| //===--- RecursiveASTVisitor.h - Recursive AST Visitor ----------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the RecursiveASTVisitor interface, which recursively |
| // traverses the entire AST. |
| // |
| //===----------------------------------------------------------------------===// |
| #ifndef LLVM_CLANG_LIBCLANG_RECURSIVEASTVISITOR_H |
| #define LLVM_CLANG_LIBCLANG_RECURSIVEASTVISITOR_H |
| |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclFriend.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/ExprObjC.h" |
| #include "clang/AST/NestedNameSpecifier.h" |
| #include "clang/AST/Stmt.h" |
| #include "clang/AST/StmtCXX.h" |
| #include "clang/AST/StmtObjC.h" |
| #include "clang/AST/TemplateBase.h" |
| #include "clang/AST/TemplateName.h" |
| #include "clang/AST/Type.h" |
| #include "clang/AST/TypeLoc.h" |
| |
| // The following three macros are used for meta programming. The code |
| // using them is responsible for defining macro OPERATOR(). |
| |
| // All unary operators. |
| #define UNARYOP_LIST() \ |
| OPERATOR(PostInc) OPERATOR(PostDec) \ |
| OPERATOR(PreInc) OPERATOR(PreDec) \ |
| OPERATOR(AddrOf) OPERATOR(Deref) \ |
| OPERATOR(Plus) OPERATOR(Minus) \ |
| OPERATOR(Not) OPERATOR(LNot) \ |
| OPERATOR(Real) OPERATOR(Imag) \ |
| OPERATOR(Extension) |
| |
| // All binary operators (excluding compound assign operators). |
| #define BINOP_LIST() \ |
| OPERATOR(PtrMemD) OPERATOR(PtrMemI) \ |
| OPERATOR(Mul) OPERATOR(Div) OPERATOR(Rem) \ |
| OPERATOR(Add) OPERATOR(Sub) OPERATOR(Shl) \ |
| OPERATOR(Shr) \ |
| \ |
| OPERATOR(LT) OPERATOR(GT) OPERATOR(LE) \ |
| OPERATOR(GE) OPERATOR(EQ) OPERATOR(NE) \ |
| OPERATOR(And) OPERATOR(Xor) OPERATOR(Or) \ |
| OPERATOR(LAnd) OPERATOR(LOr) \ |
| \ |
| OPERATOR(Assign) \ |
| OPERATOR(Comma) |
| |
| // All compound assign operators. |
| #define CAO_LIST() \ |
| OPERATOR(Mul) OPERATOR(Div) OPERATOR(Rem) OPERATOR(Add) OPERATOR(Sub) \ |
| OPERATOR(Shl) OPERATOR(Shr) OPERATOR(And) OPERATOR(Or) OPERATOR(Xor) |
| |
| namespace clang { |
| namespace cxindex { |
| |
| // A helper macro to implement short-circuiting when recursing. It |
| // invokes CALL_EXPR, which must be a method call, on the derived |
| // object (s.t. a user of RecursiveASTVisitor can override the method |
| // in CALL_EXPR). |
| #define TRY_TO(CALL_EXPR) \ |
| do { if (!getDerived().CALL_EXPR) return false; } while (0) |
| |
| /// \brief A class that does preorder depth-first traversal on the |
| /// entire Clang AST and visits each node. |
| /// |
| /// This class performs three distinct tasks: |
| /// 1. traverse the AST (i.e. go to each node); |
| /// 2. at a given node, walk up the class hierarchy, starting from |
| /// the node's dynamic type, until the top-most class (e.g. Stmt, |
| /// Decl, or Type) is reached. |
| /// 3. given a (node, class) combination, where 'class' is some base |
| /// class of the dynamic type of 'node', call a user-overridable |
| /// function to actually visit the node. |
| /// |
| /// These tasks are done by three groups of methods, respectively: |
| /// 1. TraverseDecl(Decl *x) does task #1. It is the entry point |
| /// for traversing an AST rooted at x. This method simply |
| /// dispatches (i.e. forwards) to TraverseFoo(Foo *x) where Foo |
| /// is the dynamic type of *x, which calls WalkUpFromFoo(x) and |
| /// then recursively visits the child nodes of x. |
| /// TraverseStmt(Stmt *x) and TraverseType(QualType x) work |
| /// similarly. |
| /// 2. WalkUpFromFoo(Foo *x) does task #2. It does not try to visit |
| /// any child node of x. Instead, it first calls WalkUpFromBar(x) |
| /// where Bar is the direct parent class of Foo (unless Foo has |
| /// no parent), and then calls VisitFoo(x) (see the next list item). |
| /// 3. VisitFoo(Foo *x) does task #3. |
| /// |
| /// These three method groups are tiered (Traverse* > WalkUpFrom* > |
| /// Visit*). A method (e.g. Traverse*) may call methods from the same |
| /// tier (e.g. other Traverse*) or one tier lower (e.g. WalkUpFrom*). |
| /// It may not call methods from a higher tier. |
| /// |
| /// Note that since WalkUpFromFoo() calls WalkUpFromBar() (where Bar |
| /// is Foo's super class) before calling VisitFoo(), the result is |
| /// that the Visit*() methods for a given node are called in the |
| /// top-down order (e.g. for a node of type NamedDecl, the order will |
| /// be VisitDecl(), VisitNamedDecl(), and then VisitNamespaceDecl()). |
| /// |
| /// This scheme guarantees that all Visit*() calls for the same AST |
| /// node are grouped together. In other words, Visit*() methods for |
| /// different nodes are never interleaved. |
| /// |
| /// Stmts are traversed internally using a data queue to avoid a stack overflow |
| /// with hugely nested ASTs. |
| /// |
| /// Clients of this visitor should subclass the visitor (providing |
| /// themselves as the template argument, using the curiously recurring |
| /// template pattern) and override any of the Traverse*, WalkUpFrom*, |
| /// and Visit* methods for declarations, types, statements, |
| /// expressions, or other AST nodes where the visitor should customize |
| /// behavior. Most users only need to override Visit*. Advanced |
| /// users may override Traverse* and WalkUpFrom* to implement custom |
| /// traversal strategies. Returning false from one of these overridden |
| /// functions will abort the entire traversal. |
| /// |
| /// By default, this visitor tries to visit every part of the explicit |
| /// source code exactly once. The default policy towards templates |
| /// is to descend into the 'pattern' class or function body, not any |
| /// explicit or implicit instantiations. Explicit specializations |
| /// are still visited, and the patterns of partial specializations |
| /// are visited separately. This behavior can be changed by |
| /// overriding shouldVisitTemplateInstantiations() in the derived class |
| /// to return true, in which case all known implicit and explicit |
| /// instantiations will be visited at the same time as the pattern |
| /// from which they were produced. |
| template<typename Derived> |
| class RecursiveASTVisitor { |
| public: |
| /// \brief Return a reference to the derived class. |
| Derived &getDerived() { return *static_cast<Derived*>(this); } |
| |
| /// \brief Return whether this visitor should recurse into |
| /// template instantiations. |
| bool shouldVisitTemplateInstantiations() const { return false; } |
| |
| /// \brief Return whether this visitor should recurse into the types of |
| /// TypeLocs. |
| bool shouldWalkTypesOfTypeLocs() const { return true; } |
| |
| /// \brief Recursively visit a statement or expression, by |
| /// dispatching to Traverse*() based on the argument's dynamic type. |
| /// |
| /// \returns false if the visitation was terminated early, true |
| /// otherwise (including when the argument is NULL). |
| bool TraverseStmt(Stmt *S); |
| |
| /// \brief Recursively visit a type, by dispatching to |
| /// Traverse*Type() based on the argument's getTypeClass() property. |
| /// |
| /// \returns false if the visitation was terminated early, true |
| /// otherwise (including when the argument is a Null type). |
| bool TraverseType(QualType T); |
| |
| /// \brief Recursively visit a type with location, by dispatching to |
| /// Traverse*TypeLoc() based on the argument type's getTypeClass() property. |
| /// |
| /// \returns false if the visitation was terminated early, true |
| /// otherwise (including when the argument is a Null type location). |
| bool TraverseTypeLoc(TypeLoc TL); |
| |
| /// \brief Recursively visit a declaration, by dispatching to |
| /// Traverse*Decl() based on the argument's dynamic type. |
| /// |
| /// \returns false if the visitation was terminated early, true |
| /// otherwise (including when the argument is NULL). |
| bool TraverseDecl(Decl *D); |
| |
| /// \brief Recursively visit a C++ nested-name-specifier. |
| /// |
| /// \returns false if the visitation was terminated early, true otherwise. |
| bool TraverseNestedNameSpecifier(NestedNameSpecifier *NNS); |
| |
| /// \brief Recursively visit a C++ nested-name-specifier with location |
| /// information. |
| /// |
| /// \returns false if the visitation was terminated early, true otherwise. |
| bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS); |
| |
| /// \brief Recursively visit a name with its location information. |
| /// |
| /// \returns false if the visitation was terminated early, true otherwise. |
| bool TraverseDeclarationNameInfo(DeclarationNameInfo NameInfo); |
| |
| /// \brief Recursively visit a template name and dispatch to the |
| /// appropriate method. |
| /// |
| /// \returns false if the visitation was terminated early, true otherwise. |
| bool TraverseTemplateName(TemplateName Template); |
| |
| /// \brief Recursively visit a template argument and dispatch to the |
| /// appropriate method for the argument type. |
| /// |
| /// \returns false if the visitation was terminated early, true otherwise. |
| // FIXME: migrate callers to TemplateArgumentLoc instead. |
| bool TraverseTemplateArgument(const TemplateArgument &Arg); |
| |
| /// \brief Recursively visit a template argument location and dispatch to the |
| /// appropriate method for the argument type. |
| /// |
| /// \returns false if the visitation was terminated early, true otherwise. |
| bool TraverseTemplateArgumentLoc(const TemplateArgumentLoc &ArgLoc); |
| |
| /// \brief Recursively visit a set of template arguments. |
| /// This can be overridden by a subclass, but it's not expected that |
