| //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This contains code to emit Builtin calls as LLVM code. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "TargetInfo.h" |
| #include "CodeGenFunction.h" |
| #include "CodeGenModule.h" |
| #include "CGObjCRuntime.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/Basic/TargetBuiltins.h" |
| #include "llvm/Intrinsics.h" |
| #include "llvm/Target/TargetData.h" |
| |
| using namespace clang; |
| using namespace CodeGen; |
| using namespace llvm; |
| |
| /// getBuiltinLibFunction - Given a builtin id for a function like |
| /// "__builtin_fabsf", return a Function* for "fabsf". |
| llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, |
| unsigned BuiltinID) { |
| assert(Context.BuiltinInfo.isLibFunction(BuiltinID)); |
| |
| // Get the name, skip over the __builtin_ prefix (if necessary). |
| StringRef Name; |
| GlobalDecl D(FD); |
| |
| // If the builtin has been declared explicitly with an assembler label, |
| // use the mangled name. This differs from the plain label on platforms |
| // that prefix labels. |
| if (FD->hasAttr<AsmLabelAttr>()) |
| Name = getMangledName(D); |
| else |
| Name = Context.BuiltinInfo.GetName(BuiltinID) + 10; |
| |
| llvm::FunctionType *Ty = |
| cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); |
| |
| return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false); |
| } |
| |
| /// Emit the conversions required to turn the given value into an |
| /// integer of the given size. |
| static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V, |
| QualType T, llvm::IntegerType *IntType) { |
| V = CGF.EmitToMemory(V, T); |
| |
| if (V->getType()->isPointerTy()) |
| return CGF.Builder.CreatePtrToInt(V, IntType); |
| |
| assert(V->getType() == IntType); |
| return V; |
| } |
| |
| static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V, |
| QualType T, llvm::Type *ResultType) { |
| V = CGF.EmitFromMemory(V, T); |
| |
| if (ResultType->isPointerTy()) |
| return CGF.Builder.CreateIntToPtr(V, ResultType); |
| |
| assert(V->getType() == ResultType); |
| return V; |
| } |
| |
| /// Utility to insert an atomic instruction based on Instrinsic::ID |
| /// and the expression node. |
| static RValue EmitBinaryAtomic(CodeGenFunction &CGF, |
| llvm::AtomicRMWInst::BinOp Kind, |
| const CallExpr *E) { |
| QualType T = E->getType(); |
| assert(E->getArg(0)->getType()->isPointerType()); |
| assert(CGF.getContext().hasSameUnqualifiedType(T, |
| E->getArg(0)->getType()->getPointeeType())); |
| assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())); |
| |
| llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0)); |
| unsigned AddrSpace = |
| cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); |
| |
| llvm::IntegerType *IntType = |
| llvm::IntegerType::get(CGF.getLLVMContext(), |
| CGF.getContext().getTypeSize(T)); |
| llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); |
| |
| llvm::Value *Args[2]; |
| Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType); |
| Args[1] = CGF.EmitScalarExpr(E->getArg(1)); |
| llvm::Type *ValueType = Args[1]->getType(); |
| Args[1] = EmitToInt(CGF, Args[1], T, IntType); |
| |
| llvm::Value *Result = |
| CGF.Builder.CreateAtomicRMW(Kind, Args[0], Args[1], |
| llvm::SequentiallyConsistent); |
| Result = EmitFromInt(CGF, Result, T, ValueType); |
| return RValue::get(Result); |
| } |
| |
| /// Utility to insert an atomic instruction based Instrinsic::ID and |
| /// the expression node, where the return value is the result of the |
| /// operation. |
| static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF, |
| llvm::AtomicRMWInst::BinOp Kind, |
| const CallExpr *E, |
| Instruction::BinaryOps Op) { |
| QualType T = E->getType(); |
| assert(E->getArg(0)->getType()->isPointerType()); |
| assert(CGF.getContext().hasSameUnqualifiedType(T, |
| E->getArg(0)->getType()->getPointeeType())); |
| assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())); |
| |
| llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0)); |
| unsigned AddrSpace = |
| cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); |
| |
| llvm::IntegerType *IntType = |
| llvm::IntegerType::get(CGF.getLLVMContext(), |
| CGF.getContext().getTypeSize(T)); |
| llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); |
| |
| llvm::Value *Args[2]; |
| Args[1] = CGF.EmitScalarExpr(E->getArg(1)); |
| llvm::Type *ValueType = Args[1]->getType(); |
| Args[1] = EmitToInt(CGF, Args[1], T, IntType); |
| Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType); |
| |
| llvm::Value *Result = |
| CGF.Builder.CreateAtomicRMW(Kind, Args[0], Args[1], |
| llvm::SequentiallyConsistent); |
| Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]); |
| Result = EmitFromInt(CGF, Result, T, ValueType); |
| return RValue::get(Result); |
| } |
| |
| /// EmitFAbs - Emit a call to fabs/fabsf/fabsl, depending on the type of ValTy, |
| /// which must be a scalar floating point type. |
| static Value *EmitFAbs(CodeGenFunction &CGF, Value *V, QualType ValTy) { |
| const BuiltinType *ValTyP = ValTy->getAs<BuiltinType>(); |
| assert(ValTyP && "isn't scalar fp type!"); |
| |
| StringRef FnName; |
| switch (ValTyP->getKind()) { |
| default: llvm_unreachable("Isn't a scalar fp type!"); |
| case BuiltinType::Float: FnName = "fabsf"; break; |
| case BuiltinType::Double: FnName = "fabs"; break; |
| case BuiltinType::LongDouble: FnName = "fabsl"; break; |
| } |
| |
| // The prototype is something that takes and returns whatever V's type is. |
| llvm::FunctionType *FT = llvm::FunctionType::get(V->getType(), V->getType(), |
| false); |
| llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(FT, FnName); |
| |
| return CGF.Builder.CreateCall(Fn, V, "abs"); |
| } |
| |
| static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *Fn, |
| const CallExpr *E, llvm::Value *calleeValue) { |
| return CGF.EmitCall(E->getCallee()->getType(), calleeValue, |
| ReturnValueSlot(), E->arg_begin(), E->arg_end(), Fn); |
| } |
| |
| RValue CodeGenFunction::EmitBuiltinExpr(const FunctionDecl *FD, |
| unsigned BuiltinID, const CallExpr *E) { |
| // See if we can constant fold this builtin. If so, don't emit it at all. |
| Expr::EvalResult Result; |
| if (E->EvaluateAsRValue(Result, CGM.getContext()) && |
| !Result.hasSideEffects()) { |
| if (Result.Val.isInt()) |
| return RValue::get(llvm::ConstantInt::get(getLLVMContext(), |
| Result.Val.getInt())); |
| if (Result.Val.isFloat()) |
| return RValue::get(llvm::ConstantFP::get(getLLVMContext(), |
| Result.Val.getFloat())); |
| } |
| |
| switch (BuiltinID) { |
| default: break; // Handle intrinsics and libm functions below. |
| case Builtin::BI__builtin___CFStringMakeConstantString: |
| case Builtin::BI__builtin___NSStringMakeConstantString: |
| return RValue::get(CGM.EmitConstantExpr(E, E->getType(), 0)); |
| case Builtin::BI__builtin_stdarg_start: |
| case Builtin::BI__builtin_va_start: |
| case Builtin::BI__builtin_va_end: { |
| Value *ArgValue = EmitVAListRef(E->getArg(0)); |
| llvm::Type *DestType = Int8PtrTy; |
| if (ArgValue->getType() != DestType) |
| ArgValue = Builder.CreateBitCast(ArgValue, DestType, |
| ArgValue->getName().data()); |
| |
| Intrinsic::ID inst = (BuiltinID == Builtin::BI__builtin_va_end) ? |
| Intrinsic::vaend : Intrinsic::vastart; |
| return RValue::get(Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue)); |
| } |
| case Builtin::BI__builtin_va_copy: { |
| Value *DstPtr = EmitVAListRef(E->getArg(0)); |
| Value *SrcPtr = EmitVAListRef(E->getArg(1)); |
| |
| llvm::Type *Type = Int8PtrTy; |
| |
| DstPtr = Builder.CreateBitCast(DstPtr, Type); |
| SrcPtr = Builder.CreateBitCast(SrcPtr, Type); |
| return RValue::get(Builder.CreateCall2(CGM.getIntrinsic(Intrinsic::vacopy), |
| DstPtr, SrcPtr)); |
| } |
| case Builtin::BI__builtin_abs: |
| case Builtin::BI__builtin_labs: |
| case Builtin::BI__builtin_llabs: { |
| Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
| |
| Value *NegOp = Builder.CreateNeg(ArgValue, "neg"); |
| Value *CmpResult = |
| Builder.CreateICmpSGE(ArgValue, |
| llvm::Constant::getNullValue(ArgValue->getType()), |
| "abscond"); |
| Value *Result = |
| Builder.CreateSelect(CmpResult, ArgValue, NegOp, "abs"); |
| |
| return RValue::get(Result); |
| } |
| |
| case Builtin::BI__builtin_conj: |
| case Builtin::BI__builtin_conjf: |
| case Builtin::BI__builtin_conjl: { |
| ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); |
| Value *Real = ComplexVal.first; |
| Value *Imag = ComplexVal.second; |
| Value *Zero = |
| Imag->getType()->isFPOrFPVectorTy() |
| ? llvm::ConstantFP::getZeroValueForNegation(Imag->getType()) |
| : llvm::Constant::getNullValue(Imag->getType()); |
| |
| Imag = Builder.CreateFSub(Zero, Imag, "sub"); |
| return RValue::getComplex(std::make_pair(Real, Imag)); |
| } |
| case Builtin::BI__builtin_creal: |
| case Builtin::BI__builtin_crealf: |
| case Builtin::BI__builtin_creall: { |
| ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); |
| return RValue::get(ComplexVal.first); |
| } |
| |
| case Builtin::BI__builtin_cimag: |
| case Builtin::BI__builtin_cimagf: |
| case Builtin::BI__builtin_cimagl: { |
| ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); |
| return RValue::get(ComplexVal.second); |
| } |
| |
| case Builtin::BI__builtin_ctzs: |
| case Builtin::BI__builtin_ctz: |
| case Builtin::BI__builtin_ctzl: |
| case Builtin::BI__builtin_ctzll: { |
| Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
| |
| llvm::Type *ArgType = ArgValue->getType(); |
| Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); |
| |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *ZeroUndef = Builder.getInt1(Target.isCLZForZeroUndef()); |
| Value *Result = Builder.CreateCall2(F, ArgValue, ZeroUndef); |
| if (Result->getType() != ResultType) |
| Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
| "cast"); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_clzs: |
| case Builtin::BI__builtin_clz: |
| case Builtin::BI__builtin_clzl: |
| case Builtin::BI__builtin_clzll: { |
| Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
| |
| llvm::Type *ArgType = ArgValue->getType(); |
| Value *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); |
| |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *ZeroUndef = Builder.getInt1(Target.isCLZForZeroUndef()); |
| Value *Result = Builder.CreateCall2(F, ArgValue, ZeroUndef); |
| if (Result->getType() != ResultType) |
| Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
| "cast"); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_ffs: |
| case Builtin::BI__builtin_ffsl: |
| case Builtin::BI__builtin_ffsll: { |
| // ffs(x) -> x ? cttz(x) + 1 : 0 |
| Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
| |
| llvm::Type *ArgType = ArgValue->getType(); |
| Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); |
| |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *Tmp = Builder.CreateAdd(Builder.CreateCall2(F, ArgValue, |
| Builder.getTrue()), |
| llvm::ConstantInt::get(ArgType, 1)); |
| Value *Zero = llvm::Constant::getNullValue(ArgType); |
| Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero"); |
| Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs"); |
| if (Result->getType() != ResultType) |
| Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
| "cast"); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_parity: |
| case Builtin::BI__builtin_parityl: |
| case Builtin::BI__builtin_parityll: { |
| // parity(x) -> ctpop(x) & 1 |
| Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
| |
| llvm::Type *ArgType = ArgValue->getType(); |
| Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType); |
| |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *Tmp = Builder.CreateCall(F, ArgValue); |
| Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1)); |
| if (Result->getType() != ResultType) |
| Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
| "cast"); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_popcount: |
| case Builtin::BI__builtin_popcountl: |
| case Builtin::BI__builtin_popcountll: { |
| Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
| |
| llvm::Type *ArgType = ArgValue->getType(); |
| Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType); |
| |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *Result = Builder.CreateCall(F, ArgValue); |
| if (Result->getType() != ResultType) |
| Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
| "cast"); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_expect: { |
| Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
| llvm::Type *ArgType = ArgValue->getType(); |
| |
| Value *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType); |
| Value *ExpectedValue = EmitScalarExpr(E->getArg(1)); |
| |
| Value *Result = Builder.CreateCall2(FnExpect, ArgValue, ExpectedValue, |
| "expval"); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_bswap32: |
| case Builtin::BI__builtin_bswap64: { |
| Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
| llvm::Type *ArgType = ArgValue->getType(); |
| Value *F = CGM.getIntrinsic(Intrinsic::bswap, ArgType); |
| return RValue::get(Builder.CreateCall(F, ArgValue)); |
| } |
| case Builtin::BI__builtin_object_size: { |
| // We rely on constant folding to deal with expressions with side effects. |
| assert(!E->getArg(0)->HasSideEffects(getContext()) && |
| "should have been constant folded"); |
| |
| // We pass this builtin onto the optimizer so that it can |
| // figure out the object size in more complex cases. |
| llvm::Type *ResType = ConvertType(E->getType()); |
| |
| // LLVM only supports 0 and 2, make sure that we pass along that |
| // as a boolean. |
| Value *Ty = EmitScalarExpr(E->getArg(1)); |
| ConstantInt *CI = dyn_cast<ConstantInt>(Ty); |
| assert(CI); |
| uint64_t val = CI->getZExtValue(); |
| CI = ConstantInt::get(Builder.getInt1Ty(), (val & 0x2) >> 1); |
| |
| Value *F = CGM.getIntrinsic(Intrinsic::objectsize, ResType); |
| return RValue::get(Builder.CreateCall2(F, EmitScalarExpr(E->getArg(0)),CI)); |
| } |
| case Builtin::BI__builtin_prefetch: { |
| Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0)); |
| // FIXME: Technically these constants should of type 'int', yes? |
| RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) : |
| llvm::ConstantInt::get(Int32Ty, 0); |
| Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : |
| llvm::ConstantInt::get(Int32Ty, 3); |
| Value *Data = llvm::ConstantInt::get(Int32Ty, 1); |
| Value *F = CGM.getIntrinsic(Intrinsic::prefetch); |
| return RValue::get(Builder.CreateCall4(F, Address, RW, Locality, Data)); |
| } |
| case Builtin::BI__builtin_readcyclecounter: { |
| Value *F = CGM.getIntrinsic(Intrinsic::readcyclecounter); |
| return RValue::get(Builder.CreateCall(F)); |
| } |
| case Builtin::BI__builtin_trap: { |
| Value *F = CGM.getIntrinsic(Intrinsic::trap); |
| return RValue::get(Builder.CreateCall(F)); |
| } |
| case Builtin::BI__builtin_unreachable: { |
| if (CatchUndefined) |
| EmitBranch(getTrapBB()); |
| else |
| Builder.CreateUnreachable(); |
| |
| // We do need to preserve an insertion point. |
| EmitBlock(createBasicBlock("unreachable.cont")); |
| |
| return RValue::get(0); |
| } |
| |
| case Builtin::BI__builtin_powi: |
| case Builtin::BI__builtin_powif: |
| case Builtin::BI__builtin_powil: { |
| Value *Base = EmitScalarExpr(E->getArg(0)); |
| Value *Exponent = EmitScalarExpr(E->getArg(1)); |
| llvm::Type *ArgType = Base->getType(); |
| Value *F = CGM.getIntrinsic(Intrinsic::powi, ArgType); |
| return RValue::get(Builder.CreateCall2(F, Base, Exponent)); |
| } |
| |
| case Builtin::BI__builtin_isgreater: |
| case Builtin::BI__builtin_isgreaterequal: |
| case Builtin::BI__builtin_isless: |
| case Builtin::BI__builtin_islessequal: |
| case Builtin::BI__builtin_islessgreater: |
| case Builtin::BI__builtin_isunordered: { |
| // Ordered comparisons: we know the arguments to these are matching scalar |
| // floating point values. |
| Value *LHS = EmitScalarExpr(E->getArg(0)); |
| Value *RHS = EmitScalarExpr(E->getArg(1)); |
| |
| switch (BuiltinID) { |
| default: llvm_unreachable("Unknown ordered comparison"); |
| case Builtin::BI__builtin_isgreater: |
| LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp"); |
| break; |
| case Builtin::BI__builtin_isgreaterequal: |
| LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp"); |
| break; |
| case Builtin::BI__builtin_isless: |
| LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp"); |
| break; |
| case Builtin::BI__builtin_islessequal: |
| LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp"); |
| break; |
| case Builtin::BI__builtin_islessgreater: |
| LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp"); |
| break; |
| case Builtin::BI__builtin_isunordered: |
| LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp"); |
| break; |
| } |
| // ZExt bool to int type. |
| return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType()))); |
| } |
| case Builtin::BI__builtin_isnan: { |
| Value *V = EmitScalarExpr(E->getArg(0)); |
| V = Builder.CreateFCmpUNO(V, V, "cmp"); |
| return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); |
| } |
| |
| case Builtin::BI__builtin_isinf: { |
| // isinf(x) --> fabs(x) == infinity |
| Value *V = EmitScalarExpr(E->getArg(0)); |
| V = EmitFAbs(*this, V, E->getArg(0)->getType()); |
| |
| V = Builder.CreateFCmpOEQ(V, ConstantFP::getInfinity(V->getType()),"isinf"); |
| return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); |
| } |
| |
| // TODO: BI__builtin_isinf_sign |
| // isinf_sign(x) -> isinf(x) ? (signbit(x) ? -1 : 1) : 0 |
| |
| case Builtin::BI__builtin_isnormal: { |
| // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min |
| Value *V = EmitScalarExpr(E->getArg(0)); |
| Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq"); |
| |
| Value *Abs = EmitFAbs(*this, V, E->getArg(0)->getType()); |
| Value *IsLessThanInf = |
| Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf"); |
| APFloat Smallest = APFloat::getSmallestNormalized( |
| getContext().getFloatTypeSemantics(E->getArg(0)->getType())); |
| Value *IsNormal = |
| Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest), |
| "isnormal"); |
| V = Builder.CreateAnd(Eq, IsLessThanInf, "and"); |
| V = Builder.CreateAnd(V, IsNormal, "and"); |
| return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); |
| } |
| |
| case Builtin::BI__builtin_isfinite: { |
| // isfinite(x) --> x == x && fabs(x) != infinity; |
| Value *V = EmitScalarExpr(E->getArg(0)); |
| Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq"); |
| |
| Value *Abs = EmitFAbs(*this, V, E->getArg(0)->getType()); |
| Value *IsNotInf = |
| Builder.CreateFCmpUNE(Abs, ConstantFP::getInfinity(V->getType()),"isinf"); |
| |
| V = Builder.CreateAnd(Eq, IsNotInf, "and"); |
| return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); |
| } |
| |
| case Builtin::BI__builtin_fpclassify: { |
| Value *V = EmitScalarExpr(E->getArg(5)); |
| llvm::Type *Ty = ConvertType(E->getArg(5)->getType()); |
| |
| // Create Result |
| BasicBlock *Begin = Builder.GetInsertBlock(); |
| BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn); |
| Builder.SetInsertPoint(End); |
| PHINode *Result = |
| Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4, |
| "fpclassify_result"); |
| |
| // if (V==0) return FP_ZERO |
| Builder.SetInsertPoint(Begin); |
| Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty), |
| "iszero"); |
| Value *ZeroLiteral = EmitScalarExpr(E->getArg(4)); |
| BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn); |
| Builder.CreateCondBr(IsZero, End, NotZero); |
| Result->addIncoming(ZeroLiteral, Begin); |
| |
| // if (V != V) return FP_NAN |
| Builder.SetInsertPoint(NotZero); |
| Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp"); |
| Value *NanLiteral = EmitScalarExpr(E->getArg(0)); |
| BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn); |
| Builder.CreateCondBr(IsNan, End, NotNan); |
| Result->addIncoming(NanLiteral, NotZero); |
| |
| // if (fabs(V) == infinity) return FP_INFINITY |
| Builder.SetInsertPoint(NotNan); |
| Value *VAbs = EmitFAbs(*this, V, E->getArg(5)->getType()); |
| Value *IsInf = |
| Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()), |
| "isinf"); |
| Value *InfLiteral = EmitScalarExpr(E->getArg(1)); |
| BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn); |
| Builder.CreateCondBr(IsInf, End, NotInf); |
| Result->addIncoming(InfLiteral, NotNan); |
| |
| // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL |
| Builder.SetInsertPoint(NotInf); |
| APFloat Smallest = APFloat::getSmallestNormalized( |
| getContext().getFloatTypeSemantics(E->getArg(5)->getType())); |
| Value *IsNormal = |
| Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest), |
| "isnormal"); |
| Value *NormalResult = |
| Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)), |
| EmitScalarExpr(E->getArg(3))); |
| Builder.CreateBr(End); |
| Result->addIncoming(NormalResult, NotInf); |
| |
| // return Result |
| Builder.SetInsertPoint(End); |
| return RValue::get(Result); |
| } |
| |
| case Builtin::BIalloca: |
| case Builtin::BI__builtin_alloca: { |
| Value *Size = EmitScalarExpr(E->getArg(0)); |
| return RValue::get(Builder.CreateAlloca(Builder.getInt8Ty(), Size)); |
| } |
| case Builtin::BIbzero: |
| case Builtin::BI__builtin_bzero: { |
| Value *Address = EmitScalarExpr(E->getArg(0)); |
| Value *SizeVal = EmitScalarExpr(E->getArg(1)); |
| unsigned Align = GetPointeeAlignment(E->getArg(0)); |
| Builder.CreateMemSet(Address, Builder.getInt8(0), SizeVal, Align, false); |
| return RValue::get(Address); |
| } |
| case Builtin::BImemcpy: |
| case Builtin::BI__builtin_memcpy: { |
| Value *Address = EmitScalarExpr(E->getArg(0)); |
| Value *SrcAddr = EmitScalarExpr(E->getArg(1)); |
| Value *SizeVal = EmitScalarExpr(E->getArg(2)); |
| unsigned Align = std::min(GetPointeeAlignment(E->getArg(0)), |
| GetPointeeAlignment(E->getArg(1))); |
| Builder.CreateMemCpy(Address, SrcAddr, SizeVal, Align, false); |
| return RValue::get(Address); |
| } |
| |
| case Builtin::BI__builtin___memcpy_chk: { |
| // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memset iff cst1<=cst2. |
| llvm::APSInt Size, DstSize; |
| if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) || |
| !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext())) |
| break; |
| if (Size.ugt(DstSize)) |
| break; |
| Value *Dest = EmitScalarExpr(E->getArg(0)); |
| Value *Src = EmitScalarExpr(E->getArg(1)); |
| Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); |
| unsigned Align = std::min(GetPointeeAlignment(E->getArg(0)), |
| GetPointeeAlignment(E->getArg(1))); |
| Builder.CreateMemCpy(Dest, Src, SizeVal, Align, false); |
| return RValue::get(Dest); |
| } |
| |
| case Builtin::BI__builtin_objc_memmove_collectable: { |
| Value *Address = EmitScalarExpr(E->getArg(0)); |
| Value *SrcAddr = EmitScalarExpr(E->getArg(1)); |
| Value *SizeVal = EmitScalarExpr(E->getArg(2)); |
| CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, |
| Address, SrcAddr, SizeVal); |
| return RValue::get(Address); |
| } |
| |
| case Builtin::BI__builtin___memmove_chk: { |
| // fold __builtin_memmove_chk(x, y, cst1, cst2) to memset iff cst1<=cst2. |
| llvm::APSInt Size, DstSize; |
| if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) || |
| !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext())) |
| break; |
| if (Size.ugt(DstSize)) |
| break; |
| Value *Dest = EmitScalarExpr(E->getArg(0)); |
| Value *Src = EmitScalarExpr(E->getArg(1)); |
| Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); |
| unsigned Align = std::min(GetPointeeAlignment(E->getArg(0)), |
| GetPointeeAlignment(E->getArg(1))); |
| Builder.CreateMemMove(Dest, Src, SizeVal, Align, false); |
| return RValue::get(Dest); |
| } |
| |
| case Builtin::BImemmove: |
| case Builtin::BI__builtin_memmove: { |
| Value *Address = EmitScalarExpr(E->getArg(0)); |
| Value *SrcAddr = EmitScalarExpr(E->getArg(1)); |
| Value *SizeVal = EmitScalarExpr(E->getArg(2)); |
| unsigned Align = std::min(GetPointeeAlignment(E->getArg(0)), |
| GetPointeeAlignment(E->getArg(1))); |
| Builder.CreateMemMove(Address, SrcAddr, SizeVal, Align, false); |
| return RValue::get(Address); |
| } |
| case Builtin::BImemset: |
| case Builtin::BI__builtin_memset: { |
| Value *Address = EmitScalarExpr(E->getArg(0)); |
| Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), |
| Builder.getInt8Ty()); |
| Value *SizeVal = EmitScalarExpr(E->getArg(2)); |
| unsigned Align = GetPointeeAlignment(E->getArg(0)); |
| Builder.CreateMemSet(Address, ByteVal, SizeVal, Align, false); |
| return RValue::get(Address); |
| } |
| case Builtin::BI__builtin___memset_chk: { |
| // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2. |
| llvm::APSInt Size, DstSize; |
| if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) || |
| !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext())) |
| break; |
| if (Size.ugt(DstSize)) |
| break; |
| Value *Address = EmitScalarExpr(E->getArg(0)); |
| Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), |
| Builder.getInt8Ty()); |
| Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); |
| unsigned Align = GetPointeeAlignment(E->getArg(0)); |
| Builder.CreateMemSet(Address, ByteVal, SizeVal, Align, false); |
| |
| return RValue::get(Address); |
| } |
| case Builtin::BI__builtin_dwarf_cfa: { |
| // The offset in bytes from the first argument to the CFA. |
| // |
| // Why on earth is this in the frontend? Is there any reason at |
| // all that the backend can't reasonably determine this while |
| // lowering llvm.eh.dwarf.cfa()? |
| // |
| // TODO: If there's a satisfactory reason, add a target hook for |
| // this instead of hard-coding 0, which is correct for most targets. |
| int32_t Offset = 0; |
| |
| Value *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa); |
| return RValue::get(Builder.CreateCall(F, |
| llvm::ConstantInt::get(Int32Ty, Offset))); |
| } |
| case Builtin::BI__builtin_return_address: { |
| Value *Depth = EmitScalarExpr(E->getArg(0)); |
| Depth = Builder.CreateIntCast(Depth, Int32Ty, false); |
| Value *F = CGM.getIntrinsic(Intrinsic::returnaddress); |
| return RValue::get(Builder.CreateCall(F, Depth)); |
| } |
| case Builtin::BI__builtin_frame_address: { |
| Value *Depth = EmitScalarExpr(E->getArg(0)); |
| Depth = Builder.CreateIntCast(Depth, Int32Ty, false); |
| Value *F = CGM.getIntrinsic(Intrinsic::frameaddress); |
| return RValue::get(Builder.CreateCall(F, Depth)); |
| } |
| case Builtin::BI__builtin_extract_return_addr: { |
| Value *Address = EmitScalarExpr(E->getArg(0)); |
| Value *Result = getTargetHooks().decodeReturnAddress(*this, Address); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_frob_return_addr: { |
| Value *Address = EmitScalarExpr(E->getArg(0)); |
| Value *Result = getTargetHooks().encodeReturnAddress(*this, Address); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_dwarf_sp_column: { |
| llvm::IntegerType *Ty |
| = cast<llvm::IntegerType>(ConvertType(E->getType())); |
| int Column = getTargetHooks().getDwarfEHStackPointer(CGM); |
| if (Column == -1) { |
| CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column"); |
| return RValue::get(llvm::UndefValue::get(Ty)); |
| } |
| return RValue::get(llvm::ConstantInt::get(Ty, Column, true)); |
| } |
| case Builtin::BI__builtin_init_dwarf_reg_size_table: { |
| Value *Address = EmitScalarExpr(E->getArg(0)); |
| if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address)) |
| CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table"); |
| return RValue::get(llvm::UndefValue::get(ConvertType(E->getType()))); |
| } |
| case Builtin::BI__builtin_eh_return: { |
| Value *Int = EmitScalarExpr(E->getArg(0)); |
| Value *Ptr = EmitScalarExpr(E->getArg(1)); |
| |
| llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType()); |
| assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) && |
| "LLVM's __builtin_eh_return only supports 32- and 64-bit variants"); |
| Value *F = CGM.getIntrinsic(IntTy->getBitWidth() == 32 |
| ? Intrinsic::eh_return_i32 |
| : Intrinsic::eh_return_i64); |
| Builder.CreateCall2(F, Int, Ptr); |
| Builder.CreateUnreachable(); |
| |
| // We do need to preserve an insertion point. |
| EmitBlock(createBasicBlock("builtin_eh_return.cont")); |
| |
| return RValue::get(0); |
| } |
| case Builtin::BI__builtin_unwind_init: { |
| Value *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init); |
| return RValue::get(Builder.CreateCall(F)); |
| } |
| case Builtin::BI__builtin_extend_pointer: { |
| // Extends a pointer to the size of an _Unwind_Word, which is |
| // uint64_t on all platforms. Generally this gets poked into a |
| // register and eventually used as an address, so if the |
| // addressing registers are wider than pointers and the platform |
| // doesn't implicitly ignore high-order bits when doing |
| // addressing, we need to make sure we zext / sext based on |
| // the platform's expectations. |
| // |
| // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html |
| |
| // Cast the pointer to intptr_t. |
| Value *Ptr = EmitScalarExpr(E->getArg(0)); |
| Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast"); |
| |
| // If that's 64 bits, we're done. |
| if (IntPtrTy->getBitWidth() == 64) |
| return RValue::get(Result); |
| |
| // Otherwise, ask the codegen data what to do. |
| if (getTargetHooks().extendPointerWithSExt()) |
| return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext")); |
| else |
| return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext")); |
| } |
| case Builtin::BI__builtin_setjmp: { |
| // Buffer is a void**. |
| Value *Buf = EmitScalarExpr(E->getArg(0)); |
| |
| // Store the frame pointer to the setjmp buffer. |
| Value *FrameAddr = |
| Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress), |
| ConstantInt::get(Int32Ty, 0)); |
| Builder.CreateStore(FrameAddr, Buf); |
| |
| // Store the stack pointer to the setjmp buffer. |
| Value *StackAddr = |
| Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave)); |
| Value *StackSaveSlot = |
| Builder.CreateGEP(Buf, ConstantInt::get(Int32Ty, 2)); |
| Builder.CreateStore(StackAddr, StackSaveSlot); |
| |
| // Call LLVM's EH setjmp, which is lightweight. |
| Value *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp); |
| Buf = Builder.CreateBitCast(Buf, Int8PtrTy); |
| return RValue::get(Builder.CreateCall(F, Buf)); |
| } |
| case Builtin::BI__builtin_longjmp: { |
| Value *Buf = EmitScalarExpr(E->getArg(0)); |
| Buf = Builder.CreateBitCast(Buf, Int8PtrTy); |
| |
| // Call LLVM's EH longjmp, which is lightweight. |
| Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf); |
| |
| // longjmp doesn't return; mark this as unreachable. |
| Builder.CreateUnreachable(); |
| |
| // We do need to preserve an insertion point. |
| EmitBlock(createBasicBlock("longjmp.cont")); |
| |
| return RValue::get(0); |
| } |
| case Builtin::BI__sync_fetch_and_add: |
| case Builtin::BI__sync_fetch_and_sub: |
| case Builtin::BI__sync_fetch_and_or: |
| case Builtin::BI__sync_fetch_and_and: |
| case Builtin::BI__sync_fetch_and_xor: |
| case Builtin::BI__sync_add_and_fetch: |
| case Builtin::BI__sync_sub_and_fetch: |
| case Builtin::BI__sync_and_and_fetch: |
| case Builtin::BI__sync_or_and_fetch: |
| case Builtin::BI__sync_xor_and_fetch: |
| case Builtin::BI__sync_val_compare_and_swap: |
| case Builtin::BI__sync_bool_compare_and_swap: |
| case Builtin::BI__sync_lock_test_and_set: |
| case Builtin::BI__sync_lock_release: |
| case Builtin::BI__sync_swap: |
| llvm_unreachable("Shouldn't make it through sema"); |
| case Builtin::BI__sync_fetch_and_add_1: |
| case Builtin::BI__sync_fetch_and_add_2: |
| case Builtin::BI__sync_fetch_and_add_4: |
| case Builtin::BI__sync_fetch_and_add_8: |
| case Builtin::BI__sync_fetch_and_add_16: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E); |
| case Builtin::BI__sync_fetch_and_sub_1: |
| case Builtin::BI__sync_fetch_and_sub_2: |
| case Builtin::BI__sync_fetch_and_sub_4: |
| case Builtin::BI__sync_fetch_and_sub_8: |
| case Builtin::BI__sync_fetch_and_sub_16: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E); |
| case Builtin::BI__sync_fetch_and_or_1: |
| case Builtin::BI__sync_fetch_and_or_2: |
| case Builtin::BI__sync_fetch_and_or_4: |
| case Builtin::BI__sync_fetch_and_or_8: |
| case Builtin::BI__sync_fetch_and_or_16: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E); |
| case Builtin::BI__sync_fetch_and_and_1: |
| case Builtin::BI__sync_fetch_and_and_2: |
| case Builtin::BI__sync_fetch_and_and_4: |
| case Builtin::BI__sync_fetch_and_and_8: |
| case Builtin::BI__sync_fetch_and_and_16: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E); |
| case Builtin::BI__sync_fetch_and_xor_1: |
| case Builtin::BI__sync_fetch_and_xor_2: |
| case Builtin::BI__sync_fetch_and_xor_4: |
| case Builtin::BI__sync_fetch_and_xor_8: |
| case Builtin::BI__sync_fetch_and_xor_16: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E); |
| |
| // Clang extensions: not overloaded yet. |
| case Builtin::BI__sync_fetch_and_min: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E); |
| case Builtin::BI__sync_fetch_and_max: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E); |
| case Builtin::BI__sync_fetch_and_umin: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E); |
| case Builtin::BI__sync_fetch_and_umax: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E); |
| |
| case Builtin::BI__sync_add_and_fetch_1: |
| case Builtin::BI__sync_add_and_fetch_2: |
| case Builtin::BI__sync_add_and_fetch_4: |
| case Builtin::BI__sync_add_and_fetch_8: |
| case Builtin::BI__sync_add_and_fetch_16: |
| return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E, |
| llvm::Instruction::Add); |
| case Builtin::BI__sync_sub_and_fetch_1: |
| case Builtin::BI__sync_sub_and_fetch_2: |
| case Builtin::BI__sync_sub_and_fetch_4: |
| case Builtin::BI__sync_sub_and_fetch_8: |
| case Builtin::BI__sync_sub_and_fetch_16: |
| return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E, |
| llvm::Instruction::Sub); |
| case Builtin::BI__sync_and_and_fetch_1: |
| case Builtin::BI__sync_and_and_fetch_2: |
| case Builtin::BI__sync_and_and_fetch_4: |
| case Builtin::BI__sync_and_and_fetch_8: |
| case Builtin::BI__sync_and_and_fetch_16: |
| return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E, |
| llvm::Instruction::And); |
| case Builtin::BI__sync_or_and_fetch_1: |
| case Builtin::BI__sync_or_and_fetch_2: |
| case Builtin::BI__sync_or_and_fetch_4: |
| case Builtin::BI__sync_or_and_fetch_8: |
| case Builtin::BI__sync_or_and_fetch_16: |
| return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E, |
| llvm::Instruction::Or); |
| case Builtin::BI__sync_xor_and_fetch_1: |
| case Builtin::BI__sync_xor_and_fetch_2: |
| case Builtin::BI__sync_xor_and_fetch_4: |
| case Builtin::BI__sync_xor_and_fetch_8: |
| case Builtin::BI__sync_xor_and_fetch_16: |
| return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E, |
| llvm::Instruction::Xor); |
| |
| case Builtin::BI__sync_val_compare_and_swap_1: |
| case Builtin::BI__sync_val_compare_and_swap_2: |
| case Builtin::BI__sync_val_compare_and_swap_4: |
| case Builtin::BI__sync_val_compare_and_swap_8: |
| case Builtin::BI__sync_val_compare_and_swap_16: { |
| QualType T = E->getType(); |
| llvm::Value *DestPtr = EmitScalarExpr(E->getArg(0)); |
| unsigned AddrSpace = |
| cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); |
| |
| llvm::IntegerType *IntType = |
| llvm::IntegerType::get(getLLVMContext(), |
| getContext().getTypeSize(T)); |
| llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); |
| |
| Value *Args[3]; |
| Args[0] = Builder.CreateBitCast(DestPtr, IntPtrType); |
| Args[1] = EmitScalarExpr(E->getArg(1)); |
| llvm::Type *ValueType = Args[1]->getType(); |
| Args[1] = EmitToInt(*this, Args[1], T, IntType); |
| Args[2] = EmitToInt(*this, EmitScalarExpr(E->getArg(2)), T, IntType); |
| |
| Value *Result = Builder.CreateAtomicCmpXchg(Args[0], Args[1], Args[2], |
| llvm::SequentiallyConsistent); |
| Result = EmitFromInt(*this, Result, T, ValueType); |
| return RValue::get(Result); |
| } |
| |
| case Builtin::BI__sync_bool_compare_and_swap_1: |
| case Builtin::BI__sync_bool_compare_and_swap_2: |
| case Builtin::BI__sync_bool_compare_and_swap_4: |
| case Builtin::BI__sync_bool_compare_and_swap_8: |
| case Builtin::BI__sync_bool_compare_and_swap_16: { |
| QualType T = E->getArg(1)->getType(); |
| llvm::Value *DestPtr = EmitScalarExpr(E->getArg(0)); |
| unsigned AddrSpace = |
| cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); |
| |
| llvm::IntegerType *IntType = |
| llvm::IntegerType::get(getLLVMContext(), |
| getContext().getTypeSize(T)); |
| llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); |
| |
| Value *Args[3]; |
| Args[0] = Builder.CreateBitCast(DestPtr, IntPtrType); |
| Args[1] = EmitToInt(*this, EmitScalarExpr(E->getArg(1)), T, IntType); |
| Args[2] = EmitToInt(*this, EmitScalarExpr(E->getArg(2)), T, IntType); |
| |
| Value *OldVal = Args[1]; |
| Value *PrevVal = Builder.CreateAtomicCmpXchg(Args[0], Args[1], Args[2], |
| llvm::SequentiallyConsistent); |
| Value *Result = Builder.CreateICmpEQ(PrevVal, OldVal); |
| // zext bool to int. |
| Result = Builder.CreateZExt(Result, ConvertType(E->getType())); |
| return RValue::get(Result); |
| } |
| |
| case Builtin::BI__sync_swap_1: |
| case Builtin::BI__sync_swap_2: |
| case Builtin::BI__sync_swap_4: |
| case Builtin::BI__sync_swap_8: |
| case Builtin::BI__sync_swap_16: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E); |
| |
| case Builtin::BI__sync_lock_test_and_set_1: |
| case Builtin::BI__sync_lock_test_and_set_2: |
| case Builtin::BI__sync_lock_test_and_set_4: |
| case Builtin::BI__sync_lock_test_and_set_8: |
| case Builtin::BI__sync_lock_test_and_set_16: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E); |
| |
| case Builtin::BI__sync_lock_release_1: |
| case Builtin::BI__sync_lock_release_2: |
| case Builtin::BI__sync_lock_release_4: |
| case Builtin::BI__sync_lock_release_8: |
| case Builtin::BI__sync_lock_release_16: { |
| Value *Ptr = EmitScalarExpr(E->getArg(0)); |
| QualType ElTy = E->getArg(0)->getType()->getPointeeType(); |
| CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy); |
| llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(), |
| StoreSize.getQuantity() * 8); |
| Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo()); |
| llvm::StoreInst *Store = |
| Builder.CreateStore(llvm::Constant::getNullValue(ITy), Ptr); |
| Store->setAlignment(StoreSize.getQuantity()); |
| Store->setAtomic(llvm::Release); |
| return RValue::get(0); |
| } |
| |
| case Builtin::BI__sync_synchronize: { |
| // We assume this is supposed to correspond to a C++0x-style |
| // sequentially-consistent fence (i.e. this is only usable for |
| // synchonization, not device I/O or anything like that). This intrinsic |
| // is really badly designed in the sense that in theory, there isn't |
| // any way to safely use it... but in practice, it mostly works |
| // to use it with non-atomic loads and stores to get acquire/release |
| // semantics. |
| Builder.CreateFence(llvm::SequentiallyConsistent); |
| return RValue::get(0); |
| } |
| |
| case Builtin::BI__c11_atomic_is_lock_free: |
| case Builtin::BI__atomic_is_lock_free: { |
| // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the |
| // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since |
| // _Atomic(T) is always properly-aligned. |
| const char *LibCallName = "__atomic_is_lock_free"; |
| CallArgList Args; |
| Args.add(RValue::get(EmitScalarExpr(E->getArg(0))), |
| getContext().getSizeType()); |
| if (BuiltinID == Builtin::BI__atomic_is_lock_free) |
| Args.add(RValue::get(EmitScalarExpr(E->getArg(1))), |
| getContext().VoidPtrTy); |
| else |
| Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)), |
| getContext().VoidPtrTy); |
| const CGFunctionInfo &FuncInfo = |
| CGM.getTypes().arrangeFreeFunctionCall(E->getType(), Args, |
| FunctionType::ExtInfo(), |
| RequiredArgs::All); |
| llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo); |
| llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName); |
| return EmitCall(FuncInfo, Func, ReturnValueSlot(), Args); |
| } |
| |
| case Builtin::BI__atomic_test_and_set: { |
| // Look at the argument type to determine whether this is a volatile |
| // operation. The parameter type is always volatile. |
| QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType(); |
| bool Volatile = |
| PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified(); |
| |
| Value *Ptr = EmitScalarExpr(E->getArg(0)); |
| unsigned AddrSpace = |
| cast<llvm::PointerType>(Ptr->getType())->getAddressSpace(); |
| Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace)); |
| Value *NewVal = Builder.getInt8(1); |
| Value *Order = EmitScalarExpr(E->getArg(1)); |
| if (isa<llvm::ConstantInt>(Order)) { |
| int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); |
| AtomicRMWInst *Result = 0; |
| switch (ord) { |
| case 0: // memory_order_relaxed |
| default: // invalid order |
| Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, |
| Ptr, NewVal, |
| llvm::Monotonic); |
| break; |
| case 1: // memory_order_consume |
| case 2: // memory_order_acquire |
| Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, |
| Ptr, NewVal, |
| llvm::Acquire); |
| break; |
| case 3: // memory_order_release |
| Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, |
| Ptr, NewVal, |
| llvm::Release); |
| break; |
| case 4: // memory_order_acq_rel |
| Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, |
| Ptr, NewVal, |
| llvm::AcquireRelease); |
| break; |
| case 5: // memory_order_seq_cst |
| Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, |
| Ptr, NewVal, |
| llvm::SequentiallyConsistent); |
| break; |
| } |
| Result->setVolatile(Volatile); |
| return RValue::get(Builder.CreateIsNotNull(Result, "tobool")); |
| } |
| |
| llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); |
| |
| llvm::BasicBlock *BBs[5] = { |
| createBasicBlock("monotonic", CurFn), |
| createBasicBlock("acquire", CurFn), |
| createBasicBlock("release", CurFn), |
| createBasicBlock("acqrel", CurFn), |
| createBasicBlock("seqcst", CurFn) |
| }; |
| llvm::AtomicOrdering Orders[5] = { |
| llvm::Monotonic, llvm::Acquire, llvm::Release, |
| llvm::AcquireRelease, llvm::SequentiallyConsistent |
| }; |
| |
| Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); |
| llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]); |
| |
| Builder.SetInsertPoint(ContBB); |
| PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set"); |
| |
| for (unsigned i = 0; i < 5; ++i) { |
| Builder.SetInsertPoint(BBs[i]); |
| AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, |
| Ptr, NewVal, Orders[i]); |
| RMW->setVolatile(Volatile); |
| Result->addIncoming(RMW, BBs[i]); |
| Builder.CreateBr(ContBB); |
| } |
| |
| SI->addCase(Builder.getInt32(0), BBs[0]); |
| SI->addCase(Builder.getInt32(1), BBs[1]); |
| SI->addCase(Builder.getInt32(2), BBs[1]); |
| SI->addCase(Builder.getInt32(3), BBs[2]); |
| SI->addCase(Builder.getInt32(4), BBs[3]); |
| SI->addCase(Builder.getInt32(5), BBs[4]); |
| |
| Builder.SetInsertPoint(ContBB); |
| return RValue::get(Builder.CreateIsNotNull(Result, "tobool")); |
| } |
| |
| case Builtin::BI__atomic_clear: { |
| QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType(); |
| bool Volatile = |
| PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified(); |
| |
| Value *Ptr = EmitScalarExpr(E->getArg(0)); |
| unsigned AddrSpace = |
| cast<llvm::PointerType>(Ptr->getType())->getAddressSpace(); |
| Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace)); |
| Value *NewVal = Builder.getInt8(0); |
| Value *Order = EmitScalarExpr(E->getArg(1)); |
| if (isa<llvm::ConstantInt>(Order)) { |
| int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); |
| StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile); |
| Store->setAlignment(1); |
| switch (ord) { |
| case 0: // memory_order_relaxed |
| default: // invalid order |
| Store->setOrdering(llvm::Monotonic); |
| break; |
| case 3: // memory_order_release |
| Store->setOrdering(llvm::Release); |
| break; |
| case 5: // memory_order_seq_cst |
| Store->setOrdering(llvm::SequentiallyConsistent); |
| break; |
| } |
| return RValue::get(0); |
| } |
| |
| llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); |
| |
| llvm::BasicBlock *BBs[3] = { |
| createBasicBlock("monotonic", CurFn), |
| createBasicBlock("release", CurFn), |
| createBasicBlock("seqcst", CurFn) |
| }; |
| llvm::AtomicOrdering Orders[3] = { |
| llvm::Monotonic, llvm::Release, llvm::SequentiallyConsistent |
| }; |
| |
| Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); |
| llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]); |
| |
| for (unsigned i = 0; i < 3; ++i) { |
| Builder.SetInsertPoint(BBs[i]); |
| StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile); |
| Store->setAlignment(1); |
| Store->setOrdering(Orders[i]); |
| Builder.CreateBr(ContBB); |
| } |
| |
| SI->addCase(Builder.getInt32(0), BBs[0]); |
| SI->addCase(Builder.getInt32(3), BBs[1]); |
| SI->addCase(Builder.getInt32(5), BBs[2]); |
| |
| Builder.SetInsertPoint(ContBB); |
| return RValue::get(0); |
| } |
| |
| case Builtin::BI__atomic_thread_fence: |
| case Builtin::BI__atomic_signal_fence: |
| case Builtin::BI__c11_atomic_thread_fence: |
| case Builtin::BI__c11_atomic_signal_fence: { |
| llvm::SynchronizationScope Scope; |
| if (BuiltinID == Builtin::BI__atomic_signal_fence || |
| BuiltinID == Builtin::BI__c11_atomic_signal_fence) |
| Scope = llvm::SingleThread; |
| else |
| Scope = llvm::CrossThread; |
| Value *Order = EmitScalarExpr(E->getArg(0)); |
| if (isa<llvm::ConstantInt>(Order)) { |
| int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); |
| switch (ord) { |
| case 0: // memory_order_relaxed |
| default: // invalid order |
| break; |
| case 1: // memory_order_consume |
| case 2: // memory_order_acquire |
| Builder.CreateFence(llvm::Acquire, Scope); |
| break; |
| case 3: // memory_order_release |
| Builder.CreateFence(llvm::Release, Scope); |
| break; |
| case 4: // memory_order_acq_rel |
| Builder.CreateFence(llvm::AcquireRelease, Scope); |
| break; |
| case 5: // memory_order_seq_cst |
| Builder.CreateFence(llvm::SequentiallyConsistent, Scope); |
| break; |
| } |
| return RValue::get(0); |
| } |
| |
| llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB; |
| AcquireBB = createBasicBlock("acquire", CurFn); |
| ReleaseBB = createBasicBlock("release", CurFn); |
| AcqRelBB = createBasicBlock("acqrel", CurFn); |
| SeqCstBB = createBasicBlock("seqcst", CurFn); |
| llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); |
| |
| Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); |
| llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB); |
| |
| Builder.SetInsertPoint(AcquireBB); |
| Builder.CreateFence(llvm::Acquire, Scope); |
| Builder.CreateBr(ContBB); |
| SI->addCase(Builder.getInt32(1), AcquireBB); |
| SI->addCase(Builder.getInt32(2), AcquireBB); |
| |
| Builder.SetInsertPoint(ReleaseBB); |
| Builder.CreateFence(llvm::Release, Scope); |
| Builder.CreateBr(ContBB); |
| SI->addCase(Builder.getInt32(3), ReleaseBB); |
| |
| Builder.SetInsertPoint(AcqRelBB); |
| Builder.CreateFence(llvm::AcquireRelease, Scope); |
| Builder.CreateBr(ContBB); |
| SI->addCase(Builder.getInt32(4), AcqRelBB); |
| |
| Builder.SetInsertPoint(SeqCstBB); |
| Builder.CreateFence(llvm::SequentiallyConsistent, Scope); |
| Builder.CreateBr(ContBB); |
| SI->addCase(Builder.getInt32(5), SeqCstBB); |
| |
| Builder.SetInsertPoint(ContBB); |
| return RValue::get(0); |
| } |
| |
| // Library functions with special handling. |
| case Builtin::BIsqrt: |
| case Builtin::BIsqrtf: |
| case Builtin::BIsqrtl: { |
| // TODO: there is currently no set of optimizer flags |
| // sufficient for us to rewrite sqrt to @llvm.sqrt. |
| // -fmath-errno=0 is not good enough; we need finiteness. |
| // We could probably precondition the call with an ult |
| // against 0, but is that worth the complexity? |
| break; |
| } |
| |
| case Builtin::BIpow: |
| case Builtin::BIpowf: |
| case Builtin::BIpowl: { |
| // Rewrite sqrt to intrinsic if allowed. |
| if (!FD->hasAttr<ConstAttr>()) |
| break; |
| Value *Base = EmitScalarExpr(E->getArg(0)); |
| Value *Exponent = EmitScalarExpr(E->getArg(1)); |
| llvm::Type *ArgType = Base->getType(); |
| Value *F = CGM.getIntrinsic(Intrinsic::pow, ArgType); |
| return RValue::get(Builder.CreateCall2(F, Base, Exponent)); |
| } |
| |
| case Builtin::BIfma: |
| case Builtin::BIfmaf: |
| case Builtin::BIfmal: |
| case Builtin::BI__builtin_fma: |
| case Builtin::BI__builtin_fmaf: |
| case Builtin::BI__builtin_fmal: { |
| // Rewrite fma to intrinsic. |
| Value *FirstArg = EmitScalarExpr(E->getArg(0)); |
| llvm::Type *ArgType = FirstArg->getType(); |
| Value *F = CGM.getIntrinsic(Intrinsic::fma, ArgType); |
| return RValue::get(Builder.CreateCall3(F, FirstArg, |
| EmitScalarExpr(E->getArg(1)), |
| EmitScalarExpr(E->getArg(2)))); |
| } |
| |
| case Builtin::BI__builtin_signbit: |
| case Builtin::BI__builtin_signbitf: |
| case Builtin::BI__builtin_signbitl: { |
| LLVMContext &C = CGM.getLLVMContext(); |
| |
| Value *Arg = EmitScalarExpr(E->getArg(0)); |
| llvm::Type *ArgTy = Arg->getType(); |
| if (ArgTy->isPPC_FP128Ty()) |
| break; // FIXME: I'm not sure what the right implementation is here. |
| int ArgWidth = ArgTy->getPrimitiveSizeInBits(); |
| llvm::Type *ArgIntTy = llvm::IntegerType::get(C, ArgWidth); |
| Value *BCArg = Builder.CreateBitCast(Arg, ArgIntTy); |
| Value *ZeroCmp = llvm::Constant::getNullValue(ArgIntTy); |
| Value *Result = Builder.CreateICmpSLT(BCArg, ZeroCmp); |
| return RValue::get(Builder.CreateZExt(Result, ConvertType(E->getType()))); |
| } |
| case Builtin::BI__builtin_annotation: { |
| llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0)); |
| llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::annotation, |
| AnnVal->getType()); |
| |
| // Get the annotation string, go through casts. Sema requires this to be a |
| // non-wide string literal, potentially casted, so the cast<> is safe. |
| const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts(); |
| llvm::StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString(); |
| return RValue::get(EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc())); |
| } |
| } |
| |
| // If this is an alias for a lib function (e.g. __builtin_sin), emit |
| // the call using the normal call path, but using the unmangled |
| // version of the function name. |
| if (getContext().BuiltinInfo.isLibFunction(BuiltinID)) |
| return emitLibraryCall(*this, FD, E, |
| CGM.getBuiltinLibFunction(FD, BuiltinID)); |
| |
| // If this is a predefined lib function (e.g. malloc), emit the call |
| // using exactly the normal call path. |
| if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID)) |
| return emitLibraryCall(*this, FD, E, EmitScalarExpr(E->getCallee())); |
| |
| // See if we have a target specific intrinsic. |
| const char *Name = getContext().BuiltinInfo.GetName(BuiltinID); |
| Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic; |
| if (const char *Prefix = |
| llvm::Triple::getArchTypePrefix(Target.getTriple().getArch())) |
| IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix, Name); |
| |
| if (IntrinsicID != Intrinsic::not_intrinsic) { |
| SmallVector<Value*, 16> Args; |
| |
| // Find out if any arguments are required to be integer constant |
| // expressions. |
| unsigned ICEArguments = 0; |
| ASTContext::GetBuiltinTypeError Error; |
| getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); |
| assert(Error == ASTContext::GE_None && "Should not codegen an error"); |
| |
| Function *F = CGM.getIntrinsic(IntrinsicID); |
| llvm::FunctionType *FTy = F->getFunctionType(); |
| |
| for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) { |
| Value *ArgValue; |
| // If this is a normal argument, just emit it as a scalar. |
| if ((ICEArguments & (1 << i)) == 0) { |
| ArgValue = EmitScalarExpr(E->getArg(i)); |
| } else { |
| // If this is required to be a constant, constant fold it so that we |
| // know that the generated intrinsic gets a ConstantInt. |
| llvm::APSInt Result; |
| bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext()); |
| assert(IsConst && "Constant arg isn't actually constant?"); |
| (void)IsConst; |
| ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result); |
| } |
| |
| // If the intrinsic arg type is different from the builtin arg type |
| // we need to do a bit cast. |
| llvm::Type *PTy = FTy->getParamType(i); |
| if (PTy != ArgValue->getType()) { |
| assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) && |
| "Must be able to losslessly bit cast to param"); |
| ArgValue = Builder.CreateBitCast(ArgValue, PTy); |
| } |
| |
| Args.push_back(ArgValue); |
| } |
| |
| Value *V = Builder.CreateCall(F, Args); |
| QualType BuiltinRetType = E->getType(); |
| |
| llvm::Type *RetTy = VoidTy; |
| if (!BuiltinRetType->isVoidType()) |
| RetTy = ConvertType(BuiltinRetType); |
| |
| if (RetTy != V->getType()) { |
| assert(V->getType()->canLosslesslyBitCastTo(RetTy) && |
| "Must be able to losslessly bit cast result type"); |
| V = Builder.CreateBitCast(V, RetTy); |
| } |
| |
| return RValue::get(V); |
| } |
| |
| // See if we have a target specific builtin that needs to be lowered. |
| if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E)) |
| return RValue::get(V); |
| |
| ErrorUnsupported(E, "builtin function"); |
| |
| // Unknown builtin, for now just dump it out and return undef. |
| if (hasAggregateLLVMType(E->getType())) |
| return RValue::getAggregate(CreateMemTemp(E->getType())); |
| return RValue::get(llvm::UndefValue::get(ConvertType(E->getType()))); |
| } |
| |
| Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID, |
| const CallExpr *E) { |
| switch (Target.getTriple().getArch()) { |
| case llvm::Triple::arm: |
| case llvm::Triple::thumb: |
| return EmitARMBuiltinExpr(BuiltinID, E); |
| case llvm::Triple::x86: |
| case llvm::Triple::x86_64: |
| return EmitX86BuiltinExpr(BuiltinID, E); |
| case llvm::Triple::ppc: |
| case llvm::Triple::ppc64: |
| return EmitPPCBuiltinExpr(BuiltinID, E); |
| default: |
| return 0; |
| } |
| } |
| |
| static llvm::VectorType *GetNeonType(CodeGenFunction *CGF, |
| NeonTypeFlags TypeFlags) { |
| int IsQuad = TypeFlags.isQuad(); |
| switch (TypeFlags.getEltType()) { |
| case NeonTypeFlags::Int8: |
| case NeonTypeFlags::Poly8: |
| return llvm::VectorType::get(CGF->Int8Ty, 8 << IsQuad); |
| case NeonTypeFlags::Int16: |
| case NeonTypeFlags::Poly16: |
| case NeonTypeFlags::Float16: |
| return llvm::VectorType::get(CGF->Int16Ty, 4 << IsQuad); |
| case NeonTypeFlags::Int32: |
| return llvm::VectorType::get(CGF->Int32Ty, 2 << IsQuad); |
| case NeonTypeFlags::Int64: |
| return llvm::VectorType::get(CGF->Int64Ty, 1 << IsQuad); |
| case NeonTypeFlags::Float32: |
| return llvm::VectorType::get(CGF->FloatTy, 2 << IsQuad); |
| } |
| llvm_unreachable("Invalid NeonTypeFlags element type!"); |
| } |
| |
| Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) { |
| unsigned nElts = cast<llvm::VectorType>(V->getType())->getNumElements(); |
| Value* SV = llvm::ConstantVector::getSplat(nElts, C); |
| return Builder.CreateShuffleVector(V, V, SV, "lane"); |
| } |
| |
| Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops, |
| const char *name, |
| unsigned shift, bool rightshift) { |
| unsigned j = 0; |
| for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end(); |
| ai != ae; ++ai, ++j) |
| if (shift > 0 && shift == j) |
| Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift); |
| else |
| Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name); |
| |
| return Builder.CreateCall(F, Ops, name); |
| } |
| |
| Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty, |
| bool neg) { |
| int SV = cast<ConstantInt>(V)->getSExtValue(); |
| |
| llvm::VectorType *VTy = cast<llvm::VectorType>(Ty); |
| llvm::Constant *C = ConstantInt::get(VTy->getElementType(), neg ? -SV : SV); |
| return llvm::ConstantVector::getSplat(VTy->getNumElements(), C); |
| } |
| |
| /// GetPointeeAlignment - Given an expression with a pointer type, find the |
| /// alignment of the type referenced by the pointer. Skip over implicit |
| /// casts. |
| unsigned CodeGenFunction::GetPointeeAlignment(const Expr *Addr) { |
| unsigned Align = 1; |
| // Check if the type is a pointer. The implicit cast operand might not be. |
| while (Addr->getType()->isPointerType()) { |
| QualType PtTy = Addr->getType()->getPointeeType(); |
| |
| // Can't get alignment of incomplete types. |
| if (!PtTy->isIncompleteType()) { |
| unsigned NewA = getContext().getTypeAlignInChars(PtTy).getQuantity(); |
| if (NewA > Align) |
| Align = NewA; |
| } |
| |
| // If the address is an implicit cast, repeat with the cast operand. |
| if (const ImplicitCastExpr *CastAddr = dyn_cast<ImplicitCastExpr>(Addr)) { |
| Addr = CastAddr->getSubExpr(); |
| continue; |
| } |
| break; |
| } |
| return Align; |
| } |
| |
| /// GetPointeeAlignmentValue - Given an expression with a pointer type, find |
| /// the alignment of the type referenced by the pointer. Skip over implicit |
| /// casts. Return the alignment as an llvm::Value. |
| Value *CodeGenFunction::GetPointeeAlignmentValue(const Expr *Addr) { |
| return llvm::ConstantInt::get(Int32Ty, GetPointeeAlignment(Addr)); |
| } |
| |
| Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID, |
| const CallExpr *E) { |
| if (BuiltinID == ARM::BI__clear_cache) { |
| const FunctionDecl *FD = E->getDirectCallee(); |
| // Oddly people write this call without args on occasion and gcc accepts |
| // it - it's also marked as varargs in the description file. |
| SmallVector<Value*, 2> Ops; |
| for (unsigned i = 0; i < E->getNumArgs(); i++) |
| Ops.push_back(EmitScalarExpr(E->getArg(i))); |
| llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType()); |
| llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty); |
| StringRef Name = FD->getName(); |
| return Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), Ops); |
| } |
| |
| if (BuiltinID == ARM::BI__builtin_arm_ldrexd) { |
| Function *F = CGM.getIntrinsic(Intrinsic::arm_ldrexd); |
| |
| Value *LdPtr = EmitScalarExpr(E->getArg(0)); |
| Value *Val = Builder.CreateCall(F, LdPtr, "ldrexd"); |
| |
| Value *Val0 = Builder.CreateExtractValue(Val, 1); |
| Value *Val1 = Builder.CreateExtractValue(Val, 0); |
| Val0 = Builder.CreateZExt(Val0, Int64Ty); |
| Val1 = Builder.CreateZExt(Val1, Int64Ty); |
| |
| Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32); |
| Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */); |
| return Builder.CreateOr(Val, Val1); |
| } |
| |
| if (BuiltinID == ARM::BI__builtin_arm_strexd) { |
| Function *F = CGM.getIntrinsic(Intrinsic::arm_strexd); |
| llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, NULL); |
| |
| Value *One = llvm::ConstantInt::get(Int32Ty, 1); |
| Value *Tmp = Builder.CreateAlloca(Int64Ty, One); |
| Value *Val = EmitScalarExpr(E->getArg(0)); |
| Builder.CreateStore(Val, Tmp); |
| |
| Value *LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy)); |
| Val = Builder.CreateLoad(LdPtr); |
| |
| Value *Arg0 = Builder.CreateExtractValue(Val, 0); |
| Value *Arg1 = Builder.CreateExtractValue(Val, 1); |
| Value *StPtr = EmitScalarExpr(E->getArg(1)); |
| return Builder.CreateCall3(F, Arg0, Arg1, StPtr, "strexd"); |
| } |
| |
| SmallVector<Value*, 4> Ops; |
| for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) |
| Ops.push_back(EmitScalarExpr(E->getArg(i))); |
| |
| // vget_lane and vset_lane are not overloaded and do not have an extra |
| // argument that specifies the vector type. |
| switch (BuiltinID) { |
| default: break; |
| case ARM::BI__builtin_neon_vget_lane_i8: |
| case ARM::BI__builtin_neon_vget_lane_i16: |
| case ARM::BI__builtin_neon_vget_lane_i32: |
| case ARM::BI__builtin_neon_vget_lane_i64: |
| case ARM::BI__builtin_neon_vget_lane_f32: |
| case ARM::BI__builtin_neon_vgetq_lane_i8: |
| case ARM::BI__builtin_neon_vgetq_lane_i16: |
| case ARM::BI__builtin_neon_vgetq_lane_i32: |
| case ARM::BI__builtin_neon_vgetq_lane_i64: |
| case ARM::BI__builtin_neon_vgetq_lane_f32: |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vget_lane"); |
| case ARM::BI__builtin_neon_vset_lane_i8: |
| case ARM::BI__builtin_neon_vset_lane_i16: |
| case ARM::BI__builtin_neon_vset_lane_i32: |
| case ARM::BI__builtin_neon_vset_lane_i64: |
| case ARM::BI__builtin_neon_vset_lane_f32: |
| case ARM::BI__builtin_neon_vsetq_lane_i8: |
| case ARM::BI__builtin_neon_vsetq_lane_i16: |
| case ARM::BI__builtin_neon_vsetq_lane_i32: |
| case ARM::BI__builtin_neon_vsetq_lane_i64: |
| case ARM::BI__builtin_neon_vsetq_lane_f32: |
| Ops.push_back(EmitScalarExpr(E->getArg(2))); |
| return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); |
| } |
| |
| // Get the last argument, which specifies the vector type. |
| llvm::APSInt Result; |
| const Expr *Arg = E->getArg(E->getNumArgs()-1); |
| if (!Arg->isIntegerConstantExpr(Result, getContext())) |
| return 0; |
| |
| if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f || |
| BuiltinID == ARM::BI__builtin_arm_vcvtr_d) { |
| // Determine the overloaded type of this builtin. |
| llvm::Type *Ty; |
| if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f) |
| Ty = FloatTy; |
| else |
| Ty = DoubleTy; |
| |
| // Determine whether this is an unsigned conversion or not. |
| bool usgn = Result.getZExtValue() == 1; |
| unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr; |
| |
| // Call the appropriate intrinsic. |
| Function *F = CGM.getIntrinsic(Int, Ty); |
| return Builder.CreateCall(F, Ops, "vcvtr"); |
| } |
| |
| // Determine the type of this overloaded NEON intrinsic. |
| NeonTypeFlags Type(Result.getZExtValue()); |
| bool usgn = Type.isUnsigned(); |
| bool quad = Type.isQuad(); |
| bool rightShift = false; |
| |
| llvm::VectorType *VTy = GetNeonType(this, Type); |
| llvm::Type *Ty = VTy; |
| if (!Ty) |
| return 0; |
| |
| unsigned Int; |
| switch (BuiltinID) { |
| default: return 0; |
| case ARM::BI__builtin_neon_vabd_v: |
| case ARM::BI__builtin_neon_vabdq_v: |
| Int = usgn ? Intrinsic::arm_neon_vabdu : Intrinsic::arm_neon_vabds; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd"); |
| case ARM::BI__builtin_neon_vabs_v: |
| case ARM::BI__builtin_neon_vabsq_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vabs, Ty), |
| Ops, "vabs"); |
| case ARM::BI__builtin_neon_vaddhn_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vaddhn, Ty), |
| Ops, "vaddhn"); |
| case ARM::BI__builtin_neon_vcale_v: |
| std::swap(Ops[0], Ops[1]); |
| case ARM::BI__builtin_neon_vcage_v: { |
| Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacged); |
| return EmitNeonCall(F, Ops, "vcage"); |
| } |
| case ARM::BI__builtin_neon_vcaleq_v: |
| std::swap(Ops[0], Ops[1]); |
| case ARM::BI__builtin_neon_vcageq_v: { |
| Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgeq); |
| return EmitNeonCall(F, Ops, "vcage"); |
| } |
| case ARM::BI__builtin_neon_vcalt_v: |
| std::swap(Ops[0], Ops[1]); |
| case ARM::BI__builtin_neon_vcagt_v: { |
| Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgtd); |
| return EmitNeonCall(F, Ops, "vcagt"); |
| } |
| case ARM::BI__builtin_neon_vcaltq_v: |
| std::swap(Ops[0], Ops[1]); |
| case ARM::BI__builtin_neon_vcagtq_v: { |
| Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgtq); |
| return EmitNeonCall(F, Ops, "vcagt"); |
| } |
| case ARM::BI__builtin_neon_vcls_v: |
| case ARM::BI__builtin_neon_vclsq_v: { |
| Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcls, Ty); |
| return EmitNeonCall(F, Ops, "vcls"); |
| } |
| case ARM::BI__builtin_neon_vclz_v: |
| case ARM::BI__builtin_neon_vclzq_v: { |
| // Generate target-independent intrinsic; also need to add second argument |
| // for whether or not clz of zero is undefined; on ARM it isn't. |
| Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ty); |
| Ops.push_back(Builder.getInt1(Target.isCLZForZeroUndef())); |
| return EmitNeonCall(F, Ops, "vclz"); |
| } |
| case ARM::BI__builtin_neon_vcnt_v: |
| case ARM::BI__builtin_neon_vcntq_v: { |
| // generate target-independent intrinsic |
| Function *F = CGM.getIntrinsic(Intrinsic::ctpop, Ty); |
| return EmitNeonCall(F, Ops, "vctpop"); |
| } |
| case ARM::BI__builtin_neon_vcvt_f16_v: { |
| assert(Type.getEltType() == NeonTypeFlags::Float16 && !quad && |
| "unexpected vcvt_f16_v builtin"); |
| Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcvtfp2hf); |
| return EmitNeonCall(F, Ops, "vcvt"); |
| } |
| case ARM::BI__builtin_neon_vcvt_f32_f16: { |
| assert(Type.getEltType() == NeonTypeFlags::Float16 && !quad && |
| "unexpected vcvt_f32_f16 builtin"); |
| Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcvthf2fp); |
| return EmitNeonCall(F, Ops, "vcvt"); |
| } |
| case ARM::BI__builtin_neon_vcvt_f32_v: |
| case ARM::BI__builtin_neon_vcvtq_f32_v: |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, quad)); |
| return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt") |
| : Builder.CreateSIToFP(Ops[0], Ty, "vcvt"); |
| case ARM::BI__builtin_neon_vcvt_s32_v: |
| case ARM::BI__builtin_neon_vcvt_u32_v: |
| case ARM::BI__builtin_neon_vcvtq_s32_v: |
| case ARM::BI__builtin_neon_vcvtq_u32_v: { |
| llvm::Type *FloatTy = |
| GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, quad)); |
| Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy); |
| return usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt") |
| : Builder.CreateFPToSI(Ops[0], Ty, "vcvt"); |
| } |
| case ARM::BI__builtin_neon_vcvt_n_f32_v: |
| case ARM::BI__builtin_neon_vcvtq_n_f32_v: { |
| llvm::Type *FloatTy = |
| GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, quad)); |
| llvm::Type *Tys[2] = { FloatTy, Ty }; |
| Int = usgn ? Intrinsic::arm_neon_vcvtfxu2fp |
| : Intrinsic::arm_neon_vcvtfxs2fp; |
| Function *F = CGM.getIntrinsic(Int, Tys); |
| return EmitNeonCall(F, Ops, "vcvt_n"); |
| } |
| case ARM::BI__builtin_neon_vcvt_n_s32_v: |
| case ARM::BI__builtin_neon_vcvt_n_u32_v: |
| case ARM::BI__builtin_neon_vcvtq_n_s32_v: |
| case ARM::BI__builtin_neon_vcvtq_n_u32_v: { |
| llvm::Type *FloatTy = |
| GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, quad)); |
| llvm::Type *Tys[2] = { Ty, FloatTy }; |
| Int = usgn ? Intrinsic::arm_neon_vcvtfp2fxu |
| : Intrinsic::arm_neon_vcvtfp2fxs; |
| Function *F = CGM.getIntrinsic(Int, Tys); |
| return EmitNeonCall(F, Ops, "vcvt_n"); |
| } |
| case ARM::BI__builtin_neon_vext_v: |
| case ARM::BI__builtin_neon_vextq_v: { |
| int CV = cast<ConstantInt>(Ops[2])->getSExtValue(); |
| SmallVector<Constant*, 16> Indices; |
| for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) |
| Indices.push_back(ConstantInt::get(Int32Ty, i+CV)); |
| |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Value *SV = llvm::ConstantVector::get(Indices); |
| return Builder.CreateShuffleVector(Ops[0], Ops[1], SV, "vext"); |
| } |
| case ARM::BI__builtin_neon_vhadd_v: |
| case ARM::BI__builtin_neon_vhaddq_v: |
| Int = usgn ? Intrinsic::arm_neon_vhaddu : Intrinsic::arm_neon_vhadds; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vhadd"); |
| case ARM::BI__builtin_neon_vhsub_v: |
| case ARM::BI__builtin_neon_vhsubq_v: |
| Int = usgn ? Intrinsic::arm_neon_vhsubu : Intrinsic::arm_neon_vhsubs; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vhsub"); |
| case ARM::BI__builtin_neon_vld1_v: |
| case ARM::BI__builtin_neon_vld1q_v: |
| Ops.push_back(GetPointeeAlignmentValue(E->getArg(0))); |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Ty), |
| Ops, "vld1"); |
| case ARM::BI__builtin_neon_vld1q_lane_v: |
| // Handle 64-bit integer elements as a special case. Use shuffles of |
| // one-element vectors to avoid poor code for i64 in the backend. |
| if (VTy->getElementType()->isIntegerTy(64)) { |
| // Extract the other lane. |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| int Lane = cast<ConstantInt>(Ops[2])->getZExtValue(); |
| Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane)); |
| Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV); |
| // Load the value as a one-element vector. |
| Ty = llvm::VectorType::get(VTy->getElementType(), 1); |
| Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Ty); |
| Value *Ld = Builder.CreateCall2(F, Ops[0], |
| GetPointeeAlignmentValue(E->getArg(0))); |
| // Combine them. |
| SmallVector<Constant*, 2> Indices; |
| Indices.push_back(ConstantInt::get(Int32Ty, 1-Lane)); |
| Indices.push_back(ConstantInt::get(Int32Ty, Lane)); |
| SV = llvm::ConstantVector::get(Indices); |
| return Builder.CreateShuffleVector(Ops[1], Ld, SV, "vld1q_lane"); |
| } |
| // fall through |
| case ARM::BI__builtin_neon_vld1_lane_v: { |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ty = llvm::PointerType::getUnqual(VTy->getElementType()); |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| LoadInst *Ld = Builder.CreateLoad(Ops[0]); |
| Value *Align = GetPointeeAlignmentValue(E->getArg(0)); |
| Ld->setAlignment(cast<ConstantInt>(Align)->getZExtValue()); |
| return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane"); |
| } |
| case ARM::BI__builtin_neon_vld1_dup_v: |
| case ARM::BI__builtin_neon_vld1q_dup_v: { |
| Value *V = UndefValue::get(Ty); |
| Ty = llvm::PointerType::getUnqual(VTy->getElementType()); |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| LoadInst *Ld = Builder.CreateLoad(Ops[0]); |
| Value *Align = GetPointeeAlignmentValue(E->getArg(0)); |
| Ld->setAlignment(cast<ConstantInt>(Align)->getZExtValue()); |
| llvm::Constant *CI = ConstantInt::get(Int32Ty, 0); |
| Ops[0] = Builder.CreateInsertElement(V, Ld, CI); |
| return EmitNeonSplat(Ops[0], CI); |
| } |
| case ARM::BI__builtin_neon_vld2_v: |
| case ARM::BI__builtin_neon_vld2q_v: { |
| Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld2, Ty); |
| Value *Align = GetPointeeAlignmentValue(E->getArg(1)); |
| Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld2"); |
| Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| return Builder.CreateStore(Ops[1], Ops[0]); |
| } |
| case ARM::BI__builtin_neon_vld3_v: |
| case ARM::BI__builtin_neon_vld3q_v: { |
| Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld3, Ty); |
| Value *Align = GetPointeeAlignmentValue(E->getArg(1)); |
| Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld3"); |
| Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| return Builder.CreateStore(Ops[1], Ops[0]); |
| } |
| case ARM::BI__builtin_neon_vld4_v: |
| case ARM::BI__builtin_neon_vld4q_v: { |
| Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld4, Ty); |
| Value *Align = GetPointeeAlignmentValue(E->getArg(1)); |
| Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld4"); |
| Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| return Builder.CreateStore(Ops[1], Ops[0]); |
| } |
| case ARM::BI__builtin_neon_vld2_lane_v: |
| case ARM::BI__builtin_neon_vld2q_lane_v: { |
| Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld2lane, Ty); |
| Ops[2] = Builder.CreateBitCast(Ops[2], Ty); |
| Ops[3] = Builder.CreateBitCast(Ops[3], Ty); |
| Ops.push_back(GetPointeeAlignmentValue(E->getArg(1))); |
| Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane"); |
| Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| return Builder.CreateStore(Ops[1], Ops[0]); |
| } |
| case ARM::BI__builtin_neon_vld3_lane_v: |
| case ARM::BI__builtin_neon_vld3q_lane_v: { |
| Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld3lane, Ty); |
| Ops[2] = Builder.CreateBitCast(Ops[2], Ty); |
| Ops[3] = Builder.CreateBitCast(Ops[3], Ty); |
| Ops[4] = Builder.CreateBitCast(Ops[4], Ty); |
| Ops.push_back(GetPointeeAlignmentValue(E->getArg(1))); |
| Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane"); |
| Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| return Builder.CreateStore(Ops[1], Ops[0]); |
| } |
| case ARM::BI__builtin_neon_vld4_lane_v: |
| case ARM::BI__builtin_neon_vld4q_lane_v: { |
| Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld4lane, Ty); |
| Ops[2] = Builder.CreateBitCast(Ops[2], Ty); |
| Ops[3] = Builder.CreateBitCast(Ops[3], Ty); |
| Ops[4] = Builder.CreateBitCast(Ops[4], Ty); |
| Ops[5] = Builder.CreateBitCast(Ops[5], Ty); |
| Ops.push_back(GetPointeeAlignmentValue(E->getArg(1))); |
| Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane"); |
| Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| return Builder.CreateStore(Ops[1], Ops[0]); |
| } |
| case ARM::BI__builtin_neon_vld2_dup_v: |
| case ARM::BI__builtin_neon_vld3_dup_v: |
| case ARM::BI__builtin_neon_vld4_dup_v: { |
| // Handle 64-bit elements as a special-case. There is no "dup" needed. |
| if (VTy->getElementType()->getPrimitiveSizeInBits() == 64) { |
| switch (BuiltinID) { |
| case ARM::BI__builtin_neon_vld2_dup_v: |
| Int = Intrinsic::arm_neon_vld2; |
| break; |
| case ARM::BI__builtin_neon_vld3_dup_v: |
| Int = Intrinsic::arm_neon_vld3; |
| break; |
| case ARM::BI__builtin_neon_vld4_dup_v: |
| Int = Intrinsic::arm_neon_vld4; |
| break; |
| default: llvm_unreachable("unknown vld_dup intrinsic?"); |
| } |
| Function *F = CGM.getIntrinsic(Int, Ty); |
| Value *Align = GetPointeeAlignmentValue(E->getArg(1)); |
| Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld_dup"); |
| Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| return Builder.CreateStore(Ops[1], Ops[0]); |
| } |
| switch (BuiltinID) { |
| case ARM::BI__builtin_neon_vld2_dup_v: |
| Int = Intrinsic::arm_neon_vld2lane; |
| break; |
| case ARM::BI__builtin_neon_vld3_dup_v: |
| Int = Intrinsic::arm_neon_vld3lane; |
| break; |
| case ARM::BI__builtin_neon_vld4_dup_v: |
| Int = Intrinsic::arm_neon_vld4lane; |
| break; |
| default: llvm_unreachable("unknown vld_dup intrinsic?"); |
| } |
| Function *F = CGM.getIntrinsic(Int, Ty); |
| llvm::StructType *STy = cast<llvm::StructType>(F->getReturnType()); |
| |
| SmallVector<Value*, 6> Args; |
| Args.push_back(Ops[1]); |
| Args.append(STy->getNumElements(), UndefValue::get(Ty)); |
| |
| llvm::Constant *CI = ConstantInt::get(Int32Ty, 0); |
| Args.push_back(CI); |
| Args.push_back(GetPointeeAlignmentValue(E->getArg(1))); |
| |
| Ops[1] = Builder.CreateCall(F, Args, "vld_dup"); |
| // splat lane 0 to all elts in each vector of the result. |
| for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { |
| Value *Val = Builder.CreateExtractValue(Ops[1], i); |
| Value *Elt = Builder.CreateBitCast(Val, Ty); |
| Elt = EmitNeonSplat(Elt, CI); |
| Elt = Builder.CreateBitCast(Elt, Val->getType()); |
| Ops[1] = Builder.CreateInsertValue(Ops[1], Elt, i); |
| } |
| Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| return Builder.CreateStore(Ops[1], Ops[0]); |
| } |
| case ARM::BI__builtin_neon_vmax_v: |
| case ARM::BI__builtin_neon_vmaxq_v: |
| Int = usgn ? Intrinsic::arm_neon_vmaxu : Intrinsic::arm_neon_vmaxs; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax"); |
| case ARM::BI__builtin_neon_vmin_v: |
| case ARM::BI__builtin_neon_vminq_v: |
| Int = usgn ? Intrinsic::arm_neon_vminu : Intrinsic::arm_neon_vmins; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin"); |
| case ARM::BI__builtin_neon_vmovl_v: { |
| llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy); |
| Ops[0] = Builder.CreateBitCast(Ops[0], DTy); |
| if (usgn) |
| return Builder.CreateZExt(Ops[0], Ty, "vmovl"); |
| return Builder.CreateSExt(Ops[0], Ty, "vmovl"); |
| } |
| case ARM::BI__builtin_neon_vmovn_v: { |
| llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy); |
| Ops[0] = Builder.CreateBitCast(Ops[0], QTy); |
| return Builder.CreateTrunc(Ops[0], Ty, "vmovn"); |
| } |
| case ARM::BI__builtin_neon_vmul_v: |
| case ARM::BI__builtin_neon_vmulq_v: |
| assert(Type.isPoly() && "vmul builtin only supported for polynomial types"); |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vmulp, Ty), |
| Ops, "vmul"); |
| case ARM::BI__builtin_neon_vmull_v: |
| Int = usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls; |
| Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull"); |
| case ARM::BI__builtin_neon_vpadal_v: |
| case ARM::BI__builtin_neon_vpadalq_v: { |
| Int = usgn ? Intrinsic::arm_neon_vpadalu : Intrinsic::arm_neon_vpadals; |
| // The source operand type has twice as many elements of half the size. |
| unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); |
| llvm::Type *EltTy = |
| llvm::IntegerType::get(getLLVMContext(), EltBits / 2); |
| llvm::Type *NarrowTy = |
| llvm::VectorType::get(EltTy, VTy->getNumElements() * 2); |
| llvm::Type *Tys[2] = { Ty, NarrowTy }; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpadal"); |
| } |
| case ARM::BI__builtin_neon_vpadd_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vpadd, Ty), |
| Ops, "vpadd"); |
| case ARM::BI__builtin_neon_vpaddl_v: |
| case ARM::BI__builtin_neon_vpaddlq_v: { |
| Int = usgn ? Intrinsic::arm_neon_vpaddlu : Intrinsic::arm_neon_vpaddls; |
| // The source operand type has twice as many elements of half the size. |
| unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); |
| llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2); |
| llvm::Type *NarrowTy = |
| llvm::VectorType::get(EltTy, VTy->getNumElements() * 2); |
| llvm::Type *Tys[2] = { Ty, NarrowTy }; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl"); |
| } |
| case ARM::BI__builtin_neon_vpmax_v: |
| Int = usgn ? Intrinsic::arm_neon_vpmaxu : Intrinsic::arm_neon_vpmaxs; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax"); |
| case ARM::BI__builtin_neon_vpmin_v: |
| Int = usgn ? Intrinsic::arm_neon_vpminu : Intrinsic::arm_neon_vpmins; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin"); |
| case ARM::BI__builtin_neon_vqabs_v: |
| case ARM::BI__builtin_neon_vqabsq_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqabs, Ty), |
| Ops, "vqabs"); |
| case ARM::BI__builtin_neon_vqadd_v: |
| case ARM::BI__builtin_neon_vqaddq_v: |
| Int = usgn ? Intrinsic::arm_neon_vqaddu : Intrinsic::arm_neon_vqadds; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqadd"); |
| case ARM::BI__builtin_neon_vqdmlal_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmlal, Ty), |
| Ops, "vqdmlal"); |
| case ARM::BI__builtin_neon_vqdmlsl_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmlsl, Ty), |
| Ops, "vqdmlsl"); |
| case ARM::BI__builtin_neon_vqdmulh_v: |
| case ARM::BI__builtin_neon_vqdmulhq_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmulh, Ty), |
| Ops, "vqdmulh"); |
| case ARM::BI__builtin_neon_vqdmull_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmull, Ty), |
| Ops, "vqdmull"); |
| case ARM::BI__builtin_neon_vqmovn_v: |
| Int = usgn ? Intrinsic::arm_neon_vqmovnu : Intrinsic::arm_neon_vqmovns; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqmovn"); |
| case ARM::BI__builtin_neon_vqmovun_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqmovnsu, Ty), |
| Ops, "vqdmull"); |
| case ARM::BI__builtin_neon_vqneg_v: |
| case ARM::BI__builtin_neon_vqnegq_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqneg, Ty), |
| Ops, "vqneg"); |
| case ARM::BI__builtin_neon_vqrdmulh_v: |
| case ARM::BI__builtin_neon_vqrdmulhq_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrdmulh, Ty), |
| Ops, "vqrdmulh"); |
| case ARM::BI__builtin_neon_vqrshl_v: |
| case ARM::BI__builtin_neon_vqrshlq_v: |
| Int = usgn ? Intrinsic::arm_neon_vqrshiftu : Intrinsic::arm_neon_vqrshifts; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshl"); |
| case ARM::BI__builtin_neon_vqrshrn_n_v: |
| Int = usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n", |
| 1, true); |
| case ARM::BI__builtin_neon_vqrshrun_n_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty), |
| Ops, "vqrshrun_n", 1, true); |
| case ARM::BI__builtin_neon_vqshl_v: |
| case ARM::BI__builtin_neon_vqshlq_v: |
| Int = usgn ? Intrinsic::arm_neon_vqshiftu : Intrinsic::arm_neon_vqshifts; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl"); |
| case ARM::BI__builtin_neon_vqshl_n_v: |
| case ARM::BI__builtin_neon_vqshlq_n_v: |
| Int = usgn ? Intrinsic::arm_neon_vqshiftu : Intrinsic::arm_neon_vqshifts; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n", |
| 1, false); |
| case ARM::BI__builtin_neon_vqshlu_n_v: |
| case ARM::BI__builtin_neon_vqshluq_n_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftsu, Ty), |
| Ops, "vqshlu", 1, false); |
| case ARM::BI__builtin_neon_vqshrn_n_v: |
| Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n", |
| 1, true); |
| case ARM::BI__builtin_neon_vqshrun_n_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty), |
| Ops, "vqshrun_n", 1, true); |
| case ARM::BI__builtin_neon_vqsub_v: |
| case ARM::BI__builtin_neon_vqsubq_v: |
| Int = usgn ? Intrinsic::arm_neon_vqsubu : Intrinsic::arm_neon_vqsubs; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqsub"); |
| case ARM::BI__builtin_neon_vraddhn_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vraddhn, Ty), |
| Ops, "vraddhn"); |
| case ARM::BI__builtin_neon_vrecpe_v: |
| case ARM::BI__builtin_neon_vrecpeq_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty), |
| Ops, "vrecpe"); |
| case ARM::BI__builtin_neon_vrecps_v: |
| case ARM::BI__builtin_neon_vrecpsq_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecps, Ty), |
| Ops, "vrecps"); |
| case ARM::BI__builtin_neon_vrhadd_v: |
| case ARM::BI__builtin_neon_vrhaddq_v: |
| Int = usgn ? Intrinsic::arm_neon_vrhaddu : Intrinsic::arm_neon_vrhadds; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrhadd"); |
| case ARM::BI__builtin_neon_vrshl_v: |
| case ARM::BI__builtin_neon_vrshlq_v: |
| Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshl"); |
| case ARM::BI__builtin_neon_vrshrn_n_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty), |
| Ops, "vrshrn_n", 1, true); |
| case ARM::BI__builtin_neon_vrshr_n_v: |
| case ARM::BI__builtin_neon_vrshrq_n_v: |
| Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n", 1, true); |
| case ARM::BI__builtin_neon_vrsqrte_v: |
| case ARM::BI__builtin_neon_vrsqrteq_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsqrte, Ty), |
| Ops, "vrsqrte"); |
| case ARM::BI__builtin_neon_vrsqrts_v: |
| case ARM::BI__builtin_neon_vrsqrtsq_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsqrts, Ty), |
| Ops, "vrsqrts"); |
| case ARM::BI__builtin_neon_vrsra_n_v: |
| case ARM::BI__builtin_neon_vrsraq_n_v: |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true); |
| Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts; |
| Ops[1] = Builder.CreateCall2(CGM.getIntrinsic(Int, Ty), Ops[1], Ops[2]); |
| return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n"); |
| case ARM::BI__builtin_neon_vrsubhn_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsubhn, Ty), |
| Ops, "vrsubhn"); |
| case ARM::BI__builtin_neon_vshl_v: |
| case ARM::BI__builtin_neon_vshlq_v: |
| Int = usgn ? Intrinsic::arm_neon_vshiftu : Intrinsic::arm_neon_vshifts; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vshl"); |
| case ARM::BI__builtin_neon_vshll_n_v: |
| Int = usgn ? Intrinsic::arm_neon_vshiftlu : Intrinsic::arm_neon_vshiftls; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vshll", 1); |
| case ARM::BI__builtin_neon_vshl_n_v: |
| case ARM::BI__builtin_neon_vshlq_n_v: |
| Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false); |
| return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1], "vshl_n"); |
| case ARM::BI__builtin_neon_vshrn_n_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftn, Ty), |
| Ops, "vshrn_n", 1, true); |
| case ARM::BI__builtin_neon_vshr_n_v: |
| case ARM::BI__builtin_neon_vshrq_n_v: |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false); |
| if (usgn) |
| return Builder.CreateLShr(Ops[0], Ops[1], "vshr_n"); |
| else |
| return Builder.CreateAShr(Ops[0], Ops[1], "vshr_n"); |
| case ARM::BI__builtin_neon_vsri_n_v: |
| case ARM::BI__builtin_neon_vsriq_n_v: |
| rightShift = true; |
| case ARM::BI__builtin_neon_vsli_n_v: |
| case ARM::BI__builtin_neon_vsliq_n_v: |
| Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift); |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty), |
| Ops, "vsli_n"); |
| case ARM::BI__builtin_neon_vsra_n_v: |
| case ARM::BI__builtin_neon_vsraq_n_v: |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[2] = EmitNeonShiftVector(Ops[2], Ty, false); |
| if (usgn) |
| Ops[1] = Builder.CreateLShr(Ops[1], Ops[2], "vsra_n"); |
| else |
| Ops[1] = Builder.CreateAShr(Ops[1], Ops[2], "vsra_n"); |
| return Builder.CreateAdd(Ops[0], Ops[1]); |
| case ARM::BI__builtin_neon_vst1_v: |
| case ARM::BI__builtin_neon_vst1q_v: |
| Ops.push_back(GetPointeeAlignmentValue(E->getArg(0))); |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1, Ty), |
| Ops, ""); |
| case ARM::BI__builtin_neon_vst1q_lane_v: |
| // Handle 64-bit integer elements as a special case. Use a shuffle to get |
| // a one-element vector and avoid poor code for i64 in the backend. |
| if (VTy->getElementType()->isIntegerTy(64)) { |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2])); |
| Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV); |
| Ops[2] = GetPointeeAlignmentValue(E->getArg(0)); |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1, |
| Ops[1]->getType()), Ops); |
| } |
| // fall through |
| case ARM::BI__builtin_neon_vst1_lane_v: { |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]); |
| Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); |
| StoreInst *St = Builder.CreateStore(Ops[1], |
| Builder.CreateBitCast(Ops[0], Ty)); |
| Value *Align = GetPointeeAlignmentValue(E->getArg(0)); |
| St->setAlignment(cast<ConstantInt>(Align)->getZExtValue()); |
| return St; |
| } |
| case ARM::BI__builtin_neon_vst2_v: |
| case ARM::BI__builtin_neon_vst2q_v: |
| Ops.push_back(GetPointeeAlignmentValue(E->getArg(0))); |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst2, Ty), |
| Ops, ""); |
| case ARM::BI__builtin_neon_vst2_lane_v: |
| case ARM::BI__builtin_neon_vst2q_lane_v: |
| Ops.push_back(GetPointeeAlignmentValue(E->getArg(0))); |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst2lane, Ty), |
| Ops, ""); |
| case ARM::BI__builtin_neon_vst3_v: |
| case ARM::BI__builtin_neon_vst3q_v: |
| Ops.push_back(GetPointeeAlignmentValue(E->getArg(0))); |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst3, Ty), |
| Ops, ""); |
| case ARM::BI__builtin_neon_vst3_lane_v: |
| case ARM::BI__builtin_neon_vst3q_lane_v: |
| Ops.push_back(GetPointeeAlignmentValue(E->getArg(0))); |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst3lane, Ty), |
| Ops, ""); |
| case ARM::BI__builtin_neon_vst4_v: |
| case ARM::BI__builtin_neon_vst4q_v: |
| Ops.push_back(GetPointeeAlignmentValue(E->getArg(0))); |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst4, Ty), |
| Ops, ""); |
| case ARM::BI__builtin_neon_vst4_lane_v: |
| case ARM::BI__builtin_neon_vst4q_lane_v: |
| Ops.push_back(GetPointeeAlignmentValue(E->getArg(0))); |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst4lane, Ty), |
| Ops, ""); |
| case ARM::BI__builtin_neon_vsubhn_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vsubhn, Ty), |
| Ops, "vsubhn"); |
| case ARM::BI__builtin_neon_vtbl1_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1), |
| Ops, "vtbl1"); |
| case ARM::BI__builtin_neon_vtbl2_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2), |
| Ops, "vtbl2"); |
| case ARM::BI__builtin_neon_vtbl3_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3), |
| Ops, "vtbl3"); |
| case ARM::BI__builtin_neon_vtbl4_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4), |
| Ops, "vtbl4"); |
| case ARM::BI__builtin_neon_vtbx1_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1), |
| Ops, "vtbx1"); |
| case ARM::BI__builtin_neon_vtbx2_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2), |
| Ops, "vtbx2"); |
| case ARM::BI__builtin_neon_vtbx3_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3), |
| Ops, "vtbx3"); |
| case ARM::BI__builtin_neon_vtbx4_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4), |
| Ops, "vtbx4"); |
| case ARM::BI__builtin_neon_vtst_v: |
| case ARM::BI__builtin_neon_vtstq_v: { |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]); |
| Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0], |
| ConstantAggregateZero::get(Ty)); |
| return Builder.CreateSExt(Ops[0], Ty, "vtst"); |
| } |
| case ARM::BI__builtin_neon_vtrn_v: |
| case ARM::BI__builtin_neon_vtrnq_v: { |
| Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[2] = Builder.CreateBitCast(Ops[2], Ty); |
| Value *SV = 0; |
| |
| for (unsigned vi = 0; vi != 2; ++vi) { |
| SmallVector<Constant*, 16> Indices; |
| for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { |
| Indices.push_back(Builder.getInt32(i+vi)); |
| Indices.push_back(Builder.getInt32(i+e+vi)); |
| } |
| Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi); |
| SV = llvm::ConstantVector::get(Indices); |
| SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vtrn"); |
| SV = Builder.CreateStore(SV, Addr); |
| } |
| return SV; |
| } |
| case ARM::BI__builtin_neon_vuzp_v: |
| case ARM::BI__builtin_neon_vuzpq_v: { |
| Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[2] = Builder.CreateBitCast(Ops[2], Ty); |
| Value *SV = 0; |
| |
| for (unsigned vi = 0; vi != 2; ++vi) { |
| SmallVector<Constant*, 16> Indices; |
| for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) |
| Indices.push_back(ConstantInt::get(Int32Ty, 2*i+vi)); |
| |
| Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi); |
| SV = llvm::ConstantVector::get(Indices); |
| SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vuzp"); |
| SV = Builder.CreateStore(SV, Addr); |
| } |
| return SV; |
| } |
| case ARM::BI__builtin_neon_vzip_v: |
| case ARM::BI__builtin_neon_vzipq_v: { |
| Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[2] = Builder.CreateBitCast(Ops[2], Ty); |
| Value *SV = 0; |
| |
| for (unsigned vi = 0; vi != 2; ++vi) { |
| SmallVector<Constant*, 16> Indices; |
| for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { |
| Indices.push_back(ConstantInt::get(Int32Ty, (i + vi*e) >> 1)); |
| Indices.push_back(ConstantInt::get(Int32Ty, ((i + vi*e) >> 1)+e)); |
| } |
| Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi); |
| SV = llvm::ConstantVector::get(Indices); |
| SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vzip"); |
| SV = Builder.CreateStore(SV, Addr); |
| } |
| return SV; |
| } |
| } |
| } |
| |
| llvm::Value *CodeGenFunction:: |
| BuildVector(ArrayRef<llvm::Value*> Ops) { |
| assert((Ops.size() & (Ops.size() - 1)) == 0 && |
| "Not a power-of-two sized vector!"); |
| bool AllConstants = true; |
| for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i) |
| AllConstants &= isa<Constant>(Ops[i]); |
| |
| // If this is a constant vector, create a ConstantVector. |
| if (AllConstants) { |
| SmallVector<llvm::Constant*, 16> CstOps; |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) |
| CstOps.push_back(cast<Constant>(Ops[i])); |
| return llvm::ConstantVector::get(CstOps); |
| } |
| |
| // Otherwise, insertelement the values to build the vector. |
| Value *Result = |
| llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), Ops.size())); |
| |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) |
| Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i)); |
| |
| return Result; |
| } |
| |
| Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID, |
| const CallExpr *E) { |
| SmallVector<Value*, 4> Ops; |
| |
| // Find out if any arguments are required to be integer constant expressions. |
| unsigned ICEArguments = 0; |
| ASTContext::GetBuiltinTypeError Error; |
| getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); |
| assert(Error == ASTContext::GE_None && "Should not codegen an error"); |
| |
| for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) { |
| // If this is a normal argument, just emit it as a scalar. |
| if ((ICEArguments & (1 << i)) == 0) { |
| Ops.push_back(EmitScalarExpr(E->getArg(i))); |
| continue; |
| } |
| |
| // If this is required to be a constant, constant fold it so that we know |
| // that the generated intrinsic gets a ConstantInt. |
| llvm::APSInt Result; |
| bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext()); |
| assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst; |
| Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result)); |
| } |
| |
| switch (BuiltinID) { |
| default: return 0; |
| case X86::BI__builtin_ia32_vec_init_v8qi: |
| case X86::BI__builtin_ia32_vec_init_v4hi: |
| case X86::BI__builtin_ia32_vec_init_v2si: |
| return Builder.CreateBitCast(BuildVector(Ops), |
| llvm::Type::getX86_MMXTy(getLLVMContext())); |
| case X86::BI__builtin_ia32_vec_ext_v2si: |
| return Builder.CreateExtractElement(Ops[0], |
| llvm::ConstantInt::get(Ops[1]->getType(), 0)); |
| case X86::BI__builtin_ia32_ldmxcsr: { |
| llvm::Type *PtrTy = Int8PtrTy; |
| Value *One = llvm::ConstantInt::get(Int32Ty, 1); |
| Value *Tmp = Builder.CreateAlloca(Int32Ty, One); |
| Builder.CreateStore(Ops[0], Tmp); |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr), |
| Builder.CreateBitCast(Tmp, PtrTy)); |
| } |
| case X86::BI__builtin_ia32_stmxcsr: { |
| llvm::Type *PtrTy = Int8PtrTy; |
| Value *One = llvm::ConstantInt::get(Int32Ty, 1); |
| Value *Tmp = Builder.CreateAlloca(Int32Ty, One); |
| Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr), |
| Builder.CreateBitCast(Tmp, PtrTy)); |
| return Builder.CreateLoad(Tmp, "stmxcsr"); |
| } |
| case X86::BI__builtin_ia32_storehps: |
| case X86::BI__builtin_ia32_storelps: { |
| llvm::Type *PtrTy = llvm::PointerType::getUnqual(Int64Ty); |
| llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2); |
| |
| // cast val v2i64 |
| Ops[1] = Builder.CreateBitCast(Ops[1], VecTy, "cast"); |
| |
| // extract (0, 1) |
| unsigned Index = BuiltinID == X86::BI__builtin_ia32_storelps ? 0 : 1; |
| llvm::Value *Idx = llvm::ConstantInt::get(Int32Ty, Index); |
| Ops[1] = Builder.CreateExtractElement(Ops[1], Idx, "extract"); |
| |
| // cast pointer to i64 & store |
| Ops[0] = Builder.CreateBitCast(Ops[0], PtrTy); |
| return Builder.CreateStore(Ops[1], