
 |                                              RecordDecl *Record) { | 
 |   DeclContext *Owner = Record->getDeclContext(); | 
 |  | 
 |   // Diagnose whether this anonymous struct/union is an extension. | 
 |   if (Record->isUnion() && !getLangOptions().CPlusPlus) | 
 |     Diag(Record->getLocation(), diag::ext_anonymous_union); | 
 |   else if (!Record->isUnion()) | 
 |     Diag(Record->getLocation(), diag::ext_anonymous_struct); | 
 |  | 
 |   // C and C++ require different kinds of checks for anonymous | 
 |   // structs/unions. | 
 |   bool Invalid = false; | 
 |   if (getLangOptions().CPlusPlus) { | 
 |     const char* PrevSpec = 0; | 
 |     unsigned DiagID; | 
 |     // C++ [class.union]p3: | 
 |     //   Anonymous unions declared in a named namespace or in the | 
 |     //   global namespace shall be declared static. | 
 |     if (DS.getStorageClassSpec() != DeclSpec::SCS_static && | 
 |         (isa<TranslationUnitDecl>(Owner) || | 
 |          (isa<NamespaceDecl>(Owner) && | 
 |           cast<NamespaceDecl>(Owner)->getDeclName()))) { | 
 |       Diag(Record->getLocation(), diag::err_anonymous_union_not_static); | 
 |       Invalid = true; | 
 |  | 
 |       // Recover by adding 'static'. | 
 |       DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), | 
 |                              PrevSpec, DiagID); | 
 |     } | 
 |     // C++ [class.union]p3: | 
 |     //   A storage class is not allowed in a declaration of an | 
 |     //   anonymous union in a class scope. | 
 |     else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified && | 
 |              isa<RecordDecl>(Owner)) { | 
 |       Diag(DS.getStorageClassSpecLoc(), | 
 |            diag::err_anonymous_union_with_storage_spec); | 
 |       Invalid = true; | 
 |  | 
 |       // Recover by removing the storage specifier. | 
 |       DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(), | 
 |                              PrevSpec, DiagID); | 
 |     } | 
 |  | 
 |     // C++ [class.union]p2: | 
 |     //   The member-specification of an anonymous union shall only | 
 |     //   define non-static data members. [Note: nested types and | 
 |     //   functions cannot be declared within an anonymous union. ] | 
 |     for (DeclContext::decl_iterator Mem = Record->decls_begin(), | 
 |                                  MemEnd = Record->decls_end(); | 
 |          Mem != MemEnd; ++Mem) { | 
 |       if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) { | 
 |         // C++ [class.union]p3: | 
 |         //   An anonymous union shall not have private or protected | 
 |         //   members (clause 11). | 
 |         assert(FD->getAccess() != AS_none); | 
 |         if (FD->getAccess() != AS_public) { | 
 |           Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member) | 
 |             << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected); | 
 |           Invalid = true; | 
 |         } | 
 |  | 
 |         if (CheckNontrivialField(FD)) | 
 |           Invalid = true; | 
 |       } else if ((*Mem)->isImplicit()) { | 
 |         // Any implicit members are fine. | 
 |       } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) { | 
 |         // This is a type that showed up in an | 
 |         // elaborated-type-specifier inside the anonymous struct or | 
 |         // union, but which actually declares a type outside of the | 
 |         // anonymous struct or union. It's okay. | 
 |       } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) { | 
 |         if (!MemRecord->isAnonymousStructOrUnion() && | 
 |             MemRecord->getDeclName()) { | 
 |           // Visual C++ allows type definition in anonymous struct or union. | 
 |           if (getLangOptions().Microsoft) | 
 |             Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type) | 
 |               << (int)Record->isUnion(); | 
 |           else { | 
 |             // This is a nested type declaration. | 
 |             Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type) | 
 |               << (int)Record->isUnion(); | 
 |             Invalid = true; | 
 |           } | 
 |         } | 
 |       } else if (isa<AccessSpecDecl>(*Mem)) { | 
 |         // Any access specifier is fine. | 
 |       } else { | 
 |         // We have something that isn't a non-static data | 
 |         // member. Complain about it. | 
 |         unsigned DK = diag::err_anonymous_record_bad_member; | 
 |         if (isa<TypeDecl>(*Mem)) | 
 |           DK = diag::err_anonymous_record_with_type; | 
 |         else if (isa<FunctionDecl>(*Mem)) | 
 |           DK = diag::err_anonymous_record_with_function; | 
 |         else if (isa<VarDecl>(*Mem)) | 
 |           DK = diag::err_anonymous_record_with_static; | 
 |          | 
 |         // Visual C++ allows type definition in anonymous struct or union. | 
 |         if (getLangOptions().Microsoft && | 
 |             DK == diag::err_anonymous_record_with_type) | 
 |           Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type) | 
 |             << (int)Record->isUnion(); | 
 |         else { | 
 |           Diag((*Mem)->getLocation(), DK) | 
 |               << (int)Record->isUnion(); | 
 |           Invalid = true; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (!Record->isUnion() && !Owner->isRecord()) { | 
 |     Diag(Record->getLocation(), diag::err_anonymous_struct_not_member) | 
 |       << (int)getLangOptions().CPlusPlus; | 
 |     Invalid = true; | 
 |   } | 
 |  | 
 |   // Mock up a declarator. | 
 |   Declarator Dc(DS, Declarator::TypeNameContext); | 
 |   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S); | 
 |   assert(TInfo && "couldn't build declarator info for anonymous struct/union"); | 
 |  | 
 |   // Create a declaration for this anonymous struct/union. | 
 |   NamedDecl *Anon = 0; | 
 |   if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) { | 
 |     Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(), | 
 |                              /*IdentifierInfo=*/0, | 
 |                              Context.getTypeDeclType(Record), | 
 |                              TInfo, | 
 |                              /*BitWidth=*/0, /*Mutable=*/false); | 
 |     Anon->setAccess(AS); | 
 |     if (getLangOptions().CPlusPlus) | 
 |       FieldCollector->Add(cast<FieldDecl>(Anon)); | 
 |   } else { | 
 |     DeclSpec::SCS SCSpec = DS.getStorageClassSpec(); | 
 |     assert(SCSpec != DeclSpec::SCS_typedef && | 
 |            "Parser allowed 'typedef' as storage class VarDecl."); | 
 |     VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec); | 
 |     if (SCSpec == DeclSpec::SCS_mutable) { | 
 |       // mutable can only appear on non-static class members, so it's always | 
 |       // an error here | 
 |       Diag(Record->getLocation(), diag::err_mutable_nonmember); | 
 |       Invalid = true; | 
 |       SC = SC_None; | 
 |     } | 
 |     SCSpec = DS.getStorageClassSpecAsWritten(); | 
 |     VarDecl::StorageClass SCAsWritten | 
 |       = StorageClassSpecToVarDeclStorageClass(SCSpec); | 
 |  | 
 |     Anon = VarDecl::Create(Context, Owner, Record->getLocation(), | 
 |                            /*IdentifierInfo=*/0, | 
 |                            Context.getTypeDeclType(Record), | 
 |                            TInfo, SC, SCAsWritten); | 
 |   } | 
 |   Anon->setImplicit(); | 
 |  | 
 |   // Add the anonymous struct/union object to the current | 
 |   // context. We'll be referencing this object when we refer to one of | 
 |   // its members. | 
 |   Owner->addDecl(Anon); | 
 |    | 
 |   // Inject the members of the anonymous struct/union into the owning | 
 |   // context and into the identifier resolver chain for name lookup | 
 |   // purposes. | 
 |   if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS)) | 
 |     Invalid = true; | 
 |  | 
 |   // Mark this as an anonymous struct/union type. Note that we do not | 
 |   // do this until after we have already checked and injected the | 
 |   // members of this anonymous struct/union type, because otherwise | 
 |   // the members could be injected twice: once by DeclContext when it | 
 |   // builds its lookup table, and once by | 
 |   // InjectAnonymousStructOrUnionMembers. | 
 |   Record->setAnonymousStructOrUnion(true); | 
 |  | 
 |   if (Invalid) | 
 |     Anon->setInvalidDecl(); | 
 |  | 
 |   return Anon; | 
 | } | 
 |  | 
 |  | 
 | /// GetNameForDeclarator - Determine the full declaration name for the | 
 | /// given Declarator. | 
 | DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) { | 
 |   return GetNameFromUnqualifiedId(D.getName()); | 
 | } | 
 |  | 
 | /// \brief Retrieves the declaration name from a parsed unqualified-id. | 
 | DeclarationNameInfo | 
 | Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) { | 
 |   DeclarationNameInfo NameInfo; | 
 |   NameInfo.setLoc(Name.StartLocation); | 
 |  | 
 |   switch (Name.getKind()) { | 
 |  | 
 |   case UnqualifiedId::IK_Identifier: | 
 |     NameInfo.setName(Name.Identifier); | 
 |     NameInfo.setLoc(Name.StartLocation); | 
 |     return NameInfo; | 
 |  | 
 |   case UnqualifiedId::IK_OperatorFunctionId: | 
 |     NameInfo.setName(Context.DeclarationNames.getCXXOperatorName( | 
 |                                            Name.OperatorFunctionId.Operator)); | 
 |     NameInfo.setLoc(Name.StartLocation); | 
 |     NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc | 
 |       = Name.OperatorFunctionId.SymbolLocations[0]; | 
 |     NameInfo.getInfo().CXXOperatorName.EndOpNameLoc | 
 |       = Name.EndLocation.getRawEncoding(); | 
 |     return NameInfo; | 
 |  | 
 |   case UnqualifiedId::IK_LiteralOperatorId: | 
 |     NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName( | 
 |                                                            Name.Identifier)); | 
 |     NameInfo.setLoc(Name.StartLocation); | 
 |     NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation); | 
 |     return NameInfo; | 
 |  | 
 |   case UnqualifiedId::IK_ConversionFunctionId: { | 
 |     TypeSourceInfo *TInfo; | 
 |     QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo); | 
 |     if (Ty.isNull()) | 
 |       return DeclarationNameInfo(); | 
 |     NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName( | 
 |                                                Context.getCanonicalType(Ty))); | 
 |     NameInfo.setLoc(Name.StartLocation); | 
 |     NameInfo.setNamedTypeInfo(TInfo); | 
 |     return NameInfo; | 
 |   } | 
 |  | 
 |   case UnqualifiedId::IK_ConstructorName: { | 
 |     TypeSourceInfo *TInfo; | 
 |     QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo); | 
 |     if (Ty.isNull()) | 
 |       return DeclarationNameInfo(); | 
 |     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName( | 
 |                                               Context.getCanonicalType(Ty))); | 
 |     NameInfo.setLoc(Name.StartLocation); | 
 |     NameInfo.setNamedTypeInfo(TInfo); | 
 |     return NameInfo; | 
 |   } | 
 |  | 
 |   case UnqualifiedId::IK_ConstructorTemplateId: { | 
 |     // In well-formed code, we can only have a constructor | 
 |     // template-id that refers to the current context, so go there | 
 |     // to find the actual type being constructed. | 
 |     CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext); | 
 |     if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name) | 
 |       return DeclarationNameInfo(); | 
 |  | 
 |     // Determine the type of the class being constructed. | 
 |     QualType CurClassType = Context.getTypeDeclType(CurClass); | 
 |  | 
 |     // FIXME: Check two things: that the template-id names the same type as | 
 |     // CurClassType, and that the template-id does not occur when the name | 
 |     // was qualified. | 
 |  | 
 |     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName( | 
 |                                     Context.getCanonicalType(CurClassType))); | 
 |     NameInfo.setLoc(Name.StartLocation); | 
 |     // FIXME: should we retrieve TypeSourceInfo? | 
 |     NameInfo.setNamedTypeInfo(0); | 
 |     return NameInfo; | 
 |   } | 
 |  | 
 |   case UnqualifiedId::IK_DestructorName: { | 
 |     TypeSourceInfo *TInfo; | 
 |     QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo); | 
 |     if (Ty.isNull()) | 
 |       return DeclarationNameInfo(); | 
 |     NameInfo.setName(Context.DeclarationNames.getCXXDestructorName( | 
 |                                               Context.getCanonicalType(Ty))); | 
 |     NameInfo.setLoc(Name.StartLocation); | 
 |     NameInfo.setNamedTypeInfo(TInfo); | 
 |     return NameInfo; | 
 |   } | 
 |  | 
 |   case UnqualifiedId::IK_TemplateId: { | 
 |     TemplateName TName = Name.TemplateId->Template.get(); | 
 |     SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc; | 
 |     return Context.getNameForTemplate(TName, TNameLoc); | 
 |   } | 
 |  | 
 |   } // switch (Name.getKind()) | 
 |  | 
 |   assert(false && "Unknown name kind"); | 
 |   return DeclarationNameInfo(); | 
 | } | 
 |  | 
 | /// isNearlyMatchingFunction - Determine whether the C++ functions | 
 | /// Declaration and Definition are "nearly" matching. This heuristic | 
 | /// is used to improve diagnostics in the case where an out-of-line | 
 | /// function definition doesn't match any declaration within | 
 | /// the class or namespace. | 
 | static bool isNearlyMatchingFunction(ASTContext &Context, | 
 |                                      FunctionDecl *Declaration, | 
 |                                      FunctionDecl *Definition) { | 
 |   if (Declaration->param_size() != Definition->param_size()) | 
 |     return false; | 
 |   for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) { | 
 |     QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType(); | 
 |     QualType DefParamTy = Definition->getParamDecl(Idx)->getType(); | 
 |  | 
 |     if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(), | 
 |                                         DefParamTy.getNonReferenceType())) | 
 |       return false; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// NeedsRebuildingInCurrentInstantiation - Checks whether the given | 
 | /// declarator needs to be rebuilt in the current instantiation. | 
 | /// Any bits of declarator which appear before the name are valid for | 
 | /// consideration here.  That's specifically the type in the decl spec | 
 | /// and the base type in any member-pointer chunks. | 
 | static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D, | 
 |                                                     DeclarationName Name) { | 
 |   // The types we specifically need to rebuild are: | 
 |   //   - typenames, typeofs, and decltypes | 
 |   //   - types which will become injected class names | 
 |   // Of course, we also need to rebuild any type referencing such a | 
 |   // type.  It's safest to just say "dependent", but we call out a | 
 |   // few cases here. | 
 |  | 
 |   DeclSpec &DS = D.getMutableDeclSpec(); | 
 |   switch (DS.getTypeSpecType()) { | 
 |   case DeclSpec::TST_typename: | 
 |   case DeclSpec::TST_typeofType: | 
 |   case DeclSpec::TST_decltype: { | 
 |     // Grab the type from the parser. | 
 |     TypeSourceInfo *TSI = 0; | 
 |     QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI); | 
 |     if (T.isNull() || !T->isDependentType()) break; | 
 |  | 
 |     // Make sure there's a type source info.  This isn't really much | 
 |     // of a waste; most dependent types should have type source info | 
 |     // attached already. | 
 |     if (!TSI) | 
 |       TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc()); | 
 |  | 
 |     // Rebuild the type in the current instantiation. | 
 |     TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name); | 
 |     if (!TSI) return true; | 
 |  | 
 |     // Store the new type back in the decl spec. | 
 |     ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI); | 
 |     DS.UpdateTypeRep(LocType); | 
 |     break; | 
 |   } | 
 |  | 
 |   case DeclSpec::TST_typeofExpr: { | 
 |     Expr *E = DS.getRepAsExpr(); | 
 |     ExprResult Result = S.RebuildExprInCurrentInstantiation(E); | 
 |     if (Result.isInvalid()) return true; | 
 |     DS.UpdateExprRep(Result.get()); | 
 |     break; | 
 |   } | 
 |  | 
 |   default: | 
 |     // Nothing to do for these decl specs. | 
 |     break; | 
 |   } | 
 |  | 
 |   // It doesn't matter what order we do this in. | 
 |   for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) { | 
 |     DeclaratorChunk &Chunk = D.getTypeObject(I); | 
 |  | 
 |     // The only type information in the declarator which can come | 
 |     // before the declaration name is the base type of a member | 
 |     // pointer. | 
 |     if (Chunk.Kind != DeclaratorChunk::MemberPointer) | 
 |       continue; | 
 |  | 
 |     // Rebuild the scope specifier in-place. | 
 |     CXXScopeSpec &SS = Chunk.Mem.Scope(); | 
 |     if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS)) | 
 |       return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) { | 
 |   return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false); | 
 | } | 
 |  | 
 | Decl *Sema::HandleDeclarator(Scope *S, Declarator &D, | 
 |                              MultiTemplateParamsArg TemplateParamLists, | 
 |                              bool IsFunctionDefinition) { | 
 |   // TODO: consider using NameInfo for diagnostic. | 
 |   DeclarationNameInfo NameInfo = GetNameForDeclarator(D); | 
 |   DeclarationName Name = NameInfo.getName(); | 
 |  | 
 |   // All of these full declarators require an identifier.  If it doesn't have | 
 |   // one, the ParsedFreeStandingDeclSpec action should be used. | 
 |   if (!Name) { | 
 |     if (!D.isInvalidType())  // Reject this if we think it is valid. | 
 |       Diag(D.getDeclSpec().getSourceRange().getBegin(), | 
 |            diag::err_declarator_need_ident) | 
 |         << D.getDeclSpec().getSourceRange() << D.getSourceRange(); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // The scope passed in may not be a decl scope.  Zip up the scope tree until | 
 |   // we find one that is. | 
 |   while ((S->getFlags() & Scope::DeclScope) == 0 || | 
 |          (S->getFlags() & Scope::TemplateParamScope) != 0) | 
 |     S = S->getParent(); | 
 |  | 
 |   DeclContext *DC = CurContext; | 
 |   if (D.getCXXScopeSpec().isInvalid()) | 
 |     D.setInvalidType(); | 
 |   else if (D.getCXXScopeSpec().isSet()) { | 
 |     bool EnteringContext = !D.getDeclSpec().isFriendSpecified(); | 
 |     DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext); | 
 |     if (!DC) { | 
 |       // If we could not compute the declaration context, it's because the | 
 |       // declaration context is dependent but does not refer to a class, | 
 |       // class template, or class template partial specialization. Complain | 
 |       // and return early, to avoid the coming semantic disaster. | 
 |       Diag(D.getIdentifierLoc(), | 
 |            diag::err_template_qualified_declarator_no_match) | 
 |         << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep() | 
 |         << D.getCXXScopeSpec().getRange(); | 
 |       return 0; | 
 |     } | 
 |  | 
 |     bool IsDependentContext = DC->isDependentContext(); | 
 |  | 
 |     if (!IsDependentContext &&  | 
 |         RequireCompleteDeclContext(D.getCXXScopeSpec(), DC)) | 
 |       return 0; | 
 |  | 
 |     if (isa<CXXRecordDecl>(DC)) { | 
 |       if (!cast<CXXRecordDecl>(DC)->hasDefinition()) { | 
 |         Diag(D.getIdentifierLoc(), | 
 |              diag::err_member_def_undefined_record) | 
 |           << Name << DC << D.getCXXScopeSpec().getRange(); | 
 |         D.setInvalidType(); | 
 |       } else if (isa<CXXRecordDecl>(CurContext) &&  | 
 |                  !D.getDeclSpec().isFriendSpecified()) { | 
 |         // The user provided a superfluous scope specifier inside a class | 
 |         // definition: | 
 |         // | 
 |         // class X { | 
 |         //   void X::f(); | 
 |         // }; | 
 |         if (CurContext->Equals(DC)) | 
 |           Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification) | 
 |             << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange()); | 
 |         else | 
 |           Diag(D.getIdentifierLoc(), diag::err_member_qualification) | 
 |             << Name << D.getCXXScopeSpec().getRange(); | 
 |          | 
 |         // Pretend that this qualifier was not here. | 
 |         D.getCXXScopeSpec().clear(); | 
 |       } | 
 |     } | 
 |  | 
 |     // Check whether we need to rebuild the type of the given | 
 |     // declaration in the current instantiation. | 
 |     if (EnteringContext && IsDependentContext && | 
 |         TemplateParamLists.size() != 0) { | 
 |       ContextRAII SavedContext(*this, DC); | 
 |       if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name)) | 
 |         D.setInvalidType(); | 
 |     } | 
 |   } | 
 |  | 
 |   NamedDecl *New; | 
 |  | 
 |   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); | 
 |   QualType R = TInfo->getType(); | 
 |  | 
 |   LookupResult Previous(*this, NameInfo, LookupOrdinaryName, | 
 |                         ForRedeclaration); | 
 |  | 
 |   // See if this is a redefinition of a variable in the same scope. | 
 |   if (!D.getCXXScopeSpec().isSet()) { | 
 |     bool IsLinkageLookup = false; | 
 |  | 
 |     // If the declaration we're planning to build will be a function | 
 |     // or object with linkage, then look for another declaration with | 
 |     // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6). | 
 |     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) | 
 |       /* Do nothing*/; | 
 |     else if (R->isFunctionType()) { | 
 |       if (CurContext->isFunctionOrMethod() || | 
 |           D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) | 
 |         IsLinkageLookup = true; | 
 |     } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern) | 
 |       IsLinkageLookup = true; | 
 |     else if (CurContext->getRedeclContext()->isTranslationUnit() && | 
 |              D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) | 
 |       IsLinkageLookup = true; | 
 |  | 
 |     if (IsLinkageLookup) | 
 |       Previous.clear(LookupRedeclarationWithLinkage); | 
 |  | 
 |     LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup); | 
 |   } else { // Something like "int foo::x;" | 
 |     LookupQualifiedName(Previous, DC); | 
 |  | 
 |     // Don't consider using declarations as previous declarations for | 
 |     // out-of-line members. | 
 |     RemoveUsingDecls(Previous); | 
 |  | 
 |     // C++ 7.3.1.2p2: | 
 |     // Members (including explicit specializations of templates) of a named | 
 |     // namespace can also be defined outside that namespace by explicit | 
 |     // qualification of the name being defined, provided that the entity being | 
 |     // defined was already declared in the namespace and the definition appears | 
 |     // after the point of declaration in a namespace that encloses the | 
 |     // declarations namespace. | 
 |     // | 
 |     // Note that we only check the context at this point. We don't yet | 
 |     // have enough information to make sure that PrevDecl is actually | 
 |     // the declaration we want to match. For example, given: | 
 |     // | 
 |     //   class X { | 
 |     //     void f(); | 
 |     //     void f(float); | 
 |     //   }; | 
 |     // | 
 |     //   void X::f(int) { } // ill-formed | 
 |     // | 
 |     // In this case, PrevDecl will point to the overload set | 
 |     // containing the two f's declared in X, but neither of them | 
 |     // matches. | 
 |  | 
 |     // First check whether we named the global scope. | 
 |     if (isa<TranslationUnitDecl>(DC)) { | 
 |       Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope) | 
 |         << Name << D.getCXXScopeSpec().getRange(); | 
 |     } else { | 
 |       DeclContext *Cur = CurContext; | 
 |       while (isa<LinkageSpecDecl>(Cur)) | 
 |         Cur = Cur->getParent(); | 
 |       if (!Cur->Encloses(DC)) { | 
 |         // The qualifying scope doesn't enclose the original declaration. | 
 |         // Emit diagnostic based on current scope. | 
 |         SourceLocation L = D.getIdentifierLoc(); | 
 |         SourceRange R = D.getCXXScopeSpec().getRange(); | 
 |         if (isa<FunctionDecl>(Cur)) | 
 |           Diag(L, diag::err_invalid_declarator_in_function) << Name << R; | 
 |         else | 
 |           Diag(L, diag::err_invalid_declarator_scope) | 
 |             << Name << cast<NamedDecl>(DC) << R; | 
 |         D.setInvalidType(); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (Previous.isSingleResult() && | 
 |       Previous.getFoundDecl()->isTemplateParameter()) { | 
 |     // Maybe we will complain about the shadowed template parameter. | 
 |     if (!D.isInvalidType()) | 
 |       if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), | 
 |                                           Previous.getFoundDecl())) | 
 |         D.setInvalidType(); | 
 |  | 
 |     // Just pretend that we didn't see the previous declaration. | 
 |     Previous.clear(); | 
 |   } | 
 |  | 
 |   // In C++, the previous declaration we find might be a tag type | 
 |   // (class or enum). In this case, the new declaration will hide the | 
 |   // tag type. Note that this does does not apply if we're declaring a | 
 |   // typedef (C++ [dcl.typedef]p4). | 
 |   if (Previous.isSingleTagDecl() && | 
 |       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef) | 
 |     Previous.clear(); | 
 |  | 
 |   bool Redeclaration = false; | 
 |   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { | 
 |     if (TemplateParamLists.size()) { | 
 |       Diag(D.getIdentifierLoc(), diag::err_template_typedef); | 
 |       return 0; | 
 |     } | 
 |  | 
 |     New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration); | 
 |   } else if (R->isFunctionType()) { | 
 |     New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous, | 
 |                                   move(TemplateParamLists), | 
 |                                   IsFunctionDefinition, Redeclaration); | 
 |   } else { | 
 |     New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous, | 
 |                                   move(TemplateParamLists), | 
 |                                   Redeclaration); | 
 |   } | 
 |  | 
 |   if (New == 0) | 
 |     return 0; | 
 |  | 
 |   // If this has an identifier and is not an invalid redeclaration or  | 
 |   // function template specialization, add it to the scope stack. | 
 |   if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl())) | 
 |     PushOnScopeChains(New, S); | 
 |  | 
 |   return New; | 
 | } | 
 |  | 
 | /// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array | 
 | /// types into constant array types in certain situations which would otherwise | 
 | /// be errors (for GCC compatibility). | 
 | static QualType TryToFixInvalidVariablyModifiedType(QualType T, | 
 |                                                     ASTContext &Context, | 
 |                                                     bool &SizeIsNegative, | 
 |                                                     llvm::APSInt &Oversized) { | 
 |   // This method tries to turn a variable array into a constant | 
 |   // array even when the size isn't an ICE.  This is necessary | 
 |   // for compatibility with code that depends on gcc's buggy | 
 |   // constant expression folding, like struct {char x[(int)(char*)2];} | 
 |   SizeIsNegative = false; | 
 |   Oversized = 0; | 
 |    | 
 |   if (T->isDependentType()) | 
 |     return QualType(); | 
 |    | 
 |   QualifierCollector Qs; | 
 |   const Type *Ty = Qs.strip(T); | 
 |  | 
 |   if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) { | 
 |     QualType Pointee = PTy->getPointeeType(); | 
 |     QualType FixedType = | 
 |         TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative, | 
 |                                             Oversized); | 
 |     if (FixedType.isNull()) return FixedType; | 
 |     FixedType = Context.getPointerType(FixedType); | 
 |     return Qs.apply(FixedType); | 
 |   } | 
 |  | 
 |   const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T); | 
 |   if (!VLATy) | 
 |     return QualType(); | 
 |   // FIXME: We should probably handle this case | 
 |   if (VLATy->getElementType()->isVariablyModifiedType()) | 
 |     return QualType(); | 
 |  | 
 |   Expr::EvalResult EvalResult; | 
 |   if (!VLATy->getSizeExpr() || | 
 |       !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) || | 
 |       !EvalResult.Val.isInt()) | 
 |     return QualType(); | 
 |  | 
 |   // Check whether the array size is negative. | 
 |   llvm::APSInt &Res = EvalResult.Val.getInt(); | 
 |   if (Res.isSigned() && Res.isNegative()) { | 
 |     SizeIsNegative = true; | 
 |     return QualType(); | 
 |   } | 
 |  | 
 |   // Check whether the array is too large to be addressed. | 
 |   unsigned ActiveSizeBits | 
 |     = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(), | 
 |                                               Res); | 
 |   if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) { | 
 |     Oversized = Res; | 
 |     return QualType(); | 
 |   } | 
 |    | 
 |   return Context.getConstantArrayType(VLATy->getElementType(), | 
 |                                       Res, ArrayType::Normal, 0); | 
 | } | 
 |  | 
 | /// \brief Register the given locally-scoped external C declaration so | 
 | /// that it can be found later for redeclarations | 
 | void | 
 | Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, | 
 |                                        const LookupResult &Previous, | 
 |                                        Scope *S) { | 
 |   assert(ND->getLexicalDeclContext()->isFunctionOrMethod() && | 
 |          "Decl is not a locally-scoped decl!"); | 
 |   // Note that we have a locally-scoped external with this name. | 
 |   LocallyScopedExternalDecls[ND->getDeclName()] = ND; | 
 |  | 
 |   if (!Previous.isSingleResult()) | 
 |     return; | 
 |  | 
 |   NamedDecl *PrevDecl = Previous.getFoundDecl(); | 
 |  | 
 |   // If there was a previous declaration of this variable, it may be | 
 |   // in our identifier chain. Update the identifier chain with the new | 
 |   // declaration. | 
 |   if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) { | 
 |     // The previous declaration was found on the identifer resolver | 
 |     // chain, so remove it from its scope. | 
 |     while (S && !S->isDeclScope(PrevDecl)) | 
 |       S = S->getParent(); | 
 |  | 
 |     if (S) | 
 |       S->RemoveDecl(PrevDecl); | 
 |   } | 
 | } | 
 |  | 
 | /// \brief Diagnose function specifiers on a declaration of an identifier that | 
 | /// does not identify a function. | 
 | void Sema::DiagnoseFunctionSpecifiers(Declarator& D) { | 
 |   // FIXME: We should probably indicate the identifier in question to avoid | 
 |   // confusion for constructs like "inline int a(), b;" | 
 |   if (D.getDeclSpec().isInlineSpecified()) | 
 |     Diag(D.getDeclSpec().getInlineSpecLoc(), | 
 |          diag::err_inline_non_function); | 
 |  | 
 |   if (D.getDeclSpec().isVirtualSpecified()) | 
 |     Diag(D.getDeclSpec().getVirtualSpecLoc(), | 
 |          diag::err_virtual_non_function); | 
 |  | 
 |   if (D.getDeclSpec().isExplicitSpecified()) | 
 |     Diag(D.getDeclSpec().getExplicitSpecLoc(), | 
 |          diag::err_explicit_non_function); | 
 | } | 
 |  | 
 | NamedDecl* | 
 | Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC, | 
 |                              QualType R,  TypeSourceInfo *TInfo, | 
 |                              LookupResult &Previous, bool &Redeclaration) { | 
 |   // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1). | 
 |   if (D.getCXXScopeSpec().isSet()) { | 
 |     Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator) | 
 |       << D.getCXXScopeSpec().getRange(); | 
 |     D.setInvalidType(); | 
 |     // Pretend we didn't see the scope specifier. | 
 |     DC = CurContext; | 
 |     Previous.clear(); | 
 |   } | 
 |  | 
 |   if (getLangOptions().CPlusPlus) { | 
 |     // Check that there are no default arguments (C++ only). | 
 |     CheckExtraCXXDefaultArguments(D); | 
 |   } | 
 |  | 
 |   DiagnoseFunctionSpecifiers(D); | 
 |  | 
 |   if (D.getDeclSpec().isThreadSpecified()) | 
 |     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread); | 
 |  | 
 |   if (D.getName().Kind != UnqualifiedId::IK_Identifier) { | 
 |     Diag(D.getName().StartLocation, diag::err_typedef_not_identifier) | 
 |       << D.getName().getSourceRange(); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo); | 
 |   if (!NewTD) return 0; | 
 |  | 
 |   // Handle attributes prior to checking for duplicates in MergeVarDecl | 
 |   ProcessDeclAttributes(S, NewTD, D); | 
 |  | 
 |   // C99 6.7.7p2: If a typedef name specifies a variably modified type | 
 |   // then it shall have block scope. | 
 |   // Note that variably modified types must be fixed before merging the decl so | 
 |   // that redeclarations will match. | 
 |   QualType T = NewTD->getUnderlyingType(); | 
 |   if (T->isVariablyModifiedType()) { | 
 |     getCurFunction()->setHasBranchProtectedScope(); | 
 |  | 
 |     if (S->getFnParent() == 0) { | 
 |       bool SizeIsNegative; | 
 |       llvm::APSInt Oversized; | 
 |       QualType FixedTy = | 
 |           TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative, | 
 |                                               Oversized); | 
 |       if (!FixedTy.isNull()) { | 
 |         Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size); | 
 |         NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy)); | 
 |       } else { | 
 |         if (SizeIsNegative) | 
 |           Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size); | 
 |         else if (T->isVariableArrayType()) | 
 |           Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope); | 
 |         else if (Oversized.getBoolValue()) | 
 |           Diag(D.getIdentifierLoc(), diag::err_array_too_large) | 
 |             << Oversized.toString(10); | 
 |         else | 
 |           Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope); | 
 |         NewTD->setInvalidDecl(); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Merge the decl with the existing one if appropriate. If the decl is | 
 |   // in an outer scope, it isn't the same thing. | 
 |   FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false); | 
 |   if (!Previous.empty()) { | 
 |     Redeclaration = true; | 
 |     MergeTypeDefDecl(NewTD, Previous); | 
 |   } | 
 |  | 
 |   // If this is the C FILE type, notify the AST context. | 
 |   if (IdentifierInfo *II = NewTD->getIdentifier()) | 
 |     if (!NewTD->isInvalidDecl() && | 
 |         NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) { | 
 |       if (II->isStr("FILE")) | 
 |         Context.setFILEDecl(NewTD); | 
 |       else if (II->isStr("jmp_buf")) | 
 |         Context.setjmp_bufDecl(NewTD); | 
 |       else if (II->isStr("sigjmp_buf")) | 
 |         Context.setsigjmp_bufDecl(NewTD); | 
 |       else if (II->isStr("__builtin_va_list")) | 
 |         Context.setBuiltinVaListType(Context.getTypedefType(NewTD)); | 
 |     } | 
 |  | 
 |   return NewTD; | 
 | } | 
 |  | 
 | /// \brief Determines whether the given declaration is an out-of-scope | 
 | /// previous declaration. | 
 | /// | 
 | /// This routine should be invoked when name lookup has found a | 
 | /// previous declaration (PrevDecl) that is not in the scope where a | 
 | /// new declaration by the same name is being introduced. If the new | 
 | /// declaration occurs in a local scope, previous declarations with | 
 | /// linkage may still be considered previous declarations (C99 | 
 | /// 6.2.2p4-5, C++ [basic.link]p6). | 
 | /// | 
 | /// \param PrevDecl the previous declaration found by name | 
 | /// lookup | 
 | /// | 
 | /// \param DC the context in which the new declaration is being | 
 | /// declared. | 
 | /// | 
 | /// \returns true if PrevDecl is an out-of-scope previous declaration | 
 | /// for a new delcaration with the same name. | 
 | static bool | 
 | isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC, | 
 |                                 ASTContext &Context) { | 
 |   if (!PrevDecl) | 
 |     return false; | 
 |  | 
 |   if (!PrevDecl->hasLinkage()) | 
 |     return false; | 
 |  | 
 |   if (Context.getLangOptions().CPlusPlus) { | 
 |     // C++ [basic.link]p6: | 
 |     //   If there is a visible declaration of an entity with linkage | 
 |     //   having the same name and type, ignoring entities declared | 
 |     //   outside the innermost enclosing namespace scope, the block | 
 |     //   scope declaration declares that same entity and receives the | 
 |     //   linkage of the previous declaration. | 
 |     DeclContext *OuterContext = DC->getRedeclContext(); | 
 |     if (!OuterContext->isFunctionOrMethod()) | 
 |       // This rule only applies to block-scope declarations. | 
 |       return false; | 
 |      | 
 |     DeclContext *PrevOuterContext = PrevDecl->getDeclContext(); | 
 |     if (PrevOuterContext->isRecord()) | 
 |       // We found a member function: ignore it. | 
 |       return false; | 
 |      | 
 |     // Find the innermost enclosing namespace for the new and | 
 |     // previous declarations. | 
 |     OuterContext = OuterContext->getEnclosingNamespaceContext(); | 
 |     PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext(); | 
 |  | 
 |     // The previous declaration is in a different namespace, so it | 
 |     // isn't the same function. | 
 |     if (!OuterContext->Equals(PrevOuterContext)) | 
 |       return false; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) { | 
 |   CXXScopeSpec &SS = D.getCXXScopeSpec(); | 
 |   if (!SS.isSet()) return; | 
 |   DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()), | 
 |                        SS.getRange()); | 
 | } | 
 |  | 
 | NamedDecl* | 
 | Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC, | 
 |                               QualType R, TypeSourceInfo *TInfo, | 
 |                               LookupResult &Previous, | 
 |                               MultiTemplateParamsArg TemplateParamLists, | 
 |                               bool &Redeclaration) { | 
 |   DeclarationName Name = GetNameForDeclarator(D).getName(); | 
 |  | 
 |   // Check that there are no default arguments (C++ only). | 
 |   if (getLangOptions().CPlusPlus) | 
 |     CheckExtraCXXDefaultArguments(D); | 
 |  | 
 |   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec(); | 
 |   assert(SCSpec != DeclSpec::SCS_typedef && | 
 |          "Parser allowed 'typedef' as storage class VarDecl."); | 
 |   VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec); | 
 |   if (SCSpec == DeclSpec::SCS_mutable) { | 
 |     // mutable can only appear on non-static class members, so it's always | 
 |     // an error here | 
 |     Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember); | 
 |     D.setInvalidType(); | 
 |     SC = SC_None; | 
 |   } | 
 |   SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten(); | 
 |   VarDecl::StorageClass SCAsWritten | 
 |     = StorageClassSpecToVarDeclStorageClass(SCSpec); | 
 |  | 
 |   IdentifierInfo *II = Name.getAsIdentifierInfo(); | 
 |   if (!II) { | 
 |     Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) | 
 |       << Name.getAsString(); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   DiagnoseFunctionSpecifiers(D); | 
 |  | 
 |   if (!DC->isRecord() && S->getFnParent() == 0) { | 
 |     // C99 6.9p2: The storage-class specifiers auto and register shall not | 
 |     // appear in the declaration specifiers in an external declaration. | 
 |     if (SC == SC_Auto || SC == SC_Register) { | 
 |  | 
 |       // If this is a register variable with an asm label specified, then this | 
 |       // is a GNU extension. | 
 |       if (SC == SC_Register && D.getAsmLabel()) | 
 |         Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register); | 
 |       else | 
 |         Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope); | 
 |       D.setInvalidType(); | 
 |     } | 
 |   } | 
 |   if (DC->isRecord() && !CurContext->isRecord()) { | 
 |     // This is an out-of-line definition of a static data member. | 
 |     if (SC == SC_Static) { | 
 |       Diag(D.getDeclSpec().getStorageClassSpecLoc(), | 
 |            diag::err_static_out_of_line) | 
 |         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); | 
 |     } else if (SC == SC_None) | 
 |       SC = SC_Static; | 
 |   } | 
 |   if (SC == SC_Static) { | 
 |     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) { | 
 |       if (RD->isLocalClass()) | 
 |         Diag(D.getIdentifierLoc(), | 
 |              diag::err_static_data_member_not_allowed_in_local_class) | 
 |           << Name << RD->getDeclName(); | 
 |     } | 
 |   } | 
 |  | 
 |   // Match up the template parameter lists with the scope specifier, then | 
 |   // determine whether we have a template or a template specialization. | 
 |   bool isExplicitSpecialization = false; | 
 |   unsigned NumMatchedTemplateParamLists = TemplateParamLists.size(); | 
 |   bool Invalid = false; | 
 |   if (TemplateParameterList *TemplateParams | 
 |         = MatchTemplateParametersToScopeSpecifier( | 
 |                                   D.getDeclSpec().getSourceRange().getBegin(), | 
 |                                                   D.getCXXScopeSpec(), | 
 |                         (TemplateParameterList**)TemplateParamLists.get(), | 
 |                                                    TemplateParamLists.size(), | 
 |                                                   /*never a friend*/ false, | 
 |                                                   isExplicitSpecialization, | 
 |                                                   Invalid)) { | 
 |     // All but one template parameter lists have been matching. | 
 |     --NumMatchedTemplateParamLists; | 
 |  | 
 |     if (TemplateParams->size() > 0) { | 
 |       // There is no such thing as a variable template. | 
 |       Diag(D.getIdentifierLoc(), diag::err_template_variable) | 
 |         << II | 
 |         << SourceRange(TemplateParams->getTemplateLoc(), | 
 |                        TemplateParams->getRAngleLoc()); | 
 |       return 0; | 
 |     } else { | 
 |       // There is an extraneous 'template<>' for this variable. Complain | 
 |       // about it, but allow the declaration of the variable. | 
 |       Diag(TemplateParams->getTemplateLoc(), | 
 |            diag::err_template_variable_noparams) | 
 |         << II | 
 |         << SourceRange(TemplateParams->getTemplateLoc(), | 
 |                        TemplateParams->getRAngleLoc()); | 
 |        | 
 |       isExplicitSpecialization = true; | 
 |     } | 
 |   } | 
 |  | 
 |   VarDecl *NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(), | 
 |                                    II, R, TInfo, SC, SCAsWritten); | 
 |  | 
 |   if (D.isInvalidType() || Invalid) | 
 |     NewVD->setInvalidDecl(); | 
 |  | 
 |   SetNestedNameSpecifier(NewVD, D); | 
 |  | 
 |   if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) { | 
 |     NewVD->setTemplateParameterListsInfo(Context, | 
 |                                          NumMatchedTemplateParamLists, | 
 |                         (TemplateParameterList**)TemplateParamLists.release()); | 
 |   } | 
 |  | 
 |   if (D.getDeclSpec().isThreadSpecified()) { | 
 |     if (NewVD->hasLocalStorage()) | 
 |       Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global); | 
 |     else if (!Context.Target.isTLSSupported()) | 
 |       Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported); | 
 |     else | 
 |       NewVD->setThreadSpecified(true); | 
 |   } | 
 |  | 
 |   // Set the lexical context. If the declarator has a C++ scope specifier, the | 
 |   // lexical context will be different from the semantic context. | 
 |   NewVD->setLexicalDeclContext(CurContext); | 
 |  | 
 |   // Handle attributes prior to checking for duplicates in MergeVarDecl | 
 |   ProcessDeclAttributes(S, NewVD, D); | 
 |  | 
 |   // Handle GNU asm-label extension (encoded as an attribute). | 
 |   if (Expr *E = (Expr*)D.getAsmLabel()) { | 
 |     // The parser guarantees this is a string. | 
 |     StringLiteral *SE = cast<StringLiteral>(E); | 
 |     NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),  | 
 |                                                 Context, SE->getString())); | 
 |   } | 
 |  | 
 |   // Diagnose shadowed variables before filtering for scope. | 
 |   if (!D.getCXXScopeSpec().isSet()) | 
 |     CheckShadow(S, NewVD, Previous); | 
 |  | 
 |   // Don't consider existing declarations that are in a different | 
 |   // scope and are out-of-semantic-context declarations (if the new | 
 |   // declaration has linkage). | 
 |   FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage()); | 
 |    | 
 |   // Merge the decl with the existing one if appropriate. | 
 |   if (!Previous.empty()) { | 
 |     if (Previous.isSingleResult() && | 
 |         isa<FieldDecl>(Previous.getFoundDecl()) && | 
 |         D.getCXXScopeSpec().isSet()) { | 
 |       // The user tried to define a non-static data member | 
 |       // out-of-line (C++ [dcl.meaning]p1). | 
 |       Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line) | 
 |         << D.getCXXScopeSpec().getRange(); | 
 |       Previous.clear(); | 
 |       NewVD->setInvalidDecl(); | 
 |     } | 
 |   } else if (D.getCXXScopeSpec().isSet()) { | 
 |     // No previous declaration in the qualifying scope. | 
 |     Diag(D.getIdentifierLoc(), diag::err_no_member) | 
 |       << Name << computeDeclContext(D.getCXXScopeSpec(), true) | 
 |       << D.getCXXScopeSpec().getRange(); | 
 |     NewVD->setInvalidDecl(); | 
 |   } | 
 |  | 
 |   CheckVariableDeclaration(NewVD, Previous, Redeclaration); | 
 |  | 
 |   // This is an explicit specialization of a static data member. Check it. | 
 |   if (isExplicitSpecialization && !NewVD->isInvalidDecl() && | 
 |       CheckMemberSpecialization(NewVD, Previous)) | 
 |     NewVD->setInvalidDecl(); | 
 |  | 
 |   // attributes declared post-definition are currently ignored | 
 |   // FIXME: This should be handled in attribute merging, not | 
 |   // here. | 
 |   if (Previous.isSingleResult()) { | 
 |     VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl()); | 
 |     if (Def && (Def = Def->getDefinition()) && | 
 |         Def != NewVD && D.hasAttributes()) { | 
 |       Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition); | 
 |       Diag(Def->getLocation(), diag::note_previous_definition); | 
 |     } | 
 |   } | 
 |  | 
 |   // If this is a locally-scoped extern C variable, update the map of | 
 |   // such variables. | 
 |   if (CurContext->isFunctionOrMethod() && NewVD->isExternC() && | 
 |       !NewVD->isInvalidDecl()) | 
 |     RegisterLocallyScopedExternCDecl(NewVD, Previous, S); | 
 |  | 
 |   // If there's a #pragma GCC visibility in scope, and this isn't a class | 
 |   // member, set the visibility of this variable. | 
 |   if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord()) | 
 |     AddPushedVisibilityAttribute(NewVD); | 
 |  | 
 |   MarkUnusedFileScopedDecl(NewVD); | 
 |  | 
 |   return NewVD; | 
 | } | 
 |  | 
 | /// \brief Diagnose variable or built-in function shadowing.  Implements | 
 | /// -Wshadow. | 
 | /// | 
 | /// This method is called whenever a VarDecl is added to a "useful" | 
 | /// scope. | 
 | /// | 
 | /// \param S the scope in which the shadowing name is being declared | 
 | /// \param R the lookup of the name | 
 | /// | 
 | void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) { | 
 |   // Return if warning is ignored. | 
 |   if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored) | 
 |     return; | 
 |  | 
 |   // Don't diagnose declarations at file scope.  The scope might not | 
 |   // have a DeclContext if (e.g.) we're parsing a function prototype. | 
 |   DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity()); | 
 |   if (NewDC && NewDC->isFileContext()) | 
 |     return; | 
 |    | 
 |   // Only diagnose if we're shadowing an unambiguous field or variable. | 
 |   if (R.getResultKind() != LookupResult::Found) | 
 |     return; | 
 |  | 
 |   NamedDecl* ShadowedDecl = R.getFoundDecl(); | 
 |   if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl)) | 
 |     return; | 
 |  | 
 |   DeclContext *OldDC = ShadowedDecl->getDeclContext(); | 
 |  | 
 |   // Only warn about certain kinds of shadowing for class members. | 
 |   if (NewDC && NewDC->isRecord()) { | 
 |     // In particular, don't warn about shadowing non-class members. | 
 |     if (!OldDC->isRecord()) | 
 |       return; | 
 |  | 
 |     // TODO: should we warn about static data members shadowing | 
 |     // static data members from base classes? | 
 |      | 
 |     // TODO: don't diagnose for inaccessible shadowed members. | 
 |     // This is hard to do perfectly because we might friend the | 
 |     // shadowing context, but that's just a false negative. | 
 |   } | 
 |  | 
 |   // Determine what kind of declaration we're shadowing. | 
 |   unsigned Kind; | 
 |   if (isa<RecordDecl>(OldDC)) { | 
 |     if (isa<FieldDecl>(ShadowedDecl)) | 
 |       Kind = 3; // field | 
 |     else | 
 |       Kind = 2; // static data member | 
 |   } else if (OldDC->isFileContext()) | 
 |     Kind = 1; // global | 
 |   else | 
 |     Kind = 0; // local | 
 |  | 
 |   DeclarationName Name = R.getLookupName(); | 
 |  | 
 |   // Emit warning and note. | 
 |   Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC; | 
 |   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration); | 
 | } | 
 |  | 
 | /// \brief Check -Wshadow without the advantage of a previous lookup. | 
 | void Sema::CheckShadow(Scope *S, VarDecl *D) { | 
 |   LookupResult R(*this, D->getDeclName(), D->getLocation(), | 
 |                  Sema::LookupOrdinaryName, Sema::ForRedeclaration); | 
 |   LookupName(R, S); | 
 |   CheckShadow(S, D, R); | 
 | } | 
 |  | 
 | /// \brief Perform semantic checking on a newly-created variable | 
 | /// declaration. | 
 | /// | 
 | /// This routine performs all of the type-checking required for a | 
 | /// variable declaration once it has been built. It is used both to | 
 | /// check variables after they have been parsed and their declarators | 
 | /// have been translated into a declaration, and to check variables | 
 | /// that have been instantiated from a template. | 
 | /// | 
 | /// Sets NewVD->isInvalidDecl() if an error was encountered. | 
 | void Sema::CheckVariableDeclaration(VarDecl *NewVD, | 
 |                                     LookupResult &Previous, | 
 |                                     bool &Redeclaration) { | 
 |   // If the decl is already known invalid, don't check it. | 
 |   if (NewVD->isInvalidDecl()) | 
 |     return; | 
 |  | 
 |   QualType T = NewVD->getType(); | 
 |  | 
 |   if (T->isObjCObjectType()) { | 
 |     Diag(NewVD->getLocation(), diag::err_statically_allocated_object); | 
 |     return NewVD->setInvalidDecl(); | 
 |   } | 
 |  | 
 |   // Emit an error if an address space was applied to decl with local storage. | 
 |   // This includes arrays of objects with address space qualifiers, but not | 
 |   // automatic variables that point to other address spaces. | 
 |   // ISO/IEC TR 18037 S5.1.2 | 
 |   if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) { | 
 |     Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl); | 
 |     return NewVD->setInvalidDecl(); | 
 |   } | 
 |  | 
 |   if (NewVD->hasLocalStorage() && T.isObjCGCWeak() | 
 |       && !NewVD->hasAttr<BlocksAttr>()) | 
 |     Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local); | 
 |    | 
 |   bool isVM = T->isVariablyModifiedType(); | 
 |   if (isVM || NewVD->hasAttr<CleanupAttr>() || | 
 |       NewVD->hasAttr<BlocksAttr>()) | 
 |     getCurFunction()->setHasBranchProtectedScope(); | 
 |  | 
 |   if ((isVM && NewVD->hasLinkage()) || | 
 |       (T->isVariableArrayType() && NewVD->hasGlobalStorage())) { | 
 |     bool SizeIsNegative; | 
 |     llvm::APSInt Oversized; | 
 |     QualType FixedTy = | 
 |         TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative, | 
 |                                             Oversized); | 
 |  | 
 |     if (FixedTy.isNull() && T->isVariableArrayType()) { | 
 |       const VariableArrayType *VAT = Context.getAsVariableArrayType(T); | 
 |       // FIXME: This won't give the correct result for | 
 |       // int a[10][n]; | 
 |       SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange(); | 
 |  | 
 |       if (NewVD->isFileVarDecl()) | 
 |         Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope) | 
 |         << SizeRange; | 
 |       else if (NewVD->getStorageClass() == SC_Static) | 
 |         Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage) | 
 |         << SizeRange; | 
 |       else | 
 |         Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage) | 
 |         << SizeRange; | 
 |       return NewVD->setInvalidDecl(); | 
 |     } | 
 |  | 
 |     if (FixedTy.isNull()) { | 
 |       if (NewVD->isFileVarDecl()) | 
 |         Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope); | 
 |       else | 
 |         Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage); | 
 |       return NewVD->setInvalidDecl(); | 
 |     } | 
 |  | 
 |     Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size); | 
 |     NewVD->setType(FixedTy); | 
 |   } | 
 |  | 
 |   if (Previous.empty() && NewVD->isExternC()) { | 
 |     // Since we did not find anything by this name and we're declaring | 
 |     // an extern "C" variable, look for a non-visible extern "C" | 
 |     // declaration with the same name. | 
 |     llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos | 
 |       = LocallyScopedExternalDecls.find(NewVD->getDeclName()); | 
 |     if (Pos != LocallyScopedExternalDecls.end()) | 
 |       Previous.addDecl(Pos->second); | 
 |   } | 
 |  | 
 |   if (T->isVoidType() && !NewVD->hasExternalStorage()) { | 
 |     Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type) | 
 |       << T; | 
 |     return NewVD->setInvalidDecl(); | 
 |   } | 
 |  | 
 |   if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) { | 
 |     Diag(NewVD->getLocation(), diag::err_block_on_nonlocal); | 
 |     return NewVD->setInvalidDecl(); | 
 |   } | 
 |  | 
 |   if (isVM && NewVD->hasAttr<BlocksAttr>()) { | 
 |     Diag(NewVD->getLocation(), diag::err_block_on_vm); | 
 |     return NewVD->setInvalidDecl(); | 
 |   } | 
 |  | 
 |   // Function pointers and references cannot have qualified function type, only | 
 |   // function pointer-to-members can do that. | 
 |   QualType Pointee; | 
 |   unsigned PtrOrRef = 0; | 
 |   if (const PointerType *Ptr = T->getAs<PointerType>()) | 
 |     Pointee = Ptr->getPointeeType(); | 
 |   else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) { | 
 |     Pointee = Ref->getPointeeType(); | 
 |     PtrOrRef = 1; | 
 |   } | 
 |   if (!Pointee.isNull() && Pointee->isFunctionProtoType() && | 
 |       Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) { | 
 |     Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer) | 
 |         << PtrOrRef; | 
 |     return NewVD->setInvalidDecl(); | 
 |   } | 
 |  | 
 |   if (!Previous.empty()) { | 
 |     Redeclaration = true; | 
 |     MergeVarDecl(NewVD, Previous); | 
 |   } | 
 | } | 
 |  | 
 | /// \brief Data used with FindOverriddenMethod | 
 | struct FindOverriddenMethodData { | 
 |   Sema *S; | 
 |   CXXMethodDecl *Method; | 
 | }; | 
 |  | 
 | /// \brief Member lookup function that determines whether a given C++ | 
 | /// method overrides a method in a base class, to be used with | 
 | /// CXXRecordDecl::lookupInBases(). | 
 | static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier, | 
 |                                  CXXBasePath &Path, | 
 |                                  void *UserData) { | 
 |   RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl(); | 
 |  | 
 |   FindOverriddenMethodData *Data  | 
 |     = reinterpret_cast<FindOverriddenMethodData*>(UserData); | 
 |    | 
 |   DeclarationName Name = Data->Method->getDeclName(); | 
 |    | 
 |   // FIXME: Do we care about other names here too? | 
 |   if (Name.getNameKind() == DeclarationName::CXXDestructorName) { | 
 |     // We really want to find the base class destructor here. | 
 |     QualType T = Data->S->Context.getTypeDeclType(BaseRecord); | 
 |     CanQualType CT = Data->S->Context.getCanonicalType(T); | 
 |      | 
 |     Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT); | 
 |   }     | 
 |    | 
 |   for (Path.Decls = BaseRecord->lookup(Name); | 
 |        Path.Decls.first != Path.Decls.second; | 
 |        ++Path.Decls.first) { | 
 |     NamedDecl *D = *Path.Decls.first; | 
 |     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { | 
 |       if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false)) | 
 |         return true; | 
 |     } | 
 |   } | 
 |    | 
 |   return false; | 
 | } | 
 |  | 
 | /// AddOverriddenMethods - See if a method overrides any in the base classes, | 
 | /// and if so, check that it's a valid override and remember it. | 
 | bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) { | 
 |   // Look for virtual methods in base classes that this method might override. | 
 |   CXXBasePaths Paths; | 
 |   FindOverriddenMethodData Data; | 
 |   Data.Method = MD; | 
 |   Data.S = this; | 
 |   bool AddedAny = false; | 
 |   if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) { | 
 |     for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(), | 
 |          E = Paths.found_decls_end(); I != E; ++I) { | 
 |       if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) { | 
 |         if (!CheckOverridingFunctionReturnType(MD, OldMD) && | 
 |             !CheckOverridingFunctionExceptionSpec(MD, OldMD) && | 
 |             !CheckOverridingFunctionAttributes(MD, OldMD)) { | 
 |           MD->addOverriddenMethod(OldMD->getCanonicalDecl()); | 
 |           AddedAny = true; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |    | 
 |   return AddedAny; | 
 | } | 
 |  | 
 | static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) { | 
 |   LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(), | 
 |                     Sema::LookupOrdinaryName, Sema::ForRedeclaration); | 
 |   S.LookupQualifiedName(Prev, NewFD->getDeclContext()); | 
 |   assert(!Prev.isAmbiguous() && | 
 |          "Cannot have an ambiguity in previous-declaration lookup"); | 
 |   for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end(); | 
 |        Func != FuncEnd; ++Func) { | 
 |     if (isa<FunctionDecl>(*Func) && | 
 |         isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD)) | 
 |       S.Diag((*Func)->getLocation(), diag::note_member_def_close_match); | 
 |   } | 
 | } | 
 |  | 
 | NamedDecl* | 
 | Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC, | 
 |                               QualType R, TypeSourceInfo *TInfo, | 
 |                               LookupResult &Previous, | 
 |                               MultiTemplateParamsArg TemplateParamLists, | 
 |                               bool IsFunctionDefinition, bool &Redeclaration) { | 
 |   assert(R.getTypePtr()->isFunctionType()); | 
 |  | 
 |   // TODO: consider using NameInfo for diagnostic. | 
 |   DeclarationNameInfo NameInfo = GetNameForDeclarator(D); | 
 |   DeclarationName Name = NameInfo.getName(); | 
 |   FunctionDecl::StorageClass SC = SC_None; | 
 |   switch (D.getDeclSpec().getStorageClassSpec()) { | 
 |   default: assert(0 && "Unknown storage class!"); | 
 |   case DeclSpec::SCS_auto: | 
 |   case DeclSpec::SCS_register: | 
 |   case DeclSpec::SCS_mutable: | 
 |     Diag(D.getDeclSpec().getStorageClassSpecLoc(), | 
 |          diag::err_typecheck_sclass_func); | 
 |     D.setInvalidType(); | 
 |     break; | 
 |   case DeclSpec::SCS_unspecified: SC = SC_None; break; | 
 |   case DeclSpec::SCS_extern:      SC = SC_Extern; break; | 
 |   case DeclSpec::SCS_static: { | 
 |     if (CurContext->getRedeclContext()->isFunctionOrMethod()) { | 
 |       // C99 6.7.1p5: | 
 |       //   The declaration of an identifier for a function that has | 
 |       //   block scope shall have no explicit storage-class specifier | 
 |       //   other than extern | 
 |       // See also (C++ [dcl.stc]p4). | 
 |       Diag(D.getDeclSpec().getStorageClassSpecLoc(), | 
 |            diag::err_static_block_func); | 
 |       SC = SC_None; | 
 |     } else | 
 |       SC = SC_Static; | 
 |     break; | 
 |   } | 
 |   case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break; | 
 |   } | 
 |  | 
 |   if (D.getDeclSpec().isThreadSpecified()) | 
 |     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread); | 
 |  | 
 |   bool isFriend = D.getDeclSpec().isFriendSpecified(); | 
 |   bool isInline = D.getDeclSpec().isInlineSpecified(); | 
 |   bool isVirtual = D.getDeclSpec().isVirtualSpecified(); | 
 |   bool isExplicit = D.getDeclSpec().isExplicitSpecified(); | 
 |  | 
 |   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten(); | 
 |   FunctionDecl::StorageClass SCAsWritten | 
 |     = StorageClassSpecToFunctionDeclStorageClass(SCSpec); | 
 |  | 
 |   // Check that the return type is not an abstract class type. | 
 |   // For record types, this is done by the AbstractClassUsageDiagnoser once | 
 |   // the class has been completely parsed. | 
 |   if (!DC->isRecord() && | 
 |       RequireNonAbstractType(D.getIdentifierLoc(), | 
 |                              R->getAs<FunctionType>()->getResultType(), | 
 |                              diag::err_abstract_type_in_decl, | 
 |                              AbstractReturnType)) | 
 |     D.setInvalidType(); | 
 |  | 
 |   // Do not allow returning a objc interface by-value. | 
 |   if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) { | 
 |     Diag(D.getIdentifierLoc(), | 
 |          diag::err_object_cannot_be_passed_returned_by_value) << 0 | 
 |       << R->getAs<FunctionType>()->getResultType(); | 
 |     D.setInvalidType(); | 
 |   } | 
 |  | 
 |   bool isVirtualOkay = false; | 
 |   FunctionDecl *NewFD; | 
 |  | 
