blob: 8b873286689a7b0bbfdd2c09715e4246400631fe [file] [log] [blame]
//===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is the code that handles AST -> LLVM type lowering.
//
//===----------------------------------------------------------------------===//
#include "CodeGenTypes.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/AST/AST.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
using namespace clang;
using namespace CodeGen;
namespace {
/// RecordOrganizer - This helper class, used by RecordLayoutInfo, layouts
/// structs and unions. It manages transient information used during layout.
/// FIXME : At the moment assume
/// - one to one mapping between AST FieldDecls and
/// llvm::StructType elements.
/// - Ignore bit fields
/// - Ignore field aligments
/// - Ignore packed structs
class RecordOrganizer {
public:
RecordOrganizer() : STy(NULL) {}
/// addField - Add new field.
void addField(const FieldDecl *FD);
/// layoutFields - Do the actual work and lay out all fields. Create
/// corresponding llvm struct type. This should be invoked only after
/// all fields are added.
void layoutFields(CodeGenTypes &CGT);
/// getLLVMType - Return associated llvm struct type. This may be NULL
/// if fields are not laid out.
llvm::Type *getLLVMType() const {
return STy;
}
/// Clear private data so that this object can be reused.
void clear();
private:
llvm::Type *STy;
llvm::SmallVector<const FieldDecl *, 8> FieldDecls;
};
}
CodeGenTypes::CodeGenTypes(ASTContext &Ctx, llvm::Module& M)
: Context(Ctx), Target(Ctx.Target), TheModule(M) {
}
CodeGenTypes::~CodeGenTypes() {
for(llvm::DenseMap<const llvm::Type *, RecordLayoutInfo *>::iterator
I = RecordLayouts.begin(), E = RecordLayouts.end();
I != E; ++I)
delete I->second;
RecordLayouts.clear();
}
/// ConvertType - Convert the specified type to its LLVM form.
const llvm::Type *CodeGenTypes::ConvertType(QualType T) {
// See if type is already cached.
llvm::DenseMap<Type *, llvm::PATypeHolder *>::iterator
I = TypeHolderMap.find(T.getTypePtr());
if (I != TypeHolderMap.end()) {
llvm::PATypeHolder *PAT = I->second;
return PAT->get();
}
const llvm::Type *ResultType = ConvertNewType(T);
llvm::PATypeHolder *PAT = new llvm::PATypeHolder(ResultType);
TypeHolderMap[T.getTypePtr()] = PAT;
return ResultType;
}
const llvm::Type *CodeGenTypes::ConvertNewType(QualType T) {
const clang::Type &Ty = *T.getCanonicalType();
switch (Ty.getTypeClass()) {
case Type::TypeName: // typedef isn't canonical.
case Type::TypeOfExp: // typeof isn't canonical.
case Type::TypeOfTyp: // typeof isn't canonical.
assert(0 && "Non-canonical type, shouldn't happen");
case Type::Builtin: {
switch (cast<BuiltinType>(Ty).getKind()) {
case BuiltinType::Void:
// LLVM void type can only be used as the result of a function call. Just
// map to the same as char.
return llvm::IntegerType::get(8);
case BuiltinType::Bool:
// FIXME: This is very strange. We want scalars to be i1, but in memory
// they can be i1 or i32. Should the codegen handle this issue?
return llvm::Type::Int1Ty;
case BuiltinType::Char_S:
case BuiltinType::Char_U:
case BuiltinType::SChar:
case BuiltinType::UChar:
case BuiltinType::Short:
case BuiltinType::UShort:
case BuiltinType::Int:
case BuiltinType::UInt:
case BuiltinType::Long:
case BuiltinType::ULong:
case BuiltinType::LongLong:
case BuiltinType::ULongLong:
return llvm::IntegerType::get(
static_cast<unsigned>(Context.getTypeSize(T, SourceLocation())));
case BuiltinType::Float: return llvm::Type::FloatTy;
case BuiltinType::Double: return llvm::Type::DoubleTy;
case BuiltinType::LongDouble:
// FIXME: mapping long double onto double.