| /// will be needed -- this visitor always dispatches to another. |
| /// |
| /// \returns false if the visitation was terminated early, true otherwise. |
| // FIXME: take a TemplateArgumentLoc* (or TemplateArgumentListInfo) instead. |
| bool TraverseTemplateArguments(const TemplateArgument *Args, |
| unsigned NumArgs); |
| |
| /// \brief Recursively visit a constructor initializer. This |
| /// automatically dispatches to another visitor for the initializer |
| /// expression, but not for the name of the initializer, so may |
| /// be overridden for clients that need access to the name. |
| /// |
| /// \returns false if the visitation was terminated early, true otherwise. |
| bool TraverseConstructorInitializer(CXXCtorInitializer *Init); |
| |
| /// \brief Recursively visit a lambda capture. |
| /// |
| /// \returns false if the visitation was terminated early, true otherwise. |
| bool TraverseLambdaCapture(LambdaExpr::Capture C); |
| |
| // ---- Methods on Stmts ---- |
| |
| // Declare Traverse*() for all concrete Stmt classes. |
| #define ABSTRACT_STMT(STMT) |
| #define STMT(CLASS, PARENT) \ |
| bool Traverse##CLASS(CLASS *S); |
| #include "clang/AST/StmtNodes.inc" |
| // The above header #undefs ABSTRACT_STMT and STMT upon exit. |
| |
| // Define WalkUpFrom*() and empty Visit*() for all Stmt classes. |
| bool WalkUpFromStmt(Stmt *S) { return getDerived().VisitStmt(S); } |
| bool VisitStmt(Stmt *S) { return true; } |
| #define STMT(CLASS, PARENT) \ |
| bool WalkUpFrom##CLASS(CLASS *S) { \ |
| TRY_TO(WalkUpFrom##PARENT(S)); \ |
| TRY_TO(Visit##CLASS(S)); \ |
| return true; \ |
| } \ |
| bool Visit##CLASS(CLASS *S) { return true; } |
| #include "clang/AST/StmtNodes.inc" |
| |
| // Define Traverse*(), WalkUpFrom*(), and Visit*() for unary |
| // operator methods. Unary operators are not classes in themselves |
| // (they're all opcodes in UnaryOperator) but do have visitors. |
| #define OPERATOR(NAME) \ |
| bool TraverseUnary##NAME(UnaryOperator *S) { \ |
| TRY_TO(WalkUpFromUnary##NAME(S)); \ |
| StmtQueueAction StmtQueue(*this); \ |
| StmtQueue.queue(S->getSubExpr()); \ |
| return true; \ |
| } \ |
| bool WalkUpFromUnary##NAME(UnaryOperator *S) { \ |
| TRY_TO(WalkUpFromUnaryOperator(S)); \ |
| TRY_TO(VisitUnary##NAME(S)); \ |
| return true; \ |
| } \ |
| bool VisitUnary##NAME(UnaryOperator *S) { return true; } |
| |
| UNARYOP_LIST() |
| #undef OPERATOR |
| |
| // Define Traverse*(), WalkUpFrom*(), and Visit*() for binary |
| // operator methods. Binary operators are not classes in themselves |
| // (they're all opcodes in BinaryOperator) but do have visitors. |
| #define GENERAL_BINOP_FALLBACK(NAME, BINOP_TYPE) \ |
| bool TraverseBin##NAME(BINOP_TYPE *S) { \ |
| TRY_TO(WalkUpFromBin##NAME(S)); \ |
| StmtQueueAction StmtQueue(*this); \ |
| StmtQueue.queue(S->getLHS()); \ |
| StmtQueue.queue(S->getRHS()); \ |
| return true; \ |
| } \ |
| bool WalkUpFromBin##NAME(BINOP_TYPE *S) { \ |
| TRY_TO(WalkUpFrom##BINOP_TYPE(S)); \ |
| TRY_TO(VisitBin##NAME(S)); \ |
| return true; \ |
| } \ |
| bool VisitBin##NAME(BINOP_TYPE *S) { return true; } |
| |
| #define OPERATOR(NAME) GENERAL_BINOP_FALLBACK(NAME, BinaryOperator) |
| BINOP_LIST() |
| #undef OPERATOR |
| |
| // Define Traverse*(), WalkUpFrom*(), and Visit*() for compound |
| // assignment methods. Compound assignment operators are not |
| // classes in themselves (they're all opcodes in |
| // CompoundAssignOperator) but do have visitors. |
| #define OPERATOR(NAME) \ |
| GENERAL_BINOP_FALLBACK(NAME##Assign, CompoundAssignOperator) |
| |
| CAO_LIST() |
| #undef OPERATOR |
| #undef GENERAL_BINOP_FALLBACK |
| |
| // ---- Methods on Types ---- |
| // FIXME: revamp to take TypeLoc's rather than Types. |
| |
| // Declare Traverse*() for all concrete Type classes. |
| #define ABSTRACT_TYPE(CLASS, BASE) |
| #define TYPE(CLASS, BASE) \ |
| bool Traverse##CLASS##Type(CLASS##Type *T); |
| #include "clang/AST/TypeNodes.def" |
| // The above header #undefs ABSTRACT_TYPE and TYPE upon exit. |
| |
| // Define WalkUpFrom*() and empty Visit*() for all Type classes. |
| bool WalkUpFromType(Type *T) { return getDerived().VisitType(T); } |
| bool VisitType(Type *T) { return true; } |
| #define TYPE(CLASS, BASE) \ |
| bool WalkUpFrom##CLASS##Type(CLASS##Type *T) { \ |
| TRY_TO(WalkUpFrom##BASE(T)); \ |
| TRY_TO(Visit##CLASS##Type(T)); \ |
| return true; \ |
| } \ |
| bool Visit##CLASS##Type(CLASS##Type *T) { return true; } |
| #include "clang/AST/TypeNodes.def" |
| |
| // ---- Methods on TypeLocs ---- |
| // FIXME: this currently just calls the matching Type methods |
| |
| // Declare Traverse*() for all concrete Type classes. |
| #define ABSTRACT_TYPELOC(CLASS, BASE) |
| #define TYPELOC(CLASS, BASE) \ |
| bool Traverse##CLASS##TypeLoc(CLASS##TypeLoc TL); |
| #include "clang/AST/TypeLocNodes.def" |
| // The above header #undefs ABSTRACT_TYPELOC and TYPELOC upon exit. |
| |
| // Define WalkUpFrom*() and empty Visit*() for all TypeLoc classes. |
| bool WalkUpFromTypeLoc(TypeLoc TL) { return getDerived().VisitTypeLoc(TL); } |
| bool VisitTypeLoc(TypeLoc TL) { return true; } |
| |
| // QualifiedTypeLoc and UnqualTypeLoc are not declared in |
| // TypeNodes.def and thus need to be handled specially. |
| bool WalkUpFromQualifiedTypeLoc(QualifiedTypeLoc TL) { |
| return getDerived().VisitUnqualTypeLoc(TL.getUnqualifiedLoc()); |
| } |
| bool VisitQualifiedTypeLoc(QualifiedTypeLoc TL) { return true; } |
| bool WalkUpFromUnqualTypeLoc(UnqualTypeLoc TL) { |
| return getDerived().VisitUnqualTypeLoc(TL.getUnqualifiedLoc()); |
| } |
| bool VisitUnqualTypeLoc(UnqualTypeLoc TL) { return true; } |
| |
| // Note that BASE includes trailing 'Type' which CLASS doesn't. |
| #define TYPE(CLASS, BASE) \ |
| bool WalkUpFrom##CLASS##TypeLoc(CLASS##TypeLoc TL) { \ |
| TRY_TO(WalkUpFrom##BASE##Loc(TL)); \ |
| TRY_TO(Visit##CLASS##TypeLoc(TL)); \ |
| return true; \ |
| } \ |
| bool Visit##CLASS##TypeLoc(CLASS##TypeLoc TL) { return true; } |
| #include "clang/AST/TypeNodes.def" |
| |
| // ---- Methods on Decls ---- |
| |
| // Declare Traverse*() for all concrete Decl classes. |
| #define ABSTRACT_DECL(DECL) |
| #define DECL(CLASS, BASE) \ |
| bool Traverse##CLASS##Decl(CLASS##Decl *D); |
| #include "clang/AST/DeclNodes.inc" |
| // The above header #undefs ABSTRACT_DECL and DECL upon exit. |
| |
| // Define WalkUpFrom*() and empty Visit*() for all Decl classes. |
| bool WalkUpFromDecl(Decl *D) { return getDerived().VisitDecl(D); } |
| bool VisitDecl(Decl *D) { return true; } |
| #define DECL(CLASS, BASE) \ |
| bool WalkUpFrom##CLASS##Decl(CLASS##Decl *D) { \ |
| TRY_TO(WalkUpFrom##BASE(D)); \ |
| TRY_TO(Visit##CLASS##Decl(D)); \ |
| return true; \ |
| } \ |
| bool Visit##CLASS##Decl(CLASS##Decl *D) { return true; } |
| #include "clang/AST/DeclNodes.inc" |
| |
| private: |
| // These are helper methods used by more than one Traverse* method. |
| bool TraverseTemplateParameterListHelper(TemplateParameterList *TPL); |
| bool TraverseClassInstantiations(ClassTemplateDecl *D); |
| bool TraverseFunctionInstantiations(FunctionTemplateDecl *D) ; |
| bool TraverseTemplateArgumentLocsHelper(const TemplateArgumentLoc *TAL, |
| unsigned Count); |
| bool TraverseArrayTypeLocHelper(ArrayTypeLoc TL); |
| bool TraverseRecordHelper(RecordDecl *D); |
| bool TraverseCXXRecordHelper(CXXRecordDecl *D); |
| bool TraverseDeclaratorHelper(DeclaratorDecl *D); |
| bool TraverseDeclContextHelper(DeclContext *DC); |
| bool TraverseFunctionHelper(FunctionDecl *D); |
| bool TraverseVarHelper(VarDecl *D); |
| |
| typedef SmallVector<Stmt *, 16> StmtsTy; |
| typedef SmallVector<StmtsTy *, 4> QueuesTy; |
| |
| QueuesTy Queues; |
| |
| class NewQueueRAII { |
| RecursiveASTVisitor &RAV; |
| public: |
| NewQueueRAII(StmtsTy &queue, RecursiveASTVisitor &RAV) : RAV(RAV) { |
| RAV.Queues.push_back(&queue); |
| } |
| ~NewQueueRAII() { |
| RAV.Queues.pop_back(); |
| } |
| }; |
| |
| StmtsTy &getCurrentQueue() { |
| assert(!Queues.empty() && "base TraverseStmt was never called?"); |
| return *Queues.back(); |
| } |
| |
| public: |
| class StmtQueueAction { |
| StmtsTy &CurrQueue; |
| public: |
| explicit StmtQueueAction(RecursiveASTVisitor &RAV) |
| : CurrQueue(RAV.getCurrentQueue()) { } |
| |
| void queue(Stmt *S) { |
| CurrQueue.push_back(S); |
| } |
| }; |
| }; |
| |
| #define DISPATCH(NAME, CLASS, VAR) \ |
| return getDerived().Traverse##NAME(static_cast<CLASS*>(VAR)) |
| |
| template<typename Derived> |
| bool RecursiveASTVisitor<Derived>::TraverseStmt(Stmt *S) { |
| if (!S) |
| return true; |
| |
| StmtsTy Queue, StmtsToEnqueu; |
| Queue.push_back(S); |
| NewQueueRAII NQ(StmtsToEnqueu, *this); |
| |
| while (!Queue.empty()) { |
| S = Queue.pop_back_val(); |
| if (!S) |
| continue; |
| |
| StmtsToEnqueu.clear(); |
| |
| #define DISPATCH_STMT(NAME, CLASS, VAR) \ |
| TRY_TO(Traverse##NAME(static_cast<CLASS*>(VAR))); break |
| |
| // If we have a binary expr, dispatch to the subcode of the binop. A smart |
| // optimizer (e.g. LLVM) will fold this comparison into the switch stmt |
| // below. |
| if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(S)) { |
| switch (BinOp->getOpcode()) { |
| #define OPERATOR(NAME) \ |
| case BO_##NAME: DISPATCH_STMT(Bin##NAME, BinaryOperator, S); |
| |
| BINOP_LIST() |
| #undef OPERATOR |
| #undef BINOP_LIST |
| |
| #define OPERATOR(NAME) \ |
| case BO_##NAME##Assign: \ |
| DISPATCH_STMT(Bin##NAME##Assign, CompoundAssignOperator, S); |
| |
| CAO_LIST() |
| #undef OPERATOR |
| #undef CAO_LIST |
| } |
| } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(S)) { |
| switch (UnOp->getOpcode()) { |
| #define OPERATOR(NAME) \ |
