blob: b32ddfd2093ac71c03872d9264cc6801503849e8 [file] [log] [blame]
//===--- Sema.cpp - AST Builder and Semantic Analysis Implementation ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the actions class which performs semantic analysis and
// builds an AST out of a parse stream.
//
//===----------------------------------------------------------------------===//
#include "Sema.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/APFloat.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Expr.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Basic/TargetInfo.h"
using namespace clang;
/// Determines whether we should have an a.k.a. clause when
/// pretty-printing a type. There are three main criteria:
///
/// 1) Some types provide very minimal sugar that doesn't impede the
/// user's understanding --- for example, elaborated type
/// specifiers. If this is all the sugar we see, we don't want an
/// a.k.a. clause.
/// 2) Some types are technically sugared but are much more familiar
/// when seen in their sugared form --- for example, va_list,
/// vector types, and the magic Objective C types. We don't
/// want to desugar these, even if we do produce an a.k.a. clause.
/// 3) Some types may have already been desugared previously in this diagnostic.
/// if this is the case, doing another "aka" would just be clutter.
///
static bool ShouldAKA(ASTContext &Context, QualType QT,
const Diagnostic::ArgumentValue *PrevArgs,
unsigned NumPrevArgs,
QualType &DesugaredQT) {
QualType InputTy = QT;
bool AKA = false;
QualifierCollector Qc;
while (true) {
const Type *Ty = Qc.strip(QT);
// Don't aka just because we saw an elaborated type...
if (isa<ElaboratedType>(Ty)) {
QT = cast<ElaboratedType>(Ty)->desugar();
continue;
}
// ...or a qualified name type...
if (isa<QualifiedNameType>(Ty)) {
QT = cast<QualifiedNameType>(Ty)->desugar();
continue;
}
// ...or a substituted template type parameter.
if (isa<SubstTemplateTypeParmType>(Ty)) {
QT = cast<SubstTemplateTypeParmType>(Ty)->desugar();
continue;
}
// Don't desugar template specializations.
if (isa<TemplateSpecializationType>(Ty))
break;
// Don't desugar magic Objective-C types.
if (QualType(Ty,0) == Context.getObjCIdType() ||
QualType(Ty,0) == Context.getObjCClassType() ||
QualType(Ty,0) == Context.getObjCSelType() ||
QualType(Ty,0) == Context.getObjCProtoType())
break;
// Don't desugar va_list.
if (QualType(Ty,0) == Context.getBuiltinVaListType())
break;
// Otherwise, do a single-step desugar.
QualType Underlying;
bool IsSugar = false;
switch (Ty->getTypeClass()) {
#define ABSTRACT_TYPE(Class, Base)
#define TYPE(Class, Base) \
case Type::Class: { \
const Class##Type *CTy = cast<Class##Type>(Ty); \
if (CTy->isSugared()) { \
IsSugar = true; \
Underlying = CTy->desugar(); \
} \
break; \
}
#include "clang/AST/TypeNodes.def"
}
// If it wasn't sugared, we're done.
if (!IsSugar)
break;
// If the desugared type is a vector type, we don't want to expand
// it, it will turn into an attribute mess. People want their "vec4".
if (isa<VectorType>(Underlying))
break;
// Otherwise, we're tearing through something opaque; note that
// we'll eventually need an a.k.a. clause and keep going.
AKA = true;
QT = Underlying;
continue;
}
// If we never tore through opaque sugar, don't print aka.
if (!AKA) return false;
// If we did, check to see if we already desugared this type in this
// diagnostic. If so, don't do it again.
for (unsigned i = 0; i != NumPrevArgs; ++i) {
// TODO: Handle ak_declcontext case.
if (PrevArgs[i].first == Diagnostic::ak_qualtype) {
void *Ptr = (void*)PrevArgs[i].second;
QualType PrevTy(QualType::getFromOpaquePtr(Ptr));
if (PrevTy == InputTy)
return false;
}
}
DesugaredQT = Qc.apply(QT);
return true;
}
/// \brief Convert the given type to a string suitable for printing as part of
/// a diagnostic.