 |   if (isFriend) { | 
 |     // C++ [class.friend]p5 | 
 |     //   A function can be defined in a friend declaration of a | 
 |     //   class . . . . Such a function is implicitly inline. | 
 |     isInline |= IsFunctionDefinition; | 
 |   } | 
 |  | 
 |   if (Name.getNameKind() == DeclarationName::CXXConstructorName) { | 
 |     // This is a C++ constructor declaration. | 
 |     assert(DC->isRecord() && | 
 |            "Constructors can only be declared in a member context"); | 
 |  | 
 |     R = CheckConstructorDeclarator(D, R, SC); | 
 |  | 
 |     // Create the new declaration | 
 |     NewFD = CXXConstructorDecl::Create(Context, | 
 |                                        cast<CXXRecordDecl>(DC), | 
 |                                        NameInfo, R, TInfo, | 
 |                                        isExplicit, isInline, | 
 |                                        /*isImplicitlyDeclared=*/false); | 
 |   } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) { | 
 |     // This is a C++ destructor declaration. | 
 |     if (DC->isRecord()) { | 
 |       R = CheckDestructorDeclarator(D, R, SC); | 
 |  | 
 |       NewFD = CXXDestructorDecl::Create(Context, | 
 |                                         cast<CXXRecordDecl>(DC), | 
 |                                         NameInfo, R, | 
 |                                         isInline, | 
 |                                         /*isImplicitlyDeclared=*/false); | 
 |       NewFD->setTypeSourceInfo(TInfo); | 
 |  | 
 |       isVirtualOkay = true; | 
 |     } else { | 
 |       Diag(D.getIdentifierLoc(), diag::err_destructor_not_member); | 
 |  | 
 |       // Create a FunctionDecl to satisfy the function definition parsing | 
 |       // code path. | 
 |       NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(), | 
 |                                    Name, R, TInfo, SC, SCAsWritten, isInline, | 
 |                                    /*hasPrototype=*/true); | 
 |       D.setInvalidType(); | 
 |     } | 
 |   } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) { | 
 |     if (!DC->isRecord()) { | 
 |       Diag(D.getIdentifierLoc(), | 
 |            diag::err_conv_function_not_member); | 
 |       return 0; | 
 |     } | 
 |  | 
 |     CheckConversionDeclarator(D, R, SC); | 
 |     NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC), | 
 |                                       NameInfo, R, TInfo, | 
 |                                       isInline, isExplicit); | 
 |  | 
 |     isVirtualOkay = true; | 
 |   } else if (DC->isRecord()) { | 
 |     // If the of the function is the same as the name of the record, then this | 
 |     // must be an invalid constructor that has a return type. | 
 |     // (The parser checks for a return type and makes the declarator a | 
 |     // constructor if it has no return type). | 
 |     // must have an invalid constructor that has a return type | 
 |     if (Name.getAsIdentifierInfo() && | 
 |         Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){ | 
 |       Diag(D.getIdentifierLoc(), diag::err_constructor_return_type) | 
 |         << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) | 
 |         << SourceRange(D.getIdentifierLoc()); | 
 |       return 0; | 
 |     } | 
 |  | 
 |     bool isStatic = SC == SC_Static; | 
 |      | 
 |     // [class.free]p1: | 
 |     // Any allocation function for a class T is a static member | 
 |     // (even if not explicitly declared static). | 
 |     if (Name.getCXXOverloadedOperator() == OO_New || | 
 |         Name.getCXXOverloadedOperator() == OO_Array_New) | 
 |       isStatic = true; | 
 |  | 
 |     // [class.free]p6 Any deallocation function for a class X is a static member | 
 |     // (even if not explicitly declared static). | 
 |     if (Name.getCXXOverloadedOperator() == OO_Delete || | 
 |         Name.getCXXOverloadedOperator() == OO_Array_Delete) | 
 |       isStatic = true; | 
 |      | 
 |     // This is a C++ method declaration. | 
 |     NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC), | 
 |                                   NameInfo, R, TInfo, | 
 |                                   isStatic, SCAsWritten, isInline); | 
 |  | 
 |     isVirtualOkay = !isStatic; | 
 |   } else { | 
 |     // Determine whether the function was written with a | 
 |     // prototype. This true when: | 
 |     //   - we're in C++ (where every function has a prototype), | 
 |     //   - there is a prototype in the declarator, or | 
 |     //   - the type R of the function is some kind of typedef or other reference | 
 |     //     to a type name (which eventually refers to a function type). | 
 |     bool HasPrototype = | 
 |        getLangOptions().CPlusPlus || | 
 |        (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) || | 
 |        (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType()); | 
 |  | 
 |     NewFD = FunctionDecl::Create(Context, DC, | 
 |                                  NameInfo, R, TInfo, SC, SCAsWritten, isInline, | 
 |                                  HasPrototype); | 
 |   } | 
 |  | 
 |   if (D.isInvalidType()) | 
 |     NewFD->setInvalidDecl(); | 
 |  | 
 |   SetNestedNameSpecifier(NewFD, D); | 
 |  | 
 |   // Set the lexical context. If the declarator has a C++ | 
 |   // scope specifier, or is the object of a friend declaration, the | 
 |   // lexical context will be different from the semantic context. | 
 |   NewFD->setLexicalDeclContext(CurContext); | 
 |  | 
 |   // Match up the template parameter lists with the scope specifier, then | 
 |   // determine whether we have a template or a template specialization. | 
 |   FunctionTemplateDecl *FunctionTemplate = 0; | 
 |   bool isExplicitSpecialization = false; | 
 |   bool isFunctionTemplateSpecialization = false; | 
 |   unsigned NumMatchedTemplateParamLists = TemplateParamLists.size(); | 
 |   bool Invalid = false; | 
 |   if (TemplateParameterList *TemplateParams | 
 |         = MatchTemplateParametersToScopeSpecifier( | 
 |                                   D.getDeclSpec().getSourceRange().getBegin(), | 
 |                                   D.getCXXScopeSpec(), | 
 |                            (TemplateParameterList**)TemplateParamLists.get(), | 
 |                                                   TemplateParamLists.size(), | 
 |                                                   isFriend, | 
 |                                                   isExplicitSpecialization, | 
 |                                                   Invalid)) { | 
 |     // All but one template parameter lists have been matching. | 
 |     --NumMatchedTemplateParamLists; | 
 |  | 
 |     if (TemplateParams->size() > 0) { | 
 |       // This is a function template | 
 |  | 
 |       // Check that we can declare a template here. | 
 |       if (CheckTemplateDeclScope(S, TemplateParams)) | 
 |         return 0; | 
 |  | 
 |       FunctionTemplate = FunctionTemplateDecl::Create(Context, DC, | 
 |                                                       NewFD->getLocation(), | 
 |                                                       Name, TemplateParams, | 
 |                                                       NewFD); | 
 |       FunctionTemplate->setLexicalDeclContext(CurContext); | 
 |       NewFD->setDescribedFunctionTemplate(FunctionTemplate); | 
 |     } else { | 
 |       // This is a function template specialization. | 
 |       isFunctionTemplateSpecialization = true; | 
 |  | 
 |       // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);". | 
 |       if (isFriend && isFunctionTemplateSpecialization) { | 
 |         // We want to remove the "template<>", found here. | 
 |         SourceRange RemoveRange = TemplateParams->getSourceRange(); | 
 |  | 
 |         // If we remove the template<> and the name is not a | 
 |         // template-id, we're actually silently creating a problem: | 
 |         // the friend declaration will refer to an untemplated decl, | 
 |         // and clearly the user wants a template specialization.  So | 
 |         // we need to insert '<>' after the name. | 
 |         SourceLocation InsertLoc; | 
 |         if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) { | 
 |           InsertLoc = D.getName().getSourceRange().getEnd(); | 
 |           InsertLoc = PP.getLocForEndOfToken(InsertLoc); | 
 |         } | 
 |  | 
 |         Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend) | 
 |           << Name << RemoveRange | 
 |           << FixItHint::CreateRemoval(RemoveRange) | 
 |           << FixItHint::CreateInsertion(InsertLoc, "<>"); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) { | 
 |     NewFD->setTemplateParameterListsInfo(Context, | 
 |                                          NumMatchedTemplateParamLists, | 
 |                         (TemplateParameterList**)TemplateParamLists.release()); | 
 |   } | 
 |  | 
 |   if (Invalid) { | 
 |     NewFD->setInvalidDecl(); | 
 |     if (FunctionTemplate) | 
 |       FunctionTemplate->setInvalidDecl(); | 
 |   } | 
 |    | 
 |   // C++ [dcl.fct.spec]p5: | 
 |   //   The virtual specifier shall only be used in declarations of | 
 |   //   nonstatic class member functions that appear within a | 
 |   //   member-specification of a class declaration; see 10.3. | 
 |   // | 
 |   if (isVirtual && !NewFD->isInvalidDecl()) { | 
 |     if (!isVirtualOkay) { | 
 |        Diag(D.getDeclSpec().getVirtualSpecLoc(), | 
 |            diag::err_virtual_non_function); | 
 |     } else if (!CurContext->isRecord()) { | 
 |       // 'virtual' was specified outside of the class. | 
 |       Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class) | 
 |         << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc()); | 
 |     } else { | 
 |       // Okay: Add virtual to the method. | 
 |       NewFD->setVirtualAsWritten(true); | 
 |     } | 
 |   } | 
 |  | 
 |   // C++ [dcl.fct.spec]p3: | 
 |   //  The inline specifier shall not appear on a block scope function declaration. | 
 |   if (isInline && !NewFD->isInvalidDecl() && getLangOptions().CPlusPlus) { | 
 |     if (CurContext->isFunctionOrMethod()) { | 
 |       // 'inline' is not allowed on block scope function declaration. | 
 |       Diag(D.getDeclSpec().getInlineSpecLoc(),  | 
 |            diag::err_inline_declaration_block_scope) << Name | 
 |         << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); | 
 |     } | 
 |   } | 
 |   | 
 |   // C++ [dcl.fct.spec]p6: | 
 |   //  The explicit specifier shall be used only in the declaration of a | 
 |   //  constructor or conversion function within its class definition; see 12.3.1 | 
 |   //  and 12.3.2. | 
 |   if (isExplicit && !NewFD->isInvalidDecl()) { | 
 |     if (!CurContext->isRecord()) { | 
 |       // 'explicit' was specified outside of the class. | 
 |       Diag(D.getDeclSpec().getExplicitSpecLoc(),  | 
 |            diag::err_explicit_out_of_class) | 
 |         << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc()); | 
 |     } else if (!isa<CXXConstructorDecl>(NewFD) &&  | 
 |                !isa<CXXConversionDecl>(NewFD)) { | 
 |       // 'explicit' was specified on a function that wasn't a constructor | 
 |       // or conversion function. | 
 |       Diag(D.getDeclSpec().getExplicitSpecLoc(), | 
 |            diag::err_explicit_non_ctor_or_conv_function) | 
 |         << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc()); | 
 |     }       | 
 |   } | 
 |  | 
 |   // Filter out previous declarations that don't match the scope. | 
 |   FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage()); | 
 |  | 
 |   if (isFriend) { | 
 |     // For now, claim that the objects have no previous declaration. | 
 |     if (FunctionTemplate) { | 
 |       FunctionTemplate->setObjectOfFriendDecl(false); | 
 |       FunctionTemplate->setAccess(AS_public); | 
 |     } | 
 |     NewFD->setObjectOfFriendDecl(false); | 
 |     NewFD->setAccess(AS_public); | 
 |   } | 
 |  | 
 |   if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) && | 
 |       !CurContext->isRecord()) { | 
 |     // C++ [class.static]p1: | 
 |     //   A data or function member of a class may be declared static | 
 |     //   in a class definition, in which case it is a static member of | 
 |     //   the class. | 
 |  | 
 |     // Complain about the 'static' specifier if it's on an out-of-line | 
 |     // member function definition. | 
 |     Diag(D.getDeclSpec().getStorageClassSpecLoc(), | 
 |          diag::err_static_out_of_line) | 
 |       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); | 
 |   } | 
 |  | 
 |   // Handle GNU asm-label extension (encoded as an attribute). | 
 |   if (Expr *E = (Expr*) D.getAsmLabel()) { | 
 |     // The parser guarantees this is a string. | 
 |     StringLiteral *SE = cast<StringLiteral>(E); | 
 |     NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context, | 
 |                                                 SE->getString())); | 
 |   } | 
 |  | 
 |   // Copy the parameter declarations from the declarator D to the function | 
 |   // declaration NewFD, if they are available.  First scavenge them into Params. | 
 |   llvm::SmallVector<ParmVarDecl*, 16> Params; | 
 |   if (D.getNumTypeObjects() > 0) { | 
 |     DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; | 
 |  | 
 |     // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs | 
 |     // function that takes no arguments, not a function that takes a | 
 |     // single void argument. | 
 |     // We let through "const void" here because Sema::GetTypeForDeclarator | 
 |     // already checks for that case. | 
 |     if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 && | 
 |         FTI.ArgInfo[0].Param && | 
 |         cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) { | 
 |       // Empty arg list, don't push any params. | 
 |       ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param); | 
 |  | 
 |       // In C++, the empty parameter-type-list must be spelled "void"; a | 
 |       // typedef of void is not permitted. | 
 |       if (getLangOptions().CPlusPlus && | 
 |           Param->getType().getUnqualifiedType() != Context.VoidTy) | 
 |         Diag(Param->getLocation(), diag::err_param_typedef_of_void); | 
 |       // FIXME: Leaks decl? | 
 |     } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) { | 
 |       for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) { | 
 |         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param); | 
 |         assert(Param->getDeclContext() != NewFD && "Was set before ?"); | 
 |         Param->setDeclContext(NewFD); | 
 |         Params.push_back(Param); | 
 |  | 
 |         if (Param->isInvalidDecl()) | 
 |           NewFD->setInvalidDecl(); | 
 |       } | 
 |     } | 
 |  | 
 |   } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) { | 
 |     // When we're declaring a function with a typedef, typeof, etc as in the | 
 |     // following example, we'll need to synthesize (unnamed) | 
 |     // parameters for use in the declaration. | 
 |     // | 
 |     // @code | 
 |     // typedef void fn(int); | 
 |     // fn f; | 
 |     // @endcode | 
 |  | 
 |     // Synthesize a parameter for each argument type. | 
 |     for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(), | 
 |          AE = FT->arg_type_end(); AI != AE; ++AI) { | 
 |       ParmVarDecl *Param = | 
 |         BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI); | 
 |       Params.push_back(Param); | 
 |     } | 
 |   } else { | 
 |     assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 && | 
 |            "Should not need args for typedef of non-prototype fn"); | 
 |   } | 
 |   // Finally, we know we have the right number of parameters, install them. | 
 |   NewFD->setParams(Params.data(), Params.size()); | 
 |  | 
 |   // If the declarator is a template-id, translate the parser's template  | 
 |   // argument list into our AST format. | 
 |   bool HasExplicitTemplateArgs = false; | 
 |   TemplateArgumentListInfo TemplateArgs; | 
 |   if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { | 
 |     TemplateIdAnnotation *TemplateId = D.getName().TemplateId; | 
 |     TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); | 
 |     TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); | 
 |     ASTTemplateArgsPtr TemplateArgsPtr(*this, | 
 |                                        TemplateId->getTemplateArgs(), | 
 |                                        TemplateId->NumArgs); | 
 |     translateTemplateArguments(TemplateArgsPtr, | 
 |                                TemplateArgs); | 
 |     TemplateArgsPtr.release(); | 
 |      | 
 |     HasExplicitTemplateArgs = true; | 
 |      | 
 |     if (FunctionTemplate) { | 
 |       // FIXME: Diagnose function template with explicit template | 
 |       // arguments. | 
 |       HasExplicitTemplateArgs = false; | 
 |     } else if (!isFunctionTemplateSpecialization &&  | 
 |                !D.getDeclSpec().isFriendSpecified()) { | 
 |       // We have encountered something that the user meant to be a  | 
 |       // specialization (because it has explicitly-specified template | 
 |       // arguments) but that was not introduced with a "template<>" (or had | 
 |       // too few of them). | 
 |       Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header) | 
 |         << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc) | 
 |         << FixItHint::CreateInsertion( | 
 |                                    D.getDeclSpec().getSourceRange().getBegin(), | 
 |                                                  "template<> "); | 
 |       isFunctionTemplateSpecialization = true; | 
 |     } else { | 
 |       // "friend void foo<>(int);" is an implicit specialization decl. | 
 |       isFunctionTemplateSpecialization = true; | 
 |     } | 
 |   } else if (isFriend && isFunctionTemplateSpecialization) { | 
 |     // This combination is only possible in a recovery case;  the user | 
 |     // wrote something like: | 
 |     //   template <> friend void foo(int); | 
 |     // which we're recovering from as if the user had written: | 
 |     //   friend void foo<>(int); | 
 |     // Go ahead and fake up a template id. | 
 |     HasExplicitTemplateArgs = true; | 
 |     TemplateArgs.setLAngleLoc(D.getIdentifierLoc()); | 
 |     TemplateArgs.setRAngleLoc(D.getIdentifierLoc()); | 
 |   } | 
 |  | 
 |   // If it's a friend (and only if it's a friend), it's possible | 
 |   // that either the specialized function type or the specialized | 
 |   // template is dependent, and therefore matching will fail.  In | 
 |   // this case, don't check the specialization yet. | 
 |   if (isFunctionTemplateSpecialization && isFriend && | 
 |       (NewFD->getType()->isDependentType() || DC->isDependentContext())) { | 
 |     assert(HasExplicitTemplateArgs && | 
 |            "friend function specialization without template args"); | 
 |     if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs, | 
 |                                                      Previous)) | 
 |       NewFD->setInvalidDecl(); | 
 |   } else if (isFunctionTemplateSpecialization) { | 
 |     if (CheckFunctionTemplateSpecialization(NewFD, | 
 |                                (HasExplicitTemplateArgs ? &TemplateArgs : 0), | 
 |                                             Previous)) | 
 |       NewFD->setInvalidDecl(); | 
 |   } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) { | 
 |     if (CheckMemberSpecialization(NewFD, Previous)) | 
 |       NewFD->setInvalidDecl(); | 
 |   } | 
 |  | 
 |   // Perform semantic checking on the function declaration. | 
 |   bool OverloadableAttrRequired = false; // FIXME: HACK! | 
 |   CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization, | 
 |                            Redeclaration, /*FIXME:*/OverloadableAttrRequired); | 
 |  | 
 |   assert((NewFD->isInvalidDecl() || !Redeclaration || | 
 |           Previous.getResultKind() != LookupResult::FoundOverloaded) && | 
 |          "previous declaration set still overloaded"); | 
 |  | 
 |   NamedDecl *PrincipalDecl = (FunctionTemplate | 
 |                               ? cast<NamedDecl>(FunctionTemplate) | 
 |                               : NewFD); | 
 |  | 
 |   if (isFriend && Redeclaration) { | 
 |     AccessSpecifier Access = AS_public; | 
 |     if (!NewFD->isInvalidDecl()) | 
 |       Access = NewFD->getPreviousDeclaration()->getAccess(); | 
 |  | 
 |     NewFD->setAccess(Access); | 
 |     if (FunctionTemplate) FunctionTemplate->setAccess(Access); | 
 |  | 
 |     PrincipalDecl->setObjectOfFriendDecl(true); | 
 |   } | 
 |  | 
 |   if (NewFD->isOverloadedOperator() && !DC->isRecord() && | 
 |       PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary)) | 
 |     PrincipalDecl->setNonMemberOperator(); | 
 |  | 
 |   // If we have a function template, check the template parameter | 
 |   // list. This will check and merge default template arguments. | 
 |   if (FunctionTemplate) { | 
 |     FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration(); | 
 |     CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(), | 
 |                       PrevTemplate? PrevTemplate->getTemplateParameters() : 0, | 
 |              D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate | 
 |                                                 : TPC_FunctionTemplate); | 
 |   } | 
 |  | 
 |   if (NewFD->isInvalidDecl()) { | 
 |     // Ignore all the rest of this. | 
 |   } else if (!Redeclaration) { | 
 |     // Fake up an access specifier if it's supposed to be a class member. | 
 |     if (isa<CXXRecordDecl>(NewFD->getDeclContext())) | 
 |       NewFD->setAccess(AS_public); | 
 |  | 
 |     // Qualified decls generally require a previous declaration. | 
 |     if (D.getCXXScopeSpec().isSet()) { | 
 |       // ...with the major exception of dependent friend declarations. | 
 |       // In theory, this condition could be whether the qualifier | 
 |       // is dependent;  in practice, the way we nest template parameters | 
 |       // prevents this sort of matching from working, so we have to base it | 
 |       // on the general dependence of the context. | 
 |       if (isFriend && CurContext->isDependentContext()) { | 
 |         // ignore these | 
 |  | 
 |       } else { | 
 |         // The user tried to provide an out-of-line definition for a | 
 |         // function that is a member of a class or namespace, but there | 
 |         // was no such member function declared (C++ [class.mfct]p2, | 
 |         // C++ [namespace.memdef]p2). For example: | 
 |         // | 
 |         // class X { | 
 |         //   void f() const; | 
 |         // }; | 
 |         // | 
 |         // void X::f() { } // ill-formed | 
 |         // | 
 |         // Complain about this problem, and attempt to suggest close | 
 |         // matches (e.g., those that differ only in cv-qualifiers and | 
 |         // whether the parameter types are references). | 
 |         Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match) | 
 |           << Name << DC << D.getCXXScopeSpec().getRange(); | 
 |         NewFD->setInvalidDecl(); | 
 |  | 
 |         DiagnoseInvalidRedeclaration(*this, NewFD); | 
 |       } | 
 |  | 
 |     // Unqualified local friend declarations are required to resolve | 
 |     // to something. | 
 |     } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) { | 
 |       Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend); | 
 |       NewFD->setInvalidDecl(); | 
 |       DiagnoseInvalidRedeclaration(*this, NewFD); | 
 |     } | 
 |  | 
 |   } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && | 
 |              !isFriend && !isFunctionTemplateSpecialization && | 
 |              !isExplicitSpecialization) { | 
 |     // An out-of-line member function declaration must also be a | 
 |     // definition (C++ [dcl.meaning]p1). | 
 |     // Note that this is not the case for explicit specializations of | 
 |     // function templates or member functions of class templates, per | 
 |     // C++ [temp.expl.spec]p2. We also allow these declarations as an extension | 
 |     // for compatibility with old SWIG code which likes to generate them. | 
 |     Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration) | 
 |       << D.getCXXScopeSpec().getRange(); | 
 |   } | 
 |  | 
 |   // Handle attributes. We need to have merged decls when handling attributes | 
 |   // (for example to check for conflicts, etc). | 
 |   // FIXME: This needs to happen before we merge declarations. Then, | 
 |   // let attribute merging cope with attribute conflicts. | 
 |   ProcessDeclAttributes(S, NewFD, D); | 
 |  | 
 |   // attributes declared post-definition are currently ignored | 
 |   // FIXME: This should happen during attribute merging | 
 |   if (Redeclaration && Previous.isSingleResult()) { | 
 |     const FunctionDecl *Def; | 
 |     FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl()); | 
 |     if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) { | 
 |       Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition); | 
 |       Diag(Def->getLocation(), diag::note_previous_definition); | 
 |     } | 
 |   } | 
 |  | 
 |   AddKnownFunctionAttributes(NewFD); | 
 |  | 
 |   if (OverloadableAttrRequired && !NewFD->hasAttr<OverloadableAttr>()) { | 
 |     // If a function name is overloadable in C, then every function | 
 |     // with that name must be marked "overloadable". | 
 |     Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing) | 
 |       << Redeclaration << NewFD; | 
 |     if (!Previous.empty()) | 
 |       Diag(Previous.getRepresentativeDecl()->getLocation(), | 
 |            diag::note_attribute_overloadable_prev_overload); | 
 |     NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(), Context)); | 
 |   } | 
 |  | 
 |   if (NewFD->hasAttr<OverloadableAttr>() &&  | 
 |       !NewFD->getType()->getAs<FunctionProtoType>()) { | 
 |     Diag(NewFD->getLocation(), | 
 |          diag::err_attribute_overloadable_no_prototype) | 
 |       << NewFD; | 
 |  | 
 |     // Turn this into a variadic function with no parameters. | 
 |     const FunctionType *FT = NewFD->getType()->getAs<FunctionType>(); | 
 |     QualType R = Context.getFunctionType(FT->getResultType(), | 
 |                                          0, 0, true, 0, false, false, 0, 0, | 
 |                                          FT->getExtInfo()); | 
 |     NewFD->setType(R); | 
 |   } | 
 |  | 
 |   // If there's a #pragma GCC visibility in scope, and this isn't a class | 
 |   // member, set the visibility of this function. | 
 |   if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord()) | 
 |     AddPushedVisibilityAttribute(NewFD); | 
 |  | 
 |   // If this is a locally-scoped extern C function, update the | 
 |   // map of such names. | 
 |   if (CurContext->isFunctionOrMethod() && NewFD->isExternC() | 
 |       && !NewFD->isInvalidDecl()) | 
 |     RegisterLocallyScopedExternCDecl(NewFD, Previous, S); | 
 |  | 
 |   // Set this FunctionDecl's range up to the right paren. | 
 |   NewFD->setLocEnd(D.getSourceRange().getEnd()); | 
 |  | 
 |   if (FunctionTemplate && NewFD->isInvalidDecl()) | 
 |     FunctionTemplate->setInvalidDecl(); | 
 |  | 
 |   if (FunctionTemplate) | 
 |     return FunctionTemplate; | 
 |  | 
 |   MarkUnusedFileScopedDecl(NewFD); | 
 |  | 
 |   return NewFD; | 
 | } | 
 |  | 
 | /// \brief Perform semantic checking of a new function declaration. | 
 | /// | 
 | /// Performs semantic analysis of the new function declaration | 
 | /// NewFD. This routine performs all semantic checking that does not | 
 | /// require the actual declarator involved in the declaration, and is | 
 | /// used both for the declaration of functions as they are parsed | 
 | /// (called via ActOnDeclarator) and for the declaration of functions | 
 | /// that have been instantiated via C++ template instantiation (called | 
 | /// via InstantiateDecl). | 
 | /// | 
 | /// \param IsExplicitSpecialiation whether this new function declaration is | 
 | /// an explicit specialization of the previous declaration. | 
 | /// | 
 | /// This sets NewFD->isInvalidDecl() to true if there was an error. | 
 | void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD, | 
 |                                     LookupResult &Previous, | 
 |                                     bool IsExplicitSpecialization, | 
 |                                     bool &Redeclaration, | 
 |                                     bool &OverloadableAttrRequired) { | 
 |   // If NewFD is already known erroneous, don't do any of this checking. | 
 |   if (NewFD->isInvalidDecl()) { | 
 |     // If this is a class member, mark the class invalid immediately. | 
 |     // This avoids some consistency errors later. | 
 |     if (isa<CXXMethodDecl>(NewFD)) | 
 |       cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl(); | 
 |  | 
 |     return; | 
 |   } | 
 |  | 
 |   if (NewFD->getResultType()->isVariablyModifiedType()) { | 
 |     // Functions returning a variably modified type violate C99 6.7.5.2p2 | 
 |     // because all functions have linkage. | 
 |     Diag(NewFD->getLocation(), diag::err_vm_func_decl); | 
 |     return NewFD->setInvalidDecl(); | 
 |   } | 
 |  | 
 |   if (NewFD->isMain())  | 
 |     CheckMain(NewFD); | 
 |  | 
 |   // Check for a previous declaration of this name. | 
 |   if (Previous.empty() && NewFD->isExternC()) { | 
 |     // Since we did not find anything by this name and we're declaring | 
 |     // an extern "C" function, look for a non-visible extern "C" | 
 |     // declaration with the same name. | 
 |     llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos | 
 |       = LocallyScopedExternalDecls.find(NewFD->getDeclName()); | 
 |     if (Pos != LocallyScopedExternalDecls.end()) | 
 |       Previous.addDecl(Pos->second); | 
 |   } | 
 |  | 
 |   // Merge or overload the declaration with an existing declaration of | 
 |   // the same name, if appropriate. | 
 |   if (!Previous.empty()) { | 
 |     // Determine whether NewFD is an overload of PrevDecl or | 
 |     // a declaration that requires merging. If it's an overload, | 
 |     // there's no more work to do here; we'll just add the new | 
 |     // function to the scope. | 
 |  | 
 |     NamedDecl *OldDecl = 0; | 
 |     if (!AllowOverloadingOfFunction(Previous, Context)) { | 
 |       Redeclaration = true; | 
 |       OldDecl = Previous.getFoundDecl(); | 
 |     } else { | 
 |       if (!getLangOptions().CPlusPlus) | 
 |         OverloadableAttrRequired = true; | 
 |  | 
 |       switch (CheckOverload(S, NewFD, Previous, OldDecl, | 
 |                             /*NewIsUsingDecl*/ false)) { | 
 |       case Ovl_Match: | 
 |         Redeclaration = true; | 
 |         break; | 
 |  | 
 |       case Ovl_NonFunction: | 
 |         Redeclaration = true; | 
 |         break; | 
 |  | 
 |       case Ovl_Overload: | 
 |         Redeclaration = false; | 
 |         break; | 
 |       } | 
 |     } | 
 |  | 
 |     if (Redeclaration) { | 
 |       // NewFD and OldDecl represent declarations that need to be | 
 |       // merged. | 
 |       if (MergeFunctionDecl(NewFD, OldDecl)) | 
