| //===-- GRConstants.cpp - Simple, Path-Sens. Constant Prop. ------*- C++ -*-==// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Constant Propagation via Graph Reachability |
| // |
| // This files defines a simple analysis that performs path-sensitive |
| // constant propagation within a function. An example use of this analysis |
| // is to perform simple checks for NULL dereferences. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "RValues.h" |
| #include "ValueState.h" |
| |
| #include "clang/Analysis/PathSensitive/GREngine.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/Analysis/Analyses/LiveVariables.h" |
| |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/DataTypes.h" |
| #include "llvm/ADT/APSInt.h" |
| #include "llvm/ADT/FoldingSet.h" |
| #include "llvm/ADT/ImmutableMap.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/Support/Allocator.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Streams.h" |
| |
| #include <functional> |
| |
| #ifndef NDEBUG |
| #include "llvm/Support/GraphWriter.h" |
| #include <sstream> |
| #endif |
| |
| using namespace clang; |
| using llvm::dyn_cast; |
| using llvm::cast; |
| using llvm::APSInt; |
| |
| //===----------------------------------------------------------------------===// |
| // The Checker. |
| // |
| // FIXME: This checker logic should be eventually broken into two components. |
| // The first is the "meta"-level checking logic; the code that |
| // does the Stmt visitation, fetching values from the map, etc. |
| // The second part does the actual state manipulation. This way we |
| // get more of a separate of concerns of these two pieces, with the |
| // latter potentially being refactored back into the main checking |
| // logic. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| class VISIBILITY_HIDDEN GRConstants { |
| |
| public: |
| typedef ValueState StateTy; |
| typedef GRStmtNodeBuilder<GRConstants> StmtNodeBuilder; |
| typedef GRBranchNodeBuilder<GRConstants> BranchNodeBuilder; |
| typedef ExplodedGraph<GRConstants> GraphTy; |
| typedef GraphTy::NodeTy NodeTy; |
| |
| class NodeSet { |
| typedef llvm::SmallVector<NodeTy*,3> ImplTy; |
| ImplTy Impl; |
| public: |
| |
| NodeSet() {} |
| NodeSet(NodeTy* N) { assert (N && !N->isSink()); Impl.push_back(N); } |
| |
| void Add(NodeTy* N) { if (N && !N->isSink()) Impl.push_back(N); } |
| |
| typedef ImplTy::iterator iterator; |
| typedef ImplTy::const_iterator const_iterator; |
| |
| unsigned size() const { return Impl.size(); } |
| bool empty() const { return Impl.empty(); } |
| |
| iterator begin() { return Impl.begin(); } |
| iterator end() { return Impl.end(); } |
| |
| const_iterator begin() const { return Impl.begin(); } |
| const_iterator end() const { return Impl.end(); } |
| }; |
| |
| protected: |
| /// G - the simulation graph. |
| GraphTy& G; |
| |
| /// Liveness - live-variables information the ValueDecl* and block-level |
| /// Expr* in the CFG. Used to prune out dead state. |
| LiveVariables Liveness; |
| |
| /// Builder - The current GRStmtNodeBuilder which is used when building the nodes |
| /// for a given statement. |
| StmtNodeBuilder* Builder; |
| |
| /// StateMgr - Object that manages the data for all created states. |
| StateTy::Factory StateMgr; |
| |
| /// ValueMgr - Object that manages the data for all created RValues. |
| ValueManager ValMgr; |
| |
| /// SymMgr - Object that manages the symbol information. |