| case UO_##NAME: DISPATCH_STMT(Unary##NAME, UnaryOperator, S); |
| |
| UNARYOP_LIST() |
| #undef OPERATOR |
| #undef UNARYOP_LIST |
| } |
| } else { |
| |
| // Top switch stmt: dispatch to TraverseFooStmt for each concrete FooStmt. |
| switch (S->getStmtClass()) { |
| case Stmt::NoStmtClass: break; |
| #define ABSTRACT_STMT(STMT) |
| #define STMT(CLASS, PARENT) \ |
| case Stmt::CLASS##Class: DISPATCH_STMT(CLASS, CLASS, S); |
| #include "clang/AST/StmtNodes.inc" |
| } |
| } |
| |
| for (SmallVector<Stmt *, 8>::reverse_iterator |
| RI = StmtsToEnqueu.rbegin(), |
| RE = StmtsToEnqueu.rend(); RI != RE; ++RI) |
| Queue.push_back(*RI); |
| } |
| |
| return true; |
| } |
| |
| template<typename Derived> |
| bool RecursiveASTVisitor<Derived>::TraverseType(QualType T) { |
| if (T.isNull()) |
| return true; |
| |
| switch (T->getTypeClass()) { |
| #define ABSTRACT_TYPE(CLASS, BASE) |
| #define TYPE(CLASS, BASE) \ |
| case Type::CLASS: DISPATCH(CLASS##Type, CLASS##Type, \ |
| const_cast<Type*>(T.getTypePtr())); |
| #include "clang/AST/TypeNodes.def" |
| } |
| |
| return true; |
| } |
| |
| template<typename Derived> |
| bool RecursiveASTVisitor<Derived>::TraverseTypeLoc(TypeLoc TL) { |
| if (TL.isNull()) |
| return true; |
| |
| switch (TL.getTypeLocClass()) { |
| #define ABSTRACT_TYPELOC(CLASS, BASE) |
| #define TYPELOC(CLASS, BASE) \ |
| case TypeLoc::CLASS: \ |
| return getDerived().Traverse##CLASS##TypeLoc(*cast<CLASS##TypeLoc>(&TL)); |
| #include "clang/AST/TypeLocNodes.def" |
| } |
| |
| return true; |
| } |
| |
| |
| template<typename Derived> |
| bool RecursiveASTVisitor<Derived>::TraverseDecl(Decl *D) { |
| if (!D) |
| return true; |
| |
| // As a syntax visitor, we want to ignore declarations for |
| // implicitly-defined declarations (ones not typed explicitly by the |
| // user). |
| if (D->isImplicit()) |
| return true; |
| |
| switch (D->getKind()) { |
| #define ABSTRACT_DECL(DECL) |
| #define DECL(CLASS, BASE) \ |
| case Decl::CLASS: DISPATCH(CLASS##Decl, CLASS##Decl, D); |
| #include "clang/AST/DeclNodes.inc" |
| } |
| |
| return true; |
| } |
| |
| #undef DISPATCH |
| |
| template<typename Derived> |
| bool RecursiveASTVisitor<Derived>::TraverseNestedNameSpecifier( |
| NestedNameSpecifier *NNS) { |
| if (!NNS) |
| return true; |
| |
| if (NNS->getPrefix()) |
| TRY_TO(TraverseNestedNameSpecifier(NNS->getPrefix())); |
| |
| switch (NNS->getKind()) { |
| case NestedNameSpecifier::Identifier: |
| case NestedNameSpecifier::Namespace: |
| case NestedNameSpecifier::NamespaceAlias: |
| case NestedNameSpecifier::Global: |
| return true; |
| |
| case NestedNameSpecifier::TypeSpec: |
| case NestedNameSpecifier::TypeSpecWithTemplate: |
| TRY_TO(TraverseType(QualType(NNS->getAsType(), 0))); |
| } |
| |
| return true; |
| } |
| |
| template<typename Derived> |
| bool RecursiveASTVisitor<Derived>::TraverseNestedNameSpecifierLoc( |
| NestedNameSpecifierLoc NNS) { |
| if (!NNS) |
| return true; |
| |
| if (NestedNameSpecifierLoc Prefix = NNS.getPrefix()) |
| TRY_TO(TraverseNestedNameSpecifierLoc(Prefix)); |
| |
| switch (NNS.getNestedNameSpecifier()->getKind()) { |
| case NestedNameSpecifier::Identifier: |
| case NestedNameSpecifier::Namespace: |
| case NestedNameSpecifier::NamespaceAlias: |
| case NestedNameSpecifier::Global: |
| return true; |
| |
| case NestedNameSpecifier::TypeSpec: |
| case NestedNameSpecifier::TypeSpecWithTemplate: |
| TRY_TO(TraverseTypeLoc(NNS.getTypeLoc())); |
| break; |
| } |
| |
| return true; |
| } |
| |
| template<typename Derived> |
| bool RecursiveASTVisitor<Derived>::TraverseDeclarationNameInfo( |
| DeclarationNameInfo NameInfo) { |
| switch (NameInfo.getName().getNameKind()) { |
| case DeclarationName::CXXConstructorName: |
| case DeclarationName::CXXDestructorName: |
| case DeclarationName::CXXConversionFunctionName: |
| if (TypeSourceInfo *TSInfo = NameInfo.getNamedTypeInfo()) |
| TRY_TO(TraverseTypeLoc(TSInfo->getTypeLoc())); |
| |
| break; |
| |
| case DeclarationName::Identifier: |
| case DeclarationName::ObjCZeroArgSelector: |
| case DeclarationName::ObjCOneArgSelector: |
| case DeclarationName::ObjCMultiArgSelector: |
| case DeclarationName::CXXOperatorName: |
| case DeclarationName::CXXLiteralOperatorName: |
| case DeclarationName::CXXUsingDirective: |
| break; |
| } |
| |
| return true; |
| } |
| |
| template<typename Derived> |
| bool RecursiveASTVisitor<Derived>::TraverseTemplateName(TemplateName Template) { |
| if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) |
| TRY_TO(TraverseNestedNameSpecifier(DTN->getQualifier())); |
| else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName()) |
| TRY_TO(TraverseNestedNameSpecifier(QTN->getQualifier())); |
| |
| return true; |
| } |
| |
| template<typename Derived> |
| bool RecursiveASTVisitor<Derived>::TraverseTemplateArgument( |
| const TemplateArgument &Arg) { |
| switch (Arg.getKind()) { |
| case TemplateArgument::Null: |
| case TemplateArgument::Declaration: |
| case TemplateArgument::Integral: |
| return true; |
| |
| case TemplateArgument::Type: |
| return getDerived().TraverseType(Arg.getAsType()); |
| |
| case TemplateArgument::Template: |
| case TemplateArgument::TemplateExpansion: |
| return getDerived().TraverseTemplateName( |
| Arg.getAsTemplateOrTemplatePattern()); |
| |
| case TemplateArgument::Expression: |
| return getDerived().TraverseStmt(Arg.getAsExpr()); |
| |
| case TemplateArgument::Pack: |
| return getDerived().TraverseTemplateArguments(Arg.pack_begin(), |
| Arg.pack_size()); |
| } |
| |
| return true; |
| } |
| |
| // FIXME: no template name location? |
| // FIXME: no source locations for a template argument pack? |
| template<typename Derived> |
| bool RecursiveASTVisitor<Derived>::TraverseTemplateArgumentLoc( |
| const TemplateArgumentLoc &ArgLoc) { |
| const TemplateArgument &Arg = ArgLoc.getArgument(); |
| |
| switch (Arg.getKind()) { |
| case TemplateArgument::Null: |
| case TemplateArgument::Declaration: |
| case TemplateArgument::Integral: |
| return true; |
| |
| case TemplateArgument::Type: { |
| // FIXME: how can TSI ever be NULL? |
| if (TypeSourceInfo *TSI = ArgLoc.getTypeSourceInfo()) |
| return getDerived().TraverseTypeLoc(TSI->getTypeLoc()); |
| else |
| return getDerived().TraverseType(Arg.getAsType()); |
| } |
| |
| case TemplateArgument::Template: |
| case TemplateArgument::TemplateExpansion: |
| if (ArgLoc.getTemplateQualifierLoc()) |
| TRY_TO(getDerived().TraverseNestedNameSpecifierLoc( |
| ArgLoc.getTemplateQualifierLoc())); |
| return getDerived().TraverseTemplateName( |
| Arg.getAsTemplateOrTemplatePattern()); |
| |
| case TemplateArgument::Expression: |
| return getDerived().TraverseStmt(ArgLoc.getSourceExpression()); |
| |
| case TemplateArgument::Pack: |
| return getDerived().TraverseTemplateArguments(Arg.pack_begin(), |
| Arg.pack_size()); |
| } |
| |
| return true; |
| } |
| |
| template<typename Derived> |
| bool RecursiveASTVisitor<Derived>::TraverseTemplateArguments( |
| const TemplateArgument *Args, |
| unsigned NumArgs) { |
| for (unsigned I = 0; I != NumArgs; ++I) { |
| TRY_TO(TraverseTemplateArgument(Args[I])); |
| } |
| |
| return true; |
| } |
| |
| template<typename Derived> |
| bool RecursiveASTVisitor<Derived>::TraverseConstructorInitializer( |
| CXXCtorInitializer *Init) { |
| if (TypeSourceInfo *TInfo = Init->getTypeSourceInfo()) |
| TRY_TO(TraverseTypeLoc(TInfo->getTypeLoc())); |
| |
| if (Init->isWritten()) |
| TRY_TO(TraverseStmt(Init->getInit())); |
| return true; |
| } |
| |
| template<typename Derived> |
| bool RecursiveASTVisitor<Derived>::TraverseLambdaCapture(LambdaExpr::Capture C){ |
| return true; |
| } |
| |
| // ----------------- Type traversal ----------------- |
| |
| // This macro makes available a variable T, the passed-in type. |
| #define DEF_TRAVERSE_TYPE(TYPE, CODE) \ |
| template<typename Derived> \ |
| bool RecursiveASTVisitor<Derived>::Traverse##TYPE (TYPE *T) { \ |
| TRY_TO(WalkUpFrom##TYPE (T)); \ |
| { CODE; } \ |
| return true; \ |
| } |
| |
| DEF_TRAVERSE_TYPE(BuiltinType, { }) |
| |
| DEF_TRAVERSE_TYPE(ComplexType, { |
| TRY_TO(TraverseType(T->getElementType())); |
| }) |
| |
| DEF_TRAVERSE_TYPE(PointerType, { |
| TRY_TO(TraverseType(T->getPointeeType())); |
| }) |
| |
| DEF_TRAVERSE_TYPE(BlockPointerType, { |
| TRY_TO(TraverseType(T->getPointeeType())); |
| }) |
| |
| DEF_TRAVERSE_TYPE(LValueReferenceType, { |
| TRY_TO(TraverseType(T->getPointeeType())); |
| }) |
| |
| DEF_TRAVERSE_TYPE(RValueReferenceType, { |
| TRY_TO(TraverseType(T->getPointeeType())); |
| }) |
| |
| DEF_TRAVERSE_TYPE(MemberPointerType, { |
| TRY_TO(TraverseType(QualType(T->getClass(), 0))); |
| TRY_TO(TraverseType(T->getPointeeType())); |
| }) |
| |
| DEF_TRAVERSE_TYPE(ConstantArrayType, { |
| TRY_TO(TraverseType(T->getElementType())); |
| }) |
| |
| DEF_TRAVERSE_TYPE(IncompleteArrayType, { |
| TRY_TO(TraverseType(T->getElementType())); |
| }) |
| |
| DEF_TRAVERSE_TYPE(VariableArrayType, { |
| TRY_TO(TraverseType(T->getElementType())); |
| TRY_TO(TraverseStmt(T->getSizeExpr())); |
| }) |
| |
| DEF_TRAVERSE_TYPE(DependentSizedArrayType, { |
| TRY_TO(TraverseType(T->getElementType())); |
| if (T->getSizeExpr()) |
| TRY_TO(TraverseStmt(T->getSizeExpr())); |
| }) |
| |
| DEF_TRAVERSE_TYPE(DependentSizedExtVectorType, { |
| if (T->getSizeExpr()) |
| TRY_TO(TraverseStmt(T->getSizeExpr())); |
| TRY_TO(TraverseType(T->getElementType())); |
| }) |
| |
| DEF_TRAVERSE_TYPE(VectorType, { |
| TRY_TO(TraverseType(T->getElementType())); |
| }) |
| |
| DEF_TRAVERSE_TYPE(ExtVectorType, { |
| TRY_TO(TraverseType(T->getElementType())); |
| }) |
| |
| DEF_TRAVERSE_TYPE(FunctionNoProtoType, { |