 |         return NewFD->setInvalidDecl(); | 
 |  | 
 |       Previous.clear(); | 
 |       Previous.addDecl(OldDecl); | 
 |  | 
 |       if (FunctionTemplateDecl *OldTemplateDecl | 
 |                                     = dyn_cast<FunctionTemplateDecl>(OldDecl)) { | 
 |         NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());         | 
 |         FunctionTemplateDecl *NewTemplateDecl | 
 |           = NewFD->getDescribedFunctionTemplate(); | 
 |         assert(NewTemplateDecl && "Template/non-template mismatch"); | 
 |         if (CXXMethodDecl *Method  | 
 |               = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) { | 
 |           Method->setAccess(OldTemplateDecl->getAccess()); | 
 |           NewTemplateDecl->setAccess(OldTemplateDecl->getAccess()); | 
 |         } | 
 |          | 
 |         // If this is an explicit specialization of a member that is a function | 
 |         // template, mark it as a member specialization. | 
 |         if (IsExplicitSpecialization &&  | 
 |             NewTemplateDecl->getInstantiatedFromMemberTemplate()) { | 
 |           NewTemplateDecl->setMemberSpecialization(); | 
 |           assert(OldTemplateDecl->isMemberSpecialization()); | 
 |         } | 
 |       } else { | 
 |         if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions | 
 |           NewFD->setAccess(OldDecl->getAccess()); | 
 |         NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl)); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Semantic checking for this function declaration (in isolation). | 
 |   if (getLangOptions().CPlusPlus) { | 
 |     // C++-specific checks. | 
 |     if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) { | 
 |       CheckConstructor(Constructor); | 
 |     } else if (CXXDestructorDecl *Destructor =  | 
 |                 dyn_cast<CXXDestructorDecl>(NewFD)) { | 
 |       CXXRecordDecl *Record = Destructor->getParent(); | 
 |       QualType ClassType = Context.getTypeDeclType(Record); | 
 |        | 
 |       // FIXME: Shouldn't we be able to perform this check even when the class | 
 |       // type is dependent? Both gcc and edg can handle that. | 
 |       if (!ClassType->isDependentType()) { | 
 |         DeclarationName Name | 
 |           = Context.DeclarationNames.getCXXDestructorName( | 
 |                                         Context.getCanonicalType(ClassType)); | 
 |         if (NewFD->getDeclName() != Name) { | 
 |           Diag(NewFD->getLocation(), diag::err_destructor_name); | 
 |           return NewFD->setInvalidDecl(); | 
 |         } | 
 |       } | 
 |     } else if (CXXConversionDecl *Conversion | 
 |                = dyn_cast<CXXConversionDecl>(NewFD)) { | 
 |       ActOnConversionDeclarator(Conversion); | 
 |     } | 
 |  | 
 |     // Find any virtual functions that this function overrides. | 
 |     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) { | 
 |       if (!Method->isFunctionTemplateSpecialization() &&  | 
 |           !Method->getDescribedFunctionTemplate()) { | 
 |         if (AddOverriddenMethods(Method->getParent(), Method)) { | 
 |           // If the function was marked as "static", we have a problem. | 
 |           if (NewFD->getStorageClass() == SC_Static) { | 
 |             Diag(NewFD->getLocation(), diag::err_static_overrides_virtual) | 
 |               << NewFD->getDeclName(); | 
 |             for (CXXMethodDecl::method_iterator  | 
 |                       Overridden = Method->begin_overridden_methods(), | 
 |                    OverriddenEnd = Method->end_overridden_methods(); | 
 |                  Overridden != OverriddenEnd; | 
 |                  ++Overridden) { | 
 |               Diag((*Overridden)->getLocation(),  | 
 |                    diag::note_overridden_virtual_function); | 
 |             } | 
 |           } | 
 |         }         | 
 |       } | 
 |     } | 
 |  | 
 |     // Extra checking for C++ overloaded operators (C++ [over.oper]). | 
 |     if (NewFD->isOverloadedOperator() && | 
 |         CheckOverloadedOperatorDeclaration(NewFD)) | 
 |       return NewFD->setInvalidDecl(); | 
 |  | 
 |     // Extra checking for C++0x literal operators (C++0x [over.literal]). | 
 |     if (NewFD->getLiteralIdentifier() && | 
 |         CheckLiteralOperatorDeclaration(NewFD)) | 
 |       return NewFD->setInvalidDecl(); | 
 |  | 
 |     // In C++, check default arguments now that we have merged decls. Unless | 
 |     // the lexical context is the class, because in this case this is done | 
 |     // during delayed parsing anyway. | 
 |     if (!CurContext->isRecord()) | 
 |       CheckCXXDefaultArguments(NewFD); | 
 |   } | 
 | } | 
 |  | 
 | void Sema::CheckMain(FunctionDecl* FD) { | 
 |   // C++ [basic.start.main]p3:  A program that declares main to be inline | 
 |   //   or static is ill-formed. | 
 |   // C99 6.7.4p4:  In a hosted environment, the inline function specifier | 
 |   //   shall not appear in a declaration of main. | 
 |   // static main is not an error under C99, but we should warn about it. | 
 |   bool isInline = FD->isInlineSpecified(); | 
 |   bool isStatic = FD->getStorageClass() == SC_Static; | 
 |   if (isInline || isStatic) { | 
 |     unsigned diagID = diag::warn_unusual_main_decl; | 
 |     if (isInline || getLangOptions().CPlusPlus) | 
 |       diagID = diag::err_unusual_main_decl; | 
 |  | 
 |     int which = isStatic + (isInline << 1) - 1; | 
 |     Diag(FD->getLocation(), diagID) << which; | 
 |   } | 
 |  | 
 |   QualType T = FD->getType(); | 
 |   assert(T->isFunctionType() && "function decl is not of function type"); | 
 |   const FunctionType* FT = T->getAs<FunctionType>(); | 
 |  | 
 |   if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) { | 
 |     TypeSourceInfo *TSI = FD->getTypeSourceInfo(); | 
 |     TypeLoc TL = TSI->getTypeLoc(); | 
 |     const SemaDiagnosticBuilder& D = Diag(FD->getTypeSpecStartLoc(), | 
 |                                           diag::err_main_returns_nonint); | 
 |     if (FunctionTypeLoc* PTL = dyn_cast<FunctionTypeLoc>(&TL)) { | 
 |       D << FixItHint::CreateReplacement(PTL->getResultLoc().getSourceRange(), | 
 |                                         "int"); | 
 |     } | 
 |     FD->setInvalidDecl(true); | 
 |   } | 
 |  | 
 |   // Treat protoless main() as nullary. | 
 |   if (isa<FunctionNoProtoType>(FT)) return; | 
 |  | 
 |   const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT); | 
 |   unsigned nparams = FTP->getNumArgs(); | 
 |   assert(FD->getNumParams() == nparams); | 
 |  | 
 |   bool HasExtraParameters = (nparams > 3); | 
 |  | 
 |   // Darwin passes an undocumented fourth argument of type char**.  If | 
 |   // other platforms start sprouting these, the logic below will start | 
 |   // getting shifty. | 
 |   if (nparams == 4 && | 
 |       Context.Target.getTriple().getOS() == llvm::Triple::Darwin) | 
 |     HasExtraParameters = false; | 
 |  | 
 |   if (HasExtraParameters) { | 
 |     Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams; | 
 |     FD->setInvalidDecl(true); | 
 |     nparams = 3; | 
 |   } | 
 |  | 
 |   // FIXME: a lot of the following diagnostics would be improved | 
 |   // if we had some location information about types. | 
 |  | 
 |   QualType CharPP = | 
 |     Context.getPointerType(Context.getPointerType(Context.CharTy)); | 
 |   QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP }; | 
 |  | 
 |   for (unsigned i = 0; i < nparams; ++i) { | 
 |     QualType AT = FTP->getArgType(i); | 
 |  | 
 |     bool mismatch = true; | 
 |  | 
 |     if (Context.hasSameUnqualifiedType(AT, Expected[i])) | 
 |       mismatch = false; | 
 |     else if (Expected[i] == CharPP) { | 
 |       // As an extension, the following forms are okay: | 
 |       //   char const ** | 
 |       //   char const * const * | 
 |       //   char * const * | 
 |  | 
 |       QualifierCollector qs; | 
 |       const PointerType* PT; | 
 |       if ((PT = qs.strip(AT)->getAs<PointerType>()) && | 
 |           (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) && | 
 |           (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) { | 
 |         qs.removeConst(); | 
 |         mismatch = !qs.empty(); | 
 |       } | 
 |     } | 
 |  | 
 |     if (mismatch) { | 
 |       Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i]; | 
 |       // TODO: suggest replacing given type with expected type | 
 |       FD->setInvalidDecl(true); | 
 |     } | 
 |   } | 
 |  | 
 |   if (nparams == 1 && !FD->isInvalidDecl()) { | 
 |     Diag(FD->getLocation(), diag::warn_main_one_arg); | 
 |   } | 
 | } | 
 |  | 
 | bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) { | 
 |   // FIXME: Need strict checking.  In C89, we need to check for | 
 |   // any assignment, increment, decrement, function-calls, or | 
 |   // commas outside of a sizeof.  In C99, it's the same list, | 
 |   // except that the aforementioned are allowed in unevaluated | 
 |   // expressions.  Everything else falls under the | 
 |   // "may accept other forms of constant expressions" exception. | 
 |   // (We never end up here for C++, so the constant expression | 
 |   // rules there don't matter.) | 
 |   if (Init->isConstantInitializer(Context, false)) | 
 |     return false; | 
 |   Diag(Init->getExprLoc(), diag::err_init_element_not_constant) | 
 |     << Init->getSourceRange(); | 
 |   return true; | 
 | } | 
 |  | 
 | void Sema::AddInitializerToDecl(Decl *dcl, Expr *init) { | 
 |   AddInitializerToDecl(dcl, init, /*DirectInit=*/false); | 
 | } | 
 |  | 
 | /// AddInitializerToDecl - Adds the initializer Init to the | 
 | /// declaration dcl. If DirectInit is true, this is C++ direct | 
 | /// initialization rather than copy initialization. | 
 | void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) { | 
 |   // If there is no declaration, there was an error parsing it.  Just ignore | 
 |   // the initializer. | 
 |   if (RealDecl == 0) | 
 |     return; | 
 |  | 
 |   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) { | 
 |     // With declarators parsed the way they are, the parser cannot | 
 |     // distinguish between a normal initializer and a pure-specifier. | 
 |     // Thus this grotesque test. | 
 |     IntegerLiteral *IL; | 
 |     if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 && | 
 |         Context.getCanonicalType(IL->getType()) == Context.IntTy) | 
 |       CheckPureMethod(Method, Init->getSourceRange()); | 
 |     else { | 
 |       Diag(Method->getLocation(), diag::err_member_function_initialization) | 
 |         << Method->getDeclName() << Init->getSourceRange(); | 
 |       Method->setInvalidDecl(); | 
 |     } | 
 |     return; | 
 |   } | 
 |  | 
 |   VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl); | 
 |   if (!VDecl) { | 
 |     if (getLangOptions().CPlusPlus && | 
 |         RealDecl->getLexicalDeclContext()->isRecord() && | 
 |         isa<NamedDecl>(RealDecl)) | 
 |       Diag(RealDecl->getLocation(), diag::err_member_initialization); | 
 |     else | 
 |       Diag(RealDecl->getLocation(), diag::err_illegal_initializer); | 
 |     RealDecl->setInvalidDecl(); | 
 |     return; | 
 |   } | 
 |  | 
 |    | 
 |  | 
 |   // A definition must end up with a complete type, which means it must be | 
 |   // complete with the restriction that an array type might be completed by the | 
 |   // initializer; note that later code assumes this restriction. | 
 |   QualType BaseDeclType = VDecl->getType(); | 
 |   if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType)) | 
 |     BaseDeclType = Array->getElementType(); | 
 |   if (RequireCompleteType(VDecl->getLocation(), BaseDeclType, | 
 |                           diag::err_typecheck_decl_incomplete_type)) { | 
 |     RealDecl->setInvalidDecl(); | 
 |     return; | 
 |   } | 
 |  | 
 |   // The variable can not have an abstract class type. | 
 |   if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(), | 
 |                              diag::err_abstract_type_in_decl, | 
 |                              AbstractVariableType)) | 
 |     VDecl->setInvalidDecl(); | 
 |  | 
 |   const VarDecl *Def; | 
 |   if ((Def = VDecl->getDefinition()) && Def != VDecl) { | 
 |     Diag(VDecl->getLocation(), diag::err_redefinition) | 
 |       << VDecl->getDeclName(); | 
 |     Diag(Def->getLocation(), diag::note_previous_definition); | 
 |     VDecl->setInvalidDecl(); | 
 |     return; | 
 |   } | 
 |    | 
 |   // C++ [class.static.data]p4 | 
 |   //   If a static data member is of const integral or const | 
 |   //   enumeration type, its declaration in the class definition can | 
 |   //   specify a constant-initializer which shall be an integral | 
 |   //   constant expression (5.19). In that case, the member can appear | 
 |   //   in integral constant expressions. The member shall still be | 
 |   //   defined in a namespace scope if it is used in the program and the | 
 |   //   namespace scope definition shall not contain an initializer. | 
 |   // | 
 |   // We already performed a redefinition check above, but for static | 
 |   // data members we also need to check whether there was an in-class | 
 |   // declaration with an initializer. | 
 |   const VarDecl* PrevInit = 0; | 
 |   if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) { | 
 |     Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName(); | 
 |     Diag(PrevInit->getLocation(), diag::note_previous_definition); | 
 |     return; | 
 |   }   | 
 |  | 
 |   if (getLangOptions().CPlusPlus && VDecl->hasLocalStorage()) | 
 |     getCurFunction()->setHasBranchProtectedScope(); | 
 |  | 
 |   // Capture the variable that is being initialized and the style of | 
 |   // initialization. | 
 |   InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl); | 
 |    | 
 |   // FIXME: Poor source location information. | 
 |   InitializationKind Kind | 
 |     = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(), | 
 |                                                    Init->getLocStart(), | 
 |                                                    Init->getLocEnd()) | 
 |                 : InitializationKind::CreateCopy(VDecl->getLocation(), | 
 |                                                  Init->getLocStart()); | 
 |    | 
 |   // Get the decls type and save a reference for later, since | 
 |   // CheckInitializerTypes may change it. | 
 |   QualType DclT = VDecl->getType(), SavT = DclT; | 
 |   if (VDecl->isBlockVarDecl()) { | 
 |     if (VDecl->hasExternalStorage()) { // C99 6.7.8p5 | 
 |       Diag(VDecl->getLocation(), diag::err_block_extern_cant_init); | 
 |       VDecl->setInvalidDecl(); | 
 |     } else if (!VDecl->isInvalidDecl()) { | 
 |       InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1); | 
 |       ExprResult Result = InitSeq.Perform(*this, Entity, Kind, | 
 |                                                 MultiExprArg(*this, &Init, 1), | 
 |                                                 &DclT); | 
 |       if (Result.isInvalid()) { | 
 |         VDecl->setInvalidDecl(); | 
 |         return; | 
 |       } | 
 |  | 
 |       Init = Result.takeAs<Expr>(); | 
 |  | 
 |       // C++ 3.6.2p2, allow dynamic initialization of static initializers. | 
 |       // Don't check invalid declarations to avoid emitting useless diagnostics. | 
 |       if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) { | 
 |         if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4. | 
 |           CheckForConstantInitializer(Init, DclT); | 
 |       } | 
 |     } | 
 |   } else if (VDecl->isStaticDataMember() && | 
 |              VDecl->getLexicalDeclContext()->isRecord()) { | 
 |     // This is an in-class initialization for a static data member, e.g., | 
 |     // | 
 |     // struct S { | 
 |     //   static const int value = 17; | 
 |     // }; | 
 |  | 
 |     // Try to perform the initialization regardless. | 
 |     if (!VDecl->isInvalidDecl()) { | 
 |       InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1); | 
 |       ExprResult Result = InitSeq.Perform(*this, Entity, Kind, | 
 |                                           MultiExprArg(*this, &Init, 1), | 
 |                                           &DclT); | 
 |       if (Result.isInvalid()) { | 
 |         VDecl->setInvalidDecl(); | 
 |         return; | 
 |       } | 
 |  | 
 |       Init = Result.takeAs<Expr>(); | 
 |     } | 
 |  | 
 |     // C++ [class.mem]p4: | 
 |     //   A member-declarator can contain a constant-initializer only | 
 |     //   if it declares a static member (9.4) of const integral or | 
 |     //   const enumeration type, see 9.4.2. | 
 |     QualType T = VDecl->getType(); | 
 |  | 
 |     // Do nothing on dependent types. | 
 |     if (T->isDependentType()) { | 
 |  | 
 |     // Require constness. | 
 |     } else if (!T.isConstQualified()) { | 
 |       Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const) | 
 |         << Init->getSourceRange(); | 
 |       VDecl->setInvalidDecl(); | 
 |  | 
 |     // We allow integer constant expressions in all cases. | 
 |     } else if (T->isIntegralOrEnumerationType()) { | 
 |       if (!Init->isValueDependent()) { | 
 |         // Check whether the expression is a constant expression. | 
 |         llvm::APSInt Value; | 
 |         SourceLocation Loc; | 
 |         if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) { | 
 |           Diag(Loc, diag::err_in_class_initializer_non_constant) | 
 |             << Init->getSourceRange(); | 
 |           VDecl->setInvalidDecl(); | 
 |         } | 
 |       } | 
 |  | 
 |     // We allow floating-point constants as an extension in C++03, and | 
 |     // C++0x has far more complicated rules that we don't really | 
 |     // implement fully. | 
 |     } else { | 
 |       bool Allowed = false; | 
 |       if (getLangOptions().CPlusPlus0x) { | 
 |         Allowed = T->isLiteralType(); | 
 |       } else if (T->isFloatingType()) { // also permits complex, which is ok | 
 |         Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type) | 
 |           << T << Init->getSourceRange(); | 
 |         Allowed = true; | 
 |       } | 
 |  | 
 |       if (!Allowed) { | 
 |         Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type) | 
 |           << T << Init->getSourceRange(); | 
 |         VDecl->setInvalidDecl(); | 
 |  | 
 |       // TODO: there are probably expressions that pass here that shouldn't. | 
 |       } else if (!Init->isValueDependent() && | 
 |                  !Init->isConstantInitializer(Context, false)) { | 
 |         Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant) | 
 |           << Init->getSourceRange(); | 
 |         VDecl->setInvalidDecl(); | 
 |       } | 
 |     } | 
 |   } else if (VDecl->isFileVarDecl()) { | 
 |     if (VDecl->getStorageClass() == SC_Extern &&  | 
 |         (!getLangOptions().CPlusPlus ||  | 
 |          !Context.getBaseElementType(VDecl->getType()).isConstQualified())) | 
 |       Diag(VDecl->getLocation(), diag::warn_extern_init); | 
 |     if (!VDecl->isInvalidDecl()) { | 
 |       InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1); | 
 |       ExprResult Result = InitSeq.Perform(*this, Entity, Kind, | 
 |                                                 MultiExprArg(*this, &Init, 1), | 
 |                                                 &DclT); | 
 |       if (Result.isInvalid()) { | 
 |         VDecl->setInvalidDecl(); | 
 |         return; | 
 |       } | 
 |  | 
 |       Init = Result.takeAs<Expr>(); | 
 |     } | 
 |  | 
 |     // C++ 3.6.2p2, allow dynamic initialization of static initializers. | 
 |     // Don't check invalid declarations to avoid emitting useless diagnostics. | 
 |     if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) { | 
 |       // C99 6.7.8p4. All file scoped initializers need to be constant. | 
 |       CheckForConstantInitializer(Init, DclT); | 
 |     } | 
 |   } | 
 |   // If the type changed, it means we had an incomplete type that was | 
 |   // completed by the initializer. For example: | 
 |   //   int ary[] = { 1, 3, 5 }; | 
 |   // "ary" transitions from a VariableArrayType to a ConstantArrayType. | 
 |   if (!VDecl->isInvalidDecl() && (DclT != SavT)) { | 
 |     VDecl->setType(DclT); | 
 |     Init->setType(DclT); | 
 |   } | 
 |  | 
 |    | 
 |   // If this variable is a local declaration with record type, make sure it | 
 |   // doesn't have a flexible member initialization.  We only support this as a | 
 |   // global/static definition. | 
 |   if (VDecl->hasLocalStorage()) | 
 |     if (const RecordType *RT = VDecl->getType()->getAs<RecordType>()) | 
 |       if (RT->getDecl()->hasFlexibleArrayMember() && isa<InitListExpr>(Init)) { | 
 |         Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable); | 
 |         VDecl->setInvalidDecl(); | 
 |       } | 
 |    | 
 |   // Check any implicit conversions within the expression. | 
 |   CheckImplicitConversions(Init, VDecl->getLocation()); | 
 |  | 
 |   Init = MaybeCreateCXXExprWithTemporaries(Init); | 
 |   // Attach the initializer to the decl. | 
 |   VDecl->setInit(Init); | 
 |  | 
 |   if (getLangOptions().CPlusPlus) { | 
 |     if (!VDecl->isInvalidDecl() && | 
 |         !VDecl->getDeclContext()->isDependentContext() && | 
 |         VDecl->hasGlobalStorage() && !VDecl->isStaticLocal() && | 
 |         !Init->isConstantInitializer(Context, | 
 |                                      VDecl->getType()->isReferenceType())) | 
 |       Diag(VDecl->getLocation(), diag::warn_global_constructor) | 
 |         << Init->getSourceRange(); | 
 |  | 
 |     // Make sure we mark the destructor as used if necessary. | 
 |     QualType InitType = VDecl->getType(); | 
 |     while (const ArrayType *Array = Context.getAsArrayType(InitType)) | 
 |       InitType = Context.getBaseElementType(Array); | 
 |     if (const RecordType *Record = InitType->getAs<RecordType>()) | 
 |       FinalizeVarWithDestructor(VDecl, Record); | 
 |   } | 
 |  | 
 |   return; | 
 | } | 
 |  | 
 | /// ActOnInitializerError - Given that there was an error parsing an | 
 | /// initializer for the given declaration, try to return to some form | 
 | /// of sanity. | 
 | void Sema::ActOnInitializerError(Decl *D) { | 
 |   // Our main concern here is re-establishing invariants like "a | 
 |   // variable's type is either dependent or complete". | 
 |   if (!D || D->isInvalidDecl()) return; | 
 |  | 
 |   VarDecl *VD = dyn_cast<VarDecl>(D); | 
 |   if (!VD) return; | 
 |  | 
 |   QualType Ty = VD->getType(); | 
 |   if (Ty->isDependentType()) return; | 
 |  | 
 |   // Require a complete type. | 
 |   if (RequireCompleteType(VD->getLocation(),  | 
 |                           Context.getBaseElementType(Ty), | 
 |                           diag::err_typecheck_decl_incomplete_type)) { | 
 |     VD->setInvalidDecl(); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Require an abstract type. | 
 |   if (RequireNonAbstractType(VD->getLocation(), Ty, | 
 |                              diag::err_abstract_type_in_decl, | 
 |                              AbstractVariableType)) { | 
 |     VD->setInvalidDecl(); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Don't bother complaining about constructors or destructors, | 
 |   // though. | 
 | } | 
 |  | 
 | void Sema::ActOnUninitializedDecl(Decl *RealDecl, | 
 |                                   bool TypeContainsUndeducedAuto) { | 
 |   // If there is no declaration, there was an error parsing it. Just ignore it. | 
 |   if (RealDecl == 0) | 
 |     return; | 
 |  | 
 |   if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) { | 
 |     QualType Type = Var->getType(); | 
 |  | 
 |     // C++0x [dcl.spec.auto]p3 | 
 |     if (TypeContainsUndeducedAuto) { | 
 |       Diag(Var->getLocation(), diag::err_auto_var_requires_init) | 
 |         << Var->getDeclName() << Type; | 
 |       Var->setInvalidDecl(); | 
 |       return; | 
 |     } | 
 |  | 
 |     switch (Var->isThisDeclarationADefinition()) { | 
 |     case VarDecl::Definition: | 
 |       if (!Var->isStaticDataMember() || !Var->getAnyInitializer()) | 
 |         break; | 
 |  | 
 |       // We have an out-of-line definition of a static data member | 
 |       // that has an in-class initializer, so we type-check this like | 
 |       // a declaration.  | 
 |       // | 
 |       // Fall through | 
 |        | 
 |     case VarDecl::DeclarationOnly: | 
 |       // It's only a declaration.  | 
 |  | 
 |       // Block scope. C99 6.7p7: If an identifier for an object is | 
 |       // declared with no linkage (C99 6.2.2p6), the type for the | 
 |       // object shall be complete. | 
 |       if (!Type->isDependentType() && Var->isBlockVarDecl() &&  | 
 |           !Var->getLinkage() && !Var->isInvalidDecl() && | 
 |           RequireCompleteType(Var->getLocation(), Type, | 
 |                               diag::err_typecheck_decl_incomplete_type)) | 
 |         Var->setInvalidDecl(); | 
 |  | 
 |       // Make sure that the type is not abstract. | 
 |       if (!Type->isDependentType() && !Var->isInvalidDecl() && | 
 |           RequireNonAbstractType(Var->getLocation(), Type, | 
 |                                  diag::err_abstract_type_in_decl, | 
 |                                  AbstractVariableType)) | 
 |         Var->setInvalidDecl(); | 
 |       return; | 
 |  | 
 |     case VarDecl::TentativeDefinition: | 
 |       // File scope. C99 6.9.2p2: A declaration of an identifier for an | 
 |       // object that has file scope without an initializer, and without a | 
 |       // storage-class specifier or with the storage-class specifier "static", | 
 |       // constitutes a tentative definition. Note: A tentative definition with | 
 |       // external linkage is valid (C99 6.2.2p5). | 
 |       if (!Var->isInvalidDecl()) { | 
 |         if (const IncompleteArrayType *ArrayT | 
 |                                     = Context.getAsIncompleteArrayType(Type)) { | 
 |           if (RequireCompleteType(Var->getLocation(), | 
 |                                   ArrayT->getElementType(), | 
 |                                   diag::err_illegal_decl_array_incomplete_type)) | 
 |             Var->setInvalidDecl(); | 
 |         } else if (Var->getStorageClass() == SC_Static) { | 
 |           // C99 6.9.2p3: If the declaration of an identifier for an object is | 
 |           // a tentative definition and has internal linkage (C99 6.2.2p3), the | 
 |           // declared type shall not be an incomplete type. | 
 |           // NOTE: code such as the following | 
 |           //     static struct s; | 
 |           //     struct s { int a; }; | 
 |           // is accepted by gcc. Hence here we issue a warning instead of | 
 |           // an error and we do not invalidate the static declaration. | 
 |           // NOTE: to avoid multiple warnings, only check the first declaration. | 
 |           if (Var->getPreviousDeclaration() == 0) | 
 |             RequireCompleteType(Var->getLocation(), Type, | 
 |                                 diag::ext_typecheck_decl_incomplete_type); | 
 |         } | 
 |       } | 
 |  | 
 |       // Record the tentative definition; we're done. | 
 |       if (!Var->isInvalidDecl()) | 
 |         TentativeDefinitions.push_back(Var); | 
 |       return; | 
 |     } | 
 |  | 
 |     // Provide a specific diagnostic for uninitialized variable | 
 |     // definitions with incomplete array type. | 
 |     if (Type->isIncompleteArrayType()) { | 
 |       Diag(Var->getLocation(), | 
 |            diag::err_typecheck_incomplete_array_needs_initializer); | 
 |       Var->setInvalidDecl(); | 
 |       return; | 
 |     } | 
 |  | 
 |     // Provide a specific diagnostic for uninitialized variable | 
 |     // definitions with reference type. | 
 |     if (Type->isReferenceType()) { | 
 |       Diag(Var->getLocation(), diag::err_reference_var_requires_init) | 
 |         << Var->getDeclName() | 
 |         << SourceRange(Var->getLocation(), Var->getLocation()); | 
 |       Var->setInvalidDecl(); | 
 |       return; | 
 |     } | 
 |  | 
 |     // Do not attempt to type-check the default initializer for a | 
 |     // variable with dependent type. | 
 |     if (Type->isDependentType()) | 
 |       return; | 
 |  | 
 |     if (Var->isInvalidDecl()) | 
 |       return; | 
 |  | 
 |     if (RequireCompleteType(Var->getLocation(),  | 
 |                             Context.getBaseElementType(Type), | 
 |                             diag::err_typecheck_decl_incomplete_type)) { | 
 |       Var->setInvalidDecl(); | 
 |       return; | 
 |     } | 
 |  | 
 |     // The variable can not have an abstract class type. | 
 |     if (RequireNonAbstractType(Var->getLocation(), Type, | 
 |                                diag::err_abstract_type_in_decl, | 
 |                                AbstractVariableType)) { | 
 |       Var->setInvalidDecl(); | 
 |       return; | 
 |     } | 
 |  | 
 |     const RecordType *Record | 
 |       = Context.getBaseElementType(Type)->getAs<RecordType>(); | 
 |     if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x && | 
 |         cast<CXXRecordDecl>(Record->getDecl())->isPOD()) { | 
 |       // C++03 [dcl.init]p9: | 
 |       //   If no initializer is specified for an object, and the | 
 |       //   object is of (possibly cv-qualified) non-POD class type (or | 
 |       //   array thereof), the object shall be default-initialized; if | 
 |       //   the object is of const-qualified type, the underlying class | 
 |       //   type shall have a user-declared default | 
 |       //   constructor. Otherwise, if no initializer is specified for | 
 |       //   a non- static object, the object and its subobjects, if | 
 |       //   any, have an indeterminate initial value); if the object | 
 |       //   or any of its subobjects are of const-qualified type, the | 
 |       //   program is ill-formed. | 
 |       // FIXME: DPG thinks it is very fishy that C++0x disables this. | 
 |     } else { | 
 |       // Check for jumps past the implicit initializer.  C++0x | 
 |       // clarifies that this applies to a "variable with automatic | 
 |       // storage duration", not a "local variable". | 
 |       if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) | 
 |         getCurFunction()->setHasBranchProtectedScope(); | 
 |  | 
 |       InitializedEntity Entity = InitializedEntity::InitializeVariable(Var); | 
 |       InitializationKind Kind | 
 |         = InitializationKind::CreateDefault(Var->getLocation()); | 
 |      | 
 |       InitializationSequence InitSeq(*this, Entity, Kind, 0, 0); | 
 |       ExprResult Init = InitSeq.Perform(*this, Entity, Kind, | 
 |                                         MultiExprArg(*this, 0, 0)); | 
 |       if (Init.isInvalid()) | 
 |         Var->setInvalidDecl(); | 
 |       else if (Init.get()) { | 
 |         Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>())); | 
 |  | 
 |         if (getLangOptions().CPlusPlus && !Var->isInvalidDecl() &&  | 
 |             Var->hasGlobalStorage() && !Var->isStaticLocal() && | 
 |             !Var->getDeclContext()->isDependentContext() && | 
 |             !Var->getInit()->isConstantInitializer(Context, false)) | 
 |           Diag(Var->getLocation(), diag::warn_global_constructor); | 
 |       } | 
 |     } | 
 |  | 
 |     if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record) | 
 |       FinalizeVarWithDestructor(Var, Record); | 
 |   } | 
 | } | 
 |  | 
 | Sema::DeclGroupPtrTy | 
 | Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS, | 
 |                               Decl **Group, unsigned NumDecls) { | 
 |   llvm::SmallVector<Decl*, 8> Decls; | 
 |  | 
 |   if (DS.isTypeSpecOwned()) | 
 |     Decls.push_back(DS.getRepAsDecl()); | 
 |  | 
 |   for (unsigned i = 0; i != NumDecls; ++i) | 
 |     if (Decl *D = Group[i]) | 
 |       Decls.push_back(D); | 
 |  | 
 |   return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, | 
 |                                                    Decls.data(), Decls.size())); | 
 | } | 
 |  | 
 |  | 
 | /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator() | 
 | /// to introduce parameters into function prototype scope. | 
 | Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) { | 
 |   const DeclSpec &DS = D.getDeclSpec(); | 
 |  | 
 |   // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'. | 
 |   VarDecl::StorageClass StorageClass = SC_None; | 
 |   VarDecl::StorageClass StorageClassAsWritten = SC_None; | 
 |   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) { | 
 |     StorageClass = SC_Register; | 
 |     StorageClassAsWritten = SC_Register; | 
 |   } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) { | 
 |     Diag(DS.getStorageClassSpecLoc(), | 
 |          diag::err_invalid_storage_class_in_func_decl); | 
 |     D.getMutableDeclSpec().ClearStorageClassSpecs(); | 
 |   } | 
 |  | 
 |   if (D.getDeclSpec().isThreadSpecified()) | 
 |     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread); | 
 |  | 
 |   DiagnoseFunctionSpecifiers(D); | 
 |  | 
 |   // Check that there are no default arguments inside the type of this | 
 |   // parameter (C++ only). | 
 |   if (getLangOptions().CPlusPlus) | 
 |     CheckExtraCXXDefaultArguments(D); | 
 |  | 
 |   TagDecl *OwnedDecl = 0; | 
 |   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl); | 
 |   QualType parmDeclType = TInfo->getType(); | 
 |  | 
 |   if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) { | 
 |     // C++ [dcl.fct]p6: | 
 |     //   Types shall not be defined in return or parameter types. | 
 |     Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type) | 
 |       << Context.getTypeDeclType(OwnedDecl); | 
 |   } | 
 |  | 
 |   // Check for redeclaration of parameters, e.g. int foo(int x, int x); | 
 |   IdentifierInfo *II = D.getIdentifier(); | 
 |   if (II) { | 
 |     LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName, | 
 |                    ForRedeclaration); | 
 |     LookupName(R, S); | 
 |     if (R.isSingleResult()) { | 
 |       NamedDecl *PrevDecl = R.getFoundDecl(); | 
 |       if (PrevDecl->isTemplateParameter()) { | 
 |         // Maybe we will complain about the shadowed template parameter. | 
 |         DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); | 
 |         // Just pretend that we didn't see the previous declaration. | 
 |         PrevDecl = 0; | 
 |       } else if (S->isDeclScope(PrevDecl)) { | 
 |         Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II; | 
 |         Diag(PrevDecl->getLocation(), diag::note_previous_declaration); | 
 |  | 
 |         // Recover by removing the name | 
 |         II = 0; | 
 |         D.SetIdentifier(0, D.getIdentifierLoc()); | 
 |         D.setInvalidType(true); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Temporarily put parameter variables in the translation unit, not | 
 |   // the enclosing context.  This prevents them from accidentally | 
 |   // looking like class members in C++. | 
 |   ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(), | 
 |                                     TInfo, parmDeclType, II,  | 
 |                                     D.getIdentifierLoc(), | 
 |                                     StorageClass, StorageClassAsWritten); | 
 |  | 
 |   if (D.isInvalidType()) | 
 |     New->setInvalidDecl();   | 
 |    | 
 |   // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1). | 
 |   if (D.getCXXScopeSpec().isSet()) { | 
 |     Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator) | 
 |       << D.getCXXScopeSpec().getRange(); | 
 |     New->setInvalidDecl(); | 
 |   } | 
 |  | 
 |   // Add the parameter declaration into this scope. | 
 |   S->AddDecl(New); | 
 |   if (II) | 
 |     IdResolver.AddDecl(New); | 
 |  | 
 |   ProcessDeclAttributes(S, New, D); | 
 |  | 
 |   if (New->hasAttr<BlocksAttr>()) { | 
 |     Diag(New->getLocation(), diag::err_block_on_nonlocal); | 
 |   } | 
 |   return New; | 
 | } | 
 |  | 
 | /// \brief Synthesizes a variable for a parameter arising from a | 
 | /// typedef. | 
 | ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC, | 
 |                                               SourceLocation Loc, | 
 |                                               QualType T) { | 
 |   ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0, | 
 |                                 T, Context.getTrivialTypeSourceInfo(T, Loc), | 
 |                                            SC_None, SC_None, 0); | 
 |   Param->setImplicit(); | 
 |   return Param; | 
 | } | 
 |  | 
 | void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param, | 
 |                                     ParmVarDecl * const *ParamEnd) { | 
 |   if (Diags.getDiagnosticLevel(diag::warn_unused_parameter) == | 
 |         Diagnostic::Ignored) | 
 |     return; | 
 |  | 
 |   // Don't diagnose unused-parameter errors in template instantiations; we | 
 |   // will already have done so in the template itself. | 
 |   if (!ActiveTemplateInstantiations.empty()) | 
 |     return; | 
 |  | 
 |   for (; Param != ParamEnd; ++Param) { | 
 |     if (!(*Param)->isUsed() && (*Param)->getDeclName() && | 
 |         !(*Param)->hasAttr<UnusedAttr>()) { | 
 |       Diag((*Param)->getLocation(), diag::warn_unused_parameter) | 
 |         << (*Param)->getDeclName(); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | ParmVarDecl *Sema::CheckParameter(DeclContext *DC,  | 
 |                                   TypeSourceInfo *TSInfo, QualType T, | 
 |                                   IdentifierInfo *Name, | 
 |                                   SourceLocation NameLoc, | 
 |                                   VarDecl::StorageClass StorageClass, | 
 |                                   VarDecl::StorageClass StorageClassAsWritten) { | 
 |   ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name, | 
 |                                          adjustParameterType(T), TSInfo,  | 
 |                                          StorageClass, StorageClassAsWritten, | 
 |                                          0); | 
 |  | 
 |   // Parameters can not be abstract class types. | 
 |   // For record types, this is done by the AbstractClassUsageDiagnoser once | 
 |   // the class has been completely parsed. | 
 |   if (!CurContext->isRecord() && | 
 |       RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl, | 
 |                              AbstractParamType)) | 
 |     New->setInvalidDecl(); | 
 |  | 
 |   // Parameter declarators cannot be interface types. All ObjC objects are | 
 |   // passed by reference. | 
 |   if (T->isObjCObjectType()) { | 
 |     Diag(NameLoc, | 
 |          diag::err_object_cannot_be_passed_returned_by_value) << 1 << T; | 
 |     New->setInvalidDecl(); | 
 |   } | 
 |  | 
 |   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage  | 
 |   // duration shall not be qualified by an address-space qualifier." | 
 |   // Since all parameters have automatic store duration, they can not have | 
 |   // an address space. | 
 |   if (T.getAddressSpace() != 0) { | 
 |     Diag(NameLoc, diag::err_arg_with_address_space); | 
 |     New->setInvalidDecl(); | 
 |   }    | 
 |  | 
 |   return New; | 
 | } | 
 |  | 
 | void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D, | 
 |                                            SourceLocation LocAfterDecls) { | 
 |   assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function && | 
 |          "Not a function declarator!"); | 
 |   DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; | 
 |  | 
 |   // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared' | 
 |   // for a K&R function. | 
 |   if (!FTI.hasPrototype) { | 
 |     for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) { | 
 |       --i; | 
 |       if (FTI.ArgInfo[i].Param == 0) { | 
 |         llvm::SmallString<256> Code; | 
 |         llvm::raw_svector_ostream(Code) << "  int " | 
 |                                         << FTI.ArgInfo[i].Ident->getName() | 
 |                                         << ";\n"; | 
 |         Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared) | 
 |           << FTI.ArgInfo[i].Ident | 
 |           << FixItHint::CreateInsertion(LocAfterDecls, Code.str()); | 
 |  | 
 |         // Implicitly declare the argument as type 'int' for lack of a better | 
 |         // type. | 
 |         DeclSpec DS; | 
 |         const char* PrevSpec; // unused | 
 |         unsigned DiagID; // unused | 
 |         DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc, | 
 |                            PrevSpec, DiagID); | 
 |         Declarator ParamD(DS, Declarator::KNRTypeListContext); | 
 |         ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc); | 
 |         FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, | 
 |                                          Declarator &D) { | 
 |   assert(getCurFunctionDecl() == 0 && "Function parsing confused"); | 
 |   assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function && | 
 |          "Not a function declarator!"); | 
 |   DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; | 
 |  | 
 |   if (FTI.hasPrototype) { | 
 |     // FIXME: Diagnose arguments without names in C. | 
 |   } | 
 |  | 
 |   Scope *ParentScope = FnBodyScope->getParent(); | 
 |  | 
 |   Decl *DP = HandleDeclarator(ParentScope, D, | 
 |                               MultiTemplateParamsArg(*this), | 
 |                               /*IsFunctionDefinition=*/true); | 
 |   return ActOnStartOfFunctionDef(FnBodyScope, DP); | 
 | } | 
 |  | 
 | static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) { | 
 |   // Don't warn about invalid declarations. | 
 |   if (FD->isInvalidDecl()) | 
 |     return false; | 
 |  | 
 |   // Or declarations that aren't global. | 
 |   if (!FD->isGlobal()) | 
 |     return false; | 
 |  | 
 |   // Don't warn about C++ member functions. | 
 |   if (isa<CXXMethodDecl>(FD)) | 
 |     return false; | 
 |  | 
 |   // Don't warn about 'main'. | 
 |   if (FD->isMain()) | 
 |     return false; | 
 |  | 
 |   // Don't warn about inline functions. | 
 |   if (FD->isInlineSpecified()) | 
 |     return false; | 
 |  | 
 |   // Don't warn about function templates. | 
 |   if (FD->getDescribedFunctionTemplate()) | 
 |     return false; | 
 |  | 
 |   // Don't warn about function template specializations. | 
 |   if (FD->isFunctionTemplateSpecialization()) | 
 |     return false; | 
 |  | 
 |   bool MissingPrototype = true; | 
 |   for (const FunctionDecl *Prev = FD->getPreviousDeclaration(); | 
 |        Prev; Prev = Prev->getPreviousDeclaration()) { | 
 |     // Ignore any declarations that occur in function or method | 
 |     // scope, because they aren't visible from the header. | 
 |     if (Prev->getDeclContext()->isFunctionOrMethod()) | 
 |       continue; | 
 |        | 
 |     MissingPrototype = !Prev->getType()->isFunctionProtoType(); | 
 |     break; | 
 |   } | 
 |      | 
 |   return MissingPrototype; | 
 | } | 
 |  | 
 | Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) { | 
 |   // Clear the last template instantiation error context. | 
 |   LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation(); | 
 |    | 
 |   if (!D) | 
 |     return D; | 
 |   FunctionDecl *FD = 0; | 
 |  | 
 |   if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) | 
 |     FD = FunTmpl->getTemplatedDecl(); | 
 |   else | 
 |     FD = cast<FunctionDecl>(D); | 
 |  | 
 |   // Enter a new function scope | 
 |   PushFunctionScope(); | 
 |  | 
 |   // See if this is a redefinition. | 
 |   // But don't complain if we're in GNU89 mode and the previous definition | 
 |   // was an extern inline function. | 
 |   const FunctionDecl *Definition; | 
 |   if (FD->hasBody(Definition) && | 
 |       !canRedefineFunction(Definition, getLangOptions())) { | 
 |     if (getLangOptions().GNUMode && Definition->isInlineSpecified() && | 
 |         Definition->getStorageClass() == SC_Extern) | 
 |       Diag(FD->getLocation(), diag::err_redefinition_extern_inline) | 
 |         << FD->getDeclName() << getLangOptions().CPlusPlus; | 
 |     else | 
 |       Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName(); | 
 |     Diag(Definition->getLocation(), diag::note_previous_definition); | 
 |   } | 
 |  | 
 |   // Builtin functions cannot be defined. | 
 |   if (unsigned BuiltinID = FD->getBuiltinID()) { | 
 |     if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) { | 
 |       Diag(FD->getLocation(), diag::err_builtin_definition) << FD; | 
 |       FD->setInvalidDecl(); | 
 |     } | 
 |   } | 
 |  | 
 |   // The return type of a function definition must be complete | 
 |   // (C99 6.9.1p3, C++ [dcl.fct]p6). | 
 |   QualType ResultType = FD->getResultType(); | 
 |   if (!ResultType->isDependentType() && !ResultType->isVoidType() && | 
 |       !FD->isInvalidDecl() && | 
 |       RequireCompleteType(FD->getLocation(), ResultType, | 
 |                           diag::err_func_def_incomplete_result)) | 
 |     FD->setInvalidDecl(); | 
 |  | 
 |   // GNU warning -Wmissing-prototypes: | 
 |   //   Warn if a global function is defined without a previous | 
 |   //   prototype declaration. This warning is issued even if the | 
 |   //   definition itself provides a prototype. The aim is to detect | 
 |   //   global functions that fail to be declared in header files. | 
 |   if (ShouldWarnAboutMissingPrototype(FD)) | 
 |     Diag(FD->getLocation(), diag::warn_missing_prototype) << FD; | 
 |  | 
 |   if (FnBodyScope) | 
 |     PushDeclContext(FnBodyScope, FD); | 
 |  | 
 |   // Check the validity of our function parameters | 
 |   CheckParmsForFunctionDef(FD); | 
 |  | 
 |   bool ShouldCheckShadow = | 
 |     Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored; | 
 |  | 
 |   // Introduce our parameters into the function scope | 
 |   for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) { | 
 |     ParmVarDecl *Param = FD->getParamDecl(p); | 
 |     Param->setOwningFunction(FD); | 
 |  | 
 |     // If this has an identifier, add it to the scope stack. | 
 |     if (Param->getIdentifier() && FnBodyScope) { | 
 |       if (ShouldCheckShadow) | 
 |         CheckShadow(FnBodyScope, Param); | 
 |  | 
 |       PushOnScopeChains(Param, FnBodyScope); | 
 |     } | 
 |   } | 
 |  | 
 |   // Checking attributes of current function definition | 
 |   // dllimport attribute. | 
 |   DLLImportAttr *DA = FD->getAttr<DLLImportAttr>(); | 
 |   if (DA && (!FD->getAttr<DLLExportAttr>())) { | 
 |     // dllimport attribute cannot be directly applied to definition. | 
 |     if (!DA->isInherited()) { | 
 |       Diag(FD->getLocation(), | 
 |            diag::err_attribute_can_be_applied_only_to_symbol_declaration) | 
 |         << "dllimport"; | 
 |       FD->setInvalidDecl(); | 
 |       return FD; | 
 |     } | 
 |  | 
 |     // Visual C++ appears to not think this is an issue, so only issue | 
 |     // a warning when Microsoft extensions are disabled. | 
 |     if (!LangOpts.Microsoft) { | 
 |       // If a symbol previously declared dllimport is later defined, the | 
 |       // attribute is ignored in subsequent references, and a warning is | 
 |       // emitted. | 
 |       Diag(FD->getLocation(), | 
 |            diag::warn_redeclaration_without_attribute_prev_attribute_ignored) | 
 |         << FD->getName() << "dllimport"; | 
 |     } | 
 |   } | 
 |   return FD; | 
 | } | 
 |  | 
 | /// \brief Given the set of return statements within a function body, | 
 | /// compute the variables that are subject to the named return value  | 
 | /// optimization. | 
 | /// | 
 | /// Each of the variables that is subject to the named return value  | 
 | /// optimization will be marked as NRVO variables in the AST, and any | 
 | /// return statement that has a marked NRVO variable as its NRVO candidate can | 
 | /// use the named return value optimization. | 
 | /// | 
 | /// This function applies a very simplistic algorithm for NRVO: if every return | 
 | /// statement in the function has the same NRVO candidate, that candidate is | 
 | /// the NRVO variable. | 
 | /// | 
 | /// FIXME: Employ a smarter algorithm that accounts for multiple return  | 
 | /// statements and the lifetimes of the NRVO candidates. We should be able to | 
 | /// find a maximal set of NRVO variables. | 
 | static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) { | 
 |   ReturnStmt **Returns = Scope->Returns.data(); | 
 |  | 
 |   const VarDecl *NRVOCandidate = 0; | 
 |   for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) { | 
 |     if (!Returns[I]->getNRVOCandidate()) | 
 |       return; | 
 |      | 
 |     if (!NRVOCandidate) | 
 |       NRVOCandidate = Returns[I]->getNRVOCandidate(); | 
 |     else if (NRVOCandidate != Returns[I]->getNRVOCandidate()) | 
 |       return; | 
 |   } | 
 |    | 
 |   if (NRVOCandidate) | 
 |     const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true); | 
 | } | 
 |  | 
 | Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) { | 
 |   return ActOnFinishFunctionBody(D, move(BodyArg), false); | 
 | } | 
 |  | 
 | Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body, | 
 |                                     bool IsInstantiation) { | 
 |   FunctionDecl *FD = 0; | 
 |   FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl); | 
 |   if (FunTmpl) | 
 |     FD = FunTmpl->getTemplatedDecl(); | 
 |   else | 
 |     FD = dyn_cast_or_null<FunctionDecl>(dcl); | 
 |  | 
 |   sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy(); | 
 |  | 
 |   if (FD) { | 
 |     FD->setBody(Body); | 
 |     if (FD->isMain()) { | 
 |       // C and C++ allow for main to automagically return 0. | 
 |       // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3. | 
 |       FD->setHasImplicitReturnZero(true); | 
 |       WP.disableCheckFallThrough(); | 
 |     } | 
 |  | 
 |     if (!FD->isInvalidDecl()) { | 
 |       DiagnoseUnusedParameters(FD->param_begin(), FD->param_end()); | 
 |        | 
 |       // If this is a constructor, we need a vtable. | 
 |       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD)) | 
 |         MarkVTableUsed(FD->getLocation(), Constructor->getParent()); | 
 |        | 
 |       ComputeNRVO(Body, getCurFunction()); | 
 |     } | 
 |      | 
 |     assert(FD == getCurFunctionDecl() && "Function parsing confused"); | 
 |   } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) { | 
 |     assert(MD == getCurMethodDecl() && "Method parsing confused"); | 
 |     MD->setBody(Body); | 
 |     MD->setEndLoc(Body->getLocEnd()); | 
 |     if (!MD->isInvalidDecl()) | 
 |       DiagnoseUnusedParameters(MD->param_begin(), MD->param_end()); | 
 |   } else { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // Verify and clean out per-function state. | 
 |  | 
 |   // Check goto/label use. | 
 |   FunctionScopeInfo *CurFn = getCurFunction(); | 
 |   for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator | 
 |          I = CurFn->LabelMap.begin(), E = CurFn->LabelMap.end(); I != E; ++I) { | 
 |     LabelStmt *L = I->second; | 
 |  | 
 |     // Verify that we have no forward references left.  If so, there was a goto | 
 |     // or address of a label taken, but no definition of it.  Label fwd | 
 |     // definitions are indicated with a null substmt. | 
 |     if (L->getSubStmt() != 0) { | 
 |       if (!L->isUsed()) | 
 |         Diag(L->getIdentLoc(), diag::warn_unused_label) << L->getName(); | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Emit error. | 
 |     Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName(); | 
 |  | 
 |     // At this point, we have gotos that use the bogus label.  Stitch it into | 
 |     // the function body so that they aren't leaked and that the AST is well | 
 |     // formed. | 
 |     if (Body == 0) { | 
 |       // The whole function wasn't parsed correctly. | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Otherwise, the body is valid: we want to stitch the label decl into the | 
 |     // function somewhere so that it is properly owned and so that the goto | 
 |     // has a valid target.  Do this by creating a new compound stmt with the | 
 |     // label in it. | 
 |  | 
 |     // Give the label a sub-statement. | 
 |     L->setSubStmt(new (Context) NullStmt(L->getIdentLoc())); | 
 |  | 
 |     CompoundStmt *Compound = isa<CXXTryStmt>(Body) ? | 
 |                                cast<CXXTryStmt>(Body)->getTryBlock() : | 
 |                                cast<CompoundStmt>(Body); | 
 |     llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(), | 
 |                                           Compound->body_end()); | 
 |     Elements.push_back(L); | 
 |     Compound->setStmts(Context, Elements.data(), Elements.size()); | 
 |   } | 
 |  | 
 |   if (Body) { | 
 |     // C++ constructors that have function-try-blocks can't have return | 
 |     // statements in the handlers of that block. (C++ [except.handle]p14) | 
 |     // Verify this. | 
 |     if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body)) | 
 |       DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body)); | 
 |      | 
 |     // Verify that that gotos and switch cases don't jump into scopes illegally. | 
 |     // Verify that that gotos and switch cases don't jump into scopes illegally. | 
 |     if (getCurFunction()->NeedsScopeChecking() && | 
 |         !dcl->isInvalidDecl() && | 
 |         !hasAnyErrorsInThisFunction()) | 
 |       DiagnoseInvalidJumps(Body); | 
 |  | 
 |     if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) { | 
 |       if (!Destructor->getParent()->isDependentType()) | 
 |         CheckDestructor(Destructor); | 
 |  | 
 |       MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(), | 
 |                                              Destructor->getParent()); | 
 |     } | 
 |      | 
 |     // If any errors have occurred, clear out any temporaries that may have | 
 |     // been leftover. This ensures that these temporaries won't be picked up for | 
 |     // deletion in some later function. | 
 |     if (PP.getDiagnostics().hasErrorOccurred()) | 
 |       ExprTemporaries.clear(); | 
 |     else if (!isa<FunctionTemplateDecl>(dcl)) { | 
 |       // Since the body is valid, issue any analysis-based warnings that are | 
 |       // enabled. | 
 |       QualType ResultType; | 
 |       if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) { | 
 |         AnalysisWarnings.IssueWarnings(WP, FD); | 
 |       } else { | 
 |         ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl); | 
 |         AnalysisWarnings.IssueWarnings(WP, MD); | 
 |       } | 
 |     } | 
 |  | 
 |     assert(ExprTemporaries.empty() && "Leftover temporaries in function"); | 
 |   } | 
 |    | 
 |   if (!IsInstantiation) | 
 |     PopDeclContext(); | 
 |  | 
 |   PopFunctionOrBlockScope(); | 
 |    | 
 |   // If any errors have occurred, clear out any temporaries that may have | 
 |   // been leftover. This ensures that these temporaries won't be picked up for | 
 |   // deletion in some later function. | 
 |   if (getDiagnostics().hasErrorOccurred()) | 
 |     ExprTemporaries.clear(); | 
 |  | 
 |   return dcl; | 
 | } | 
 |  | 
 | /// ImplicitlyDefineFunction - An undeclared identifier was used in a function | 
 | /// call, forming a call to an implicitly defined function (per C99 6.5.1p2). | 
 | NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc, | 
 |                                           IdentifierInfo &II, Scope *S) { | 
 |   // Before we produce a declaration for an implicitly defined | 
 |   // function, see whether there was a locally-scoped declaration of | 
 |   // this name as a function or variable. If so, use that | 
 |   // (non-visible) declaration, and complain about it. | 
 |   llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos | 
 |     = LocallyScopedExternalDecls.find(&II); | 
 |   if (Pos != LocallyScopedExternalDecls.end()) { | 
 |     Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second; | 
 |     Diag(Pos->second->getLocation(), diag::note_previous_declaration); | 
 |     return Pos->second; | 
 |   } | 
 |  | 
 |   // Extension in C99.  Legal in C90, but warn about it. | 
 |   if (II.getName().startswith("__builtin_")) | 
 |     Diag(Loc, diag::warn_builtin_unknown) << &II; | 
 |   else if (getLangOptions().C99) | 
 |     Diag(Loc, diag::ext_implicit_function_decl) << &II; | 
 |   else | 
 |     Diag(Loc, diag::warn_implicit_function_decl) << &II; | 
 |  | 
 |   // Set a Declarator for the implicit definition: int foo(); | 
 |   const char *Dummy; | 
 |   DeclSpec DS; | 
 |   unsigned DiagID; | 
 |   bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID); | 
 |   Error = Error; // Silence warning. | 
 |   assert(!Error && "Error setting up implicit decl!"); | 
 |   Declarator D(DS, Declarator::BlockContext); | 
 |   D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0, | 
 |                                              0, 0, false, SourceLocation(), | 
 |                                              false, 0,0,0, Loc, Loc, D), | 
 |                 SourceLocation()); | 
 |   D.SetIdentifier(&II, Loc); | 
 |  | 
 |   // Insert this function into translation-unit scope. | 
 |  | 
 |   DeclContext *PrevDC = CurContext; | 
 |   CurContext = Context.getTranslationUnitDecl(); | 
 |  | 
 |   FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D)); | 
 |   FD->setImplicit(); | 
 |  | 
 |   CurContext = PrevDC; | 
 |  | 
 |   AddKnownFunctionAttributes(FD); | 
 |  | 
 |   return FD; | 
 | } | 
 |  | 
 | /// \brief Adds any function attributes that we know a priori based on | 
 | /// the declaration of this function. | 
 | /// | 
 | /// These attributes can apply both to implicitly-declared builtins | 
 | /// (like __builtin___printf_chk) or to library-declared functions | 
 | /// like NSLog or printf. | 
 | void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) { | 
 |   if (FD->isInvalidDecl()) | 
 |     return; | 
 |  | 
 |   // If this is a built-in function, map its builtin attributes to | 
 |   // actual attributes. | 
 |   if (unsigned BuiltinID = FD->getBuiltinID()) { | 
 |     // Handle printf-formatting attributes. | 
 |     unsigned FormatIdx; | 
 |     bool HasVAListArg; | 
 |     if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) { | 
 |       if (!FD->getAttr<FormatAttr>()) | 
 |         FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context, | 
 |                                                 "printf", FormatIdx+1, | 
 |                                                HasVAListArg ? 0 : FormatIdx+2)); | 
 |     } | 
 |     if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx, | 
 |                                              HasVAListArg)) { | 
 |      if (!FD->getAttr<FormatAttr>()) | 
 |        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context, | 
 |                                               "scanf", FormatIdx+1, | 
 |                                               HasVAListArg ? 0 : FormatIdx+2)); | 
 |     } | 
 |  | 
 |     // Mark const if we don't care about errno and that is the only | 
 |     // thing preventing the function from being const. This allows | 
 |     // IRgen to use LLVM intrinsics for such functions. | 
 |     if (!getLangOptions().MathErrno && | 
 |         Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) { | 
 |       if (!FD->getAttr<ConstAttr>()) | 
 |         FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context)); | 
 |     } | 
 |  | 
 |     if (Context.BuiltinInfo.isNoReturn(BuiltinID)) | 
 |       FD->setType(Context.getNoReturnType(FD->getType())); | 
 |     if (Context.BuiltinInfo.isNoThrow(BuiltinID)) | 
 |       FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context)); | 
 |     if (Context.BuiltinInfo.isConst(BuiltinID)) | 
 |       FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context)); | 
 |   } | 
 |  | 
 |   IdentifierInfo *Name = FD->getIdentifier(); | 
 |   if (!Name) | 
 |     return; | 
 |   if ((!getLangOptions().CPlusPlus && | 
 |        FD->getDeclContext()->isTranslationUnit()) || | 
 |       (isa<LinkageSpecDecl>(FD->getDeclContext()) && | 
 |        cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() == | 
 |        LinkageSpecDecl::lang_c)) { | 
 |     // Okay: this could be a libc/libm/Objective-C function we know | 
 |     // about. | 
 |   } else | 
 |     return; | 
 |  | 
 |   if (Name->isStr("NSLog") || Name->isStr("NSLogv")) { | 
 |     // FIXME: NSLog and NSLogv should be target specific | 
 |     if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) { | 
 |       // FIXME: We known better than our headers. | 
 |       const_cast<FormatAttr *>(Format)->setType(Context, "printf"); | 
 |     } else | 
 |       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context, | 
 |                                              "printf", 1, | 
 |                                              Name->isStr("NSLogv") ? 0 : 2)); | 
 |   } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) { | 
 |     // FIXME: asprintf and vasprintf aren't C99 functions. Should they be | 
 |     // target-specific builtins, perhaps? | 
 |     if (!FD->getAttr<FormatAttr>()) | 
 |       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context, | 
 |                                              "printf", 2, | 
 |                                              Name->isStr("vasprintf") ? 0 : 3)); | 
 |   } | 
 | } | 
 |  | 
 | TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T, | 
 |                                     TypeSourceInfo *TInfo) { | 
 |   assert(D.getIdentifier() && "Wrong callback for declspec without declarator"); | 
 |   assert(!T.isNull() && "GetTypeForDeclarator() returned null type"); | 
 |  | 
 |   if (!TInfo) { | 
 |     assert(D.isInvalidType() && "no declarator info for valid type"); | 
 |     TInfo = Context.getTrivialTypeSourceInfo(T); | 
 |   } | 
 |  | 
 |   // Scope manipulation handled by caller. | 
 |   TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext, | 
 |                                            D.getIdentifierLoc(), | 
 |                                            D.getIdentifier(), | 
 |                                            TInfo); | 
 |  | 
 |   if (const TagType *TT = T->getAs<TagType>()) { | 
 |     TagDecl *TD = TT->getDecl(); | 
 |  | 