| SymbolManager SymMgr; |
| |
| /// StmtEntryNode - The immediate predecessor node. |
| NodeTy* StmtEntryNode; |
| |
| /// CurrentStmt - The current block-level statement. |
| Stmt* CurrentStmt; |
| |
| /// UninitBranches - Nodes in the ExplodedGraph that result from |
| /// taking a branch based on an uninitialized value. |
| typedef llvm::SmallPtrSet<NodeTy*,5> UninitBranchesTy; |
| UninitBranchesTy UninitBranches; |
| |
| bool StateCleaned; |
| |
| ASTContext& getContext() const { return G.getContext(); } |
| |
| public: |
| GRConstants(GraphTy& g) : G(g), Liveness(G.getCFG(), G.getFunctionDecl()), |
| Builder(NULL), ValMgr(G.getContext()), StmtEntryNode(NULL), |
| CurrentStmt(NULL) { |
| |
| // Compute liveness information. |
| Liveness.runOnCFG(G.getCFG()); |
| Liveness.runOnAllBlocks(G.getCFG(), NULL, true); |
| } |
| |
| /// getCFG - Returns the CFG associated with this analysis. |
| CFG& getCFG() { return G.getCFG(); } |
| |
| /// getInitialState - Return the initial state used for the root vertex |
| /// in the ExplodedGraph. |
| StateTy getInitialState() { |
| StateTy St = StateMgr.GetEmptyMap(); |
| |
| // Iterate the parameters. |
| FunctionDecl& F = G.getFunctionDecl(); |
| |
| for (FunctionDecl::param_iterator I=F.param_begin(), E=F.param_end(); |
| I!=E; ++I) |
| St = SetValue(St, LValueDecl(*I), RValue::GetSymbolValue(SymMgr, *I)); |
| |
| return St; |
| } |
| |
| bool isUninitControlFlow(const NodeTy* N) const { |
| return N->isSink() && UninitBranches.count(const_cast<NodeTy*>(N)) != 0; |
| } |
| |
| /// ProcessStmt - Called by GREngine. Used to generate new successor |
| /// nodes by processing the 'effects' of a block-level statement. |
| void ProcessStmt(Stmt* S, StmtNodeBuilder& builder); |
| |
| /// ProcessBranch - Called by GREngine. Used to generate successor |
| /// nodes by processing the 'effects' of a branch condition. |
| void ProcessBranch(Stmt* Condition, Stmt* Term, BranchNodeBuilder& builder); |
| |
| /// RemoveDeadBindings - Return a new state that is the same as 'M' except |
| /// that all subexpression mappings are removed and that any |
| /// block-level expressions that are not live at 'S' also have their |
| /// mappings removed. |
| StateTy RemoveDeadBindings(Stmt* S, StateTy M); |
| |
| StateTy SetValue(StateTy St, Stmt* S, const RValue& V); |
| |
| StateTy SetValue(StateTy St, const Stmt* S, const RValue& V) { |
| return SetValue(St, const_cast<Stmt*>(S), V); |
| } |
| |
| StateTy SetValue(StateTy St, const LValue& LV, const RValue& V); |
| |
| RValue GetValue(const StateTy& St, Stmt* S); |
| inline RValue GetValue(const StateTy& St, const Stmt* S) { |
| return GetValue(St, const_cast<Stmt*>(S)); |
| } |
| |
| RValue GetValue(const StateTy& St, const LValue& LV); |
| LValue GetLValue(const StateTy& St, Stmt* S); |
| |
| /// Assume - Create new state by assuming that a given expression |
| /// is true or false. |
| inline StateTy Assume(StateTy St, RValue Cond, bool Assumption, |
| bool& isFeasible) { |
| if (isa<LValue>(Cond)) |
| return Assume(St, cast<LValue>(Cond), Assumption, isFeasible); |
| else |
| return Assume(St, cast<NonLValue>(Cond), Assumption, isFeasible); |
| } |
| |
| StateTy Assume(StateTy St, LValue Cond, bool Assumption, bool& isFeasible); |
| StateTy Assume(StateTy St, NonLValue Cond, bool Assumption, bool& isFeasible); |
| |
| void Nodify(NodeSet& Dst, Stmt* S, NodeTy* Pred, StateTy St); |
| |
| /// Visit - Transfer function logic for all statements. Dispatches to |
| /// other functions that handle specific kinds of statements. |
| void Visit(Stmt* S, NodeTy* Pred, NodeSet& Dst); |
| |
| /// VisitCast - Transfer function logic for all casts (implicit and explicit). |
| void VisitCast(Expr* CastE, Expr* E, NodeTy* Pred, NodeSet& Dst); |
| |
| /// VisitUnaryOperator - Transfer function logic for unary operators. |
| void VisitUnaryOperator(UnaryOperator* B, NodeTy* Pred, NodeSet& Dst); |
| |
| /// VisitBinaryOperator - Transfer function logic for binary operators. |
| void VisitBinaryOperator(BinaryOperator* B, NodeTy* Pred, NodeSet& Dst); |
| |
| /// VisitDeclStmt - Transfer function logic for DeclStmts. |
| void VisitDeclStmt(DeclStmt* DS, NodeTy* Pred, NodeSet& Dst); |
| }; |
| } // end anonymous namespace |
| |
| |
| void GRConstants::ProcessBranch(Stmt* Condition, Stmt* Term, |
| BranchNodeBuilder& builder) { |
| |
| StateTy PrevState = builder.getState(); |
| |
| // Remove old bindings for subexpressions. |
| for (StateTy::iterator I=PrevState.begin(), E=PrevState.end(); I!=E; ++I) |
| if (I.getKey().isSubExpr()) |
| PrevState = StateMgr.Remove(PrevState, I.getKey()); |
| |
| RValue V = GetValue(PrevState, Condition); |
| |
| switch (V.getBaseKind()) { |
| default: |
| break; |
| |
| case RValue::InvalidKind: |
| builder.generateNode(PrevState, true); |
| builder.generateNode(PrevState, false); |
| return; |
| |
| case RValue::UninitializedKind: { |
| NodeTy* N = builder.generateNode(PrevState, true); |
| |
| if (N) { |
| N->markAsSink(); |
| UninitBranches.insert(N); |
| } |
| |
| builder.markInfeasible(false); |
| return; |
| } |
| } |
| |
| // Process the true branch. |
| bool isFeasible = true; |
| StateTy St = Assume(PrevState, V, true, isFeasible); |
| |
| if (isFeasible) builder.generateNode(St, true); |
| else { |
| builder.markInfeasible(true); |
| isFeasible = true; |
| } |
| |
| // Process the false branch. |
| St = Assume(PrevState, V, false, isFeasible); |
| |
| if (isFeasible) builder.generateNode(St, false); |
| else builder.markInfeasible(false); |
| |
| } |
| |
| void GRConstants::ProcessStmt(Stmt* S, StmtNodeBuilder& builder) { |
| Builder = &builder; |
| |
| StmtEntryNode = builder.getLastNode(); |
| CurrentStmt = S; |
| NodeSet Dst; |
| StateCleaned = false; |
| |
| Visit(S, StmtEntryNode, Dst); |
| |
| // If no nodes were generated, generate a new node that has all the |
| // dead mappings removed. |
| if (Dst.size() == 1 && *Dst.begin() == StmtEntryNode) { |
| StateTy St = RemoveDeadBindings(S, StmtEntryNode->getState()); |
| builder.generateNode(S, St, StmtEntryNode); |
| } |
| |
| CurrentStmt = NULL; |
| StmtEntryNode = NULL; |
| Builder = NULL; |
| } |
| |
| |
| RValue GRConstants::GetValue(const StateTy& St, const LValue& LV) { |
| switch (LV.getSubKind()) { |
| case LValueDeclKind: { |
| StateTy::TreeTy* T = St.SlimFind(cast<LValueDecl>(LV).getDecl()); |
| return T ? T->getValue().second : InvalidValue(); |
| } |
| default: |
| assert (false && "Invalid LValue."); |
| break; |
| } |
| |
| return InvalidValue(); |
| } |
| |
| RValue GRConstants::GetValue(const StateTy& St, Stmt* S) { |
| for (;;) { |
| switch (S->getStmtClass()) { |
| |
| // ParenExprs are no-ops. |
| |
| case Stmt::ParenExprClass: |
| S = cast<ParenExpr>(S)->getSubExpr(); |
| continue; |
| |
| // DeclRefExprs can either evaluate to an LValue or a Non-LValue |
