blob: 2dca993f741ea766963c07880611c1faa4450c87 [file] [log] [blame]
//===--- SemaTemplateInstantiateDecl.cpp - C++ Template Decl Instantiation ===/
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//===----------------------------------------------------------------------===/
//
// This file implements C++ template instantiation for declarations.
//
//===----------------------------------------------------------------------===/
#include "Sema.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/Parse/DeclSpec.h"
#include "clang/Lex/Preprocessor.h" // for the identifier table
#include "llvm/Support/Compiler.h"
using namespace clang;
namespace {
class VISIBILITY_HIDDEN TemplateExprInstantiator
: public StmtVisitor<TemplateExprInstantiator, Sema::OwningExprResult> {
Sema &SemaRef;
const TemplateArgumentList &TemplateArgs;
public:
typedef Sema::OwningExprResult OwningExprResult;
TemplateExprInstantiator(Sema &SemaRef,
const TemplateArgumentList &TemplateArgs)
: SemaRef(SemaRef), TemplateArgs(TemplateArgs) { }
// FIXME: Once we get closer to completion, replace these
// manually-written declarations with automatically-generated ones
// from clang/AST/StmtNodes.def.
OwningExprResult VisitIntegerLiteral(IntegerLiteral *E);
OwningExprResult VisitDeclRefExpr(DeclRefExpr *E);
OwningExprResult VisitParenExpr(ParenExpr *E);
OwningExprResult VisitUnaryOperator(UnaryOperator *E);
OwningExprResult VisitBinaryOperator(BinaryOperator *E);
OwningExprResult VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E);
OwningExprResult VisitConditionalOperator(ConditionalOperator *E);
OwningExprResult VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E);
OwningExprResult VisitUnresolvedDeclRefExpr(UnresolvedDeclRefExpr *E);
OwningExprResult VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *E);
OwningExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
// Base case. I'm supposed to ignore this.
Sema::OwningExprResult VisitStmt(Stmt *S) {
S->dump();
assert(false && "Cannot instantiate this kind of expression");
return SemaRef.ExprError();
}
};
}
Sema::OwningExprResult
TemplateExprInstantiator::VisitIntegerLiteral(IntegerLiteral *E) {
return SemaRef.Clone(E);
}
Sema::OwningExprResult
TemplateExprInstantiator::VisitDeclRefExpr(DeclRefExpr *E) {
Decl *D = E->getDecl();
if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D)) {
assert(NTTP->getDepth() == 0 && "No nested templates yet");
const TemplateArgument &Arg = TemplateArgs[NTTP->getPosition()];
QualType T = Arg.getIntegralType();
if (T->isCharType() || T->isWideCharType())
return SemaRef.Owned(new (SemaRef.Context) CharacterLiteral(
Arg.getAsIntegral()->getZExtValue(),
T->isWideCharType(),
T,
E->getSourceRange().getBegin()));
else if (T->isBooleanType())
return SemaRef.Owned(new (SemaRef.Context) CXXBoolLiteralExpr(
Arg.getAsIntegral()->getBoolValue(),
T,
E->getSourceRange().getBegin()));
return SemaRef.Owned(new (SemaRef.Context) IntegerLiteral(
*Arg.getAsIntegral(),
T,
E->getSourceRange().getBegin()));
} else if (ParmVarDecl *Parm = dyn_cast<ParmVarDecl>(D)) {
ParmVarDecl *ParmInst
= SemaRef.CurrentInstantiationScope->getInstantiationOf(Parm);
QualType T = ParmInst->getType();
return SemaRef.Owned(new (SemaRef.Context) DeclRefExpr(ParmInst,
T.getNonReferenceType(),
E->getLocation(),
T->isDependentType(),
T->isDependentType()));
} else
assert(false && "Can't handle arbitrary declaration references");
return SemaRef.ExprError();
}
Sema::OwningExprResult
TemplateExprInstantiator::VisitParenExpr(ParenExpr *E) {
Sema::OwningExprResult SubExpr = Visit(E->getSubExpr());
if (SubExpr.isInvalid())
return SemaRef.ExprError();
return SemaRef.Owned(new (SemaRef.Context) ParenExpr(
E->getLParen(), E->getRParen(),
(Expr *)SubExpr.release()));
}
Sema::OwningExprResult
TemplateExprInstantiator::VisitUnaryOperator(UnaryOperator *E) {
Sema::OwningExprResult Arg = Visit(E->getSubExpr());
if (Arg.isInvalid())
return SemaRef.ExprError();
return SemaRef.CreateBuiltinUnaryOp(E->getOperatorLoc(),
E->getOpcode(),
move(Arg));
}
Sema::OwningExprResult
TemplateExprInstantiator::VisitBinaryOperator(BinaryOperator *E) {
Sema::OwningExprResult LHS = Visit(E->getLHS());
if (LHS.isInvalid())
return SemaRef.ExprError();
Sema::OwningExprResult RHS = Visit(E->getRHS());
if (RHS.isInvalid())
return SemaRef.ExprError();
Sema::OwningExprResult Result
= SemaRef.CreateBuiltinBinOp(E->getOperatorLoc(),
E->getOpcode(),
(Expr *)LHS.get(),
(Expr *)RHS.get());
if (Result.isInvalid())
return SemaRef.ExprError();
LHS.release();
RHS.release();
return move(Result);
}
Sema::OwningExprResult
TemplateExprInstantiator::VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
Sema::OwningExprResult First = Visit(E->getArg(0));
if (First.isInvalid())
return SemaRef.ExprError();
Expr *Args[2] = { (Expr *)First.get(), 0 };
Sema::OwningExprResult Second(SemaRef);
if (E->getNumArgs() == 2) {
Second = Visit(E->getArg(1));
if (Second.isInvalid())
return SemaRef.ExprError();
Args[1] = (Expr *)Second.get();
}
if (!E->isTypeDependent()) {
// Since our original expression was not type-dependent, we do not
// perform lookup again at instantiation time (C++ [temp.dep]p1).