| TRY_TO(TraverseType(T->getResultType())); |
| }) |
| |
| DEF_TRAVERSE_TYPE(FunctionProtoType, { |
| TRY_TO(TraverseType(T->getResultType())); |
| |
| for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(), |
| AEnd = T->arg_type_end(); |
| A != AEnd; ++A) { |
| TRY_TO(TraverseType(*A)); |
| } |
| |
| for (FunctionProtoType::exception_iterator E = T->exception_begin(), |
| EEnd = T->exception_end(); |
| E != EEnd; ++E) { |
| TRY_TO(TraverseType(*E)); |
| } |
| }) |
| |
| DEF_TRAVERSE_TYPE(UnresolvedUsingType, { }) |
| DEF_TRAVERSE_TYPE(TypedefType, { }) |
| |
| DEF_TRAVERSE_TYPE(TypeOfExprType, { |
| TRY_TO(TraverseStmt(T->getUnderlyingExpr())); |
| }) |
| |
| DEF_TRAVERSE_TYPE(TypeOfType, { |
| TRY_TO(TraverseType(T->getUnderlyingType())); |
| }) |
| |
| DEF_TRAVERSE_TYPE(DecltypeType, { |
| TRY_TO(TraverseStmt(T->getUnderlyingExpr())); |
| }) |
| |
| DEF_TRAVERSE_TYPE(UnaryTransformType, { |
| TRY_TO(TraverseType(T->getBaseType())); |
| TRY_TO(TraverseType(T->getUnderlyingType())); |
| }) |
| |
| DEF_TRAVERSE_TYPE(AutoType, { |
| TRY_TO(TraverseType(T->getDeducedType())); |
| }) |
| |
| DEF_TRAVERSE_TYPE(RecordType, { }) |
| DEF_TRAVERSE_TYPE(EnumType, { }) |
| DEF_TRAVERSE_TYPE(TemplateTypeParmType, { }) |
| DEF_TRAVERSE_TYPE(SubstTemplateTypeParmType, { }) |
| DEF_TRAVERSE_TYPE(SubstTemplateTypeParmPackType, { }) |
| |
| DEF_TRAVERSE_TYPE(TemplateSpecializationType, { |
| TRY_TO(TraverseTemplateName(T->getTemplateName())); |
| TRY_TO(TraverseTemplateArguments(T->getArgs(), T->getNumArgs())); |
| }) |
| |
| DEF_TRAVERSE_TYPE(InjectedClassNameType, { }) |
| |
| DEF_TRAVERSE_TYPE(AttributedType, { |
| TRY_TO(TraverseType(T->getModifiedType())); |
| }) |
| |
| DEF_TRAVERSE_TYPE(ParenType, { |
| TRY_TO(TraverseType(T->getInnerType())); |
| }) |
| |
| DEF_TRAVERSE_TYPE(ElaboratedType, { |
| if (T->getQualifier()) { |
| TRY_TO(TraverseNestedNameSpecifier(T->getQualifier())); |
| } |
| TRY_TO(TraverseType(T->getNamedType())); |
| }) |
| |
| DEF_TRAVERSE_TYPE(DependentNameType, { |
| TRY_TO(TraverseNestedNameSpecifier(T->getQualifier())); |
| }) |
| |
| DEF_TRAVERSE_TYPE(DependentTemplateSpecializationType, { |
| TRY_TO(TraverseNestedNameSpecifier(T->getQualifier())); |
| TRY_TO(TraverseTemplateArguments(T->getArgs(), T->getNumArgs())); |
| }) |
| |
| DEF_TRAVERSE_TYPE(PackExpansionType, { |
| TRY_TO(TraverseType(T->getPattern())); |
| }) |
| |
| DEF_TRAVERSE_TYPE(ObjCInterfaceType, { }) |
| |
| DEF_TRAVERSE_TYPE(ObjCObjectType, { |
| // We have to watch out here because an ObjCInterfaceType's base |
| // type is itself. |
| if (T->getBaseType().getTypePtr() != T) |
| TRY_TO(TraverseType(T->getBaseType())); |
| }) |
| |
| DEF_TRAVERSE_TYPE(ObjCObjectPointerType, { |
| TRY_TO(TraverseType(T->getPointeeType())); |
| }) |
| |
| DEF_TRAVERSE_TYPE(AtomicType, { |
| TRY_TO(TraverseType(T->getValueType())); |
| }) |
| |
| #undef DEF_TRAVERSE_TYPE |
| |
| // ----------------- TypeLoc traversal ----------------- |
| |
| // This macro makes available a variable TL, the passed-in TypeLoc. |
| // If requested, it calls WalkUpFrom* for the Type in the given TypeLoc, |
| // in addition to WalkUpFrom* for the TypeLoc itself, such that existing |
| // clients that override the WalkUpFrom*Type() and/or Visit*Type() methods |
| // continue to work. |
| #define DEF_TRAVERSE_TYPELOC(TYPE, CODE) \ |
| template<typename Derived> \ |
| bool RecursiveASTVisitor<Derived>::Traverse##TYPE##Loc(TYPE##Loc TL) { \ |
| if (getDerived().shouldWalkTypesOfTypeLocs()) \ |
| TRY_TO(WalkUpFrom##TYPE(const_cast<TYPE*>(TL.getTypePtr()))); \ |
| TRY_TO(WalkUpFrom##TYPE##Loc(TL)); \ |
| { CODE; } \ |
| return true; \ |
| } |
| |
| template<typename Derived> |
| bool RecursiveASTVisitor<Derived>::TraverseQualifiedTypeLoc( |
| QualifiedTypeLoc TL) { |
| // Move this over to the 'main' typeloc tree. Note that this is a |
| // move -- we pretend that we were really looking at the unqualified |
| // typeloc all along -- rather than a recursion, so we don't follow |
| // the normal CRTP plan of going through |
| // getDerived().TraverseTypeLoc. If we did, we'd be traversing |
| // twice for the same type (once as a QualifiedTypeLoc version of |
| // the type, once as an UnqualifiedTypeLoc version of the type), |
| // which in effect means we'd call VisitTypeLoc twice with the |
| // 'same' type. This solves that problem, at the cost of never |
| // seeing the qualified version of the type (unless the client |
| // subclasses TraverseQualifiedTypeLoc themselves). It's not a |
| // perfect solution. A perfect solution probably requires making |
| // QualifiedTypeLoc a wrapper around TypeLoc -- like QualType is a |
| // wrapper around Type* -- rather than being its own class in the |
| // type hierarchy. |
| return TraverseTypeLoc(TL.getUnqualifiedLoc()); |
| } |
| |
| DEF_TRAVERSE_TYPELOC(BuiltinType, { }) |
| |
| // FIXME: ComplexTypeLoc is unfinished |
| DEF_TRAVERSE_TYPELOC(ComplexType, { |
| TRY_TO(TraverseType(TL.getTypePtr()->getElementType())); |
| }) |
| |
| DEF_TRAVERSE_TYPELOC(PointerType, { |
| TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); |
| }) |
| |
| DEF_TRAVERSE_TYPELOC(BlockPointerType, { |
| TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); |
| }) |
| |
| DEF_TRAVERSE_TYPELOC(LValueReferenceType, { |
| TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); |
| }) |
| |
| DEF_TRAVERSE_TYPELOC(RValueReferenceType, { |
| TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); |
| }) |
| |
| // FIXME: location of base class? |
| // We traverse this in the type case as well, but how is it not reached through |
| // the pointee type? |
| DEF_TRAVERSE_TYPELOC(MemberPointerType, { |
| TRY_TO(TraverseType(QualType(TL.getTypePtr()->getClass(), 0))); |
| TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); |
| }) |
| |
| template<typename Derived> |
| bool RecursiveASTVisitor<Derived>::TraverseArrayTypeLocHelper(ArrayTypeLoc TL) { |
| // This isn't available for ArrayType, but is for the ArrayTypeLoc. |
| TRY_TO(TraverseStmt(TL.getSizeExpr())); |
| return true; |
| } |
| |
| DEF_TRAVERSE_TYPELOC(ConstantArrayType, { |
| TRY_TO(TraverseTypeLoc(TL.getElementLoc())); |
| return TraverseArrayTypeLocHelper(TL); |
| }) |
| |
| DEF_TRAVERSE_TYPELOC(IncompleteArrayType, { |
| TRY_TO(TraverseTypeLoc(TL.getElementLoc())); |
| return TraverseArrayTypeLocHelper(TL); |
| }) |
| |
| DEF_TRAVERSE_TYPELOC(VariableArrayType, { |
| TRY_TO(TraverseTypeLoc(TL.getElementLoc())); |
| return TraverseArrayTypeLocHelper(TL); |
| }) |
| |
| DEF_TRAVERSE_TYPELOC(DependentSizedArrayType, { |
| TRY_TO(TraverseTypeLoc(TL.getElementLoc())); |
| return TraverseArrayTypeLocHelper(TL); |
| }) |
| |
| // FIXME: order? why not size expr first? |
| // FIXME: base VectorTypeLoc is unfinished |
| DEF_TRAVERSE_TYPELOC(DependentSizedExtVectorType, { |
| if (TL.getTypePtr()->getSizeExpr()) |
| TRY_TO(TraverseStmt(TL.getTypePtr()->getSizeExpr())); |
| TRY_TO(TraverseType(TL.getTypePtr()->getElementType())); |
| }) |
| |
| // FIXME: VectorTypeLoc is unfinished |
| DEF_TRAVERSE_TYPELOC(VectorType, { |
| TRY_TO(TraverseType(TL.getTypePtr()->getElementType())); |
| }) |
| |
| // FIXME: size and attributes |
| // FIXME: base VectorTypeLoc is unfinished |
| DEF_TRAVERSE_TYPELOC(ExtVectorType, { |
| TRY_TO(TraverseType(TL.getTypePtr()->getElementType())); |
| }) |
| |
| DEF_TRAVERSE_TYPELOC(FunctionNoProtoType, { |
| TRY_TO(TraverseTypeLoc(TL.getResultLoc())); |
| }) |
| |
| // FIXME: location of exception specifications (attributes?) |
| DEF_TRAVERSE_TYPELOC(FunctionProtoType, { |
| TRY_TO(TraverseTypeLoc(TL.getResultLoc())); |
| |
| const FunctionProtoType *T = TL.getTypePtr(); |
| |
| for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { |
| if (TL.getArg(I)) { |
| TRY_TO(TraverseDecl(TL.getArg(I))); |
| } else if (I < T->getNumArgs()) { |
| TRY_TO(TraverseType(T->getArgType(I))); |
| } |
| } |
| |
| for (FunctionProtoType::exception_iterator E = T->exception_begin(), |
| EEnd = T->exception_end(); |
| E != EEnd; ++E) { |
| TRY_TO(TraverseType(*E)); |
| } |
| }) |
| |
| DEF_TRAVERSE_TYPELOC(UnresolvedUsingType, { }) |
| DEF_TRAVERSE_TYPELOC(TypedefType, { }) |
| |
| DEF_TRAVERSE_TYPELOC(TypeOfExprType, { |
| TRY_TO(TraverseStmt(TL.getUnderlyingExpr())); |
| }) |
| |
| DEF_TRAVERSE_TYPELOC(TypeOfType, { |
| TRY_TO(TraverseTypeLoc(TL.getUnderlyingTInfo()->getTypeLoc())); |
| }) |
| |
| // FIXME: location of underlying expr |
| DEF_TRAVERSE_TYPELOC(DecltypeType, { |
| TRY_TO(TraverseStmt(TL.getTypePtr()->getUnderlyingExpr())); |
| }) |
| |
| DEF_TRAVERSE_TYPELOC(UnaryTransformType, { |
| TRY_TO(TraverseTypeLoc(TL.getUnderlyingTInfo()->getTypeLoc())); |
| }) |
| |
| DEF_TRAVERSE_TYPELOC(AutoType, { |
| TRY_TO(TraverseType(TL.getTypePtr()->getDeducedType())); |
| }) |
| |
| DEF_TRAVERSE_TYPELOC(RecordType, { }) |
| DEF_TRAVERSE_TYPELOC(EnumType, { }) |
| DEF_TRAVERSE_TYPELOC(TemplateTypeParmType, { }) |
| DEF_TRAVERSE_TYPELOC(SubstTemplateTypeParmType, { }) |
| DEF_TRAVERSE_TYPELOC(SubstTemplateTypeParmPackType, { }) |
| |
| // FIXME: use the loc for the template name? |
| DEF_TRAVERSE_TYPELOC(TemplateSpecializationType, { |
| TRY_TO(TraverseTemplateName(TL.getTypePtr()->getTemplateName())); |
| for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { |
| TRY_TO(TraverseTemplateArgumentLoc(TL.getArgLoc(I))); |
| } |
| }) |
| |
| DEF_TRAVERSE_TYPELOC(InjectedClassNameType, { }) |
| |
| DEF_TRAVERSE_TYPELOC(ParenType, { |
| TRY_TO(TraverseTypeLoc(TL.getInnerLoc())); |
| }) |
| |
| DEF_TRAVERSE_TYPELOC(AttributedType, { |
| TRY_TO(TraverseTypeLoc(TL.getModifiedLoc())); |
| }) |
| |