| // (assuming an implicit "load") depending on the context. In this |
| // context we assume that we are retrieving the value contained |
| // within the referenced variables. |
| |
| case Stmt::DeclRefExprClass: |
| return GetValue(St, LValueDecl(cast<DeclRefExpr>(S)->getDecl())); |
| |
| // Integer literals evaluate to an RValue. Simply retrieve the |
| // RValue for the literal. |
| |
| case Stmt::IntegerLiteralClass: |
| return NonLValue::GetValue(ValMgr, cast<IntegerLiteral>(S)); |
| |
| // Casts where the source and target type are the same |
| // are no-ops. We blast through these to get the descendant |
| // subexpression that has a value. |
| |
| case Stmt::ImplicitCastExprClass: { |
| ImplicitCastExpr* C = cast<ImplicitCastExpr>(S); |
| if (C->getType() == C->getSubExpr()->getType()) { |
| S = C->getSubExpr(); |
| continue; |
| } |
| break; |
| } |
| |
| case Stmt::CastExprClass: { |
| CastExpr* C = cast<CastExpr>(S); |
| if (C->getType() == C->getSubExpr()->getType()) { |
| S = C->getSubExpr(); |
| continue; |
| } |
| break; |
| } |
| |
| // Handle all other Stmt* using a lookup. |
| |
| default: |
| break; |
| }; |
| |
| break; |
| } |
| |
| StateTy::TreeTy* T = St.SlimFind(S); |
| |
| return T ? T->getValue().second : InvalidValue(); |
| } |
| |
| LValue GRConstants::GetLValue(const StateTy& St, Stmt* S) { |
| while (ParenExpr* P = dyn_cast<ParenExpr>(S)) |
| S = P->getSubExpr(); |
| |
| if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(S)) |
| return LValueDecl(DR->getDecl()); |
| |
| return cast<LValue>(GetValue(St, S)); |
| } |
| |
| |
| GRConstants::StateTy GRConstants::SetValue(StateTy St, Stmt* S, |
| const RValue& V) { |
| assert (S); |
| |
| if (!StateCleaned) { |
| St = RemoveDeadBindings(CurrentStmt, St); |
| StateCleaned = true; |
| } |
| |
| bool isBlkExpr = false; |
| |
| if (S == CurrentStmt) { |
| isBlkExpr = getCFG().isBlkExpr(S); |
| |
| if (!isBlkExpr) |
| return St; |
| } |
| |
| return V.isValid() ? StateMgr.Add(St, ValueKey(S,isBlkExpr), V) |
| : St; |
| } |
| |
| GRConstants::StateTy GRConstants::SetValue(StateTy St, const LValue& LV, |
| const RValue& V) { |
| if (!LV.isValid()) |
| return St; |
| |
| if (!StateCleaned) { |
| St = RemoveDeadBindings(CurrentStmt, St); |
| StateCleaned = true; |
| } |
| |
| switch (LV.getSubKind()) { |
| case LValueDeclKind: |
| return V.isValid() ? StateMgr.Add(St, cast<LValueDecl>(LV).getDecl(), V) |
| : StateMgr.Remove(St, cast<LValueDecl>(LV).getDecl()); |
| |
| default: |
| assert ("SetValue for given LValue type not yet implemented."); |
| return St; |
| } |
| } |
| |
| GRConstants::StateTy GRConstants::RemoveDeadBindings(Stmt* Loc, StateTy M) { |
| // Note: in the code below, we can assign a new map to M since the |
| // iterators are iterating over the tree of the *original* map. |
| StateTy::iterator I = M.begin(), E = M.end(); |
| |
| |
| for (; I!=E && !I.getKey().isSymbol(); ++I) { |
| // Remove old bindings for subexpressions and "dead" |
| // block-level expressions. |
| if (I.getKey().isSubExpr() || |
| I.getKey().isBlkExpr() && !Liveness.isLive(Loc,cast<Stmt>(I.getKey()))){ |
| M = StateMgr.Remove(M, I.getKey()); |
| } |
| else if (I.getKey().isDecl()) { // Remove bindings for "dead" decls. |
| if (VarDecl* V = dyn_cast<VarDecl>(cast<ValueDecl>(I.getKey()))) |
| if (!Liveness.isLive(Loc, V)) |
| M = StateMgr.Remove(M, I.getKey()); |
| } |
| } |
| |
| return M; |
| } |
| |