 |     // If the TagDecl that the TypedefDecl points to is an anonymous decl | 
 |     // keep track of the TypedefDecl. | 
 |     if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl()) | 
 |       TD->setTypedefForAnonDecl(NewTD); | 
 |   } | 
 |  | 
 |   if (D.isInvalidType()) | 
 |     NewTD->setInvalidDecl(); | 
 |   return NewTD; | 
 | } | 
 |  | 
 |  | 
 | /// \brief Determine whether a tag with a given kind is acceptable | 
 | /// as a redeclaration of the given tag declaration. | 
 | /// | 
 | /// \returns true if the new tag kind is acceptable, false otherwise. | 
 | bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous, | 
 |                                         TagTypeKind NewTag, | 
 |                                         SourceLocation NewTagLoc, | 
 |                                         const IdentifierInfo &Name) { | 
 |   // C++ [dcl.type.elab]p3: | 
 |   //   The class-key or enum keyword present in the | 
 |   //   elaborated-type-specifier shall agree in kind with the | 
 |   //   declaration to which the name in the elaborated-type-specifier | 
 |   //   refers. This rule also applies to the form of | 
 |   //   elaborated-type-specifier that declares a class-name or | 
 |   //   friend class since it can be construed as referring to the | 
 |   //   definition of the class. Thus, in any | 
 |   //   elaborated-type-specifier, the enum keyword shall be used to | 
 |   //   refer to an enumeration (7.2), the union class-key shall be | 
 |   //   used to refer to a union (clause 9), and either the class or | 
 |   //   struct class-key shall be used to refer to a class (clause 9) | 
 |   //   declared using the class or struct class-key. | 
 |   TagTypeKind OldTag = Previous->getTagKind(); | 
 |   if (OldTag == NewTag) | 
 |     return true; | 
 |  | 
 |   if ((OldTag == TTK_Struct || OldTag == TTK_Class) && | 
 |       (NewTag == TTK_Struct || NewTag == TTK_Class)) { | 
 |     // Warn about the struct/class tag mismatch. | 
 |     bool isTemplate = false; | 
 |     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous)) | 
 |       isTemplate = Record->getDescribedClassTemplate(); | 
 |  | 
 |     Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch) | 
 |       << (NewTag == TTK_Class) | 
 |       << isTemplate << &Name | 
 |       << FixItHint::CreateReplacement(SourceRange(NewTagLoc), | 
 |                               OldTag == TTK_Class? "class" : "struct"); | 
 |     Diag(Previous->getLocation(), diag::note_previous_use); | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | /// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the | 
 | /// former case, Name will be non-null.  In the later case, Name will be null. | 
 | /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a | 
 | /// reference/declaration/definition of a tag. | 
 | Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK, | 
 |                      SourceLocation KWLoc, CXXScopeSpec &SS, | 
 |                      IdentifierInfo *Name, SourceLocation NameLoc, | 
 |                      AttributeList *Attr, AccessSpecifier AS, | 
 |                      MultiTemplateParamsArg TemplateParameterLists, | 
 |                      bool &OwnedDecl, bool &IsDependent, bool ScopedEnum, | 
 |                      TypeResult UnderlyingType) { | 
 |   // If this is not a definition, it must have a name. | 
 |   assert((Name != 0 || TUK == TUK_Definition) && | 
 |          "Nameless record must be a definition!"); | 
 |  | 
 |   OwnedDecl = false; | 
 |   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); | 
 |  | 
 |   // FIXME: Check explicit specializations more carefully. | 
 |   bool isExplicitSpecialization = false; | 
 |   unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size(); | 
 |   bool Invalid = false; | 
 |   if (TUK != TUK_Reference) { | 
 |     if (TemplateParameterList *TemplateParams | 
 |           = MatchTemplateParametersToScopeSpecifier(KWLoc, SS, | 
 |                         (TemplateParameterList**)TemplateParameterLists.get(), | 
 |                                               TemplateParameterLists.size(), | 
 |                                                     TUK == TUK_Friend, | 
 |                                                     isExplicitSpecialization, | 
 |                                                     Invalid)) { | 
 |       // All but one template parameter lists have been matching. | 
 |       --NumMatchedTemplateParamLists; | 
 |  | 
 |       if (TemplateParams->size() > 0) { | 
 |         // This is a declaration or definition of a class template (which may | 
 |         // be a member of another template). | 
 |         if (Invalid) | 
 |           return 0; | 
 |          | 
 |         OwnedDecl = false; | 
 |         DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc, | 
 |                                                SS, Name, NameLoc, Attr, | 
 |                                                TemplateParams, | 
 |                                                AS); | 
 |         TemplateParameterLists.release(); | 
 |         return Result.get(); | 
 |       } else { | 
 |         // The "template<>" header is extraneous. | 
 |         Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams) | 
 |           << TypeWithKeyword::getTagTypeKindName(Kind) << Name; | 
 |         isExplicitSpecialization = true; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Figure out the underlying type if this a enum declaration. We need to do | 
 |   // this early, because it's needed to detect if this is an incompatible | 
 |   // redeclaration. | 
 |   llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying; | 
 |  | 
 |   if (Kind == TTK_Enum) { | 
 |     if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) | 
 |       // No underlying type explicitly specified, or we failed to parse the | 
 |       // type, default to int. | 
 |       EnumUnderlying = Context.IntTy.getTypePtr(); | 
 |     else if (UnderlyingType.get()) { | 
 |       // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an | 
 |       // integral type; any cv-qualification is ignored. | 
 |       TypeSourceInfo *TI = 0; | 
 |       QualType T = GetTypeFromParser(UnderlyingType.get(), &TI); | 
 |       EnumUnderlying = TI; | 
 |  | 
 |       SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc(); | 
 |  | 
 |       if (!T->isDependentType() && !T->isIntegralType(Context)) { | 
 |         Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) | 
 |           << T; | 
 |         // Recover by falling back to int. | 
 |         EnumUnderlying = Context.IntTy.getTypePtr(); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   DeclContext *SearchDC = CurContext; | 
 |   DeclContext *DC = CurContext; | 
 |   bool isStdBadAlloc = false; | 
 |  | 
 |   RedeclarationKind Redecl = ForRedeclaration; | 
 |   if (TUK == TUK_Friend || TUK == TUK_Reference) | 
 |     Redecl = NotForRedeclaration; | 
 |  | 
 |   LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl); | 
 |  | 
 |   if (Name && SS.isNotEmpty()) { | 
 |     // We have a nested-name tag ('struct foo::bar'). | 
 |  | 
 |     // Check for invalid 'foo::'. | 
 |     if (SS.isInvalid()) { | 
 |       Name = 0; | 
 |       goto CreateNewDecl; | 
 |     } | 
 |  | 
 |     // If this is a friend or a reference to a class in a dependent | 
 |     // context, don't try to make a decl for it. | 
 |     if (TUK == TUK_Friend || TUK == TUK_Reference) { | 
 |       DC = computeDeclContext(SS, false); | 
 |       if (!DC) { | 
 |         IsDependent = true; | 
 |         return 0; | 
 |       } | 
 |     } else { | 
 |       DC = computeDeclContext(SS, true); | 
 |       if (!DC) { | 
 |         Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec) | 
 |           << SS.getRange(); | 
 |         return 0; | 
 |       } | 
 |     } | 
 |  | 
 |     if (RequireCompleteDeclContext(SS, DC)) | 
 |       return 0; | 
 |  | 
 |     SearchDC = DC; | 
 |     // Look-up name inside 'foo::'. | 
 |     LookupQualifiedName(Previous, DC); | 
 |  | 
 |     if (Previous.isAmbiguous()) | 
 |       return 0; | 
 |  | 
 |     if (Previous.empty()) { | 
 |       // Name lookup did not find anything. However, if the | 
 |       // nested-name-specifier refers to the current instantiation, | 
 |       // and that current instantiation has any dependent base | 
 |       // classes, we might find something at instantiation time: treat | 
 |       // this as a dependent elaborated-type-specifier. | 
 |       if (Previous.wasNotFoundInCurrentInstantiation()) { | 
 |         IsDependent = true; | 
 |         return 0; | 
 |       } | 
 |  | 
 |       // A tag 'foo::bar' must already exist. | 
 |       Diag(NameLoc, diag::err_not_tag_in_scope)  | 
 |         << Kind << Name << DC << SS.getRange(); | 
 |       Name = 0; | 
 |       Invalid = true; | 
 |       goto CreateNewDecl; | 
 |     } | 
 |   } else if (Name) { | 
 |     // If this is a named struct, check to see if there was a previous forward | 
 |     // declaration or definition. | 
 |     // FIXME: We're looking into outer scopes here, even when we | 
 |     // shouldn't be. Doing so can result in ambiguities that we | 
 |     // shouldn't be diagnosing. | 
 |     LookupName(Previous, S); | 
 |  | 
 |     // Note:  there used to be some attempt at recovery here. | 
 |     if (Previous.isAmbiguous()) | 
 |       return 0; | 
 |  | 
 |     if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) { | 
 |       // FIXME: This makes sure that we ignore the contexts associated | 
 |       // with C structs, unions, and enums when looking for a matching | 
 |       // tag declaration or definition. See the similar lookup tweak | 
 |       // in Sema::LookupName; is there a better way to deal with this? | 
 |       while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC)) | 
 |         SearchDC = SearchDC->getParent(); | 
 |     } | 
 |   } else if (S->isFunctionPrototypeScope()) { | 
 |     // If this is an enum declaration in function prototype scope, set its | 
 |     // initial context to the translation unit. | 
 |     SearchDC = Context.getTranslationUnitDecl(); | 
 |   } | 
 |  | 
 |   if (Previous.isSingleResult() && | 
 |       Previous.getFoundDecl()->isTemplateParameter()) { | 
 |     // Maybe we will complain about the shadowed template parameter. | 
 |     DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl()); | 
 |     // Just pretend that we didn't see the previous declaration. | 
 |     Previous.clear(); | 
 |   } | 
 |  | 
 |   if (getLangOptions().CPlusPlus && Name && DC && StdNamespace && | 
 |       DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) { | 
 |     // This is a declaration of or a reference to "std::bad_alloc". | 
 |     isStdBadAlloc = true; | 
 |      | 
 |     if (Previous.empty() && StdBadAlloc) { | 
 |       // std::bad_alloc has been implicitly declared (but made invisible to | 
 |       // name lookup). Fill in this implicit declaration as the previous  | 
 |       // declaration, so that the declarations get chained appropriately. | 
 |       Previous.addDecl(getStdBadAlloc()); | 
 |     } | 
 |   } | 
 |  | 
 |   // If we didn't find a previous declaration, and this is a reference | 
 |   // (or friend reference), move to the correct scope.  In C++, we | 
 |   // also need to do a redeclaration lookup there, just in case | 
 |   // there's a shadow friend decl. | 
 |   if (Name && Previous.empty() && | 
 |       (TUK == TUK_Reference || TUK == TUK_Friend)) { | 
 |     if (Invalid) goto CreateNewDecl; | 
 |     assert(SS.isEmpty()); | 
 |  | 
 |     if (TUK == TUK_Reference) { | 
 |       // C++ [basic.scope.pdecl]p5: | 
 |       //   -- for an elaborated-type-specifier of the form | 
 |       // | 
 |       //          class-key identifier | 
 |       // | 
 |       //      if the elaborated-type-specifier is used in the | 
 |       //      decl-specifier-seq or parameter-declaration-clause of a | 
 |       //      function defined in namespace scope, the identifier is | 
 |       //      declared as a class-name in the namespace that contains | 
 |       //      the declaration; otherwise, except as a friend | 
 |       //      declaration, the identifier is declared in the smallest | 
 |       //      non-class, non-function-prototype scope that contains the | 
 |       //      declaration. | 
 |       // | 
 |       // C99 6.7.2.3p8 has a similar (but not identical!) provision for | 
 |       // C structs and unions. | 
 |       // | 
 |       // It is an error in C++ to declare (rather than define) an enum | 
 |       // type, including via an elaborated type specifier.  We'll | 
 |       // diagnose that later; for now, declare the enum in the same | 
 |       // scope as we would have picked for any other tag type. | 
 |       // | 
 |       // GNU C also supports this behavior as part of its incomplete | 
 |       // enum types extension, while GNU C++ does not. | 
 |       // | 
 |       // Find the context where we'll be declaring the tag. | 
 |       // FIXME: We would like to maintain the current DeclContext as the | 
 |       // lexical context, | 
 |       while (SearchDC->isRecord()) | 
 |         SearchDC = SearchDC->getParent(); | 
 |  | 
 |       // Find the scope where we'll be declaring the tag. | 
 |       while (S->isClassScope() || | 
 |              (getLangOptions().CPlusPlus && | 
 |               S->isFunctionPrototypeScope()) || | 
 |              ((S->getFlags() & Scope::DeclScope) == 0) || | 
 |              (S->getEntity() && | 
 |               ((DeclContext *)S->getEntity())->isTransparentContext())) | 
 |         S = S->getParent(); | 
 |     } else { | 
 |       assert(TUK == TUK_Friend); | 
 |       // C++ [namespace.memdef]p3: | 
 |       //   If a friend declaration in a non-local class first declares a | 
 |       //   class or function, the friend class or function is a member of | 
 |       //   the innermost enclosing namespace. | 
 |       SearchDC = SearchDC->getEnclosingNamespaceContext(); | 
 |     } | 
 |  | 
 |     // In C++, we need to do a redeclaration lookup to properly | 
 |     // diagnose some problems. | 
 |     if (getLangOptions().CPlusPlus) { | 
 |       Previous.setRedeclarationKind(ForRedeclaration); | 
 |       LookupQualifiedName(Previous, SearchDC); | 
 |     } | 
 |   } | 
 |  | 
 |   if (!Previous.empty()) { | 
 |     NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl(); | 
 |  | 
 |     // It's okay to have a tag decl in the same scope as a typedef | 
 |     // which hides a tag decl in the same scope.  Finding this | 
 |     // insanity with a redeclaration lookup can only actually happen | 
 |     // in C++. | 
 |     // | 
 |     // This is also okay for elaborated-type-specifiers, which is | 
 |     // technically forbidden by the current standard but which is | 
 |     // okay according to the likely resolution of an open issue; | 
 |     // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407 | 
 |     if (getLangOptions().CPlusPlus) { | 
 |       if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) { | 
 |         if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) { | 
 |           TagDecl *Tag = TT->getDecl(); | 
 |           if (Tag->getDeclName() == Name && | 
 |               Tag->getDeclContext()->getRedeclContext() | 
 |                           ->Equals(TD->getDeclContext()->getRedeclContext())) { | 
 |             PrevDecl = Tag; | 
 |             Previous.clear(); | 
 |             Previous.addDecl(Tag); | 
 |             Previous.resolveKind(); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) { | 
 |       // If this is a use of a previous tag, or if the tag is already declared | 
 |       // in the same scope (so that the definition/declaration completes or | 
 |       // rementions the tag), reuse the decl. | 
 |       if (TUK == TUK_Reference || TUK == TUK_Friend || | 
 |           isDeclInScope(PrevDecl, SearchDC, S)) { | 
 |         // Make sure that this wasn't declared as an enum and now used as a | 
 |         // struct or something similar. | 
 |         if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) { | 
 |           bool SafeToContinue | 
 |             = (PrevTagDecl->getTagKind() != TTK_Enum && | 
 |                Kind != TTK_Enum); | 
 |           if (SafeToContinue) | 
 |             Diag(KWLoc, diag::err_use_with_wrong_tag) | 
 |               << Name | 
 |               << FixItHint::CreateReplacement(SourceRange(KWLoc), | 
 |                                               PrevTagDecl->getKindName()); | 
 |           else | 
 |             Diag(KWLoc, diag::err_use_with_wrong_tag) << Name; | 
 |           Diag(PrevTagDecl->getLocation(), diag::note_previous_use); | 
 |  | 
 |           if (SafeToContinue) | 
 |             Kind = PrevTagDecl->getTagKind(); | 
 |           else { | 
 |             // Recover by making this an anonymous redefinition. | 
 |             Name = 0; | 
 |             Previous.clear(); | 
 |             Invalid = true; | 
 |           } | 
 |         } | 
 |  | 
 |         if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) { | 
 |           const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl); | 
 |  | 
 |           // All conflicts with previous declarations are recovered by | 
 |           // returning the previous declaration. | 
 |           if (ScopedEnum != PrevEnum->isScoped()) { | 
 |             Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch) | 
 |               << PrevEnum->isScoped(); | 
 |             Diag(PrevTagDecl->getLocation(), diag::note_previous_use); | 
 |             return PrevTagDecl; | 
 |           } | 
 |           else if (EnumUnderlying && PrevEnum->isFixed()) { | 
 |             QualType T; | 
 |             if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>()) | 
 |                 T = TI->getType(); | 
 |             else | 
 |                 T = QualType(EnumUnderlying.get<const Type*>(), 0); | 
 |  | 
 |             if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) { | 
 |               Diag(KWLoc, diag::err_enum_redeclare_type_mismatch); | 
 |               Diag(PrevTagDecl->getLocation(), diag::note_previous_use); | 
 |               return PrevTagDecl; | 
 |             } | 
 |           } | 
 |           else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) { | 
 |             Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch) | 
 |               << PrevEnum->isFixed(); | 
 |             Diag(PrevTagDecl->getLocation(), diag::note_previous_use); | 
 |             return PrevTagDecl; | 
 |           } | 
 |         } | 
 |  | 
 |         if (!Invalid) { | 
 |           // If this is a use, just return the declaration we found. | 
 |  | 
 |           // FIXME: In the future, return a variant or some other clue | 
 |           // for the consumer of this Decl to know it doesn't own it. | 
 |           // For our current ASTs this shouldn't be a problem, but will | 
 |           // need to be changed with DeclGroups. | 
 |           if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) || | 
 |               TUK == TUK_Friend) | 
 |             return PrevTagDecl; | 
 |  | 
 |           // Diagnose attempts to redefine a tag. | 
 |           if (TUK == TUK_Definition) { | 
 |             if (TagDecl *Def = PrevTagDecl->getDefinition()) { | 
 |               // If we're defining a specialization and the previous definition | 
 |               // is from an implicit instantiation, don't emit an error | 
 |               // here; we'll catch this in the general case below. | 
 |               if (!isExplicitSpecialization || | 
 |                   !isa<CXXRecordDecl>(Def) || | 
 |                   cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()  | 
 |                                                == TSK_ExplicitSpecialization) { | 
 |                 Diag(NameLoc, diag::err_redefinition) << Name; | 
 |                 Diag(Def->getLocation(), diag::note_previous_definition); | 
 |                 // If this is a redefinition, recover by making this | 
 |                 // struct be anonymous, which will make any later | 
 |                 // references get the previous definition. | 
 |                 Name = 0; | 
 |                 Previous.clear(); | 
 |                 Invalid = true; | 
 |               } | 
 |             } else { | 
 |               // If the type is currently being defined, complain | 
 |               // about a nested redefinition. | 
 |               TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl)); | 
 |               if (Tag->isBeingDefined()) { | 
 |                 Diag(NameLoc, diag::err_nested_redefinition) << Name; | 
 |                 Diag(PrevTagDecl->getLocation(), | 
 |                      diag::note_previous_definition); | 
 |                 Name = 0; | 
 |                 Previous.clear(); | 
 |                 Invalid = true; | 
 |               } | 
 |             } | 
 |  | 
 |             // Okay, this is definition of a previously declared or referenced | 
 |             // tag PrevDecl. We're going to create a new Decl for it. | 
 |           } | 
 |         } | 
 |         // If we get here we have (another) forward declaration or we | 
 |         // have a definition.  Just create a new decl. | 
 |  | 
 |       } else { | 
 |         // If we get here, this is a definition of a new tag type in a nested | 
 |         // scope, e.g. "struct foo; void bar() { struct foo; }", just create a | 
 |         // new decl/type.  We set PrevDecl to NULL so that the entities | 
 |         // have distinct types. | 
 |         Previous.clear(); | 
 |       } | 
 |       // If we get here, we're going to create a new Decl. If PrevDecl | 
 |       // is non-NULL, it's a definition of the tag declared by | 
 |       // PrevDecl. If it's NULL, we have a new definition. | 
 |  | 
 |  | 
 |     // Otherwise, PrevDecl is not a tag, but was found with tag | 
 |     // lookup.  This is only actually possible in C++, where a few | 
 |     // things like templates still live in the tag namespace. | 
 |     } else { | 
 |       assert(getLangOptions().CPlusPlus); | 
 |  | 
 |       // Use a better diagnostic if an elaborated-type-specifier | 
 |       // found the wrong kind of type on the first | 
 |       // (non-redeclaration) lookup. | 
 |       if ((TUK == TUK_Reference || TUK == TUK_Friend) && | 
 |           !Previous.isForRedeclaration()) { | 
 |         unsigned Kind = 0; | 
 |         if (isa<TypedefDecl>(PrevDecl)) Kind = 1; | 
 |         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2; | 
 |         Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind; | 
 |         Diag(PrevDecl->getLocation(), diag::note_declared_at); | 
 |         Invalid = true; | 
 |  | 
 |       // Otherwise, only diagnose if the declaration is in scope. | 
 |       } else if (!isDeclInScope(PrevDecl, SearchDC, S)) { | 
 |         // do nothing | 
 |  | 
 |       // Diagnose implicit declarations introduced by elaborated types. | 
 |       } else if (TUK == TUK_Reference || TUK == TUK_Friend) { | 
 |         unsigned Kind = 0; | 
 |         if (isa<TypedefDecl>(PrevDecl)) Kind = 1; | 
 |         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2; | 
 |         Diag(NameLoc, diag::err_tag_reference_conflict) << Kind; | 
 |         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl; | 
 |         Invalid = true; | 
 |  | 
 |       // Otherwise it's a declaration.  Call out a particularly common | 
 |       // case here. | 
 |       } else if (isa<TypedefDecl>(PrevDecl)) { | 
 |         Diag(NameLoc, diag::err_tag_definition_of_typedef) | 
 |           << Name | 
 |           << cast<TypedefDecl>(PrevDecl)->getUnderlyingType(); | 
 |         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl; | 
 |         Invalid = true; | 
 |  | 
 |       // Otherwise, diagnose. | 
 |       } else { | 
 |         // The tag name clashes with something else in the target scope, | 
 |         // issue an error and recover by making this tag be anonymous. | 
 |         Diag(NameLoc, diag::err_redefinition_different_kind) << Name; | 
 |         Diag(PrevDecl->getLocation(), diag::note_previous_definition); | 
 |         Name = 0; | 
 |         Invalid = true; | 
 |       } | 
 |  | 
 |       // The existing declaration isn't relevant to us; we're in a | 
 |       // new scope, so clear out the previous declaration. | 
 |       Previous.clear(); | 
 |     } | 
 |   } | 
 |  | 
 | CreateNewDecl: | 
 |  | 
 |   TagDecl *PrevDecl = 0; | 
 |   if (Previous.isSingleResult()) | 
 |     PrevDecl = cast<TagDecl>(Previous.getFoundDecl()); | 
 |  | 
 |   // If there is an identifier, use the location of the identifier as the | 
 |   // location of the decl, otherwise use the location of the struct/union | 
 |   // keyword. | 
 |   SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc; | 
 |  | 
 |   // Otherwise, create a new declaration. If there is a previous | 
 |   // declaration of the same entity, the two will be linked via | 
 |   // PrevDecl. | 
 |   TagDecl *New; | 
 |  | 
 |   bool IsForwardReference = false; | 
 |   if (Kind == TTK_Enum) { | 
 |     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: | 
 |     // enum X { A, B, C } D;    D should chain to X. | 
 |     New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc, | 
 |                            cast_or_null<EnumDecl>(PrevDecl), ScopedEnum, | 
 |                            !EnumUnderlying.isNull()); | 
 |     // If this is an undefined enum, warn. | 
 |     if (TUK != TUK_Definition && !Invalid) { | 
 |       TagDecl *Def; | 
 |       if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) { | 
 |         // C++0x: 7.2p2: opaque-enum-declaration. | 
 |         // Conflicts are diagnosed above. Do nothing. | 
 |       } | 
 |       else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) { | 
 |         Diag(Loc, diag::ext_forward_ref_enum_def) | 
 |           << New; | 
 |         Diag(Def->getLocation(), diag::note_previous_definition); | 
 |       } else { | 
 |         unsigned DiagID = diag::ext_forward_ref_enum; | 
 |         if (getLangOptions().Microsoft) | 
 |           DiagID = diag::ext_ms_forward_ref_enum; | 
 |         else if (getLangOptions().CPlusPlus) | 
 |           DiagID = diag::err_forward_ref_enum; | 
 |         Diag(Loc, DiagID); | 
 |          | 
 |         // If this is a forward-declared reference to an enumeration, make a  | 
 |         // note of it; we won't actually be introducing the declaration into | 
 |         // the declaration context. | 
 |         if (TUK == TUK_Reference) | 
 |           IsForwardReference = true; | 
 |       } | 
 |     } | 
 |  | 
 |     if (EnumUnderlying) { | 
 |       EnumDecl *ED = cast<EnumDecl>(New); | 
 |       if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>()) | 
 |         ED->setIntegerTypeSourceInfo(TI); | 
 |       else | 
 |         ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0)); | 
 |       ED->setPromotionType(ED->getIntegerType()); | 
 |     } | 
 |  | 
 |   } else { | 
 |     // struct/union/class | 
 |  | 
 |     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: | 
 |     // struct X { int A; } D;    D should chain to X. | 
 |     if (getLangOptions().CPlusPlus) { | 
 |       // FIXME: Look for a way to use RecordDecl for simple structs. | 
 |       New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc, | 
 |                                   cast_or_null<CXXRecordDecl>(PrevDecl)); | 
 |        | 
 |       if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit())) | 
 |         StdBadAlloc = cast<CXXRecordDecl>(New); | 
 |     } else | 
 |       New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc, | 
 |                                cast_or_null<RecordDecl>(PrevDecl)); | 
 |   } | 
 |  | 
 |   // Maybe add qualifier info. | 
 |   if (SS.isNotEmpty()) { | 
 |     if (SS.isSet()) { | 
 |       NestedNameSpecifier *NNS | 
 |         = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); | 
 |       New->setQualifierInfo(NNS, SS.getRange()); | 
 |       if (NumMatchedTemplateParamLists > 0) { | 
 |         New->setTemplateParameterListsInfo(Context, | 
 |                                            NumMatchedTemplateParamLists, | 
 |                     (TemplateParameterList**) TemplateParameterLists.release()); | 
 |       } | 
 |     } | 
 |     else | 
 |       Invalid = true; | 
 |   } | 
 |  | 
 |   if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) { | 
 |     // Add alignment attributes if necessary; these attributes are checked when | 
 |     // the ASTContext lays out the structure. | 
 |     // | 
 |     // It is important for implementing the correct semantics that this | 
 |     // happen here (in act on tag decl). The #pragma pack stack is | 
 |     // maintained as a result of parser callbacks which can occur at | 
 |     // many points during the parsing of a struct declaration (because | 
 |     // the #pragma tokens are effectively skipped over during the | 
 |     // parsing of the struct). | 
 |     AddAlignmentAttributesForRecord(RD); | 
 |   } | 
 |  | 
 |   // If this is a specialization of a member class (of a class template), | 
 |   // check the specialization. | 
 |   if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous)) | 
 |     Invalid = true; | 
 |  | 
 |   if (Invalid) | 
 |     New->setInvalidDecl(); | 
 |  | 
 |   if (Attr) | 
 |     ProcessDeclAttributeList(S, New, Attr); | 
 |  | 
 |   // If we're declaring or defining a tag in function prototype scope | 
 |   // in C, note that this type can only be used within the function. | 
 |   if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus) | 
 |     Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New); | 
 |  | 
 |   // Set the lexical context. If the tag has a C++ scope specifier, the | 
 |   // lexical context will be different from the semantic context. | 
 |   New->setLexicalDeclContext(CurContext); | 
 |  | 
 |   // Mark this as a friend decl if applicable. | 
 |   if (TUK == TUK_Friend) | 
 |     New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty()); | 
 |  | 
 |   // Set the access specifier. | 
 |   if (!Invalid && SearchDC->isRecord()) | 
 |     SetMemberAccessSpecifier(New, PrevDecl, AS); | 
 |  | 
 |   if (TUK == TUK_Definition) | 
 |     New->startDefinition(); | 
 |  | 
 |   // If this has an identifier, add it to the scope stack. | 
 |   if (TUK == TUK_Friend) { | 
 |     // We might be replacing an existing declaration in the lookup tables; | 
 |     // if so, borrow its access specifier. | 
 |     if (PrevDecl) | 
 |       New->setAccess(PrevDecl->getAccess()); | 
 |  | 
 |     DeclContext *DC = New->getDeclContext()->getRedeclContext(); | 
 |     DC->makeDeclVisibleInContext(New, /* Recoverable = */ false); | 
 |     if (Name) // can be null along some error paths | 
 |       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) | 
 |         PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false); | 
 |   } else if (Name) { | 
 |     S = getNonFieldDeclScope(S); | 