return llvm::Type::DoubleTy;
}
break;
}
case Type::Complex: {
std::vector<const llvm::Type*> Elts;
Elts.push_back(ConvertType(cast<ComplexType>(Ty).getElementType()));
Elts.push_back(Elts[0]);
return llvm::StructType::get(Elts);
}
case Type::Pointer: {
const PointerType &P = cast<PointerType>(Ty);
return llvm::PointerType::get(ConvertType(P.getPointeeType()));
}
case Type::Reference: {
const ReferenceType &R = cast<ReferenceType>(Ty);
return llvm::PointerType::get(ConvertType(R.getReferenceeType()));
}
case Type::VariableArray: {
const VariableArrayType &A = cast<VariableArrayType>(Ty);
assert(A.getSizeModifier() == ArrayType::Normal &&
A.getIndexTypeQualifier() == 0 &&
"FIXME: We only handle trivial array types so far!");
if (A.getSizeExpr() == 0) {
// int X[] -> [0 x int]
return llvm::ArrayType::get(ConvertType(A.getElementType()), 0);
} else {
assert(0 && "FIXME: VLAs not implemented yet!");
}
}
case Type::ConstantArray: {
const ConstantArrayType &A = cast<ConstantArrayType>(Ty);
const llvm::Type *EltTy = ConvertType(A.getElementType());
return llvm::ArrayType::get(EltTy, A.getSize().getZExtValue());
}
case Type::OCUVector:
case Type::Vector: {
const VectorType &VT = cast<VectorType>(Ty);
return llvm::VectorType::get(ConvertType(VT.getElementType()),
VT.getNumElements());
}
case Type::FunctionNoProto:
case Type::FunctionProto: {
const FunctionType &FP = cast<FunctionType>(Ty);
const llvm::Type *ResultType;
if (FP.getResultType()->isVoidType())
ResultType = llvm::Type::VoidTy; // Result of function uses llvm void.
else
ResultType = ConvertType(FP.getResultType());
// FIXME: Convert argument types.
bool isVarArg;
std::vector<const llvm::Type*> ArgTys;
// Struct return passes the struct byref.
if (!ResultType->isFirstClassType() && ResultType != llvm::Type::VoidTy) {
const llvm::Type *RType = llvm::PointerType::get(ResultType);
QualType RTy = Context.getPointerType(FP.getResultType());
TypeHolderMap[RTy.getTypePtr()] = new llvm::PATypeHolder(RType);
ArgTys.push_back(RType);
ResultType = llvm::Type::VoidTy;
}
if (const FunctionTypeProto *FTP = dyn_cast<FunctionTypeProto>(&FP)) {
DecodeArgumentTypes(*FTP, ArgTys);
isVarArg = FTP->isVariadic();
} else {
isVarArg = true;
}
return llvm::FunctionType::get(ResultType, ArgTys, isVarArg, 0);
}
case Type::ObjcInterface:
assert(0 && "FIXME: add missing functionality here");
break;
case Type::ObjcQualifiedInterface:
assert(0 && "FIXME: add missing functionality here");
break;
case Type::Tagged:
const TagType &TT = cast<TagType>(Ty);
const TagDecl *TD = TT.getDecl();
llvm::Type *&ResultType = TagDeclTypes[TD];
if (ResultType)
return ResultType;
if (!TD->isDefinition()) {
ResultType = llvm::OpaqueType::get();
} else if (TD->getKind() == Decl::Enum) {
return ConvertType(cast<EnumDecl>(TD)->getIntegerType());
} else if (TD->getKind() == Decl::Struct) {
const RecordDecl *RD = cast<const RecordDecl>(TD);
// If this is nested record and this RecordDecl is already under
// process then return associated OpaqueType for now.
llvm::DenseMap<const RecordDecl *, llvm::Type *>::iterator
OpaqueI = RecordTypesToResolve.find(RD);
if (OpaqueI != RecordTypesToResolve.end())
return OpaqueI->second;
// Create new OpaqueType now for later use.
// FIXME: This creates a lot of opaque types, most of which are not needed.
// Reevaluate this when performance analyis finds tons of opaque types.
llvm::OpaqueType *OpaqueTy = llvm::OpaqueType::get();
RecordTypesToResolve[RD] = OpaqueTy;
QualType Opq;
TypeHolderMap[Opq.getTypePtr()] = new llvm::PATypeHolder(OpaqueTy);
// Layout fields.
RecordOrganizer RO;
for (unsigned i = 0, e = RD->getNumMembers(); i != e; ++i)
RO.addField(RD->getMember(i));
RO.layoutFields(*this);
// Get llvm::StructType.
RecordLayoutInfo *RLI = new RecordLayoutInfo(RO.getLLVMType());
ResultType = RLI->getLLVMType();
RecordLayouts[ResultType] = RLI;
// Refine any OpaqueType associated with this RecordDecl.
OpaqueTy->refineAbstractTypeTo(ResultType);
OpaqueI = RecordTypesToResolve.find(RD);
assert (OpaqueI != RecordTypesToResolve.end()
&& "Expected RecordDecl in RecordTypesToResolve");
RecordTypesToResolve.erase(OpaqueI);
RO.clear();
} else if (TD->getKind() == Decl::Union) {
const RecordDecl *RD = cast<const RecordDecl>(TD);
// Just use the largest element of the union, breaking ties with the
// highest aligned member.
if (RD->getNumMembers() != 0) {
std::pair<uint64_t, unsigned> MaxElt =
Context.getTypeInfo(RD->getMember(0)->getType(), SourceLocation());
unsigned MaxEltNo = 0;
addFieldInfo(RD->getMember(0), 0); // Each field gets first slot.
