blob: 7a628642dc99ea6fc4c38052293660bbb8904192 [file] [log] [blame]
//==- UninitializedValues.cpp - Find Uninitialized Values -------*- C++ --*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements Uninitialized Values analysis for source-level CFGs.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/Analyses/UninitializedValues.h"
#include "clang/Analysis/Visitors/CFGRecStmtDeclVisitor.h"
#include "clang/Analysis/AnalysisDiagnostic.h"
#include "clang/AST/ASTContext.h"
#include "clang/Analysis/FlowSensitive/DataflowSolver.h"
#include "llvm/ADT/SmallPtrSet.h"
using namespace clang;
//===----------------------------------------------------------------------===//
// Dataflow initialization logic.
//===----------------------------------------------------------------------===//
namespace {
class RegisterDecls
: public CFGRecStmtDeclVisitor<RegisterDecls> {
UninitializedValues::AnalysisDataTy& AD;
public:
RegisterDecls(UninitializedValues::AnalysisDataTy& ad) : AD(ad) {}
void VisitVarDecl(VarDecl* VD) { AD.Register(VD); }
CFG& getCFG() { return AD.getCFG(); }
};
} // end anonymous namespace
void UninitializedValues::InitializeValues(const CFG& cfg) {
RegisterDecls R(getAnalysisData());
cfg.VisitBlockStmts(R);
}
//===----------------------------------------------------------------------===//
// Transfer functions.
//===----------------------------------------------------------------------===//
namespace {
class TransferFuncs
: public CFGStmtVisitor<TransferFuncs,bool> {
UninitializedValues::ValTy V;
UninitializedValues::AnalysisDataTy& AD;
public:
TransferFuncs(UninitializedValues::AnalysisDataTy& ad) : AD(ad) {}
UninitializedValues::ValTy& getVal() { return V; }
CFG& getCFG() { return AD.getCFG(); }
void SetTopValue(UninitializedValues::ValTy& X) {
X.setDeclValues(AD);
X.resetBlkExprValues(AD);
}
bool VisitDeclRefExpr(DeclRefExpr* DR);
bool VisitBinaryOperator(BinaryOperator* B);
bool VisitUnaryOperator(UnaryOperator* U);
bool VisitStmt(Stmt* S);
bool VisitCallExpr(CallExpr* C);
bool VisitDeclStmt(DeclStmt* D);
bool VisitConditionalOperator(ConditionalOperator* C);
bool BlockStmt_VisitObjCForCollectionStmt(ObjCForCollectionStmt* S);
bool Visit(Stmt *S);
bool BlockStmt_VisitExpr(Expr* E);
void VisitTerminator(CFGBlock* B) { }
};
static const bool Initialized = false;
static const bool Uninitialized = true;
bool TransferFuncs::VisitDeclRefExpr(DeclRefExpr* DR) {
if (VarDecl* VD = dyn_cast<VarDecl>(DR->getDecl()))
if (VD->isBlockVarDecl()) {
if (AD.Observer)
AD.Observer->ObserveDeclRefExpr(V, AD, DR, VD);
// Pseudo-hack to prevent cascade of warnings. If an accessed variable
// is uninitialized, then we are already going to flag a warning for
// this variable, which a "source" of uninitialized values.
// We can otherwise do a full "taint" of uninitialized values. The
// client has both options by toggling AD.FullUninitTaint.
if (AD.FullUninitTaint)
return V(VD,AD);
}
return Initialized;
}
static VarDecl* FindBlockVarDecl(Expr* E) {
// Blast through casts and parentheses to find any DeclRefExprs that
// refer to a block VarDecl.
if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
if (VarDecl* VD = dyn_cast<VarDecl>(DR->getDecl()))
if (VD->isBlockVarDecl()) return VD;
return NULL;
}
bool TransferFuncs::VisitBinaryOperator(BinaryOperator* B) {
if (VarDecl* VD = FindBlockVarDecl(B->getLHS()))
if (B->isAssignmentOp()) {
if (B->getOpcode() == BinaryOperator::Assign)
return V(VD,AD) = Visit(B->getRHS());
else // Handle +=, -=, *=, etc. We do want '&', not '&&'.
return V(VD,AD) = Visit(B->getLHS()) & Visit(B->getRHS());
}
return VisitStmt(B);
}
bool TransferFuncs::VisitDeclStmt(DeclStmt* S) {
for (DeclStmt::decl_iterator I=S->decl_begin(), E=S->decl_end(); I!=E; ++I) {
VarDecl *VD = dyn_cast<VarDecl>(*I);
if (VD && VD->isBlockVarDecl()) {
if (Stmt* I = VD->getInit()) {
// Visit the subexpression to check for uses of uninitialized values,
// even if we don't propagate that value.
bool isSubExprUninit = Visit(I);
V(VD,AD) = AD.FullUninitTaint ? isSubExprUninit : Initialized;
}
else {
// Special case for declarations of array types. For things like:
//
// char x[10];
//
// we should treat "x" as being initialized, because the variable
// "x" really refers to the memory block. Clearly x[1] is
// uninitialized, but expressions like "(char *) x" really do refer to
// an initialized value. This simple dataflow analysis does not reason
// about the contents of arrays, although it could be potentially
// extended to do so if the array were of constant size.
if (VD->getType()->isArrayType())
V(VD,AD) = Initialized;
else
V(VD,AD) = Uninitialized;
}
}
}
return Uninitialized; // Value is never consumed.