| void GRConstants::Nodify(NodeSet& Dst, Stmt* S, GRConstants::NodeTy* Pred, |
| GRConstants::StateTy St) { |
| |
| // If the state hasn't changed, don't generate a new node. |
| if (St == Pred->getState()) |
| return; |
| |
| Dst.Add(Builder->generateNode(S, St, Pred)); |
| } |
| |
| void GRConstants::VisitCast(Expr* CastE, Expr* E, GRConstants::NodeTy* Pred, |
| GRConstants::NodeSet& Dst) { |
| |
| QualType T = CastE->getType(); |
| |
| // Check for redundant casts. |
| if (E->getType() == T) { |
| Dst.Add(Pred); |
| return; |
| } |
| |
| NodeSet S1; |
| Visit(E, Pred, S1); |
| |
| for (NodeSet::iterator I1=S1.begin(), E1=S1.end(); I1 != E1; ++I1) { |
| NodeTy* N = *I1; |
| StateTy St = N->getState(); |
| const RValue& V = GetValue(St, E); |
| Nodify(Dst, CastE, N, SetValue(St, CastE, V.Cast(ValMgr, CastE))); |
| } |
| } |
| |
| void GRConstants::VisitDeclStmt(DeclStmt* DS, GRConstants::NodeTy* Pred, |
| GRConstants::NodeSet& Dst) { |
| |
| StateTy St = Pred->getState(); |
| |
| for (const ScopedDecl* D = DS->getDecl(); D; D = D->getNextDeclarator()) |
| if (const VarDecl* VD = dyn_cast<VarDecl>(D)) { |
| const Expr* E = VD->getInit(); |
| St = SetValue(St, LValueDecl(VD), |
| E ? GetValue(St, E) : UninitializedValue()); |
| } |
| |
| Nodify(Dst, DS, Pred, St); |
| |
| if (Dst.empty()) |
| Dst.Add(Pred); |
| } |
| |
| void GRConstants::VisitUnaryOperator(UnaryOperator* U, |
| GRConstants::NodeTy* Pred, |
| GRConstants::NodeSet& Dst) { |
| NodeSet S1; |
| Visit(U->getSubExpr(), Pred, S1); |
| |
| for (NodeSet::iterator I1=S1.begin(), E1=S1.end(); I1 != E1; ++I1) { |
| NodeTy* N1 = *I1; |
| StateTy St = N1->getState(); |
| |
| switch (U->getOpcode()) { |
| case UnaryOperator::PostInc: { |
| const LValue& L1 = GetLValue(St, U->getSubExpr()); |
| NonLValue R1 = cast<NonLValue>(GetValue(St, L1)); |
| NonLValue R2 = NonLValue::GetValue(ValMgr, 1U, U->getType(), |
| U->getLocStart()); |
| |
| NonLValue Result = R1.Add(ValMgr, R2); |
| Nodify(Dst, U, N1, SetValue(SetValue(St, U, R1), L1, Result)); |
| break; |
| } |
| |
| case UnaryOperator::PostDec: { |
| const LValue& L1 = GetLValue(St, U->getSubExpr()); |
| NonLValue R1 = cast<NonLValue>(GetValue(St, L1)); |
| NonLValue R2 = NonLValue::GetValue(ValMgr, 1U, U->getType(), |
| U->getLocStart()); |
| |
| NonLValue Result = R1.Sub(ValMgr, R2); |
| Nodify(Dst, U, N1, SetValue(SetValue(St, U, R1), L1, Result)); |
| break; |
| } |
| |
| case UnaryOperator::PreInc: { |
| const LValue& L1 = GetLValue(St, U->getSubExpr()); |
| NonLValue R1 = cast<NonLValue>(GetValue(St, L1)); |
| NonLValue R2 = NonLValue::GetValue(ValMgr, 1U, U->getType(), |
| U->getLocStart()); |
| |
| NonLValue Result = R1.Add(ValMgr, R2); |
| Nodify(Dst, U, N1, SetValue(SetValue(St, U, Result), L1, Result)); |
| break; |
| } |
| |
| case UnaryOperator::PreDec: { |
| const LValue& L1 = GetLValue(St, U->getSubExpr()); |
| NonLValue R1 = cast<NonLValue>(GetValue(St, L1)); |
| NonLValue R2 = NonLValue::GetValue(ValMgr, 1U, U->getType(), |
| U->getLocStart()); |
| |
| NonLValue Result = R1.Sub(ValMgr, R2); |
| Nodify(Dst, U, N1, SetValue(SetValue(St, U, Result), L1, Result)); |
| break; |
| } |
| |
| case UnaryOperator::Minus: { |
| const NonLValue& R1 = cast<NonLValue>(GetValue(St, U->getSubExpr())); |
| Nodify(Dst, U, N1, SetValue(St, U, R1.UnaryMinus(ValMgr, U))); |
| break; |
| } |
| |
| case UnaryOperator::AddrOf: { |
| const LValue& L1 = GetLValue(St, U->getSubExpr()); |