// FIXME : Move union field handling in RecordOrganize
for (unsigned i = 1, e = RD->getNumMembers(); i != e; ++i) {
addFieldInfo(RD->getMember(i), 0); // Each field gets first slot.
std::pair<uint64_t, unsigned> EltInfo =
Context.getTypeInfo(RD->getMember(i)->getType(), SourceLocation());
if (EltInfo.first > MaxElt.first ||
(EltInfo.first == MaxElt.first &&
EltInfo.second > MaxElt.second)) {
MaxElt = EltInfo;
MaxEltNo = i;
}
}
RecordOrganizer RO;
RO.addField(RD->getMember(MaxEltNo));
RO.layoutFields(*this);
// Get llvm::StructType.
RecordLayoutInfo *RLI = new RecordLayoutInfo(RO.getLLVMType());
ResultType = RLI->getLLVMType();
RecordLayouts[ResultType] = RLI;
} else {
std::vector<const llvm::Type*> Fields;
ResultType = llvm::StructType::get(Fields);
}
} else {
assert(0 && "FIXME: Implement tag decl kind!");
}
std::string TypeName(TD->getKindName());
TypeName += '.';
TypeName += TD->getName();
TheModule.addTypeName(TypeName, ResultType);
return ResultType;
}
// FIXME: implement.
return llvm::OpaqueType::get();
}
void CodeGenTypes::DecodeArgumentTypes(const FunctionTypeProto &FTP,
std::vector<const llvm::Type*> &ArgTys) {
for (unsigned i = 0, e = FTP.getNumArgs(); i != e; ++i) {
const llvm::Type *Ty = ConvertType(FTP.getArgType(i));
if (Ty->isFirstClassType())
ArgTys.push_back(Ty);
else {
QualType PTy = Context.getPointerType(FTP.getArgType(i));
const llvm::Type *PtrTy = llvm::PointerType::get(Ty);
TypeHolderMap[PTy.getTypePtr()] = new llvm::PATypeHolder(PtrTy);
ArgTys.push_back(PtrTy);
}
}
}
/// getLLVMFieldNo - Return llvm::StructType element number
/// that corresponds to the field FD.
unsigned CodeGenTypes::getLLVMFieldNo(const FieldDecl *FD) {
llvm::DenseMap<const FieldDecl *, unsigned>::iterator
I = FieldInfo.find(FD);
assert (I != FieldInfo.end() && "Unable to find field info");
return I->second;
}
/// addFieldInfo - Assign field number to field FD.
void CodeGenTypes::addFieldInfo(const FieldDecl *FD, unsigned No) {
FieldInfo[FD] = No;
}
/// getRecordLayoutInfo - Return record layout info for the given llvm::Type.
const RecordLayoutInfo *
CodeGenTypes::getRecordLayoutInfo(const llvm::Type* Ty) const {
llvm::DenseMap<const llvm::Type*, RecordLayoutInfo *>::iterator I
= RecordLayouts.find(Ty);
assert (I != RecordLayouts.end()
&& "Unable to find record layout information for type");
return I->second;
}
/// addField - Add new field.
void RecordOrganizer::addField(const FieldDecl *FD) {
assert (!STy && "Record fields are already laid out");
FieldDecls.push_back(FD);
}
/// layoutFields - Do the actual work and lay out all fields. Create
/// corresponding llvm struct type. This should be invoked only after
/// all fields are added.
/// FIXME : At the moment assume
/// - one to one mapping between AST FieldDecls and
/// llvm::StructType elements.
/// - Ignore bit fields
/// - Ignore field aligments
/// - Ignore packed structs
void RecordOrganizer::layoutFields(CodeGenTypes &CGT) {
// FIXME : Use SmallVector
std::vector<const llvm::Type*> Fields;
unsigned FieldNo = 0;
for (llvm::SmallVector<const FieldDecl *, 8>::iterator I = FieldDecls.begin(),
E = FieldDecls.end(); I != E; ++I) {
const FieldDecl *FD = *I;
const llvm::Type *Ty = CGT.ConvertType(FD->getType());
// FIXME : Layout FieldDecl FD
Fields.push_back(Ty);
CGT.addFieldInfo(FD, FieldNo++);
}
STy = llvm::StructType::get(Fields);
}
/// Clear private data so that this object can be reused.
void RecordOrganizer::clear() {
STy = NULL;
FieldDecls.clear();
}