///
/// \param Context the context in which the type was allocated
/// \param Ty the type to print
static std::string
ConvertTypeToDiagnosticString(ASTContext &Context, QualType Ty,
const Diagnostic::ArgumentValue *PrevArgs,
unsigned NumPrevArgs) {
// FIXME: Playing with std::string is really slow.
std::string S = Ty.getAsString(Context.PrintingPolicy);
// Consider producing an a.k.a. clause if removing all the direct
// sugar gives us something "significantly different".
QualType DesugaredTy;
if (ShouldAKA(Context, Ty, PrevArgs, NumPrevArgs, DesugaredTy)) {
S = "'"+S+"' (aka '";
S += DesugaredTy.getAsString(Context.PrintingPolicy);
S += "')";
return S;
}
S = "'" + S + "'";
return S;
}
/// ConvertQualTypeToStringFn - This function is used to pretty print the
/// specified QualType as a string in diagnostics.
static void ConvertArgToStringFn(Diagnostic::ArgumentKind Kind, intptr_t Val,
const char *Modifier, unsigned ModLen,
const char *Argument, unsigned ArgLen,
const Diagnostic::ArgumentValue *PrevArgs,
unsigned NumPrevArgs,
llvm::SmallVectorImpl<char> &Output,
void *Cookie) {
ASTContext &Context = *static_cast<ASTContext*>(Cookie);
std::string S;
bool NeedQuotes = true;
switch (Kind) {
default: assert(0 && "unknown ArgumentKind");
case Diagnostic::ak_qualtype: {
assert(ModLen == 0 && ArgLen == 0 &&
"Invalid modifier for QualType argument");
QualType Ty(QualType::getFromOpaquePtr(reinterpret_cast<void*>(Val)));
S = ConvertTypeToDiagnosticString(Context, Ty, PrevArgs, NumPrevArgs);
NeedQuotes = false;
break;
}
case Diagnostic::ak_declarationname: {
DeclarationName N = DeclarationName::getFromOpaqueInteger(Val);
S = N.getAsString();
if (ModLen == 9 && !memcmp(Modifier, "objcclass", 9) && ArgLen == 0)
S = '+' + S;
else if (ModLen == 12 && !memcmp(Modifier, "objcinstance", 12) && ArgLen==0)
S = '-' + S;
else
assert(ModLen == 0 && ArgLen == 0 &&
"Invalid modifier for DeclarationName argument");
break;
}
case Diagnostic::ak_nameddecl: {
bool Qualified;
if (ModLen == 1 && Modifier[0] == 'q' && ArgLen == 0)
Qualified = true;
else {
assert(ModLen == 0 && ArgLen == 0 &&
"Invalid modifier for NamedDecl* argument");
Qualified = false;
}
reinterpret_cast<NamedDecl*>(Val)->
getNameForDiagnostic(S, Context.PrintingPolicy, Qualified);
break;
}
case Diagnostic::ak_nestednamespec: {
llvm::raw_string_ostream OS(S);
reinterpret_cast<NestedNameSpecifier*>(Val)->print(OS,
Context.PrintingPolicy);
NeedQuotes = false;
break;
}
case Diagnostic::ak_declcontext: {
DeclContext *DC = reinterpret_cast<DeclContext *> (Val);
assert(DC && "Should never have a null declaration context");
if (DC->isTranslationUnit()) {
// FIXME: Get these strings from some localized place
if (Context.getLangOptions().CPlusPlus)
S = "the global namespace";
else
S = "the global scope";
} else if (TypeDecl *Type = dyn_cast<TypeDecl>(DC)) {
S = ConvertTypeToDiagnosticString(Context, Context.getTypeDeclType(Type),
PrevArgs, NumPrevArgs);
} else {
// FIXME: Get these strings from some localized place
NamedDecl *ND = cast<NamedDecl>(DC);
if (isa<NamespaceDecl>(ND))
S += "namespace ";
else if (isa<ObjCMethodDecl>(ND))
S += "method ";
else if (isa<FunctionDecl>(ND))
S += "function ";
S += "'";
ND->getNameForDiagnostic(S, Context.PrintingPolicy, true);
S += "'";
}
NeedQuotes = false;
break;
}
}
if (NeedQuotes)
Output.push_back('\'');
Output.append(S.begin(), S.end());
if (NeedQuotes)
Output.push_back('\'');
}
static inline RecordDecl *CreateStructDecl(ASTContext &C, const char *Name) {
if (C.getLangOptions().CPlusPlus)
return CXXRecordDecl::Create(C, TagDecl::TK_struct,
C.getTranslationUnitDecl(),
SourceLocation(), &C.Idents.get(Name));
return RecordDecl::Create(C, TagDecl::TK_struct,
C.getTranslationUnitDecl(),
SourceLocation(), &C.Idents.get(Name));
}
void Sema::ActOnTranslationUnitScope(SourceLocation Loc, Scope *S) {
TUScope = S;
PushDeclContext(S, Context.getTranslationUnitDecl());
if (PP.getTargetInfo().getPointerWidth(0) >= 64) {
TypeSourceInfo *TInfo;
// Install [u]int128_t for 64-bit targets.