 |     PushOnScopeChains(New, S, !IsForwardReference); | 
 |     if (IsForwardReference) | 
 |       SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false); | 
 |  | 
 |   } else { | 
 |     CurContext->addDecl(New); | 
 |   } | 
 |  | 
 |   // If this is the C FILE type, notify the AST context. | 
 |   if (IdentifierInfo *II = New->getIdentifier()) | 
 |     if (!New->isInvalidDecl() && | 
 |         New->getDeclContext()->getRedeclContext()->isTranslationUnit() && | 
 |         II->isStr("FILE")) | 
 |       Context.setFILEDecl(New); | 
 |  | 
 |   OwnedDecl = true; | 
 |   return New; | 
 | } | 
 |  | 
 | void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) { | 
 |   AdjustDeclIfTemplate(TagD); | 
 |   TagDecl *Tag = cast<TagDecl>(TagD); | 
 |    | 
 |   // Enter the tag context. | 
 |   PushDeclContext(S, Tag); | 
 | } | 
 |  | 
 | void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD, | 
 |                                            SourceLocation LBraceLoc) { | 
 |   AdjustDeclIfTemplate(TagD); | 
 |   CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD); | 
 |  | 
 |   FieldCollector->StartClass(); | 
 |  | 
 |   if (!Record->getIdentifier()) | 
 |     return; | 
 |  | 
 |   // C++ [class]p2: | 
 |   //   [...] The class-name is also inserted into the scope of the | 
 |   //   class itself; this is known as the injected-class-name. For | 
 |   //   purposes of access checking, the injected-class-name is treated | 
 |   //   as if it were a public member name. | 
 |   CXXRecordDecl *InjectedClassName | 
 |     = CXXRecordDecl::Create(Context, Record->getTagKind(), | 
 |                             CurContext, Record->getLocation(), | 
 |                             Record->getIdentifier(), | 
 |                             Record->getTagKeywordLoc(), | 
 |                             Record); | 
 |   InjectedClassName->setImplicit(); | 
 |   InjectedClassName->setAccess(AS_public); | 
 |   if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate()) | 
 |       InjectedClassName->setDescribedClassTemplate(Template); | 
 |   PushOnScopeChains(InjectedClassName, S); | 
 |   assert(InjectedClassName->isInjectedClassName() && | 
 |          "Broken injected-class-name"); | 
 | } | 
 |  | 
 | void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD, | 
 |                                     SourceLocation RBraceLoc) { | 
 |   AdjustDeclIfTemplate(TagD); | 
 |   TagDecl *Tag = cast<TagDecl>(TagD); | 
 |   Tag->setRBraceLoc(RBraceLoc); | 
 |  | 
 |   if (isa<CXXRecordDecl>(Tag)) | 
 |     FieldCollector->FinishClass(); | 
 |  | 
 |   // Exit this scope of this tag's definition. | 
 |   PopDeclContext(); | 
 |                                            | 
 |   // Notify the consumer that we've defined a tag. | 
 |   Consumer.HandleTagDeclDefinition(Tag); | 
 | } | 
 |  | 
 | void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) { | 
 |   AdjustDeclIfTemplate(TagD); | 
 |   TagDecl *Tag = cast<TagDecl>(TagD); | 
 |   Tag->setInvalidDecl(); | 
 |  | 
 |   // We're undoing ActOnTagStartDefinition here, not | 
 |   // ActOnStartCXXMemberDeclarations, so we don't have to mess with | 
 |   // the FieldCollector. | 
 |  | 
 |   PopDeclContext();   | 
 | } | 
 |  | 
 | // Note that FieldName may be null for anonymous bitfields. | 
 | bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName, | 
 |                           QualType FieldTy, const Expr *BitWidth, | 
 |                           bool *ZeroWidth) { | 
 |   // Default to true; that shouldn't confuse checks for emptiness | 
 |   if (ZeroWidth) | 
 |     *ZeroWidth = true; | 
 |  | 
 |   // C99 6.7.2.1p4 - verify the field type. | 
 |   // C++ 9.6p3: A bit-field shall have integral or enumeration type. | 
 |   if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) { | 
 |     // Handle incomplete types with specific error. | 
 |     if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete)) | 
 |       return true; | 
 |     if (FieldName) | 
 |       return Diag(FieldLoc, diag::err_not_integral_type_bitfield) | 
 |         << FieldName << FieldTy << BitWidth->getSourceRange(); | 
 |     return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield) | 
 |       << FieldTy << BitWidth->getSourceRange(); | 
 |   } | 
 |  | 
 |   // If the bit-width is type- or value-dependent, don't try to check | 
 |   // it now. | 
 |   if (BitWidth->isValueDependent() || BitWidth->isTypeDependent()) | 
 |     return false; | 
 |  | 
 |   llvm::APSInt Value; | 
 |   if (VerifyIntegerConstantExpression(BitWidth, &Value)) | 
 |     return true; | 
 |  | 
 |   if (Value != 0 && ZeroWidth) | 
 |     *ZeroWidth = false; | 
 |  | 
 |   // Zero-width bitfield is ok for anonymous field. | 
 |   if (Value == 0 && FieldName) | 
 |     return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName; | 
 |  | 
 |   if (Value.isSigned() && Value.isNegative()) { | 
 |     if (FieldName) | 
 |       return Diag(FieldLoc, diag::err_bitfield_has_negative_width) | 
 |                << FieldName << Value.toString(10); | 
 |     return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width) | 
 |       << Value.toString(10); | 
 |   } | 
 |  | 
 |   if (!FieldTy->isDependentType()) { | 
 |     uint64_t TypeSize = Context.getTypeSize(FieldTy); | 
 |     if (Value.getZExtValue() > TypeSize) { | 
 |       if (!getLangOptions().CPlusPlus) { | 
 |         if (FieldName)  | 
 |           return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size) | 
 |             << FieldName << (unsigned)Value.getZExtValue()  | 
 |             << (unsigned)TypeSize; | 
 |          | 
 |         return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size) | 
 |           << (unsigned)Value.getZExtValue() << (unsigned)TypeSize; | 
 |       } | 
 |        | 
 |       if (FieldName) | 
 |         Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size) | 
 |           << FieldName << (unsigned)Value.getZExtValue()  | 
 |           << (unsigned)TypeSize; | 
 |       else | 
 |         Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size) | 
 |           << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;         | 
 |     } | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// ActOnField - Each field of a struct/union/class is passed into this in order | 
 | /// to create a FieldDecl object for it. | 
 | Decl *Sema::ActOnField(Scope *S, Decl *TagD, | 
 |                                  SourceLocation DeclStart, | 
 |                                  Declarator &D, ExprTy *BitfieldWidth) { | 
 |   FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD), | 
 |                                DeclStart, D, static_cast<Expr*>(BitfieldWidth), | 
 |                                AS_public); | 
 |   return Res; | 
 | } | 
 |  | 
 | /// HandleField - Analyze a field of a C struct or a C++ data member. | 
 | /// | 
 | FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record, | 
 |                              SourceLocation DeclStart, | 
 |                              Declarator &D, Expr *BitWidth, | 
 |                              AccessSpecifier AS) { | 
 |   IdentifierInfo *II = D.getIdentifier(); | 
 |   SourceLocation Loc = DeclStart; | 
 |   if (II) Loc = D.getIdentifierLoc(); | 
 |  | 
 |   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); | 
 |   QualType T = TInfo->getType(); | 
 |   if (getLangOptions().CPlusPlus) | 
 |     CheckExtraCXXDefaultArguments(D); | 
 |  | 
 |   DiagnoseFunctionSpecifiers(D); | 
 |  | 
 |   if (D.getDeclSpec().isThreadSpecified()) | 
 |     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread); | 
 |    | 
 |   // Check to see if this name was declared as a member previously | 
 |   LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration); | 
 |   LookupName(Previous, S); | 
 |   assert((Previous.empty() || Previous.isOverloadedResult() ||  | 
 |           Previous.isSingleResult())  | 
 |     && "Lookup of member name should be either overloaded, single or null"); | 
 |  | 
 |   // If the name is overloaded then get any declaration else get the single result | 
 |   NamedDecl *PrevDecl = Previous.isOverloadedResult() ? | 
 |     Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>(); | 
 |  | 
 |   if (PrevDecl && PrevDecl->isTemplateParameter()) { | 
 |     // Maybe we will complain about the shadowed template parameter. | 
 |     DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); | 
 |     // Just pretend that we didn't see the previous declaration. | 
 |     PrevDecl = 0; | 
 |   } | 
 |  | 
 |   if (PrevDecl && !isDeclInScope(PrevDecl, Record, S)) | 
 |     PrevDecl = 0; | 
 |  | 
 |   bool Mutable | 
 |     = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable); | 
 |   SourceLocation TSSL = D.getSourceRange().getBegin(); | 
 |   FieldDecl *NewFD | 
 |     = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL, | 
 |                      AS, PrevDecl, &D); | 
 |  | 
 |   if (NewFD->isInvalidDecl()) | 
 |     Record->setInvalidDecl(); | 
 |  | 
 |   if (NewFD->isInvalidDecl() && PrevDecl) { | 
 |     // Don't introduce NewFD into scope; there's already something | 
 |     // with the same name in the same scope. | 
 |   } else if (II) { | 
 |     PushOnScopeChains(NewFD, S); | 
 |   } else | 
 |     Record->addDecl(NewFD); | 
 |  | 
 |   return NewFD; | 
 | } | 
 |  | 
 | /// \brief Build a new FieldDecl and check its well-formedness. | 
 | /// | 
 | /// This routine builds a new FieldDecl given the fields name, type, | 
 | /// record, etc. \p PrevDecl should refer to any previous declaration | 
 | /// with the same name and in the same scope as the field to be | 
 | /// created. | 
 | /// | 
 | /// \returns a new FieldDecl. | 
 | /// | 
 | /// \todo The Declarator argument is a hack. It will be removed once | 
 | FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T, | 
 |                                 TypeSourceInfo *TInfo, | 
 |                                 RecordDecl *Record, SourceLocation Loc, | 
 |                                 bool Mutable, Expr *BitWidth, | 
 |                                 SourceLocation TSSL, | 
 |                                 AccessSpecifier AS, NamedDecl *PrevDecl, | 
 |                                 Declarator *D) { | 
 |   IdentifierInfo *II = Name.getAsIdentifierInfo(); | 
 |   bool InvalidDecl = false; | 
 |   if (D) InvalidDecl = D->isInvalidType(); | 
 |  | 
 |   // If we receive a broken type, recover by assuming 'int' and | 
 |   // marking this declaration as invalid. | 
 |   if (T.isNull()) { | 
 |     InvalidDecl = true; | 
 |     T = Context.IntTy; | 
 |   } | 
 |  | 
 |   QualType EltTy = Context.getBaseElementType(T); | 
 |   if (!EltTy->isDependentType() && | 
 |       RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) { | 
 |     // Fields of incomplete type force their record to be invalid. | 
 |     Record->setInvalidDecl(); | 
 |     InvalidDecl = true; | 
 |   } | 
 |  | 
 |   // C99 6.7.2.1p8: A member of a structure or union may have any type other | 
 |   // than a variably modified type. | 
 |   if (!InvalidDecl && T->isVariablyModifiedType()) { | 
 |     bool SizeIsNegative; | 
 |     llvm::APSInt Oversized; | 
 |     QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context, | 
 |                                                            SizeIsNegative, | 
 |                                                            Oversized); | 
 |     if (!FixedTy.isNull()) { | 
 |       Diag(Loc, diag::warn_illegal_constant_array_size); | 
 |       T = FixedTy; | 
 |     } else { | 
 |       if (SizeIsNegative) | 
 |         Diag(Loc, diag::err_typecheck_negative_array_size); | 
 |       else if (Oversized.getBoolValue()) | 
 |         Diag(Loc, diag::err_array_too_large) | 
 |           << Oversized.toString(10); | 
 |       else | 
 |         Diag(Loc, diag::err_typecheck_field_variable_size); | 
 |       InvalidDecl = true; | 
 |     } | 
 |   } | 
 |  | 
 |   // Fields can not have abstract class types | 
 |   if (!InvalidDecl && RequireNonAbstractType(Loc, T, | 
 |                                              diag::err_abstract_type_in_decl, | 
 |                                              AbstractFieldType)) | 
 |     InvalidDecl = true; | 
 |  | 
 |   bool ZeroWidth = false; | 
 |   // If this is declared as a bit-field, check the bit-field. | 
 |   if (!InvalidDecl && BitWidth && | 
 |       VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) { | 
 |     InvalidDecl = true; | 
 |     BitWidth = 0; | 
 |     ZeroWidth = false; | 
 |   } | 
 |  | 
 |   // Check that 'mutable' is consistent with the type of the declaration. | 
 |   if (!InvalidDecl && Mutable) { | 
 |     unsigned DiagID = 0; | 
 |     if (T->isReferenceType()) | 
 |       DiagID = diag::err_mutable_reference; | 
 |     else if (T.isConstQualified()) | 
 |       DiagID = diag::err_mutable_const; | 
 |  | 
 |     if (DiagID) { | 
 |       SourceLocation ErrLoc = Loc; | 
 |       if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid()) | 
 |         ErrLoc = D->getDeclSpec().getStorageClassSpecLoc(); | 
 |       Diag(ErrLoc, DiagID); | 
 |       Mutable = false; | 
 |       InvalidDecl = true; | 
 |     } | 
 |   } | 
 |  | 
 |   FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo, | 
 |                                        BitWidth, Mutable); | 
 |   if (InvalidDecl) | 
 |     NewFD->setInvalidDecl(); | 
 |  | 
 |   if (PrevDecl && !isa<TagDecl>(PrevDecl)) { | 
 |     Diag(Loc, diag::err_duplicate_member) << II; | 
 |     Diag(PrevDecl->getLocation(), diag::note_previous_declaration); | 
 |     NewFD->setInvalidDecl(); | 
 |   } | 
 |  | 
 |   if (!InvalidDecl && getLangOptions().CPlusPlus) { | 
 |     if (const RecordType *RT = EltTy->getAs<RecordType>()) { | 
 |       CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl()); | 
 |       if (RDecl->getDefinition()) { | 
 |         // C++ 9.5p1: An object of a class with a non-trivial | 
 |         // constructor, a non-trivial copy constructor, a non-trivial | 
 |         // destructor, or a non-trivial copy assignment operator | 
 |         // cannot be a member of a union, nor can an array of such | 
 |         // objects. | 
 |         // TODO: C++0x alters this restriction significantly. | 
 |         if (Record->isUnion() && CheckNontrivialField(NewFD)) | 
 |           NewFD->setInvalidDecl(); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // FIXME: We need to pass in the attributes given an AST | 
 |   // representation, not a parser representation. | 
 |   if (D) | 
 |     // FIXME: What to pass instead of TUScope? | 
 |     ProcessDeclAttributes(TUScope, NewFD, *D); | 
 |  | 
 |   if (T.isObjCGCWeak()) | 
 |     Diag(Loc, diag::warn_attribute_weak_on_field); | 
 |  | 
 |   NewFD->setAccess(AS); | 
 |   return NewFD; | 
 | } | 
 |  | 
 | bool Sema::CheckNontrivialField(FieldDecl *FD) { | 
 |   assert(FD); | 
 |   assert(getLangOptions().CPlusPlus && "valid check only for C++"); | 
 |  | 
 |   if (FD->isInvalidDecl()) | 
 |     return true; | 
 |  | 
 |   QualType EltTy = Context.getBaseElementType(FD->getType()); | 
 |   if (const RecordType *RT = EltTy->getAs<RecordType>()) { | 
 |     CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl()); | 
 |     if (RDecl->getDefinition()) { | 
 |       // We check for copy constructors before constructors | 
 |       // because otherwise we'll never get complaints about | 
 |       // copy constructors. | 
 |  | 
 |       CXXSpecialMember member = CXXInvalid; | 
 |       if (!RDecl->hasTrivialCopyConstructor()) | 
 |         member = CXXCopyConstructor; | 
 |       else if (!RDecl->hasTrivialConstructor()) | 
 |         member = CXXConstructor; | 
 |       else if (!RDecl->hasTrivialCopyAssignment()) | 
 |         member = CXXCopyAssignment; | 
 |       else if (!RDecl->hasTrivialDestructor()) | 
 |         member = CXXDestructor; | 
 |  | 
 |       if (member != CXXInvalid) { | 
 |         Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member) | 
 |               << (int)FD->getParent()->isUnion() << FD->getDeclName() << member; | 
 |         DiagnoseNontrivial(RT, member); | 
 |         return true; | 
 |       } | 
 |     } | 
 |   } | 
 |    | 
 |   return false; | 
 | } | 
 |  | 
 | /// DiagnoseNontrivial - Given that a class has a non-trivial | 
 | /// special member, figure out why. | 
 | void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) { | 
 |   QualType QT(T, 0U); | 
 |   CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl()); | 
 |  | 
 |   // Check whether the member was user-declared. | 
 |   switch (member) { | 
 |   case CXXInvalid: | 
 |     break; | 
 |  | 
 |   case CXXConstructor: | 
 |     if (RD->hasUserDeclaredConstructor()) { | 
 |       typedef CXXRecordDecl::ctor_iterator ctor_iter; | 
 |       for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){ | 
 |         const FunctionDecl *body = 0; | 
 |         ci->hasBody(body); | 
 |         if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) { | 
 |           SourceLocation CtorLoc = ci->getLocation(); | 
 |           Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member; | 
 |           return; | 
 |         } | 
 |       } | 
 |  | 
 |       assert(0 && "found no user-declared constructors"); | 
 |       return; | 
 |     } | 
 |     break; | 
 |  | 
 |   case CXXCopyConstructor: | 
 |     if (RD->hasUserDeclaredCopyConstructor()) { | 
 |       SourceLocation CtorLoc = | 
 |         RD->getCopyConstructor(Context, 0)->getLocation(); | 
 |       Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member; | 
 |       return; | 
 |     } | 
 |     break; | 
 |  | 
 |   case CXXCopyAssignment: | 
 |     if (RD->hasUserDeclaredCopyAssignment()) { | 
 |       // FIXME: this should use the location of the copy | 
 |       // assignment, not the type. | 
 |       SourceLocation TyLoc = RD->getSourceRange().getBegin(); | 
 |       Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member; | 
 |       return; | 
 |     } | 
 |     break; | 
 |  | 
 |   case CXXDestructor: | 
 |     if (RD->hasUserDeclaredDestructor()) { | 
 |       SourceLocation DtorLoc = LookupDestructor(RD)->getLocation(); | 
 |       Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member; | 
 |       return; | 
 |     } | 
 |     break; | 
 |   } | 
 |  | 
 |   typedef CXXRecordDecl::base_class_iterator base_iter; | 
 |  | 
 |   // Virtual bases and members inhibit trivial copying/construction, | 
 |   // but not trivial destruction. | 
 |   if (member != CXXDestructor) { | 
 |     // Check for virtual bases.  vbases includes indirect virtual bases, | 
 |     // so we just iterate through the direct bases. | 
 |     for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) | 
 |       if (bi->isVirtual()) { | 
 |         SourceLocation BaseLoc = bi->getSourceRange().getBegin(); | 
 |         Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1; | 
 |         return; | 
 |       } | 
 |  | 
 |     // Check for virtual methods. | 
 |     typedef CXXRecordDecl::method_iterator meth_iter; | 
 |     for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me; | 
 |          ++mi) { | 
 |       if (mi->isVirtual()) { | 
 |         SourceLocation MLoc = mi->getSourceRange().getBegin(); | 
 |         Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0; | 
 |         return; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   bool (CXXRecordDecl::*hasTrivial)() const; | 
 |   switch (member) { | 
 |   case CXXConstructor: | 
 |     hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break; | 
 |   case CXXCopyConstructor: | 
 |     hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break; | 
 |   case CXXCopyAssignment: | 
 |     hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break; | 
 |   case CXXDestructor: | 
 |     hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break; | 
 |   default: | 
 |     assert(0 && "unexpected special member"); return; | 
 |   } | 
 |  | 
 |   // Check for nontrivial bases (and recurse). | 
 |   for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) { | 
 |     const RecordType *BaseRT = bi->getType()->getAs<RecordType>(); | 
 |     assert(BaseRT && "Don't know how to handle dependent bases"); | 
 |     CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl()); | 
 |     if (!(BaseRecTy->*hasTrivial)()) { | 
 |       SourceLocation BaseLoc = bi->getSourceRange().getBegin(); | 
 |       Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member; | 
 |       DiagnoseNontrivial(BaseRT, member); | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   // Check for nontrivial members (and recurse). | 
 |   typedef RecordDecl::field_iterator field_iter; | 
 |   for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe; | 
 |        ++fi) { | 
 |     QualType EltTy = Context.getBaseElementType((*fi)->getType()); | 
 |     if (const RecordType *EltRT = EltTy->getAs<RecordType>()) { | 
 |       CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl()); | 
 |  | 
 |       if (!(EltRD->*hasTrivial)()) { | 
 |         SourceLocation FLoc = (*fi)->getLocation(); | 
 |         Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member; | 
 |         DiagnoseNontrivial(EltRT, member); | 
 |         return; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   assert(0 && "found no explanation for non-trivial member"); | 
 | } | 
 |  | 
 | /// TranslateIvarVisibility - Translate visibility from a token ID to an | 
 | ///  AST enum value. | 
 | static ObjCIvarDecl::AccessControl | 
 | TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) { | 
 |   switch (ivarVisibility) { | 
 |   default: assert(0 && "Unknown visitibility kind"); | 
 |   case tok::objc_private: return ObjCIvarDecl::Private; | 
 |   case tok::objc_public: return ObjCIvarDecl::Public; | 
 |   case tok::objc_protected: return ObjCIvarDecl::Protected; | 
 |   case tok::objc_package: return ObjCIvarDecl::Package; | 
 |   } | 
 | } | 
 |  | 
 | /// ActOnIvar - Each ivar field of an objective-c class is passed into this | 
 | /// in order to create an IvarDecl object for it. | 
 | Decl *Sema::ActOnIvar(Scope *S, | 
 |                                 SourceLocation DeclStart, | 
 |                                 Decl *IntfDecl, | 
 |                                 Declarator &D, ExprTy *BitfieldWidth, | 
 |                                 tok::ObjCKeywordKind Visibility) { | 
 |  | 
 |   IdentifierInfo *II = D.getIdentifier(); | 
 |   Expr *BitWidth = (Expr*)BitfieldWidth; | 
 |   SourceLocation Loc = DeclStart; | 
 |   if (II) Loc = D.getIdentifierLoc(); | 
 |  | 
 |   // FIXME: Unnamed fields can be handled in various different ways, for | 
 |   // example, unnamed unions inject all members into the struct namespace! | 
 |  | 
 |   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); | 
 |   QualType T = TInfo->getType(); | 
 |  | 
 |   if (BitWidth) { | 
 |     // 6.7.2.1p3, 6.7.2.1p4 | 
 |     if (VerifyBitField(Loc, II, T, BitWidth)) { | 
 |       D.setInvalidType(); | 
 |       BitWidth = 0; | 
 |     } | 
 |   } else { | 
 |     // Not a bitfield. | 
 |  | 
 |     // validate II. | 
 |  | 
 |   } | 
 |   if (T->isReferenceType()) { | 
 |     Diag(Loc, diag::err_ivar_reference_type); | 
 |     D.setInvalidType(); | 
 |   } | 
 |   // C99 6.7.2.1p8: A member of a structure or union may have any type other | 
 |   // than a variably modified type. | 
 |   else if (T->isVariablyModifiedType()) { | 
 |     Diag(Loc, diag::err_typecheck_ivar_variable_size); | 
 |     D.setInvalidType(); | 
 |   } | 
 |  | 
 |   // Get the visibility (access control) for this ivar. | 
 |   ObjCIvarDecl::AccessControl ac = | 
 |     Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility) | 
 |                                         : ObjCIvarDecl::None; | 
 |   // Must set ivar's DeclContext to its enclosing interface. | 
 |   ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl); | 
 |   ObjCContainerDecl *EnclosingContext; | 
 |   if (ObjCImplementationDecl *IMPDecl = | 
 |       dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) { | 
 |     if (!LangOpts.ObjCNonFragileABI2) { | 
 |     // Case of ivar declared in an implementation. Context is that of its class. | 
 |       EnclosingContext = IMPDecl->getClassInterface(); | 
 |       assert(EnclosingContext && "Implementation has no class interface!"); | 
 |     } | 
 |     else | 
 |       EnclosingContext = EnclosingDecl; | 
 |   } else { | 
 |     if (ObjCCategoryDecl *CDecl =  | 
 |         dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) { | 
 |       if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) { | 
 |         Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension(); | 
 |         return 0; | 
 |       } | 
 |     } | 
 |     EnclosingContext = EnclosingDecl; | 
 |   } | 
 |  | 
 |   // Construct the decl. | 
 |   ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, | 
 |                                              EnclosingContext, Loc, II, T, | 
 |                                              TInfo, ac, (Expr *)BitfieldWidth); | 
 |  | 
 |   if (II) { | 
 |     NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName, | 
 |                                            ForRedeclaration); | 
 |     if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S) | 
 |         && !isa<TagDecl>(PrevDecl)) { | 
 |       Diag(Loc, diag::err_duplicate_member) << II; | 
 |       Diag(PrevDecl->getLocation(), diag::note_previous_declaration); | 
 |       NewID->setInvalidDecl(); | 
 |     } | 
 |   } | 
 |  | 
 |   // Process attributes attached to the ivar. | 
 |   ProcessDeclAttributes(S, NewID, D); | 
 |  | 
 |   if (D.isInvalidType()) | 
 |     NewID->setInvalidDecl(); | 
 |  | 
 |   if (II) { | 
 |     // FIXME: When interfaces are DeclContexts, we'll need to add | 
 |     // these to the interface. | 
 |     S->AddDecl(NewID); | 
 |     IdResolver.AddDecl(NewID); | 
 |   } | 
 |  | 
 |   return NewID; | 
 | } | 
 |  | 
 | /// ActOnLastBitfield - This routine handles synthesized bitfields rules for  | 
 | /// class and class extensions. For every class @interface and class  | 
 | /// extension @interface, if the last ivar is a bitfield of any type,  | 
 | /// then add an implicit `char :0` ivar to the end of that interface. | 
 | void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl, | 
 |                              llvm::SmallVectorImpl<Decl *> &AllIvarDecls) { | 
 |   if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty()) | 
 |     return; | 
 |    | 
 |   Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1]; | 
 |   ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl); | 
 |    | 
 |   if (!Ivar->isBitField()) | 
 |     return; | 
 |   uint64_t BitFieldSize = | 
 |     Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue(); | 
 |   if (BitFieldSize == 0) | 
 |     return; | 
 |   ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl); | 
 |   if (!ID) { | 
 |     if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) { | 
 |       if (!CD->IsClassExtension()) | 
 |         return; | 
 |     } | 
 |     // No need to add this to end of @implementation. | 
 |     else | 
 |       return; | 
 |   } | 
 |   // All conditions are met. Add a new bitfield to the tail end of ivars. | 
 |   llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0); | 
 |   Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc); | 
 |  | 
 |   Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl), | 
 |                               DeclLoc, 0, | 
 |                               Context.CharTy,  | 
 |                               Context.CreateTypeSourceInfo(Context.CharTy), | 
 |                               ObjCIvarDecl::Private, BW, | 
 |                               true); | 
 |   AllIvarDecls.push_back(Ivar); | 
 | } | 
 |  | 
 | void Sema::ActOnFields(Scope* S, | 
 |                        SourceLocation RecLoc, Decl *EnclosingDecl, | 
 |                        Decl **Fields, unsigned NumFields, | 
 |                        SourceLocation LBrac, SourceLocation RBrac, | 
 |                        AttributeList *Attr) { | 
 |   assert(EnclosingDecl && "missing record or interface decl"); | 
 |  | 
 |   // If the decl this is being inserted into is invalid, then it may be a | 
 |   // redeclaration or some other bogus case.  Don't try to add fields to it. | 
 |   if (EnclosingDecl->isInvalidDecl()) { | 
 |     // FIXME: Deallocate fields? | 
 |     return; | 
 |   } | 
 |  | 
 |  | 
 |   // Verify that all the fields are okay. | 
 |   unsigned NumNamedMembers = 0; | 
 |   llvm::SmallVector<FieldDecl*, 32> RecFields; | 
 |  | 
 |   RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl); | 
 |   for (unsigned i = 0; i != NumFields; ++i) { | 
 |     FieldDecl *FD = cast<FieldDecl>(Fields[i]); | 
 |  | 
 |     // Get the type for the field. | 
 |     Type *FDTy = FD->getType().getTypePtr(); | 
 |  | 
 |     if (!FD->isAnonymousStructOrUnion()) { | 
 |       // Remember all fields written by the user. | 
 |       RecFields.push_back(FD); | 
 |     } | 
 |  | 
 |     // If the field is already invalid for some reason, don't emit more | 
 |     // diagnostics about it. | 
 |     if (FD->isInvalidDecl()) { | 
 |       EnclosingDecl->setInvalidDecl(); | 
 |       continue; | 
 |     } | 
 |  | 
 |     // C99 6.7.2.1p2: | 
 |     //   A structure or union shall not contain a member with | 
 |     //   incomplete or function type (hence, a structure shall not | 
 |     //   contain an instance of itself, but may contain a pointer to | 
 |     //   an instance of itself), except that the last member of a | 
 |     //   structure with more than one named member may have incomplete | 
 |     //   array type; such a structure (and any union containing, | 
 |     //   possibly recursively, a member that is such a structure) | 
 |     //   shall not be a member of a structure or an element of an | 
 |     //   array. | 
 |     if (FDTy->isFunctionType()) { | 
 |       // Field declared as a function. | 
 |       Diag(FD->getLocation(), diag::err_field_declared_as_function) | 
 |         << FD->getDeclName(); | 
 |       FD->setInvalidDecl(); | 
 |       EnclosingDecl->setInvalidDecl(); | 
 |       continue; | 
 |     } else if (FDTy->isIncompleteArrayType() && Record &&  | 
 |                ((i == NumFields - 1 && !Record->isUnion()) || | 
 |                 (getLangOptions().Microsoft && | 
 |                  (i == NumFields - 1 || Record->isUnion())))) { | 
 |       // Flexible array member. | 
 |       // Microsoft is more permissive regarding flexible array. | 
 |       // It will accept flexible array in union and also | 
 | 	    // as the sole element of a struct/class. | 
 |       if (getLangOptions().Microsoft) { | 
 |         if (Record->isUnion())  | 
 |           Diag(FD->getLocation(), diag::ext_flexible_array_union) | 
 |             << FD->getDeclName(); | 
 |         else if (NumFields == 1)  | 
 |           Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate) | 
 |             << FD->getDeclName() << Record->getTagKind(); | 
 |       } else  if (NumNamedMembers < 1) { | 