// Instead, we just build the new overloaded operator call
// expression.
First.release();
Second.release();
// FIXME: Don't reuse the callee here. We need to instantiate it.
return SemaRef.Owned(new (SemaRef.Context) CXXOperatorCallExpr(
SemaRef.Context,
E->getOperator(),
E->getCallee(),
Args, E->getNumArgs(),
E->getType(),
E->getOperatorLoc()));
}
bool isPostIncDec = E->getNumArgs() == 2 &&
(E->getOperator() == OO_PlusPlus || E->getOperator() == OO_MinusMinus);
if (E->getNumArgs() == 1 || isPostIncDec) {
if (!Args[0]->getType()->isOverloadableType()) {
// The argument is not of overloadable type, so try to create a
// built-in unary operation.
UnaryOperator::Opcode Opc
= UnaryOperator::getOverloadedOpcode(E->getOperator(), isPostIncDec);
return SemaRef.CreateBuiltinUnaryOp(E->getOperatorLoc(), Opc,
move(First));
}
// Fall through to perform overload resolution
} else {
assert(E->getNumArgs() == 2 && "Expected binary operation");
Sema::OwningExprResult Result(SemaRef);
if (!Args[0]->getType()->isOverloadableType() &&
!Args[1]->getType()->isOverloadableType()) {
// Neither of the arguments is an overloadable type, so try to
// create a built-in binary operation.
BinaryOperator::Opcode Opc =
BinaryOperator::getOverloadedOpcode(E->getOperator());
Result = SemaRef.CreateBuiltinBinOp(E->getOperatorLoc(), Opc,
Args[0], Args[1]);
if (Result.isInvalid())
return SemaRef.ExprError();
First.release();
Second.release();
return move(Result);
}
// Fall through to perform overload resolution.
}
// Compute the set of functions that were found at template
// definition time.
Sema::FunctionSet Functions;
DeclRefExpr *DRE = cast<DeclRefExpr>(E->getCallee());
OverloadedFunctionDecl *Overloads
= cast<OverloadedFunctionDecl>(DRE->getDecl());
// FIXME: Do we have to check
// IsAcceptableNonMemberOperatorCandidate for each of these?
for (OverloadedFunctionDecl::function_iterator
F = Overloads->function_begin(),
FEnd = Overloads->function_end();
F != FEnd; ++F)
Functions.insert(*F);
// Add any functions found via argument-dependent lookup.
DeclarationName OpName
= SemaRef.Context.DeclarationNames.getCXXOperatorName(E->getOperator());
SemaRef.ArgumentDependentLookup(OpName, Args, E->getNumArgs(), Functions);
// Create the overloaded operator invocation.
if (E->getNumArgs() == 1 || isPostIncDec) {
UnaryOperator::Opcode Opc
= UnaryOperator::getOverloadedOpcode(E->getOperator(), isPostIncDec);
return SemaRef.CreateOverloadedUnaryOp(E->getOperatorLoc(), Opc,
Functions, move(First));
}
// FIXME: This would be far less ugly if CreateOverloadedBinOp took
// in ExprArg arguments!