TInfo = Context.getTrivialTypeSourceInfo(Context.Int128Ty);
PushOnScopeChains(TypedefDecl::Create(Context, CurContext,
SourceLocation(),
&Context.Idents.get("__int128_t"),
TInfo), TUScope);
TInfo = Context.getTrivialTypeSourceInfo(Context.UnsignedInt128Ty);
PushOnScopeChains(TypedefDecl::Create(Context, CurContext,
SourceLocation(),
&Context.Idents.get("__uint128_t"),
TInfo), TUScope);
}
if (!PP.getLangOptions().ObjC1) return;
// Built-in ObjC types may already be set by PCHReader (hence isNull checks).
if (Context.getObjCSelType().isNull()) {
// Create the built-in typedef for 'SEL'.
QualType SelT = Context.getPointerType(Context.ObjCBuiltinSelTy);
TypeSourceInfo *SelInfo = Context.getTrivialTypeSourceInfo(SelT);
TypedefDecl *SelTypedef
= TypedefDecl::Create(Context, CurContext, SourceLocation(),
&Context.Idents.get("SEL"), SelInfo);
PushOnScopeChains(SelTypedef, TUScope);
Context.setObjCSelType(Context.getTypeDeclType(SelTypedef));
Context.ObjCSelRedefinitionType = Context.getObjCSelType();
}
// Synthesize "@class Protocol;
if (Context.getObjCProtoType().isNull()) {
ObjCInterfaceDecl *ProtocolDecl =
ObjCInterfaceDecl::Create(Context, CurContext, SourceLocation(),
&Context.Idents.get("Protocol"),
SourceLocation(), true);
Context.setObjCProtoType(Context.getObjCInterfaceType(ProtocolDecl));
PushOnScopeChains(ProtocolDecl, TUScope, false);
}
// Create the built-in typedef for 'id'.
if (Context.getObjCIdType().isNull()) {
QualType IdT = Context.getObjCObjectPointerType(Context.ObjCBuiltinIdTy);
TypeSourceInfo *IdInfo = Context.getTrivialTypeSourceInfo(IdT);
TypedefDecl *IdTypedef
= TypedefDecl::Create(Context, CurContext, SourceLocation(),
&Context.Idents.get("id"), IdInfo);
PushOnScopeChains(IdTypedef, TUScope);
Context.setObjCIdType(Context.getTypeDeclType(IdTypedef));
Context.ObjCIdRedefinitionType = Context.getObjCIdType();
}
// Create the built-in typedef for 'Class'.