| Nodify(Dst, U, N1, SetValue(St, U, L1)); |
| break; |
| } |
| |
| case UnaryOperator::Deref: { |
| const LValue& L1 = GetLValue(St, U->getSubExpr()); |
| Nodify(Dst, U, N1, SetValue(St, U, GetValue(St, L1))); |
| break; |
| } |
| |
| default: ; |
| assert (false && "Not implemented."); |
| } |
| } |
| } |
| |
| void GRConstants::VisitBinaryOperator(BinaryOperator* B, |
| GRConstants::NodeTy* Pred, |
| GRConstants::NodeSet& Dst) { |
| NodeSet S1; |
| Visit(B->getLHS(), Pred, S1); |
| |
| for (NodeSet::iterator I1=S1.begin(), E1=S1.end(); I1 != E1; ++I1) { |
| NodeTy* N1 = *I1; |
| |
| // When getting the value for the LHS, check if we are in an assignment. |
| // In such cases, we want to (initially) treat the LHS as an LValue, |
| // so we use GetLValue instead of GetValue so that DeclRefExpr's are |
| // evaluated to LValueDecl's instead of to an NonLValue. |
| const RValue& V1 = |
| B->isAssignmentOp() ? GetLValue(N1->getState(), B->getLHS()) |
| : GetValue(N1->getState(), B->getLHS()); |
| |
| NodeSet S2; |
| Visit(B->getRHS(), N1, S2); |
| |
| for (NodeSet::iterator I2=S2.begin(), E2=S2.end(); I2 != E2; ++I2) { |
| NodeTy* N2 = *I2; |
| StateTy St = N2->getState(); |
| const RValue& V2 = GetValue(St, B->getRHS()); |
| |
| switch (B->getOpcode()) { |
| default: |
| Dst.Add(N2); |
| break; |
| |
| // Arithmetic opreators. |
| |
| case BinaryOperator::Add: { |
| const NonLValue& R1 = cast<NonLValue>(V1); |
| const NonLValue& R2 = cast<NonLValue>(V2); |
| |
| Nodify(Dst, B, N2, SetValue(St, B, R1.Add(ValMgr, R2))); |
| break; |
| } |
| |
| case BinaryOperator::Sub: { |
| const NonLValue& R1 = cast<NonLValue>(V1); |
| const NonLValue& R2 = cast<NonLValue>(V2); |
| Nodify(Dst, B, N2, SetValue(St, B, R1.Sub(ValMgr, R2))); |
| break; |
| } |
| |
| case BinaryOperator::Mul: { |
| const NonLValue& R1 = cast<NonLValue>(V1); |
| const NonLValue& R2 = cast<NonLValue>(V2); |
| Nodify(Dst, B, N2, SetValue(St, B, R1.Mul(ValMgr, R2))); |
| break; |
| } |
| |
| case BinaryOperator::Div: { |
| const NonLValue& R1 = cast<NonLValue>(V1); |
| const NonLValue& R2 = cast<NonLValue>(V2); |
| Nodify(Dst, B, N2, SetValue(St, B, R1.Div(ValMgr, R2))); |
| break; |
| } |
| |
| case BinaryOperator::Rem: { |
| const NonLValue& R1 = cast<NonLValue>(V1); |
| const NonLValue& R2 = cast<NonLValue>(V2); |
| Nodify(Dst, B, N2, SetValue(St, B, R1.Rem(ValMgr, R2))); |
| break; |
| } |
| |
| // Assignment operators. |
| |
| case BinaryOperator::Assign: { |
| const LValue& L1 = cast<LValue>(V1); |
| const NonLValue& R2 = cast<NonLValue>(V2); |
| Nodify(Dst, B, N2, SetValue(SetValue(St, B, R2), L1, R2)); |
| break; |
| } |
| |
| case BinaryOperator::AddAssign: { |
| const LValue& L1 = cast<LValue>(V1); |
| NonLValue R1 = cast<NonLValue>(GetValue(N1->getState(), L1)); |
| NonLValue Result = R1.Add(ValMgr, cast<NonLValue>(V2)); |
| Nodify(Dst, B, N2, SetValue(SetValue(St, B, Result), L1, Result)); |
| break; |
| } |
| |
| case BinaryOperator::SubAssign: { |
| const LValue& L1 = cast<LValue>(V1); |
| NonLValue R1 = cast<NonLValue>(GetValue(N1->getState(), L1)); |
| NonLValue Result = R1.Sub(ValMgr, cast<NonLValue>(V2)); |
| Nodify(Dst, B, N2, SetValue(SetValue(St, B, Result), L1, Result)); |
| break; |
| } |
| |
| case BinaryOperator::MulAssign: { |
| const LValue& L1 = cast<LValue>(V1); |
| NonLValue R1 = cast<NonLValue>(GetValue(N1->getState(), L1)); |
| NonLValue Result = R1.Mul(ValMgr, cast<NonLValue>(V2)); |