}
bool TransferFuncs::VisitCallExpr(CallExpr* C) {
VisitChildren(C);
return Initialized;
}
bool TransferFuncs::VisitUnaryOperator(UnaryOperator* U) {
switch (U->getOpcode()) {
case UnaryOperator::AddrOf: {
VarDecl* VD = FindBlockVarDecl(U->getSubExpr());
if (VD && VD->isBlockVarDecl())
return V(VD,AD) = Initialized;
break;
}
default:
break;
}
return Visit(U->getSubExpr());
}
bool
TransferFuncs::BlockStmt_VisitObjCForCollectionStmt(ObjCForCollectionStmt* S) {
// This represents a use of the 'collection'
bool x = Visit(S->getCollection());
if (x == Uninitialized)
return Uninitialized;
// This represents an initialization of the 'element' value.
Stmt* Element = S->getElement();
VarDecl* VD = 0;
if (DeclStmt* DS = dyn_cast<DeclStmt>(Element))
VD = cast<VarDecl>(DS->getSingleDecl());
else {
Expr* ElemExpr = cast<Expr>(Element)->IgnoreParens();
// Initialize the value of the reference variable.
if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(ElemExpr))
VD = cast<VarDecl>(DR->getDecl());
else
return Visit(ElemExpr);
}
V(VD,AD) = Initialized;
return Initialized;
}
bool TransferFuncs::VisitConditionalOperator(ConditionalOperator* C) {
Visit(C->getCond());
bool rhsResult = Visit(C->getRHS());
// Handle the GNU extension for missing LHS.
if (Expr *lhs = C->getLHS())
return Visit(lhs) & rhsResult; // Yes: we want &, not &&.
else
return rhsResult;
}
bool TransferFuncs::VisitStmt(Stmt* S) {
bool x = Initialized;
// We don't stop at the first subexpression that is Uninitialized because
// evaluating some subexpressions may result in propogating "Uninitialized"
// or "Initialized" to variables referenced in the other subexpressions.
for (Stmt::child_iterator I=S->child_begin(), E=S->child_end(); I!=E; ++I)
if (*I && Visit(*I) == Uninitialized) x = Uninitialized;
return x;
}
bool TransferFuncs::Visit(Stmt *S) {
if (AD.isTracked(static_cast<Expr*>(S))) return V(static_cast<Expr*>(S),AD);
else return static_cast<CFGStmtVisitor<TransferFuncs,bool>*>(this)->Visit(S);
}
bool TransferFuncs::BlockStmt_VisitExpr(Expr* E) {
bool x = static_cast<CFGStmtVisitor<TransferFuncs,bool>*>(this)->Visit(E);
if (AD.isTracked(E)) V(E,AD) = x;
return x;
}
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Merge operator.
//
// In our transfer functions we take the approach that any
// combination of uninitialized values, e.g.
// Uninitialized + ___ = Uninitialized.
//
// Merges take the same approach, preferring soundness. At a confluence point,
// if any predecessor has a variable marked uninitialized, the value is
// uninitialized at the confluence point.
//===----------------------------------------------------------------------===//
namespace {
typedef StmtDeclBitVector_Types::Union Merge;
typedef DataflowSolver<UninitializedValues,TransferFuncs,Merge> Solver;
}
//===----------------------------------------------------------------------===//
// Uninitialized values checker. Scan an AST and flag variable uses
//===----------------------------------------------------------------------===//
UninitializedValues_ValueTypes::ObserverTy::~ObserverTy() {}
namespace {
class UninitializedValuesChecker
: public UninitializedValues::ObserverTy {
ASTContext &Ctx;
Diagnostic &Diags;
llvm::SmallPtrSet<VarDecl*,10> AlreadyWarned;
public:
UninitializedValuesChecker(ASTContext &ctx, Diagnostic &diags)
: Ctx(ctx), Diags(diags) {}
virtual void ObserveDeclRefExpr(UninitializedValues::ValTy& V,
UninitializedValues::AnalysisDataTy& AD,
DeclRefExpr* DR, VarDecl* VD) {
assert ( AD.isTracked(VD) && "Unknown VarDecl.");
if (V(VD,AD) == Uninitialized)
if (AlreadyWarned.insert(VD))
Diags.Report(Ctx.getFullLoc(DR->getSourceRange().getBegin()),
diag::warn_uninit_val);
}
};
} // end anonymous namespace
namespace clang {
void CheckUninitializedValues(CFG& cfg, ASTContext &Ctx, Diagnostic &Diags,
bool FullUninitTaint) {
// Compute the uninitialized values information.
UninitializedValues U(cfg);
U.getAnalysisData().FullUninitTaint = FullUninitTaint;
Solver S(U);
S.runOnCFG(cfg);
// Scan for DeclRefExprs that use uninitialized values.
UninitializedValuesChecker Observer(Ctx,Diags);
U.getAnalysisData().Observer = &Observer;
S.runOnAllBlocks(cfg);
}
} // end namespace clang