if (Context.getObjCClassType().isNull()) {
QualType ClassType
= Context.getObjCObjectPointerType(Context.ObjCBuiltinClassTy);
TypeSourceInfo *ClassInfo = Context.getTrivialTypeSourceInfo(ClassType);
TypedefDecl *ClassTypedef
= TypedefDecl::Create(Context, CurContext, SourceLocation(),
&Context.Idents.get("Class"), ClassInfo);
PushOnScopeChains(ClassTypedef, TUScope);
Context.setObjCClassType(Context.getTypeDeclType(ClassTypedef));
Context.ObjCClassRedefinitionType = Context.getObjCClassType();
}
}
Sema::Sema(Preprocessor &pp, ASTContext &ctxt, ASTConsumer &consumer,
bool CompleteTranslationUnit,
CodeCompleteConsumer *CodeCompleter)
: LangOpts(pp.getLangOptions()), PP(pp), Context(ctxt), Consumer(consumer),
Diags(PP.getDiagnostics()), SourceMgr(PP.getSourceManager()),
ExternalSource(0), CodeCompleter(CodeCompleter), CurContext(0),
CurBlock(0), PackContext(0), ParsingDeclDepth(0),
IdResolver(pp.getLangOptions()), StdNamespace(0), StdBadAlloc(0),
GlobalNewDeleteDeclared(false),
CompleteTranslationUnit(CompleteTranslationUnit),
NumSFINAEErrors(0), NonInstantiationEntries(0),
CurrentInstantiationScope(0)
{
TUScope = 0;
if (getLangOptions().CPlusPlus)
FieldCollector.reset(new CXXFieldCollector());
// Tell diagnostics how to render things from the AST library.
PP.getDiagnostics().SetArgToStringFn(ConvertArgToStringFn, &Context);
ExprEvalContexts.push_back(
ExpressionEvaluationContextRecord(PotentiallyEvaluated, 0));
}
/// ImpCastExprToType - If Expr is not of type 'Type', insert an implicit cast.
/// If there is already an implicit cast, merge into the existing one.
/// If isLvalue, the result of the cast is an lvalue.
void Sema::ImpCastExprToType(Expr *&Expr, QualType Ty,
CastExpr::CastKind Kind, bool isLvalue) {
QualType ExprTy = Context.getCanonicalType(Expr->getType());
QualType TypeTy = Context.getCanonicalType(Ty);
if (ExprTy == TypeTy)
return;
if (Expr->getType()->isPointerType() && Ty->isPointerType()) {
QualType ExprBaseType = cast<PointerType>(ExprTy)->getPointeeType();
QualType BaseType = cast<PointerType>(TypeTy)->getPointeeType();
if (ExprBaseType.getAddressSpace() != BaseType.getAddressSpace()) {
Diag(Expr->getExprLoc(), diag::err_implicit_pointer_address_space_cast)
<< Expr->getSourceRange();
}
}
CheckImplicitConversion(Expr, Ty);
if (ImplicitCastExpr *ImpCast = dyn_cast<ImplicitCastExpr>(Expr)) {
if (ImpCast->getCastKind() == Kind) {
ImpCast->setType(Ty);
ImpCast->setLvalueCast(isLvalue);
return;
}
}
Expr = new (Context) ImplicitCastExpr(Ty, Kind, Expr, isLvalue);
}
void Sema::DeleteExpr(ExprTy *E) {
if (E) static_cast<Expr*>(E)->Destroy(Context);
}
void Sema::DeleteStmt(StmtTy *S) {
if (S) static_cast<Stmt*>(S)->Destroy(Context);
}
/// ActOnEndOfTranslationUnit - This is called at the very end of the
/// translation unit when EOF is reached and all but the top-level scope is
/// popped.
void Sema::ActOnEndOfTranslationUnit() {
while (1) {
// C++: Perform implicit template instantiations.
//
// FIXME: When we perform these implicit instantiations, we do not carefully
// keep track of the point of instantiation (C++ [temp.point]). This means
// that name lookup that occurs within the template instantiation will
// always happen at the end of the translation unit, so it will find
// some names that should not be found. Although this is common behavior
// for C++ compilers, it is technically wrong. In the future, we either need
// to be able to filter the results of name lookup or we need to perform
// template instantiations earlier.
PerformPendingImplicitInstantiations();
/// If ProcessPendingClassesWithUnmarkedVirtualMembers ends up marking
/// any virtual member functions it might lead to more pending template
/// instantiations, which is why we need to loop here.
if (!ProcessPendingClassesWithUnmarkedVirtualMembers())
break;
}
// Check for #pragma weak identifiers that were never declared
// FIXME: This will cause diagnostics to be emitted in a non-determinstic
// order! Iterating over a densemap like this is bad.