| Nodify(Dst, B, N2, SetValue(SetValue(St, B, Result), L1, Result)); |
| break; |
| } |
| |
| case BinaryOperator::DivAssign: { |
| const LValue& L1 = cast<LValue>(V1); |
| NonLValue R1 = cast<NonLValue>(GetValue(N1->getState(), L1)); |
| NonLValue Result = R1.Div(ValMgr, cast<NonLValue>(V2)); |
| Nodify(Dst, B, N2, SetValue(SetValue(St, B, Result), L1, Result)); |
| break; |
| } |
| |
| case BinaryOperator::RemAssign: { |
| const LValue& L1 = cast<LValue>(V1); |
| NonLValue R1 = cast<NonLValue>(GetValue(N1->getState(), L1)); |
| NonLValue Result = R1.Rem(ValMgr, cast<NonLValue>(V2)); |
| Nodify(Dst, B, N2, SetValue(SetValue(St, B, Result), L1, Result)); |
| break; |
| } |
| |
| // Equality operators. |
| |
| case BinaryOperator::EQ: |
| // FIXME: should we allow XX.EQ() to return a set of values, |
| // allowing state bifurcation? In such cases, they will also |
| // modify the state (meaning that a new state will be returned |
| // as well). |
| assert (B->getType() == getContext().IntTy); |
| |
| if (isa<LValue>(V1)) { |
| const LValue& L1 = cast<LValue>(V1); |
| const LValue& L2 = cast<LValue>(V2); |
| St = SetValue(St, B, L1.EQ(ValMgr, L2)); |
| } |
| else { |
| const NonLValue& R1 = cast<NonLValue>(V1); |
| const NonLValue& R2 = cast<NonLValue>(V2); |
| St = SetValue(St, B, R1.EQ(ValMgr, R2)); |
| } |
| |
| Nodify(Dst, B, N2, St); |
| break; |
| } |
| } |
| } |
| } |
| |
| |
| void GRConstants::Visit(Stmt* S, GRConstants::NodeTy* Pred, |
| GRConstants::NodeSet& Dst) { |
| |
| // FIXME: add metadata to the CFG so that we can disable |
| // this check when we KNOW that there is no block-level subexpression. |
| // The motivation is that this check requires a hashtable lookup. |
| |
| if (S != CurrentStmt && getCFG().isBlkExpr(S)) { |
| Dst.Add(Pred); |
| return; |
| } |
| |
| switch (S->getStmtClass()) { |
| case Stmt::BinaryOperatorClass: |
| case Stmt::CompoundAssignOperatorClass: |
| VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst); |
| break; |
| |
| case Stmt::UnaryOperatorClass: |
| VisitUnaryOperator(cast<UnaryOperator>(S), Pred, Dst); |
| break; |
| |
| case Stmt::ParenExprClass: |
| Visit(cast<ParenExpr>(S)->getSubExpr(), Pred, Dst); |
| break; |
| |
| case Stmt::ImplicitCastExprClass: { |
| ImplicitCastExpr* C = cast<ImplicitCastExpr>(S); |
| VisitCast(C, C->getSubExpr(), Pred, Dst); |
| break; |
| } |
| |
| case Stmt::CastExprClass: { |
| CastExpr* C = cast<CastExpr>(S); |
| VisitCast(C, C->getSubExpr(), Pred, Dst); |
| break; |
| } |
| |
| case Stmt::DeclStmtClass: |
| VisitDeclStmt(cast<DeclStmt>(S), Pred, Dst); |
| break; |
| |
| default: |
| Dst.Add(Pred); // No-op. Simply propagate the current state unchanged. |
| break; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // "Assume" logic. |
| //===----------------------------------------------------------------------===// |
| |
| GRConstants::StateTy GRConstants::Assume(StateTy St, LValue Cond, bool Assumption, |
| bool& isFeasible) { |
| return St; |
| } |
| |
| GRConstants::StateTy GRConstants::Assume(StateTy St, NonLValue Cond, bool Assumption, |
| bool& isFeasible) { |
| |
| switch (Cond.getSubKind()) { |
| default: |
| assert (false && "'Assume' not implemented for this NonLValue."); |
| return St; |
| |
| case ConcreteIntKind: { |
| bool b = cast<ConcreteInt>(Cond).getValue() != 0; |
| isFeasible = b ? Assumption : !Assumption; |
| return St; |
| } |
| } |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Driver. |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef NDEBUG |
| static GRConstants* GraphPrintCheckerState; |
| |
| namespace llvm { |
| template<> |
| struct VISIBILITY_HIDDEN DOTGraphTraits<GRConstants::NodeTy*> : |
| public DefaultDOTGraphTraits { |
| |
| static void PrintKindLabel(std::ostream& Out, ValueKey::Kind kind) { |
| switch (kind) { |
| case ValueKey::IsSubExpr: Out << "Sub-Expressions:\\l"; break; |
| case ValueKey::IsDecl: Out << "Variables:\\l"; break; |
| case ValueKey::IsBlkExpr: Out << "Block-level Expressions:\\l"; break; |
| default: assert (false && "Unknown ValueKey type."); |
| } |
| } |
| |
| static void PrintKind(std::ostream& Out, GRConstants::StateTy M, |
| ValueKey::Kind kind, bool isFirstGroup = false) { |
| bool isFirst = true; |
| |
| for (GRConstants::StateTy::iterator I=M.begin(), E=M.end();I!=E;++I) { |
| if (I.getKey().getKind() != kind) |
| continue; |
| |
| if (isFirst) { |
| if (!isFirstGroup) Out << "\\l\\l"; |
| PrintKindLabel(Out, kind); |
| isFirst = false; |
| } |
| else |
| Out << "\\l"; |
| |
| Out << ' '; |
| |
| if (ValueDecl* V = dyn_cast<ValueDecl>(I.getKey())) |
| Out << V->getName(); |
| else { |
| Stmt* E = cast<Stmt>(I.getKey()); |
| Out << " (" << (void*) E << ") "; |
| E->printPretty(Out); |
| } |
| |
| Out << " : "; |
| I.getData().print(Out); |
| } |
| } |
| |
| static std::string getNodeLabel(const GRConstants::NodeTy* N, void*) { |
| std::ostringstream Out; |
| |
| // Program Location. |
| ProgramPoint Loc = N->getLocation(); |
| |
| switch (Loc.getKind()) { |
| case ProgramPoint::BlockEntranceKind: |
| Out << "Block Entrance: B" |
| << cast<BlockEntrance>(Loc).getBlock()->getBlockID(); |
| break; |
| |
| case ProgramPoint::BlockExitKind: |
| assert (false); |
| break; |
| |
| case ProgramPoint::PostStmtKind: { |
| const PostStmt& L = cast<PostStmt>(Loc); |
| Out << L.getStmt()->getStmtClassName() << ':' |
| << (void*) L.getStmt() << ' '; |
| |
| L.getStmt()->printPretty(Out); |
| break; |
| } |
| |
| default: { |
| const BlockEdge& E = cast<BlockEdge>(Loc); |
| Out << "Edge: (B" << E.getSrc()->getBlockID() << ", B" |
| << E.getDst()->getBlockID() << ')'; |
| |
| if (Stmt* T = E.getSrc()->getTerminator()) { |
| Out << "\\|Terminator: "; |
| E.getSrc()->printTerminator(Out); |
| |
| if (isa<SwitchStmt>(T)) { |
| // FIXME |
| } |
| else { |
| Out << "\\lCondition: "; |
| if (*E.getSrc()->succ_begin() == E.getDst()) |
| Out << "true"; |
| else |
| Out << "false"; |
| } |
| |
| Out << "\\l"; |
| } |
| |
| if (GraphPrintCheckerState->isUninitControlFlow(N)) { |
| Out << "\\|Control-flow based on\\lUninitialized value.\\l"; |
| } |
| } |
| } |
| |
| Out << "\\|StateID: " << (void*) N->getState().getRoot() << "\\|"; |
| |
| PrintKind(Out, N->getState(), ValueKey::IsDecl, true); |
| PrintKind(Out, N->getState(), ValueKey::IsBlkExpr); |
| PrintKind(Out, N->getState(), ValueKey::IsSubExpr); |
| |
| Out << "\\l"; |
| return Out.str(); |
| } |
| }; |
| } // end llvm namespace |
| #endif |
| |
| namespace clang { |
| void RunGRConstants(CFG& cfg, FunctionDecl& FD, ASTContext& Ctx) { |
| GREngine<GRConstants> Engine(cfg, FD, Ctx); |
| Engine.ExecuteWorkList(); |
| #ifndef NDEBUG |
| GraphPrintCheckerState = &Engine.getCheckerState(); |
| llvm::ViewGraph(*Engine.getGraph().roots_begin(),"GRConstants"); |
| GraphPrintCheckerState = NULL; |
| #endif |
| } |
| } // end clang namespace |