| DEF_TRAVERSE_TYPELOC(ElaboratedType, { |
| if (TL.getQualifierLoc()) { |
| TRY_TO(TraverseNestedNameSpecifierLoc(TL.getQualifierLoc())); |
| } |
| TRY_TO(TraverseTypeLoc(TL.getNamedTypeLoc())); |
| }) |
| |
| DEF_TRAVERSE_TYPELOC(DependentNameType, { |
| TRY_TO(TraverseNestedNameSpecifierLoc(TL.getQualifierLoc())); |
| }) |
| |
| DEF_TRAVERSE_TYPELOC(DependentTemplateSpecializationType, { |
| if (TL.getQualifierLoc()) { |
| TRY_TO(TraverseNestedNameSpecifierLoc(TL.getQualifierLoc())); |
| } |
| |
| for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { |
| TRY_TO(TraverseTemplateArgumentLoc(TL.getArgLoc(I))); |
| } |
| }) |
| |
| DEF_TRAVERSE_TYPELOC(PackExpansionType, { |
| TRY_TO(TraverseTypeLoc(TL.getPatternLoc())); |
| }) |
| |
| DEF_TRAVERSE_TYPELOC(ObjCInterfaceType, { }) |
| |
| DEF_TRAVERSE_TYPELOC(ObjCObjectType, { |
| // We have to watch out here because an ObjCInterfaceType's base |
| // type is itself. |
| if (TL.getTypePtr()->getBaseType().getTypePtr() != TL.getTypePtr()) |
| TRY_TO(TraverseTypeLoc(TL.getBaseLoc())); |
| }) |
| |
| DEF_TRAVERSE_TYPELOC(ObjCObjectPointerType, { |
| TRY_TO(TraverseTypeLoc(TL.getPointeeLoc())); |
| }) |
| |
| DEF_TRAVERSE_TYPELOC(AtomicType, { |
| TRY_TO(TraverseTypeLoc(TL.getValueLoc())); |
| }) |
| |
| #undef DEF_TRAVERSE_TYPELOC |
| |
| // ----------------- Decl traversal ----------------- |
| // |
| // For a Decl, we automate (in the DEF_TRAVERSE_DECL macro) traversing |
| // the children that come from the DeclContext associated with it. |
| // Therefore each Traverse* only needs to worry about children other |
| // than those. |
| |
| template<typename Derived> |
| bool RecursiveASTVisitor<Derived>::TraverseDeclContextHelper(DeclContext *DC) { |
| if (!DC) |
| return true; |
| |
| for (DeclContext::decl_iterator Child = DC->decls_begin(), |
| ChildEnd = DC->decls_end(); |
| Child != ChildEnd; ++Child) { |
| // BlockDecls are traversed through BlockExprs. |
| if (!isa<BlockDecl>(*Child)) |
| TRY_TO(TraverseDecl(*Child)); |
| } |
| |
| return true; |
| } |
| |
| // This macro makes available a variable D, the passed-in decl. |
| #define DEF_TRAVERSE_DECL(DECL, CODE) \ |
| template<typename Derived> \ |
| bool RecursiveASTVisitor<Derived>::Traverse##DECL (DECL *D) { \ |
| TRY_TO(WalkUpFrom##DECL (D)); \ |
| { CODE; } \ |
| TRY_TO(TraverseDeclContextHelper(dyn_cast<DeclContext>(D))); \ |
| return true; \ |
| } |
| |
| DEF_TRAVERSE_DECL(AccessSpecDecl, { }) |
| |
| DEF_TRAVERSE_DECL(BlockDecl, { |
| if (TypeSourceInfo *TInfo = D->getSignatureAsWritten()) |
| TRY_TO(TraverseTypeLoc(TInfo->getTypeLoc())); |
| TRY_TO(TraverseStmt(D->getBody())); |
| // This return statement makes sure the traversal of nodes in |
| // decls_begin()/decls_end() (done in the DEF_TRAVERSE_DECL macro) |
| // is skipped - don't remove it. |
| return true; |
| }) |
| |
| DEF_TRAVERSE_DECL(FileScopeAsmDecl, { |
| TRY_TO(TraverseStmt(D->getAsmString())); |
| }) |
| |
| DEF_TRAVERSE_DECL(ImportDecl, { }) |
| |
| DEF_TRAVERSE_DECL(FriendDecl, { |
| // Friend is either decl or a type. |
| if (D->getFriendType()) |
| TRY_TO(TraverseTypeLoc(D->getFriendType()->getTypeLoc())); |
| else |
| TRY_TO(TraverseDecl(D->getFriendDecl())); |
| }) |
| |
| DEF_TRAVERSE_DECL(FriendTemplateDecl, { |
| if (D->getFriendType()) |
| TRY_TO(TraverseTypeLoc(D->getFriendType()->getTypeLoc())); |
| else |
| TRY_TO(TraverseDecl(D->getFriendDecl())); |
| for (unsigned I = 0, E = D->getNumTemplateParameters(); I < E; ++I) { |
| TemplateParameterList *TPL = D->getTemplateParameterList(I); |
| for (TemplateParameterList::iterator ITPL = TPL->begin(), |
| ETPL = TPL->end(); |
| ITPL != ETPL; ++ITPL) { |
| TRY_TO(TraverseDecl(*ITPL)); |
| } |
| } |
| }) |
| |
| DEF_TRAVERSE_DECL(ClassScopeFunctionSpecializationDecl, { |
| TRY_TO(TraverseDecl(D->getSpecialization())); |
| }) |
| |
| DEF_TRAVERSE_DECL(LinkageSpecDecl, { }) |
| |
| DEF_TRAVERSE_DECL(ObjCPropertyImplDecl, { |
| // FIXME: implement this |
| }) |
| |
| DEF_TRAVERSE_DECL(StaticAssertDecl, { |
| TRY_TO(TraverseStmt(D->getAssertExpr())); |
| TRY_TO(TraverseStmt(D->getMessage())); |
| }) |
| |
| DEF_TRAVERSE_DECL(TranslationUnitDecl, { |
| // Code in an unnamed namespace shows up automatically in |
| // decls_begin()/decls_end(). Thus we don't need to recurse on |
| // D->getAnonymousNamespace(). |
| }) |
| |
| DEF_TRAVERSE_DECL(NamespaceAliasDecl, { |
| // We shouldn't traverse an aliased namespace, since it will be |
| // defined (and, therefore, traversed) somewhere else. |
| // |
| // This return statement makes sure the traversal of nodes in |
| // decls_begin()/decls_end() (done in the DEF_TRAVERSE_DECL macro) |
| // is skipped - don't remove it. |
| return true; |
| }) |
| |
| DEF_TRAVERSE_DECL(LabelDecl, { |
| // There is no code in a LabelDecl. |
| }) |
| |
| |
| DEF_TRAVERSE_DECL(NamespaceDecl, { |
| // Code in an unnamed namespace shows up automatically in |
| // decls_begin()/decls_end(). Thus we don't need to recurse on |
| // D->getAnonymousNamespace(). |
| }) |
| |
| DEF_TRAVERSE_DECL(ObjCCompatibleAliasDecl, { |
| // FIXME: implement |
| }) |
| |
| DEF_TRAVERSE_DECL(ObjCCategoryDecl, { |
| // FIXME: implement |
| }) |
| |
| DEF_TRAVERSE_DECL(ObjCCategoryImplDecl, { |
| // FIXME: implement |
| }) |
| |
| DEF_TRAVERSE_DECL(ObjCImplementationDecl, { |
| // FIXME: implement |
| }) |
| |
| DEF_TRAVERSE_DECL(ObjCInterfaceDecl, { |
| // FIXME: implement |
| }) |
| |
| DEF_TRAVERSE_DECL(ObjCProtocolDecl, { |
| // FIXME: implement |
| }) |
| |
| DEF_TRAVERSE_DECL(ObjCMethodDecl, { |
| if (D->getResultTypeSourceInfo()) { |
| TRY_TO(TraverseTypeLoc(D->getResultTypeSourceInfo()->getTypeLoc())); |
| } |
| for (ObjCMethodDecl::param_iterator |
| I = D->param_begin(), E = D->param_end(); I != E; ++I) { |
| TRY_TO(TraverseDecl(*I)); |
| } |
| if (D->isThisDeclarationADefinition()) { |
| TRY_TO(TraverseStmt(D->getBody())); |
| } |
| return true; |
| }) |
| |
| DEF_TRAVERSE_DECL(ObjCPropertyDecl, { |
| // FIXME: implement |
| }) |
| |
| DEF_TRAVERSE_DECL(UsingDecl, { |
| TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc())); |
| TRY_TO(TraverseDeclarationNameInfo(D->getNameInfo())); |
| }) |
| |
| DEF_TRAVERSE_DECL(UsingDirectiveDecl, { |
| TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc())); |
| }) |
| |
| DEF_TRAVERSE_DECL(UsingShadowDecl, { }) |
| |
| // A helper method for TemplateDecl's children. |
| template<typename Derived> |
| bool RecursiveASTVisitor<Derived>::TraverseTemplateParameterListHelper( |
| TemplateParameterList *TPL) { |
| if (TPL) { |
| for (TemplateParameterList::iterator I = TPL->begin(), E = TPL->end(); |
| I != E; ++I) { |
| TRY_TO(TraverseDecl(*I)); |
| } |
| } |
| return true; |
| } |
| |
| // A helper method for traversing the implicit instantiations of a |
| // class template. |
| template<typename Derived> |
| bool RecursiveASTVisitor<Derived>::TraverseClassInstantiations( |
| ClassTemplateDecl *D) { |
| ClassTemplateDecl::spec_iterator end = D->spec_end(); |
| for (ClassTemplateDecl::spec_iterator it = D->spec_begin(); it != end; ++it) { |
| ClassTemplateSpecializationDecl* SD = *it; |
| |
| switch (SD->getSpecializationKind()) { |
| // Visit the implicit instantiations with the requested pattern. |
| case TSK_Undeclared: |
| case TSK_ImplicitInstantiation: |
| TRY_TO(TraverseDecl(SD)); |
| break; |
| |
| // We don't need to do anything on an explicit instantiation |
| // or explicit specialization because there will be an explicit |
| // node for it elsewhere. |
| case TSK_ExplicitInstantiationDeclaration: |
| case TSK_ExplicitInstantiationDefinition: |
| case TSK_ExplicitSpecialization: |
| break; |
| } |
| } |
| |
| return true; |
| } |
| |
| DEF_TRAVERSE_DECL(ClassTemplateDecl, { |
| CXXRecordDecl* TempDecl = D->getTemplatedDecl(); |
| TRY_TO(TraverseDecl(TempDecl)); |
| TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters())); |
| |
| // By default, we do not traverse the instantiations of |
| // class templates since they do not appear in the user code. The |
| // following code optionally traverses them. |
| // |
| // We only traverse the class instantiations when we see the canonical |
| // declaration of the template, to ensure we only visit them once. |
| if (getDerived().shouldVisitTemplateInstantiations() && |
| D == D->getCanonicalDecl()) |
| TRY_TO(TraverseClassInstantiations(D)); |
| |
| // Note that getInstantiatedFromMemberTemplate() is just a link |
| // from a template instantiation back to the template from which |
| // it was instantiated, and thus should not be traversed. |
| }) |
| |
| // A helper method for traversing the instantiations of a |
| // function while skipping its specializations. |
| template<typename Derived> |
| bool RecursiveASTVisitor<Derived>::TraverseFunctionInstantiations( |
| FunctionTemplateDecl *D) { |
| FunctionTemplateDecl::spec_iterator end = D->spec_end(); |
| for (FunctionTemplateDecl::spec_iterator it = D->spec_begin(); it != end; |
| ++it) { |
| FunctionDecl* FD = *it; |
| switch (FD->getTemplateSpecializationKind()) { |
| case TSK_Undeclared: |
| case TSK_ImplicitInstantiation: |
| // We don't know what kind of FunctionDecl this is. |
| TRY_TO(TraverseDecl(FD)); |
| break; |
| |
| // No need to visit explicit instantiations, we'll find the node |
| // eventually. |
| case TSK_ExplicitInstantiationDeclaration: |
| case TSK_ExplicitInstantiationDefinition: |
| break; |
| |
| case TSK_ExplicitSpecialization: |
| break; |
| } |
| } |
| |
| return true; |
| } |
| |
| DEF_TRAVERSE_DECL(FunctionTemplateDecl, { |
| TRY_TO(TraverseDecl(D->getTemplatedDecl())); |
| TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters())); |
| |
| // By default, we do not traverse the instantiations of |
| // function templates since they do not appear in the user code. The |
| // following code optionally traverses them. |
| // |
| // We only traverse the function instantiations when we see the canonical |
| // declaration of the template, to ensure we only visit them once. |
| if (getDerived().shouldVisitTemplateInstantiations() && |
| D == D->getCanonicalDecl()) |
| TRY_TO(TraverseFunctionInstantiations(D)); |
| }) |
| |
| DEF_TRAVERSE_DECL(TemplateTemplateParmDecl, { |
| // D is the "T" in something like |
| // template <template <typename> class T> class container { }; |
| TRY_TO(TraverseDecl(D->getTemplatedDecl())); |
| if (D->hasDefaultArgument()) { |
| TRY_TO(TraverseTemplateArgumentLoc(D->getDefaultArgument())); |
| } |
| TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters())); |
| }) |
| |
| DEF_TRAVERSE_DECL(TemplateTypeParmDecl, { |
| // D is the "T" in something like "template<typename T> class vector;" |
| if (D->getTypeForDecl()) |
| TRY_TO(TraverseType(QualType(D->getTypeForDecl(), 0))); |
| if (D->hasDefaultArgument()) |
| TRY_TO(TraverseTypeLoc(D->getDefaultArgumentInfo()->getTypeLoc())); |
| }) |
| |
| DEF_TRAVERSE_DECL(TypedefDecl, { |
| TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc())); |
| // We shouldn't traverse D->getTypeForDecl(); it's a result of |
| // declaring the typedef, not something that was written in the |
| // source. |
| }) |
| |
| DEF_TRAVERSE_DECL(TypeAliasDecl, { |
| TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc())); |
| // We shouldn't traverse D->getTypeForDecl(); it's a result of |
| // declaring the type alias, not something that was written in the |
| // source. |
| }) |
| |
| DEF_TRAVERSE_DECL(TypeAliasTemplateDecl, { |
| TRY_TO(TraverseDecl(D->getTemplatedDecl())); |
| TRY_TO(TraverseTemplateParameterListHelper(D->getTemplateParameters())); |
| }) |
| |
| DEF_TRAVERSE_DECL(UnresolvedUsingTypenameDecl, { |
| // A dependent using declaration which was marked with 'typename'. |
| // template<class T> class A : public B<T> { using typename B<T>::foo; }; |
| TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc())); |
| // We shouldn't traverse D->getTypeForDecl(); it's a result of |
| // declaring the type, not something that was written in the |
| // source. |
| }) |
| |
| DEF_TRAVERSE_DECL(EnumDecl, { |
| if (D->getTypeForDecl()) |
| TRY_TO(TraverseType(QualType(D->getTypeForDecl(), 0))); |
| |
| TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc())); |
| // The enumerators are already traversed by |
| // decls_begin()/decls_end(). |
| }) |
| |
| |
| // Helper methods for RecordDecl and its children. |
| template<typename Derived> |
| bool RecursiveASTVisitor<Derived>::TraverseRecordHelper( |
| RecordDecl *D) { |
| // We shouldn't traverse D->getTypeForDecl(); it's a result of |
| // declaring the type, not something that was written in the source. |
| |
| TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc())); |
| return true; |
| } |
| |
| template<typename Derived> |
| bool RecursiveASTVisitor<Derived>::TraverseCXXRecordHelper( |
| CXXRecordDecl *D) { |
| if (!TraverseRecordHelper(D)) |
| return false; |
| if (D->isCompleteDefinition()) { |
| for (CXXRecordDecl::base_class_iterator I = D->bases_begin(), |
| E = D->bases_end(); |
| I != E; ++I) { |
| TRY_TO(TraverseTypeLoc(I->getTypeSourceInfo()->getTypeLoc())); |
| } |
| // We don't traverse the friends or the conversions, as they are |
| // already in decls_begin()/decls_end(). |
| } |
| return true; |
| } |
| |
| DEF_TRAVERSE_DECL(RecordDecl, { |
| TRY_TO(TraverseRecordHelper(D)); |
| }) |
| |
| DEF_TRAVERSE_DECL(CXXRecordDecl, { |
| TRY_TO(TraverseCXXRecordHelper(D)); |
| }) |
| |
| DEF_TRAVERSE_DECL(ClassTemplateSpecializationDecl, { |
| // For implicit instantiations ("set<int> x;"), we don't want to |
| // recurse at all, since the instatiated class isn't written in |
| // the source code anywhere. (Note the instatiated *type* -- |
| // set<int> -- is written, and will still get a callback of |
| // TemplateSpecializationType). For explicit instantiations |
| // ("template set<int>;"), we do need a callback, since this |
| // is the only callback that's made for this instantiation. |
| // We use getTypeAsWritten() to distinguish. |
| if (TypeSourceInfo *TSI = D->getTypeAsWritten()) |
| TRY_TO(TraverseTypeLoc(TSI->getTypeLoc())); |
| |
| if (!getDerived().shouldVisitTemplateInstantiations() && |
| D->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) |
| // Returning from here skips traversing the |
| // declaration context of the ClassTemplateSpecializationDecl |
| // (embedded in the DEF_TRAVERSE_DECL() macro) |
| // which contains the instantiated members of the class. |
| return true; |
| }) |
| |
| template <typename Derived> |
| bool RecursiveASTVisitor<Derived>::TraverseTemplateArgumentLocsHelper( |
| const TemplateArgumentLoc *TAL, unsigned Count) { |
| for (unsigned I = 0; I < Count; ++I) { |
| TRY_TO(TraverseTemplateArgumentLoc(TAL[I])); |
| } |
| return true; |
| } |
| |
| DEF_TRAVERSE_DECL(ClassTemplatePartialSpecializationDecl, { |
| // The partial specialization. |
| if (TemplateParameterList *TPL = D->getTemplateParameters()) { |
| for (TemplateParameterList::iterator I = TPL->begin(), E = TPL->end(); |
| I != E; ++I) { |
| TRY_TO(TraverseDecl(*I)); |
| } |
| } |
| // The args that remains unspecialized. |
| TRY_TO(TraverseTemplateArgumentLocsHelper( |
| D->getTemplateArgsAsWritten(), D->getNumTemplateArgsAsWritten())); |
| |
| // Don't need the ClassTemplatePartialSpecializationHelper, even |
| // though that's our parent class -- we already visit all the |
| // template args here. |
| TRY_TO(TraverseCXXRecordHelper(D)); |
| |
| // Instantiations will have been visited with the primary template. |
| }) |
| |
| DEF_TRAVERSE_DECL(EnumConstantDecl, { |
| TRY_TO(TraverseStmt(D->getInitExpr())); |
| }) |
| |
| DEF_TRAVERSE_DECL(UnresolvedUsingValueDecl, { |
| // Like UnresolvedUsingTypenameDecl, but without the 'typename': |
| // template <class T> Class A : public Base<T> { using Base<T>::foo; }; |
| TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc())); |
| TRY_TO(TraverseDeclarationNameInfo(D->getNameInfo())); |
| }) |
| |
| DEF_TRAVERSE_DECL(IndirectFieldDecl, {}) |
| |
| template<typename Derived> |
| bool RecursiveASTVisitor<Derived>::TraverseDeclaratorHelper(DeclaratorDecl *D) { |
| TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc())); |
| if (D->getTypeSourceInfo()) |
| TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc())); |
| else |
| TRY_TO(TraverseType(D->getType())); |
| return true; |
| } |
| |
| DEF_TRAVERSE_DECL(FieldDecl, { |
| TRY_TO(TraverseDeclaratorHelper(D)); |
| if (D->isBitField()) |
| TRY_TO(TraverseStmt(D->getBitWidth())); |
| else if (D->hasInClassInitializer()) |
| TRY_TO(TraverseStmt(D->getInClassInitializer())); |
| }) |
| |
| DEF_TRAVERSE_DECL(ObjCAtDefsFieldDecl, { |
| TRY_TO(TraverseDeclaratorHelper(D)); |
| if (D->isBitField()) |
| TRY_TO(TraverseStmt(D->getBitWidth())); |
| // FIXME: implement the rest. |
| }) |
| |
| DEF_TRAVERSE_DECL(ObjCIvarDecl, { |
| TRY_TO(TraverseDeclaratorHelper(D)); |
| if (D->isBitField()) |
| TRY_TO(TraverseStmt(D->getBitWidth())); |
| // FIXME: implement the rest. |
| }) |
| |
| template<typename Derived> |
| bool RecursiveASTVisitor<Derived>::TraverseFunctionHelper(FunctionDecl *D) { |
| TRY_TO(TraverseNestedNameSpecifierLoc(D->getQualifierLoc())); |
| TRY_TO(TraverseDeclarationNameInfo(D->getNameInfo())); |
| |
| // If we're an explicit template specialization, iterate over the |
| // template args that were explicitly specified. If we were doing |
| // this in typing order, we'd do it between the return type and |
| // the function args, but both are handled by the FunctionTypeLoc |
| // above, so we have to choose one side. I've decided to do before. |
| if (const FunctionTemplateSpecializationInfo *FTSI = |
| D->getTemplateSpecializationInfo()) { |
| if (FTSI->getTemplateSpecializationKind() != TSK_Undeclared && |
| FTSI->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) { |
| // A specialization might not have explicit template arguments if it has |
| // a templated return type and concrete arguments. |
| if (const ASTTemplateArgumentListInfo *TALI = |
| FTSI->TemplateArgumentsAsWritten) { |
| TRY_TO(TraverseTemplateArgumentLocsHelper(TALI->getTemplateArgs(), |
| TALI->NumTemplateArgs)); |
| } |
| } |
| } |
| |
| // Visit the function type itself, which can be either |
| // FunctionNoProtoType or FunctionProtoType, or a typedef. This |
| // also covers the return type and the function parameters, |
| // including exception specifications. |
| TRY_TO(TraverseTypeLoc(D->getTypeSourceInfo()->getTypeLoc())); |
| |
| if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(D)) { |
| // Constructor initializers. |
| for (CXXConstructorDecl::init_iterator I = Ctor->init_begin(), |
| E = Ctor->init_end(); |
| I != E; ++I) { |
| TRY_TO(TraverseConstructorInitializer(*I)); |
| } |
| } |
| |
| if (D->isThisDeclarationADefinition()) { |
| TRY_TO(TraverseStmt(D->getBody())); // Function body. |
| } |
| return true; |
| } |
| |
| DEF_TRAVERSE_DECL(FunctionDecl, { |
| // We skip decls_begin/decls_end, which are already covered by |
| // TraverseFunctionHelper(). |
| return TraverseFunctionHelper(D); |
| }) |
| |
| DEF_TRAVERSE_DECL(CXXMethodDecl, { |
| // We skip decls_begin/decls_end, which are already covered by |
| // TraverseFunctionHelper(). |
| return TraverseFunctionHelper(D); |