for (llvm::DenseMap<IdentifierInfo*,WeakInfo>::iterator
I = WeakUndeclaredIdentifiers.begin(),
E = WeakUndeclaredIdentifiers.end(); I != E; ++I) {
if (I->second.getUsed()) continue;
Diag(I->second.getLocation(), diag::warn_weak_identifier_undeclared)
<< I->first;
}
if (!CompleteTranslationUnit)
return;
// C99 6.9.2p2:
// A declaration of an identifier for an object that has file
// scope without an initializer, and without a storage-class
// specifier or with the storage-class specifier static,
// constitutes a tentative definition. If a translation unit
// contains one or more tentative definitions for an identifier,
// and the translation unit contains no external definition for
// that identifier, then the behavior is exactly as if the
// translation unit contains a file scope declaration of that
// identifier, with the composite type as of the end of the
// translation unit, with an initializer equal to 0.
for (unsigned i = 0, e = TentativeDefinitionList.size(); i != e; ++i) {
VarDecl *VD = TentativeDefinitions.lookup(TentativeDefinitionList[i]);
// If the tentative definition was completed, it will be in the list, but
// not the map.
if (VD == 0 || VD->isInvalidDecl() || !VD->isTentativeDefinition(Context))
continue;
if (const IncompleteArrayType *ArrayT
= Context.getAsIncompleteArrayType(VD->getType())) {
if (RequireCompleteType(VD->getLocation(),
ArrayT->getElementType(),
diag::err_tentative_def_incomplete_type_arr)) {
VD->setInvalidDecl();
continue;
}
// Set the length of the array to 1 (C99 6.9.2p5).
Diag(VD->getLocation(), diag::warn_tentative_incomplete_array);
llvm::APInt One(Context.getTypeSize(Context.getSizeType()), true);
QualType T = Context.getConstantArrayType(ArrayT->getElementType(),
One, ArrayType::Normal, 0);
VD->setType(T);
} else if (RequireCompleteType(VD->getLocation(), VD->getType(),
diag::err_tentative_def_incomplete_type))
VD->setInvalidDecl();
// Notify the consumer that we've completed a tentative definition.
if (!VD->isInvalidDecl())
Consumer.CompleteTentativeDefinition(VD);
}
}
//===----------------------------------------------------------------------===//
// Helper functions.
//===----------------------------------------------------------------------===//
DeclContext *Sema::getFunctionLevelDeclContext() {
DeclContext *DC = CurContext;
while (isa<BlockDecl>(DC))
DC = DC->getParent();
return DC;
}
/// getCurFunctionDecl - If inside of a function body, this returns a pointer
/// to the function decl for the function being parsed. If we're currently
/// in a 'block', this returns the containing context.
FunctionDecl *Sema::getCurFunctionDecl() {
DeclContext *DC = getFunctionLevelDeclContext();
return dyn_cast<FunctionDecl>(DC);
}
ObjCMethodDecl *Sema::getCurMethodDecl() {
DeclContext *DC = getFunctionLevelDeclContext();
return dyn_cast<ObjCMethodDecl>(DC);
}
NamedDecl *Sema::getCurFunctionOrMethodDecl() {
DeclContext *DC = getFunctionLevelDeclContext();
if (isa<ObjCMethodDecl>(DC) || isa<FunctionDecl>(DC))
return cast<NamedDecl>(DC);
return 0;
}
Sema::SemaDiagnosticBuilder::~SemaDiagnosticBuilder() {
if (!this->Emit())
return;
// If this is not a note, and we're in a template instantiation
// that is different from the last template instantiation where
// we emitted an error, print a template instantiation
// backtrace.
if (!SemaRef.Diags.isBuiltinNote(DiagID) &&
!SemaRef.ActiveTemplateInstantiations.empty() &&
SemaRef.ActiveTemplateInstantiations.back()
!= SemaRef.LastTemplateInstantiationErrorContext) {
SemaRef.PrintInstantiationStack();
SemaRef.LastTemplateInstantiationErrorContext
= SemaRef.ActiveTemplateInstantiations.back();
}
}
Sema::SemaDiagnosticBuilder
Sema::Diag(SourceLocation Loc, const PartialDiagnostic& PD) {
SemaDiagnosticBuilder Builder(Diag(Loc, PD.getDiagID()));
PD.Emit(Builder);
return Builder;
}
void Sema::ActOnComment(SourceRange Comment) {
Context.Comments.push_back(Comment);
}