 |         Diag(FD->getLocation(), diag::err_flexible_array_empty_struct) | 
 |           << FD->getDeclName(); | 
 |         FD->setInvalidDecl(); | 
 |         EnclosingDecl->setInvalidDecl(); | 
 |         continue; | 
 |       } | 
 |       if (!FD->getType()->isDependentType() && | 
 |           !Context.getBaseElementType(FD->getType())->isPODType()) { | 
 |         Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type) | 
 |           << FD->getDeclName() << FD->getType(); | 
 |         FD->setInvalidDecl(); | 
 |         EnclosingDecl->setInvalidDecl(); | 
 |         continue; | 
 |       } | 
 |       // Okay, we have a legal flexible array member at the end of the struct. | 
 |       if (Record) | 
 |         Record->setHasFlexibleArrayMember(true); | 
 |     } else if (!FDTy->isDependentType() && | 
 |                RequireCompleteType(FD->getLocation(), FD->getType(), | 
 |                                    diag::err_field_incomplete)) { | 
 |       // Incomplete type | 
 |       FD->setInvalidDecl(); | 
 |       EnclosingDecl->setInvalidDecl(); | 
 |       continue; | 
 |     } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) { | 
 |       if (FDTTy->getDecl()->hasFlexibleArrayMember()) { | 
 |         // If this is a member of a union, then entire union becomes "flexible". | 
 |         if (Record && Record->isUnion()) { | 
 |           Record->setHasFlexibleArrayMember(true); | 
 |         } else { | 
 |           // If this is a struct/class and this is not the last element, reject | 
 |           // it.  Note that GCC supports variable sized arrays in the middle of | 
 |           // structures. | 
 |           if (i != NumFields-1) | 
 |             Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct) | 
 |               << FD->getDeclName() << FD->getType(); | 
 |           else { | 
 |             // We support flexible arrays at the end of structs in | 
 |             // other structs as an extension. | 
 |             Diag(FD->getLocation(), diag::ext_flexible_array_in_struct) | 
 |               << FD->getDeclName(); | 
 |             if (Record) | 
 |               Record->setHasFlexibleArrayMember(true); | 
 |           } | 
 |         } | 
 |       } | 
 |       if (Record && FDTTy->getDecl()->hasObjectMember()) | 
 |         Record->setHasObjectMember(true); | 
 |     } else if (FDTy->isObjCObjectType()) { | 
 |       /// A field cannot be an Objective-c object | 
 |       Diag(FD->getLocation(), diag::err_statically_allocated_object); | 
 |       FD->setInvalidDecl(); | 
 |       EnclosingDecl->setInvalidDecl(); | 
 |       continue; | 
 |     } else if (getLangOptions().ObjC1 && | 
 |                getLangOptions().getGCMode() != LangOptions::NonGC && | 
 |                Record && | 
 |                (FD->getType()->isObjCObjectPointerType() || | 
 |                 FD->getType().isObjCGCStrong())) | 
 |       Record->setHasObjectMember(true); | 
 |     else if (Context.getAsArrayType(FD->getType())) { | 
 |       QualType BaseType = Context.getBaseElementType(FD->getType()); | 
 |       if (Record && BaseType->isRecordType() &&  | 
 |           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember()) | 
 |         Record->setHasObjectMember(true); | 
 |     } | 
 |     // Keep track of the number of named members. | 
 |     if (FD->getIdentifier()) | 
 |       ++NumNamedMembers; | 
 |   } | 
 |  | 
 |   // Okay, we successfully defined 'Record'. | 
 |   if (Record) { | 
 |     bool Completed = false; | 
 |     if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) { | 
 |       if (!CXXRecord->isInvalidDecl()) { | 
 |         // Set access bits correctly on the directly-declared conversions. | 
 |         UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions(); | 
 |         for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();  | 
 |              I != E; ++I) | 
 |           Convs->setAccess(I, (*I)->getAccess()); | 
 |          | 
 |         if (!CXXRecord->isDependentType()) { | 
 |           // Add any implicitly-declared members to this class. | 
 |           AddImplicitlyDeclaredMembersToClass(CXXRecord); | 
 |  | 
 |           // If we have virtual base classes, we may end up finding multiple  | 
 |           // final overriders for a given virtual function. Check for this  | 
 |           // problem now. | 
 |           if (CXXRecord->getNumVBases()) { | 
 |             CXXFinalOverriderMap FinalOverriders; | 
 |             CXXRecord->getFinalOverriders(FinalOverriders); | 
 |              | 
 |             for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),  | 
 |                                              MEnd = FinalOverriders.end(); | 
 |                  M != MEnd; ++M) { | 
 |               for (OverridingMethods::iterator SO = M->second.begin(),  | 
 |                                             SOEnd = M->second.end(); | 
 |                    SO != SOEnd; ++SO) { | 
 |                 assert(SO->second.size() > 0 &&  | 
 |                        "Virtual function without overridding functions?"); | 
 |                 if (SO->second.size() == 1) | 
 |                   continue; | 
 |                  | 
 |                 // C++ [class.virtual]p2: | 
 |                 //   In a derived class, if a virtual member function of a base | 
 |                 //   class subobject has more than one final overrider the | 
 |                 //   program is ill-formed. | 
 |                 Diag(Record->getLocation(), diag::err_multiple_final_overriders) | 
 |                   << (NamedDecl *)M->first << Record; | 
 |                 Diag(M->first->getLocation(),  | 
 |                      diag::note_overridden_virtual_function); | 
 |                 for (OverridingMethods::overriding_iterator  | 
 |                           OM = SO->second.begin(),  | 
 |                        OMEnd = SO->second.end(); | 
 |                      OM != OMEnd; ++OM) | 
 |                   Diag(OM->Method->getLocation(), diag::note_final_overrider) | 
 |                     << (NamedDecl *)M->first << OM->Method->getParent(); | 
 |                  | 
 |                 Record->setInvalidDecl(); | 
 |               } | 
 |             } | 
 |             CXXRecord->completeDefinition(&FinalOverriders); | 
 |             Completed = true; | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |      | 
 |     if (!Completed) | 
 |       Record->completeDefinition(); | 
 |   } else { | 
 |     ObjCIvarDecl **ClsFields = | 
 |       reinterpret_cast<ObjCIvarDecl**>(RecFields.data()); | 
 |     if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) { | 
 |       ID->setLocEnd(RBrac); | 
 |       // Add ivar's to class's DeclContext. | 
 |       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { | 
 |         ClsFields[i]->setLexicalDeclContext(ID); | 
 |         ID->addDecl(ClsFields[i]); | 
 |       } | 
 |       // Must enforce the rule that ivars in the base classes may not be | 
 |       // duplicates. | 
 |       if (ID->getSuperClass()) | 
 |         DiagnoseDuplicateIvars(ID, ID->getSuperClass()); | 
 |     } else if (ObjCImplementationDecl *IMPDecl = | 
 |                   dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) { | 
 |       assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl"); | 
 |       for (unsigned I = 0, N = RecFields.size(); I != N; ++I) | 
 |         // Ivar declared in @implementation never belongs to the implementation. | 
 |         // Only it is in implementation's lexical context. | 
 |         ClsFields[I]->setLexicalDeclContext(IMPDecl); | 
 |       CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac); | 
 |     } else if (ObjCCategoryDecl *CDecl =  | 
 |                 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) { | 
 |       // case of ivars in class extension; all other cases have been | 
 |       // reported as errors elsewhere. | 
 |       // FIXME. Class extension does not have a LocEnd field. | 
 |       // CDecl->setLocEnd(RBrac); | 
 |       // Add ivar's to class extension's DeclContext. | 
 |       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { | 
 |         ClsFields[i]->setLexicalDeclContext(CDecl); | 
 |         CDecl->addDecl(ClsFields[i]); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (Attr) | 
 |     ProcessDeclAttributeList(S, Record, Attr); | 
 |  | 
 |   // If there's a #pragma GCC visibility in scope, and this isn't a subclass, | 
 |   // set the visibility of this record. | 
 |   if (Record && !Record->getDeclContext()->isRecord()) | 
 |     AddPushedVisibilityAttribute(Record); | 
 | } | 
 |  | 
 | /// \brief Determine whether the given integral value is representable within | 
 | /// the given type T. | 
 | static bool isRepresentableIntegerValue(ASTContext &Context, | 
 |                                         llvm::APSInt &Value, | 
 |                                         QualType T) { | 
 |   assert(T->isIntegralType(Context) && "Integral type required!"); | 
 |   unsigned BitWidth = Context.getIntWidth(T); | 
 |    | 
 |   if (Value.isUnsigned() || Value.isNonNegative()) { | 
 |     if (T->isSignedIntegerType())  | 
 |       --BitWidth; | 
 |     return Value.getActiveBits() <= BitWidth; | 
 |   }   | 
 |   return Value.getMinSignedBits() <= BitWidth; | 
 | } | 
 |  | 
 | // \brief Given an integral type, return the next larger integral type | 
 | // (or a NULL type of no such type exists). | 
 | static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) { | 
 |   // FIXME: Int128/UInt128 support, which also needs to be introduced into  | 
 |   // enum checking below. | 
 |   assert(T->isIntegralType(Context) && "Integral type required!"); | 
 |   const unsigned NumTypes = 4; | 
 |   QualType SignedIntegralTypes[NumTypes] = {  | 
 |     Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy | 
 |   }; | 
 |   QualType UnsignedIntegralTypes[NumTypes] = {  | 
 |     Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,  | 
 |     Context.UnsignedLongLongTy | 
 |   }; | 
 |    | 
 |   unsigned BitWidth = Context.getTypeSize(T); | 
 |   QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes | 
 |                                             : UnsignedIntegralTypes; | 
 |   for (unsigned I = 0; I != NumTypes; ++I) | 
 |     if (Context.getTypeSize(Types[I]) > BitWidth) | 
 |       return Types[I]; | 
 |    | 
 |   return QualType(); | 
 | } | 
 |  | 
 | EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum, | 
 |                                           EnumConstantDecl *LastEnumConst, | 
 |                                           SourceLocation IdLoc, | 
 |                                           IdentifierInfo *Id, | 
 |                                           Expr *Val) { | 
 |   unsigned IntWidth = Context.Target.getIntWidth(); | 
 |   llvm::APSInt EnumVal(IntWidth); | 
 |   QualType EltTy; | 
 |   if (Val) { | 
 |     if (Enum->isDependentType() || Val->isTypeDependent()) | 
 |       EltTy = Context.DependentTy; | 
 |     else { | 
 |       // C99 6.7.2.2p2: Make sure we have an integer constant expression. | 
 |       SourceLocation ExpLoc; | 
 |       if (!Val->isValueDependent() && | 
 |           VerifyIntegerConstantExpression(Val, &EnumVal)) { | 
 |         Val = 0; | 
 |       } else {         | 
 |         if (!getLangOptions().CPlusPlus) { | 
 |           // C99 6.7.2.2p2: | 
 |           //   The expression that defines the value of an enumeration constant | 
 |           //   shall be an integer constant expression that has a value  | 
 |           //   representable as an int. | 
 |            | 
 |           // Complain if the value is not representable in an int. | 
 |           if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy)) | 
 |             Diag(IdLoc, diag::ext_enum_value_not_int) | 
 |               << EnumVal.toString(10) << Val->getSourceRange() | 
 |               << (EnumVal.isUnsigned() || EnumVal.isNonNegative()); | 
 |           else if (!Context.hasSameType(Val->getType(), Context.IntTy)) { | 
 |             // Force the type of the expression to 'int'. | 
 |             ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast); | 
 |           } | 
 |         } | 
 |          | 
 |         if (Enum->isFixed()) { | 
 |           EltTy = Enum->getIntegerType(); | 
 |  | 
 |           // C++0x [dcl.enum]p5: | 
 |           //   ... if the initializing value of an enumerator cannot be | 
 |           //   represented by the underlying type, the program is ill-formed. | 
 |           if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) | 
 |             Diag(IdLoc, diag::err_enumerator_too_large) | 
 |               << EltTy; | 
 |           else | 
 |             ImpCastExprToType(Val, EltTy, CK_IntegralCast); | 
 |         } | 
 |         else { | 
 |           // C++0x [dcl.enum]p5: | 
 |           //   If the underlying type is not fixed, the type of each enumerator | 
 |           //   is the type of its initializing value: | 
 |           //     - If an initializer is specified for an enumerator, the  | 
 |           //       initializing value has the same type as the expression. | 
 |           EltTy = Val->getType(); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (!Val) { | 
 |     if (Enum->isDependentType()) | 
 |       EltTy = Context.DependentTy; | 
 |     else if (!LastEnumConst) { | 
 |       // C++0x [dcl.enum]p5: | 
 |       //   If the underlying type is not fixed, the type of each enumerator | 
 |       //   is the type of its initializing value: | 
 |       //     - If no initializer is specified for the first enumerator, the  | 
 |       //       initializing value has an unspecified integral type. | 
 |       // | 
 |       // GCC uses 'int' for its unspecified integral type, as does  | 
 |       // C99 6.7.2.2p3. | 
 |       if (Enum->isFixed()) { | 
 |         EltTy = Enum->getIntegerType(); | 
 |       } | 
 |       else { | 
 |         EltTy = Context.IntTy; | 
 |       } | 
 |     } else { | 
 |       // Assign the last value + 1. | 
 |       EnumVal = LastEnumConst->getInitVal(); | 
 |       ++EnumVal; | 
 |       EltTy = LastEnumConst->getType(); | 
 |  | 
 |       // Check for overflow on increment. | 
 |       if (EnumVal < LastEnumConst->getInitVal()) { | 
 |         // C++0x [dcl.enum]p5: | 
 |         //   If the underlying type is not fixed, the type of each enumerator | 
 |         //   is the type of its initializing value: | 
 |         // | 
 |         //     - Otherwise the type of the initializing value is the same as | 
 |         //       the type of the initializing value of the preceding enumerator | 
 |         //       unless the incremented value is not representable in that type, | 
 |         //       in which case the type is an unspecified integral type  | 
 |         //       sufficient to contain the incremented value. If no such type | 
 |         //       exists, the program is ill-formed. | 
 |         QualType T = getNextLargerIntegralType(Context, EltTy); | 
 |         if (T.isNull() || Enum->isFixed()) { | 
 |           // There is no integral type larger enough to represent this  | 
 |           // value. Complain, then allow the value to wrap around. | 
 |           EnumVal = LastEnumConst->getInitVal(); | 
 |           EnumVal.zext(EnumVal.getBitWidth() * 2); | 
 |           ++EnumVal; | 
 |           if (Enum->isFixed()) | 
 |             // When the underlying type is fixed, this is ill-formed. | 
 |             Diag(IdLoc, diag::err_enumerator_wrapped) | 
 |               << EnumVal.toString(10) | 
 |               << EltTy; | 
 |           else | 
 |             Diag(IdLoc, diag::warn_enumerator_too_large) | 
 |               << EnumVal.toString(10); | 
 |         } else { | 
 |           EltTy = T; | 
 |         } | 
 |          | 
 |         // Retrieve the last enumerator's value, extent that type to the | 
 |         // type that is supposed to be large enough to represent the incremented | 
 |         // value, then increment. | 
 |         EnumVal = LastEnumConst->getInitVal(); | 
 |         EnumVal.setIsSigned(EltTy->isSignedIntegerType()); | 
 |         EnumVal.zextOrTrunc(Context.getIntWidth(EltTy)); | 
 |         ++EnumVal;         | 
 |          | 
 |         // If we're not in C++, diagnose the overflow of enumerator values, | 
 |         // which in C99 means that the enumerator value is not representable in | 
 |         // an int (C99 6.7.2.2p2). However, we support GCC's extension that | 
 |         // permits enumerator values that are representable in some larger | 
 |         // integral type. | 
 |         if (!getLangOptions().CPlusPlus && !T.isNull()) | 
 |           Diag(IdLoc, diag::warn_enum_value_overflow); | 
 |       } else if (!getLangOptions().CPlusPlus && | 
 |                  !isRepresentableIntegerValue(Context, EnumVal, EltTy)) { | 
 |         // Enforce C99 6.7.2.2p2 even when we compute the next value. | 
 |         Diag(IdLoc, diag::ext_enum_value_not_int) | 
 |           << EnumVal.toString(10) << 1; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (!EltTy->isDependentType()) { | 
 |     // Make the enumerator value match the signedness and size of the  | 
 |     // enumerator's type. | 
 |     EnumVal.zextOrTrunc(Context.getIntWidth(EltTy)); | 
 |     EnumVal.setIsSigned(EltTy->isSignedIntegerType()); | 
 |   } | 
 |    | 
 |   return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy, | 
 |                                   Val, EnumVal); | 
 | } | 
 |  | 
 |  | 
 | Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, | 
 |                                         Decl *lastEnumConst, | 
 |                                         SourceLocation IdLoc, | 
 |                                         IdentifierInfo *Id, | 
 |                                         SourceLocation EqualLoc, ExprTy *val) { | 
 |   EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl); | 
 |   EnumConstantDecl *LastEnumConst = | 
 |     cast_or_null<EnumConstantDecl>(lastEnumConst); | 
 |   Expr *Val = static_cast<Expr*>(val); | 
 |  | 
 |   // The scope passed in may not be a decl scope.  Zip up the scope tree until | 
 |   // we find one that is. | 
 |   S = getNonFieldDeclScope(S); | 
 |  | 
 |   // Verify that there isn't already something declared with this name in this | 
 |   // scope. | 
 |   NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName, | 
 |                                          ForRedeclaration); | 
 |   if (PrevDecl && PrevDecl->isTemplateParameter()) { | 
 |     // Maybe we will complain about the shadowed template parameter. | 
 |     DiagnoseTemplateParameterShadow(IdLoc, PrevDecl); | 
 |     // Just pretend that we didn't see the previous declaration. | 
 |     PrevDecl = 0; | 
 |   } | 
 |  | 
 |   if (PrevDecl) { | 
 |     // When in C++, we may get a TagDecl with the same name; in this case the | 
 |     // enum constant will 'hide' the tag. | 
 |     assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) && | 
 |            "Received TagDecl when not in C++!"); | 
 |     if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) { | 
 |       if (isa<EnumConstantDecl>(PrevDecl)) | 
 |         Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id; | 
 |       else | 
 |         Diag(IdLoc, diag::err_redefinition) << Id; | 
 |       Diag(PrevDecl->getLocation(), diag::note_previous_definition); | 
 |       return 0; | 
 |     } | 
 |   } | 
 |  | 
 |   EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst, | 
 |                                             IdLoc, Id, Val); | 
 |  | 
 |   // Register this decl in the current scope stack. | 
 |   if (New) { | 
 |     New->setAccess(TheEnumDecl->getAccess()); | 
 |     PushOnScopeChains(New, S); | 
 |   } | 
 |  | 
 |   return New; | 
 | } | 
 |  | 
 | void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc, | 
 |                          SourceLocation RBraceLoc, Decl *EnumDeclX, | 
 |                          Decl **Elements, unsigned NumElements, | 
 |                          Scope *S, AttributeList *Attr) { | 
 |   EnumDecl *Enum = cast<EnumDecl>(EnumDeclX); | 
 |   QualType EnumType = Context.getTypeDeclType(Enum); | 
 |  | 
 |   if (Attr) | 
 |     ProcessDeclAttributeList(S, Enum, Attr); | 
 |  | 
 |   if (Enum->isDependentType()) { | 
 |     for (unsigned i = 0; i != NumElements; ++i) { | 
 |       EnumConstantDecl *ECD = | 
 |         cast_or_null<EnumConstantDecl>(Elements[i]); | 
 |       if (!ECD) continue; | 
 |  | 
 |       ECD->setType(EnumType); | 
 |     } | 
 |  | 
 |     Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0); | 
 |     return; | 
 |   } | 
 |  | 
 |   // TODO: If the result value doesn't fit in an int, it must be a long or long | 
 |   // long value.  ISO C does not support this, but GCC does as an extension, | 
 |   // emit a warning. | 
 |   unsigned IntWidth = Context.Target.getIntWidth(); | 
 |   unsigned CharWidth = Context.Target.getCharWidth(); | 
 |   unsigned ShortWidth = Context.Target.getShortWidth(); | 
 |  | 
 |   // Verify that all the values are okay, compute the size of the values, and | 
 |   // reverse the list. | 
 |   unsigned NumNegativeBits = 0; | 
 |   unsigned NumPositiveBits = 0; | 
 |  | 
 |   // Keep track of whether all elements have type int. | 
 |   bool AllElementsInt = true; | 
 |  | 
 |   for (unsigned i = 0; i != NumElements; ++i) { | 
 |     EnumConstantDecl *ECD = | 
 |       cast_or_null<EnumConstantDecl>(Elements[i]); | 
 |     if (!ECD) continue;  // Already issued a diagnostic. | 
 |  | 
 |     const llvm::APSInt &InitVal = ECD->getInitVal(); | 
 |  | 
 |     // Keep track of the size of positive and negative values. | 
 |     if (InitVal.isUnsigned() || InitVal.isNonNegative()) | 
 |       NumPositiveBits = std::max(NumPositiveBits, | 
 |                                  (unsigned)InitVal.getActiveBits()); | 
 |     else | 
 |       NumNegativeBits = std::max(NumNegativeBits, | 
 |                                  (unsigned)InitVal.getMinSignedBits()); | 
 |  | 
 |     // Keep track of whether every enum element has type int (very commmon). | 
 |     if (AllElementsInt) | 
 |       AllElementsInt = ECD->getType() == Context.IntTy; | 
 |   } | 
 |  | 
 |   // Figure out the type that should be used for this enum. | 
 |   // FIXME: Support -fshort-enums. | 
 |   QualType BestType; | 
 |   unsigned BestWidth; | 
 |  | 
 |   // C++0x N3000 [conv.prom]p3: | 
 |   //   An rvalue of an unscoped enumeration type whose underlying | 
 |   //   type is not fixed can be converted to an rvalue of the first | 
 |   //   of the following types that can represent all the values of | 
 |   //   the enumeration: int, unsigned int, long int, unsigned long | 
 |   //   int, long long int, or unsigned long long int. | 
 |   // C99 6.4.4.3p2: | 
 |   //   An identifier declared as an enumeration constant has type int. | 
 |   // The C99 rule is modified by a gcc extension  | 
 |   QualType BestPromotionType; | 
 |  | 
 |   bool Packed = Enum->getAttr<PackedAttr>() ? true : false; | 
 |   // -fshort-enums is the equivalent to specifying the packed attribute on all | 
 |   // enum definitions. | 
 |   if (LangOpts.ShortEnums) | 
 |     Packed = true; | 
 |  | 
 |   if (Enum->isFixed()) { | 
 |     BestType = BestPromotionType = Enum->getIntegerType(); | 
 |     // We don't need to set BestWidth, because BestType is going to be the type | 
 |     // of the enumerators, but we do anyway because otherwise some compilers | 
 |     // warn that it might be used uninitialized. | 
 |     BestWidth = CharWidth; | 
 |   } | 
 |   else if (NumNegativeBits) { | 
 |     // If there is a negative value, figure out the smallest integer type (of | 
 |     // int/long/longlong) that fits. | 
 |     // If it's packed, check also if it fits a char or a short. | 
 |     if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) { | 
 |       BestType = Context.SignedCharTy; | 
 |       BestWidth = CharWidth; | 
 |     } else if (Packed && NumNegativeBits <= ShortWidth && | 
 |                NumPositiveBits < ShortWidth) { | 
 |       BestType = Context.ShortTy; | 
 |       BestWidth = ShortWidth; | 
 |     } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) { | 
 |       BestType = Context.IntTy; | 
 |       BestWidth = IntWidth; | 
 |     } else { | 
 |       BestWidth = Context.Target.getLongWidth(); | 
 |  | 
 |       if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) { | 
 |         BestType = Context.LongTy; | 
 |       } else { | 
 |         BestWidth = Context.Target.getLongLongWidth(); | 
 |  | 
 |         if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth) | 
 |           Diag(Enum->getLocation(), diag::warn_enum_too_large); | 
 |         BestType = Context.LongLongTy; | 
 |       } | 
 |     } | 
 |     BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType); | 
 |   } else { | 
 |     // If there is no negative value, figure out the smallest type that fits | 
 |     // all of the enumerator values. | 
 |     // If it's packed, check also if it fits a char or a short. | 
 |     if (Packed && NumPositiveBits <= CharWidth) { | 
 |       BestType = Context.UnsignedCharTy; | 
 |       BestPromotionType = Context.IntTy; | 
 |       BestWidth = CharWidth; | 
 |     } else if (Packed && NumPositiveBits <= ShortWidth) { | 
 |       BestType = Context.UnsignedShortTy; | 
 |       BestPromotionType = Context.IntTy; | 
 |       BestWidth = ShortWidth; | 
 |     } else if (NumPositiveBits <= IntWidth) { | 
 |       BestType = Context.UnsignedIntTy; | 
 |       BestWidth = IntWidth; | 
 |       BestPromotionType | 
 |         = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus) | 
 |                            ? Context.UnsignedIntTy : Context.IntTy; | 
 |     } else if (NumPositiveBits <= | 
 |                (BestWidth = Context.Target.getLongWidth())) { | 
 |       BestType = Context.UnsignedLongTy; | 
 |       BestPromotionType | 
 |         = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus) | 
 |                            ? Context.UnsignedLongTy : Context.LongTy; | 
 |     } else { | 
 |       BestWidth = Context.Target.getLongLongWidth(); | 
 |       assert(NumPositiveBits <= BestWidth && | 
 |              "How could an initializer get larger than ULL?"); | 
 |       BestType = Context.UnsignedLongLongTy; | 
 |       BestPromotionType | 
 |         = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus) | 
 |                            ? Context.UnsignedLongLongTy : Context.LongLongTy; | 
 |     } | 
 |   } | 
 |  | 
 |   // Loop over all of the enumerator constants, changing their types to match | 
 |   // the type of the enum if needed. | 
 |   for (unsigned i = 0; i != NumElements; ++i) { | 
 |     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]); | 
 |     if (!ECD) continue;  // Already issued a diagnostic. | 
 |  | 
 |     // Standard C says the enumerators have int type, but we allow, as an | 
 |     // extension, the enumerators to be larger than int size.  If each | 
 |     // enumerator value fits in an int, type it as an int, otherwise type it the | 
 |     // same as the enumerator decl itself.  This means that in "enum { X = 1U }" | 
 |     // that X has type 'int', not 'unsigned'. | 
 |  | 
 |     // Determine whether the value fits into an int. | 
 |     llvm::APSInt InitVal = ECD->getInitVal(); | 
 |  | 
 |     // If it fits into an integer type, force it.  Otherwise force it to match | 
 |     // the enum decl type. | 
 |     QualType NewTy; | 
 |     unsigned NewWidth; | 
 |     bool NewSign; | 
 |     if (!getLangOptions().CPlusPlus && | 
 |         isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) { | 
 |       NewTy = Context.IntTy; | 
 |       NewWidth = IntWidth; | 
 |       NewSign = true; | 
 |     } else if (ECD->getType() == BestType) { | 
 |       // Already the right type! | 
 |       if (getLangOptions().CPlusPlus) | 
 |         // C++ [dcl.enum]p4: Following the closing brace of an | 
 |         // enum-specifier, each enumerator has the type of its | 
 |         // enumeration. | 
 |         ECD->setType(EnumType); | 
 |       continue; | 
 |     } else { | 
 |       NewTy = BestType; | 
 |       NewWidth = BestWidth; | 
 |       NewSign = BestType->isSignedIntegerType(); | 
 |     } | 
 |  | 
 |     // Adjust the APSInt value. | 
 |     InitVal.extOrTrunc(NewWidth); | 
 |     InitVal.setIsSigned(NewSign); | 
 |     ECD->setInitVal(InitVal); | 
 |  | 
 |     // Adjust the Expr initializer and type. | 
 |     if (ECD->getInitExpr()) | 
 |       ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy, | 
 |                                                 CK_IntegralCast, | 
 |                                                 ECD->getInitExpr(), | 
 |                                                 /*base paths*/ 0, | 
 |                                                 VK_RValue)); | 
 |     if (getLangOptions().CPlusPlus) | 
 |       // C++ [dcl.enum]p4: Following the closing brace of an | 
 |       // enum-specifier, each enumerator has the type of its | 
 |       // enumeration. | 
 |       ECD->setType(EnumType); | 
 |     else | 
 |       ECD->setType(NewTy); | 
 |   } | 
 |  | 
 |   Enum->completeDefinition(BestType, BestPromotionType, | 
 |                            NumPositiveBits, NumNegativeBits); | 
 | } | 
 |  | 
 | Decl *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc, Expr *expr) { | 
 |   StringLiteral *AsmString = cast<StringLiteral>(expr); | 
 |  | 
 |   FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext, | 
 |                                                    Loc, AsmString); | 
 |   CurContext->addDecl(New); | 
 |   return New; | 
 | } | 
 |  | 
 | void Sema::ActOnPragmaWeakID(IdentifierInfo* Name, | 
 |                              SourceLocation PragmaLoc, | 
 |                              SourceLocation NameLoc) { | 
 |   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName); | 
 |  | 
 |   if (PrevDecl) { | 
 |     PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context)); | 
 |   } else { | 
 |     (void)WeakUndeclaredIdentifiers.insert( | 
 |       std::pair<IdentifierInfo*,WeakInfo> | 
 |         (Name, WeakInfo((IdentifierInfo*)0, NameLoc))); | 
 |   } | 
 | } | 
 |  | 
 | void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name, | 
 |                                 IdentifierInfo* AliasName, | 
 |                                 SourceLocation PragmaLoc, | 
 |                                 SourceLocation NameLoc, | 
 |                                 SourceLocation AliasNameLoc) { | 
 |   Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc, | 
 |                                     LookupOrdinaryName); | 
 |   WeakInfo W = WeakInfo(Name, NameLoc); | 
 |  | 
 |   if (PrevDecl) { | 
 |     if (!PrevDecl->hasAttr<AliasAttr>()) | 
 |       if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl)) | 
 |         DeclApplyPragmaWeak(TUScope, ND, W); | 
 |   } else { | 
 |     (void)WeakUndeclaredIdentifiers.insert( | 
 |       std::pair<IdentifierInfo*,WeakInfo>(AliasName, W)); | 
 |   } | 
 | } |