| }) |
| |
| DEF_TRAVERSE_DECL(CXXConstructorDecl, { |
| // We skip decls_begin/decls_end, which are already covered by |
| // TraverseFunctionHelper(). |
| return TraverseFunctionHelper(D); |
| }) |
| |
| // CXXConversionDecl is the declaration of a type conversion operator. |
| // It's not a cast expression. |
| DEF_TRAVERSE_DECL(CXXConversionDecl, { |
| // We skip decls_begin/decls_end, which are already covered by |
| // TraverseFunctionHelper(). |
| return TraverseFunctionHelper(D); |
| }) |
| |
| DEF_TRAVERSE_DECL(CXXDestructorDecl, { |
| // We skip decls_begin/decls_end, which are already covered by |
| // TraverseFunctionHelper(). |
| return TraverseFunctionHelper(D); |
| }) |
| |
| template<typename Derived> |
| bool RecursiveASTVisitor<Derived>::TraverseVarHelper(VarDecl *D) { |
| TRY_TO(TraverseDeclaratorHelper(D)); |
| // Default params are taken care of when we traverse the ParmVarDecl. |
| if (!isa<ParmVarDecl>(D)) |
| TRY_TO(TraverseStmt(D->getInit())); |
| return true; |
| } |
| |
| DEF_TRAVERSE_DECL(VarDecl, { |
| TRY_TO(TraverseVarHelper(D)); |
| }) |
| |
| DEF_TRAVERSE_DECL(ImplicitParamDecl, { |
| TRY_TO(TraverseVarHelper(D)); |
| }) |
| |
| DEF_TRAVERSE_DECL(NonTypeTemplateParmDecl, { |
| // A non-type template parameter, e.g. "S" in template<int S> class Foo ... |
| TRY_TO(TraverseDeclaratorHelper(D)); |
| TRY_TO(TraverseStmt(D->getDefaultArgument())); |
| }) |
| |
| DEF_TRAVERSE_DECL(ParmVarDecl, { |
| TRY_TO(TraverseVarHelper(D)); |
| |
| if (D->hasDefaultArg() && |
| D->hasUninstantiatedDefaultArg() && |
| !D->hasUnparsedDefaultArg()) |
| TRY_TO(TraverseStmt(D->getUninstantiatedDefaultArg())); |
| |
| if (D->hasDefaultArg() && |
| !D->hasUninstantiatedDefaultArg() && |
| !D->hasUnparsedDefaultArg()) |
| TRY_TO(TraverseStmt(D->getDefaultArg())); |
| }) |
| |
| #undef DEF_TRAVERSE_DECL |
| |
| // ----------------- Stmt traversal ----------------- |
| // |
| // For stmts, we automate (in the DEF_TRAVERSE_STMT macro) iterating |
| // over the children defined in children() (every stmt defines these, |
| // though sometimes the range is empty). Each individual Traverse* |
| // method only needs to worry about children other than those. To see |
| // what children() does for a given class, see, e.g., |
| // http://clang.llvm.org/doxygen/Stmt_8cpp_source.html |
| |
| // This macro makes available a variable S, the passed-in stmt. |
| #define DEF_TRAVERSE_STMT(STMT, CODE) \ |
| template<typename Derived> \ |
| bool RecursiveASTVisitor<Derived>::Traverse##STMT (STMT *S) { \ |
| TRY_TO(WalkUpFrom##STMT(S)); \ |
| StmtQueueAction StmtQueue(*this); \ |
| { CODE; } \ |
| for (Stmt::child_range range = S->children(); range; ++range) { \ |
| StmtQueue.queue(*range); \ |
| } \ |
| return true; \ |
| } |
| |
| DEF_TRAVERSE_STMT(GCCAsmStmt, { |
| StmtQueue.queue(S->getAsmString()); |
| for (unsigned I = 0, E = S->getNumInputs(); I < E; ++I) { |
| StmtQueue.queue(S->getInputConstraintLiteral(I)); |
| } |
| for (unsigned I = 0, E = S->getNumOutputs(); I < E; ++I) { |
| StmtQueue.queue(S->getOutputConstraintLiteral(I)); |
| } |
| for (unsigned I = 0, E = S->getNumClobbers(); I < E; ++I) { |
| StmtQueue.queue(S->getClobberStringLiteral(I)); |
| } |
| // children() iterates over inputExpr and outputExpr. |
| }) |
| |
| DEF_TRAVERSE_STMT(MSAsmStmt, { |
| // FIXME: MS Asm doesn't currently parse Constraints, Clobbers, etc. Once |
| // added this needs to be implemented. |
| }) |
| |
| DEF_TRAVERSE_STMT(CXXCatchStmt, { |
| TRY_TO(TraverseDecl(S->getExceptionDecl())); |
| // children() iterates over the handler block. |
| }) |
| |
| DEF_TRAVERSE_STMT(DeclStmt, { |
| for (DeclStmt::decl_iterator I = S->decl_begin(), E = S->decl_end(); |
| I != E; ++I) { |
| TRY_TO(TraverseDecl(*I)); |
| } |
| // Suppress the default iteration over children() by |
| // returning. Here's why: A DeclStmt looks like 'type var [= |
| // initializer]'. The decls above already traverse over the |
| // initializers, so we don't have to do it again (which |
| // children() would do). |
| return true; |
| }) |
| |
| |
| // These non-expr stmts (most of them), do not need any action except |
| // iterating over the children. |
| DEF_TRAVERSE_STMT(BreakStmt, { }) |
| DEF_TRAVERSE_STMT(CXXTryStmt, { }) |
| DEF_TRAVERSE_STMT(CaseStmt, { }) |
| DEF_TRAVERSE_STMT(CompoundStmt, { }) |
| DEF_TRAVERSE_STMT(ContinueStmt, { }) |
| DEF_TRAVERSE_STMT(DefaultStmt, { }) |
| DEF_TRAVERSE_STMT(DoStmt, { }) |
| DEF_TRAVERSE_STMT(ForStmt, { }) |
| DEF_TRAVERSE_STMT(GotoStmt, { }) |
| DEF_TRAVERSE_STMT(IfStmt, { }) |
| DEF_TRAVERSE_STMT(IndirectGotoStmt, { }) |
| DEF_TRAVERSE_STMT(LabelStmt, { }) |
| DEF_TRAVERSE_STMT(AttributedStmt, { }) |
| DEF_TRAVERSE_STMT(NullStmt, { }) |
| DEF_TRAVERSE_STMT(ObjCAtCatchStmt, { }) |
| DEF_TRAVERSE_STMT(ObjCAtFinallyStmt, { }) |
| DEF_TRAVERSE_STMT(ObjCAtSynchronizedStmt, { }) |
| DEF_TRAVERSE_STMT(ObjCAtThrowStmt, { }) |
| DEF_TRAVERSE_STMT(ObjCAtTryStmt, { }) |
| DEF_TRAVERSE_STMT(ObjCForCollectionStmt, { }) |
| DEF_TRAVERSE_STMT(ObjCAutoreleasePoolStmt, { }) |
| DEF_TRAVERSE_STMT(CXXForRangeStmt, { }) |
| DEF_TRAVERSE_STMT(MSDependentExistsStmt, { |
| TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc())); |
| TRY_TO(TraverseDeclarationNameInfo(S->getNameInfo())); |
| }) |
| DEF_TRAVERSE_STMT(ReturnStmt, { }) |
| DEF_TRAVERSE_STMT(SwitchStmt, { }) |
| DEF_TRAVERSE_STMT(WhileStmt, { }) |
| |
| |
| DEF_TRAVERSE_STMT(CXXDependentScopeMemberExpr, { |
| TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc())); |
| TRY_TO(TraverseDeclarationNameInfo(S->getMemberNameInfo())); |
| if (S->hasExplicitTemplateArgs()) { |
| TRY_TO(TraverseTemplateArgumentLocsHelper( |
| S->getTemplateArgs(), S->getNumTemplateArgs())); |
| } |
| }) |
| |
| DEF_TRAVERSE_STMT(DeclRefExpr, { |
| TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc())); |
| TRY_TO(TraverseDeclarationNameInfo(S->getNameInfo())); |
| TRY_TO(TraverseTemplateArgumentLocsHelper( |
| S->getTemplateArgs(), S->getNumTemplateArgs())); |
| }) |
| |
| DEF_TRAVERSE_STMT(DependentScopeDeclRefExpr, { |
| TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc())); |
| TRY_TO(TraverseDeclarationNameInfo(S->getNameInfo())); |
| if (S->hasExplicitTemplateArgs()) { |
| TRY_TO(TraverseTemplateArgumentLocsHelper( |
| S->getExplicitTemplateArgs().getTemplateArgs(), |
| S->getNumTemplateArgs())); |
| } |
| }) |
| |
| DEF_TRAVERSE_STMT(MemberExpr, { |
| TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc())); |
| TRY_TO(TraverseDeclarationNameInfo(S->getMemberNameInfo())); |
| TRY_TO(TraverseTemplateArgumentLocsHelper( |
| S->getTemplateArgs(), S->getNumTemplateArgs())); |
| }) |
| |
| DEF_TRAVERSE_STMT(ImplicitCastExpr, { |
| // We don't traverse the cast type, as it's not written in the |
| // source code. |
| }) |
| |
| DEF_TRAVERSE_STMT(CStyleCastExpr, { |
| TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc())); |
| }) |
| |
| DEF_TRAVERSE_STMT(CXXFunctionalCastExpr, { |
| TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc())); |
| }) |
| |
| DEF_TRAVERSE_STMT(CXXConstCastExpr, { |
| TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc())); |
| }) |
| |
| DEF_TRAVERSE_STMT(CXXDynamicCastExpr, { |
| TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc())); |
| }) |
| |
| DEF_TRAVERSE_STMT(CXXReinterpretCastExpr, { |
| TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc())); |
| }) |
| |
| DEF_TRAVERSE_STMT(CXXStaticCastExpr, { |
| TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc())); |
| }) |
| |
| // InitListExpr is a tricky one, because we want to do all our work on |
| // the syntactic form of the listexpr, but this method takes the |
| // semantic form by default. We can't use the macro helper because it |
| // calls WalkUp*() on the semantic form, before our code can convert |
| // to the syntactic form. |
| template<typename Derived> |
| bool RecursiveASTVisitor<Derived>::TraverseInitListExpr(InitListExpr *S) { |
| if (InitListExpr *Syn = S->getSyntacticForm()) |
| S = Syn; |
| TRY_TO(WalkUpFromInitListExpr(S)); |
| StmtQueueAction StmtQueue(*this); |
| // All we need are the default actions. FIXME: use a helper function. |
| for (Stmt::child_range range = S->children(); range; ++range) { |
| StmtQueue.queue(*range); |
| } |
| return true; |
| } |
| |
| // GenericSelectionExpr is a special case because the types and expressions |
| // are interleaved. We also need to watch out for null types (default |
| // generic associations). |
| template<typename Derived> |
| bool RecursiveASTVisitor<Derived>:: |
| TraverseGenericSelectionExpr(GenericSelectionExpr *S) { |
| TRY_TO(WalkUpFromGenericSelectionExpr(S)); |
| StmtQueueAction StmtQueue(*this); |
| StmtQueue.queue(S->getControllingExpr()); |
| for (unsigned i = 0; i != S->getNumAssocs(); ++i) { |
| if (TypeSourceInfo *TS = S->getAssocTypeSourceInfo(i)) |
| TRY_TO(TraverseTypeLoc(TS->getTypeLoc())); |
| StmtQueue.queue(S->getAssocExpr(i)); |
| } |
| return true; |
| } |
| |
| // PseudoObjectExpr is a special case because of the wierdness with |
| // syntactic expressions and opaque values. |
| template<typename Derived> |
| bool RecursiveASTVisitor<Derived>:: |
| TraversePseudoObjectExpr(PseudoObjectExpr *S) { |
| TRY_TO(WalkUpFromPseudoObjectExpr(S)); |
| StmtQueueAction StmtQueue(*this); |
| StmtQueue.queue(S->getSyntacticForm()); |
| for (PseudoObjectExpr::semantics_iterator |
| i = S->semantics_begin(), e = S->semantics_end(); i != e; ++i) { |
| Expr *sub = *i; |
| if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(sub)) |
| sub = OVE->getSourceExpr(); |
| StmtQueue.queue(sub); |