BinaryOperator::Opcode Opc =
BinaryOperator::getOverloadedOpcode(E->getOperator());
OwningExprResult Result
= SemaRef.CreateOverloadedBinOp(E->getOperatorLoc(), Opc,
Functions, Args[0], Args[1]);
if (Result.isInvalid())
return SemaRef.ExprError();
First.release();
Second.release();
return move(Result);
}
Sema::OwningExprResult
TemplateExprInstantiator::VisitConditionalOperator(ConditionalOperator *E) {
Sema::OwningExprResult Cond = Visit(E->getCond());
if (Cond.isInvalid())
return SemaRef.ExprError();
// FIXME: use getLHS() and cope with NULLness
Sema::OwningExprResult True = Visit(E->getTrueExpr());
if (True.isInvalid())
return SemaRef.ExprError();
Sema::OwningExprResult False = Visit(E->getFalseExpr());
if (False.isInvalid())
return SemaRef.ExprError();
if (!E->isTypeDependent()) {
// Since our original expression was not type-dependent, we do not
// perform lookup again at instantiation time (C++ [temp.dep]p1).
// Instead, we just build the new conditional operator call expression.
return SemaRef.Owned(new (SemaRef.Context) ConditionalOperator(
Cond.takeAs<Expr>(),
True.takeAs<Expr>(),
False.takeAs<Expr>(),
E->getType()));
}
return SemaRef.ActOnConditionalOp(/*FIXME*/E->getCond()->getLocEnd(),
/*FIXME*/E->getFalseExpr()->getLocStart(),
move(Cond), move(True), move(False));
}
Sema::OwningExprResult
TemplateExprInstantiator::VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E) {
bool isSizeOf = E->isSizeOf();
if (E->isArgumentType()) {
QualType T = E->getArgumentType();
if (T->isDependentType()) {
T = SemaRef.InstantiateType(T, TemplateArgs,
/*FIXME*/E->getOperatorLoc(),
&SemaRef.PP.getIdentifierTable().get("sizeof"));
if (T.isNull())
return SemaRef.ExprError();
}
return SemaRef.CreateSizeOfAlignOfExpr(T, E->getOperatorLoc(), isSizeOf,
E->getSourceRange());
}
Sema::OwningExprResult Arg = Visit(E->getArgumentExpr());
if (Arg.isInvalid())
return SemaRef.ExprError();
Sema::OwningExprResult Result
= SemaRef.CreateSizeOfAlignOfExpr((Expr *)Arg.get(), E->getOperatorLoc(),
isSizeOf, E->getSourceRange());
if (Result.isInvalid())
return SemaRef.ExprError();
Arg.release();
return move(Result);
}
Sema::OwningExprResult
TemplateExprInstantiator::VisitUnresolvedDeclRefExpr(UnresolvedDeclRefExpr *E) {
NestedNameSpecifier *NNS
= SemaRef.InstantiateNestedNameSpecifier(E->getQualifier(),
E->getQualifierRange(),
TemplateArgs);
if (!NNS)
return SemaRef.ExprError();
CXXScopeSpec SS;
SS.setRange(E->getQualifierRange());
SS.setScopeRep(NNS);
// FIXME: We're passing in a NULL scope, because
// ActOnDeclarationNameExpr doesn't actually use the scope when we
// give it a non-empty scope specifier. Investigate whether it would
// be better to refactor ActOnDeclarationNameExpr.
return SemaRef.ActOnDeclarationNameExpr(/*Scope=*/0, E->getLocation(),
E->getDeclName(),
/*HasTrailingLParen=*/false,
&SS,
/*FIXME:isAddressOfOperand=*/false);
}
Sema::OwningExprResult
TemplateExprInstantiator::VisitCXXTemporaryObjectExpr(
CXXTemporaryObjectExpr *E) {
QualType T = E->getType();
if (T->isDependentType()) {
T = SemaRef.InstantiateType(T, TemplateArgs,
E->getTypeBeginLoc(), DeclarationName());
if (T.isNull())
return SemaRef.ExprError();
}
llvm::SmallVector<Expr *, 16> Args;
Args.reserve(E->getNumArgs());
bool Invalid = false;
for (CXXTemporaryObjectExpr::arg_iterator Arg = E->arg_begin(),
ArgEnd = E->arg_end();
Arg != ArgEnd; ++Arg) {
OwningExprResult InstantiatedArg = Visit(*Arg);
if (InstantiatedArg.isInvalid()) {
Invalid = true;
break;
}
Args.push_back((Expr *)InstantiatedArg.release());
}
if (!Invalid) {
SourceLocation CommaLoc;
// FIXME: HACK!
if (Args.size() > 1)
CommaLoc
= SemaRef.PP.getLocForEndOfToken(Args[0]->getSourceRange().getEnd());
Sema::OwningExprResult Result(
SemaRef.ActOnCXXTypeConstructExpr(SourceRange(E->getTypeBeginLoc()
/*, FIXME*/),
T.getAsOpaquePtr(),
/*FIXME*/E->getTypeBeginLoc(),
Sema::MultiExprArg(SemaRef,
(void**)&Args[0],
Args.size()),
/*HACK*/&CommaLoc,
E->getSourceRange().getEnd()));
// At this point, Args no longer owns the arguments, no matter what.
return move(Result);
}
// Clean up the instantiated arguments.
// FIXME: Would rather do this with RAII.
for (unsigned Idx = 0; Idx < Args.size(); ++Idx)
SemaRef.DeleteExpr(Args[Idx]);
return SemaRef.ExprError();
}
Sema::OwningExprResult TemplateExprInstantiator::VisitImplicitCastExpr(
ImplicitCastExpr *E) {
assert(!E->isTypeDependent() && "Implicit casts must have known types");
Sema::OwningExprResult SubExpr = Visit(E->getSubExpr());
if (SubExpr.isInvalid())
return SemaRef.ExprError();
ImplicitCastExpr *ICE =
new (SemaRef.Context) ImplicitCastExpr(E->getType(),
(Expr *)SubExpr.release(),
E->isLvalueCast());
return SemaRef.Owned(ICE);
}
Sema::OwningExprResult
Sema::InstantiateExpr(Expr *E, const TemplateArgumentList &TemplateArgs) {
TemplateExprInstantiator Instantiator(*this, TemplateArgs);
return Instantiator.Visit(E);
}
namespace {
class VISIBILITY_HIDDEN TemplateStmtInstantiator
: public StmtVisitor<TemplateStmtInstantiator, Sema::OwningStmtResult> {
Sema &SemaRef;
const TemplateArgumentList &TemplateArgs;
public:
typedef Sema::OwningExprResult OwningExprResult;
typedef Sema::OwningStmtResult OwningStmtResult;
TemplateStmtInstantiator(Sema &SemaRef,
const TemplateArgumentList &TemplateArgs)
: SemaRef(SemaRef), TemplateArgs(TemplateArgs) { }
// FIXME: Once we get closer to completion, replace these
// manually-written declarations with automatically-generated ones
// from clang/AST/StmtNodes.def.
OwningStmtResult VisitDeclStmt(DeclStmt *S);
OwningStmtResult VisitNullStmt(NullStmt *S);
OwningStmtResult VisitCompoundStmt(CompoundStmt *S);
OwningStmtResult VisitExpr(Expr *E);
// Base case. I'm supposed to ignore this.
OwningStmtResult VisitStmt(Stmt *S) {
S->dump();
assert(false && "Cannot instantiate this kind of statement");
return SemaRef.StmtError();
}
};
}
Sema::OwningStmtResult TemplateStmtInstantiator::VisitDeclStmt(DeclStmt *S) {
llvm::SmallVector<Decl *, 8> Decls;
for (DeclStmt::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
D != DEnd; ++D) {
Decl *Instantiated = SemaRef.InstantiateDecl(*D, SemaRef.CurContext,
TemplateArgs);
if (!Instantiated)
return SemaRef.StmtError();
Decls.push_back(Instantiated);
SemaRef.CurrentInstantiationScope->InstantiatedLocal(cast<VarDecl>(*D),
cast<VarDecl>(Instantiated));
}
return SemaRef.Owned(new (SemaRef.Context) DeclStmt(
DeclGroupRef::Create(SemaRef.Context,
&Decls[0],
Decls.size()),
S->getStartLoc(),
S->getEndLoc()));
}
Sema::OwningStmtResult TemplateStmtInstantiator::VisitNullStmt(NullStmt *S) {
return SemaRef.Owned(new (SemaRef.Context) NullStmt(S->getSemiLoc()));
}
Sema::OwningStmtResult
TemplateStmtInstantiator::VisitCompoundStmt(CompoundStmt *S) {
// FIXME: We need an *easy* RAII way to delete these statements if
// something goes wrong.
llvm::SmallVector<Stmt *, 16> Statements;
for (CompoundStmt::body_iterator B = S->body_begin(), BEnd = S->body_end();
B != BEnd; ++B) {
OwningStmtResult Result = Visit(*B);
if (Result.isInvalid()) {
// FIXME: This should be handled by an RAII destructor.
for (unsigned I = 0, N = Statements.size(); I != N; ++I)
Statements[I]->Destroy(SemaRef.Context);
return SemaRef.StmtError();
}
Statements.push_back(Result.takeAs<Stmt>());
}
return SemaRef.Owned(
new (SemaRef.Context) CompoundStmt(SemaRef.Context,
&Statements[0],
Statements.size(),
S->getLBracLoc(),
S->getRBracLoc()));
}
Sema::OwningStmtResult TemplateStmtInstantiator::VisitExpr(Expr *E) {
Sema::OwningExprResult Result = SemaRef.InstantiateExpr(E, TemplateArgs);
if (Result.isInvalid())
return SemaRef.StmtError();
return SemaRef.Owned(Result.takeAs<Stmt>());
}
Sema::OwningStmtResult
Sema::InstantiateStmt(Stmt *S, const TemplateArgumentList &TemplateArgs) {
TemplateStmtInstantiator Instantiator(*this, TemplateArgs);
return Instantiator.Visit(S);
}