| } |
| return true; |
| } |
| |
| DEF_TRAVERSE_STMT(CXXScalarValueInitExpr, { |
| // This is called for code like 'return T()' where T is a built-in |
| // (i.e. non-class) type. |
| TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc())); |
| }) |
| |
| DEF_TRAVERSE_STMT(CXXNewExpr, { |
| // The child-iterator will pick up the other arguments. |
| TRY_TO(TraverseTypeLoc(S->getAllocatedTypeSourceInfo()->getTypeLoc())); |
| }) |
| |
| DEF_TRAVERSE_STMT(OffsetOfExpr, { |
| // The child-iterator will pick up the expression representing |
| // the field. |
| // FIMXE: for code like offsetof(Foo, a.b.c), should we get |
| // making a MemberExpr callbacks for Foo.a, Foo.a.b, and Foo.a.b.c? |
| TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc())); |
| }) |
| |
| DEF_TRAVERSE_STMT(UnaryExprOrTypeTraitExpr, { |
| // The child-iterator will pick up the arg if it's an expression, |
| // but not if it's a type. |
| if (S->isArgumentType()) |
| TRY_TO(TraverseTypeLoc(S->getArgumentTypeInfo()->getTypeLoc())); |
| }) |
| |
| DEF_TRAVERSE_STMT(CXXTypeidExpr, { |
| // The child-iterator will pick up the arg if it's an expression, |
| // but not if it's a type. |
| if (S->isTypeOperand()) |
| TRY_TO(TraverseTypeLoc(S->getTypeOperandSourceInfo()->getTypeLoc())); |
| }) |
| |
| DEF_TRAVERSE_STMT(CXXUuidofExpr, { |
| // The child-iterator will pick up the arg if it's an expression, |
| // but not if it's a type. |
| if (S->isTypeOperand()) |
| TRY_TO(TraverseTypeLoc(S->getTypeOperandSourceInfo()->getTypeLoc())); |
| }) |
| |
| DEF_TRAVERSE_STMT(UnaryTypeTraitExpr, { |
| TRY_TO(TraverseTypeLoc(S->getQueriedTypeSourceInfo()->getTypeLoc())); |
| }) |
| |
| DEF_TRAVERSE_STMT(BinaryTypeTraitExpr, { |
| TRY_TO(TraverseTypeLoc(S->getLhsTypeSourceInfo()->getTypeLoc())); |
| TRY_TO(TraverseTypeLoc(S->getRhsTypeSourceInfo()->getTypeLoc())); |
| }) |
| |
| DEF_TRAVERSE_STMT(TypeTraitExpr, { |
| for (unsigned I = 0, N = S->getNumArgs(); I != N; ++I) |
| TRY_TO(TraverseTypeLoc(S->getArg(I)->getTypeLoc())); |
| }) |
| |
| DEF_TRAVERSE_STMT(ArrayTypeTraitExpr, { |
| TRY_TO(TraverseTypeLoc(S->getQueriedTypeSourceInfo()->getTypeLoc())); |
| }) |
| |
| DEF_TRAVERSE_STMT(ExpressionTraitExpr, { |
| StmtQueue.queue(S->getQueriedExpression()); |
| }) |
| |
| DEF_TRAVERSE_STMT(VAArgExpr, { |
| // The child-iterator will pick up the expression argument. |
| TRY_TO(TraverseTypeLoc(S->getWrittenTypeInfo()->getTypeLoc())); |
| }) |
| |
| DEF_TRAVERSE_STMT(CXXTemporaryObjectExpr, { |
| // This is called for code like 'return T()' where T is a class type. |
| TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc())); |
| }) |
| |
| // Walk only the visible parts of lambda expressions. |
| template<typename Derived> |
| bool RecursiveASTVisitor<Derived>::TraverseLambdaExpr(LambdaExpr *S) { |
| for (LambdaExpr::capture_iterator C = S->explicit_capture_begin(), |
| CEnd = S->explicit_capture_end(); |
| C != CEnd; ++C) { |
| TRY_TO(TraverseLambdaCapture(*C)); |
| } |
| |
| if (S->hasExplicitParameters() || S->hasExplicitResultType()) { |
| TypeLoc TL = S->getCallOperator()->getTypeSourceInfo()->getTypeLoc(); |
| if (S->hasExplicitParameters() && S->hasExplicitResultType()) { |
| // Visit the whole type. |
| TRY_TO(TraverseTypeLoc(TL)); |
| } else if (isa<FunctionProtoTypeLoc>(TL)) { |
| FunctionProtoTypeLoc Proto = cast<FunctionProtoTypeLoc>(TL); |
| if (S->hasExplicitParameters()) { |
| // Visit parameters. |
| for (unsigned I = 0, N = Proto.getNumArgs(); I != N; ++I) { |
| TRY_TO(TraverseDecl(Proto.getArg(I))); |
| } |
| } else { |
| TRY_TO(TraverseTypeLoc(Proto.getResultLoc())); |
| } |
| } |
| } |
| |
| StmtQueueAction StmtQueue(*this); |
| StmtQueue.queue(S->getBody()); |
| return true; |
| } |
| |
| DEF_TRAVERSE_STMT(CXXUnresolvedConstructExpr, { |
| // This is called for code like 'T()', where T is a template argument. |
| TRY_TO(TraverseTypeLoc(S->getTypeSourceInfo()->getTypeLoc())); |
| }) |
| |
| // These expressions all might take explicit template arguments. |
| // We traverse those if so. FIXME: implement these. |
| DEF_TRAVERSE_STMT(CXXConstructExpr, { }) |
| DEF_TRAVERSE_STMT(CallExpr, { }) |
| DEF_TRAVERSE_STMT(CXXMemberCallExpr, { }) |
| |
| // These exprs (most of them), do not need any action except iterating |
| // over the children. |
| DEF_TRAVERSE_STMT(AddrLabelExpr, { }) |
| DEF_TRAVERSE_STMT(ArraySubscriptExpr, { }) |
| DEF_TRAVERSE_STMT(BlockExpr, { |
| TRY_TO(TraverseDecl(S->getBlockDecl())); |
| return true; // no child statements to loop through. |
| }) |
| DEF_TRAVERSE_STMT(ChooseExpr, { }) |
| DEF_TRAVERSE_STMT(CompoundLiteralExpr, { }) |
| DEF_TRAVERSE_STMT(CXXBindTemporaryExpr, { }) |
| DEF_TRAVERSE_STMT(CXXBoolLiteralExpr, { }) |
| DEF_TRAVERSE_STMT(CXXDefaultArgExpr, { }) |
| DEF_TRAVERSE_STMT(CXXDeleteExpr, { }) |
| DEF_TRAVERSE_STMT(ExprWithCleanups, { }) |
| DEF_TRAVERSE_STMT(CXXNullPtrLiteralExpr, { }) |
| DEF_TRAVERSE_STMT(CXXPseudoDestructorExpr, { |
| TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc())); |
| if (TypeSourceInfo *ScopeInfo = S->getScopeTypeInfo()) |
| TRY_TO(TraverseTypeLoc(ScopeInfo->getTypeLoc())); |
| if (TypeSourceInfo *DestroyedTypeInfo = S->getDestroyedTypeInfo()) |
| TRY_TO(TraverseTypeLoc(DestroyedTypeInfo->getTypeLoc())); |
| }) |
| DEF_TRAVERSE_STMT(CXXThisExpr, { }) |
| DEF_TRAVERSE_STMT(CXXThrowExpr, { }) |
| DEF_TRAVERSE_STMT(UserDefinedLiteral, { }) |
| DEF_TRAVERSE_STMT(DesignatedInitExpr, { }) |
| DEF_TRAVERSE_STMT(ExtVectorElementExpr, { }) |
| DEF_TRAVERSE_STMT(GNUNullExpr, { }) |
| DEF_TRAVERSE_STMT(ImplicitValueInitExpr, { }) |
| DEF_TRAVERSE_STMT(ObjCBoolLiteralExpr, { }) |
| DEF_TRAVERSE_STMT(ObjCEncodeExpr, { |
| if (TypeSourceInfo *TInfo = S->getEncodedTypeSourceInfo()) |
| TRY_TO(TraverseTypeLoc(TInfo->getTypeLoc())); |
| }) |
| DEF_TRAVERSE_STMT(ObjCIsaExpr, { }) |
| DEF_TRAVERSE_STMT(ObjCIvarRefExpr, { }) |
| DEF_TRAVERSE_STMT(ObjCMessageExpr, { }) |
| DEF_TRAVERSE_STMT(ObjCPropertyRefExpr, { }) |
| DEF_TRAVERSE_STMT(ObjCSubscriptRefExpr, { }) |
| DEF_TRAVERSE_STMT(ObjCProtocolExpr, { }) |
| DEF_TRAVERSE_STMT(ObjCSelectorExpr, { }) |
| DEF_TRAVERSE_STMT(ObjCIndirectCopyRestoreExpr, { }) |
| DEF_TRAVERSE_STMT(ObjCBridgedCastExpr, { |
| TRY_TO(TraverseTypeLoc(S->getTypeInfoAsWritten()->getTypeLoc())); |
| }) |
| DEF_TRAVERSE_STMT(ParenExpr, { }) |
| DEF_TRAVERSE_STMT(ParenListExpr, { }) |
| DEF_TRAVERSE_STMT(PredefinedExpr, { }) |
| DEF_TRAVERSE_STMT(ShuffleVectorExpr, { }) |
| DEF_TRAVERSE_STMT(StmtExpr, { }) |
| DEF_TRAVERSE_STMT(UnresolvedLookupExpr, { |
| TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc())); |
| if (S->hasExplicitTemplateArgs()) { |
| TRY_TO(TraverseTemplateArgumentLocsHelper(S->getTemplateArgs(), |
| S->getNumTemplateArgs())); |
| } |
| }) |
| |
| DEF_TRAVERSE_STMT(UnresolvedMemberExpr, { |
| TRY_TO(TraverseNestedNameSpecifierLoc(S->getQualifierLoc())); |
| if (S->hasExplicitTemplateArgs()) { |
| TRY_TO(TraverseTemplateArgumentLocsHelper(S->getTemplateArgs(), |
| S->getNumTemplateArgs())); |
| } |
| }) |
| |
| DEF_TRAVERSE_STMT(SEHTryStmt, {}) |
| DEF_TRAVERSE_STMT(SEHLeaveStmt, {}) |
| DEF_TRAVERSE_STMT(SEHExceptStmt, {}) |
| DEF_TRAVERSE_STMT(SEHFinallyStmt,{}) |
| |
| DEF_TRAVERSE_STMT(CXXOperatorCallExpr, { }) |
| DEF_TRAVERSE_STMT(OpaqueValueExpr, { }) |
| DEF_TRAVERSE_STMT(CUDAKernelCallExpr, { }) |
| |
| // These operators (all of them) do not need any action except |
| // iterating over the children. |
| DEF_TRAVERSE_STMT(BinaryConditionalOperator, { }) |
| DEF_TRAVERSE_STMT(ConditionalOperator, { }) |
| DEF_TRAVERSE_STMT(UnaryOperator, { }) |
| DEF_TRAVERSE_STMT(BinaryOperator, { }) |
| DEF_TRAVERSE_STMT(CompoundAssignOperator, { }) |
| DEF_TRAVERSE_STMT(CXXNoexceptExpr, { }) |
| DEF_TRAVERSE_STMT(PackExpansionExpr, { }) |
| DEF_TRAVERSE_STMT(SizeOfPackExpr, { }) |
| DEF_TRAVERSE_STMT(SubstNonTypeTemplateParmPackExpr, { }) |
| DEF_TRAVERSE_STMT(SubstNonTypeTemplateParmExpr, { }) |
| DEF_TRAVERSE_STMT(MaterializeTemporaryExpr, { }) |
| DEF_TRAVERSE_STMT(AtomicExpr, { }) |
| |
| // These literals (all of them) do not need any action. |
| DEF_TRAVERSE_STMT(IntegerLiteral, { }) |
| DEF_TRAVERSE_STMT(CharacterLiteral, { }) |
| DEF_TRAVERSE_STMT(FloatingLiteral, { }) |
| DEF_TRAVERSE_STMT(ImaginaryLiteral, { }) |
| DEF_TRAVERSE_STMT(StringLiteral, { }) |
| DEF_TRAVERSE_STMT(ObjCStringLiteral, { }) |
| DEF_TRAVERSE_STMT(ObjCBoxedExpr, { }) |
| DEF_TRAVERSE_STMT(ObjCArrayLiteral, { }) |
| DEF_TRAVERSE_STMT(ObjCDictionaryLiteral, { }) |
| |
| // Traverse OpenCL: AsType, Convert. |
| DEF_TRAVERSE_STMT(AsTypeExpr, { }) |
| |
| // FIXME: look at the following tricky-seeming exprs to see if we |
| // need to recurse on anything. These are ones that have methods |
| // returning decls or qualtypes or nestednamespecifier -- though I'm |
| // not sure if they own them -- or just seemed very complicated, or |
| // had lots of sub-types to explore. |
| // |
| // VisitOverloadExpr and its children: recurse on template args? etc? |
| |
| // FIXME: go through all the stmts and exprs again, and see which of them |
| // create new types, and recurse on the types (TypeLocs?) of those. |
| // Candidates: |
| // |
| // http://clang.llvm.org/doxygen/classclang_1_1CXXTypeidExpr.html |
| // http://clang.llvm.org/doxygen/classclang_1_1UnaryExprOrTypeTraitExpr.html |
| // http://clang.llvm.org/doxygen/classclang_1_1TypesCompatibleExpr.html |
| // Every class that has getQualifier. |
| |
| #undef DEF_TRAVERSE_STMT |
| |
| #undef TRY_TO |
| |
| } // end namespace cxindex |
| } // end namespace clang |
| |
| #endif // LLVM_CLANG_LIBCLANG_RECURSIVEASTVISITOR_H |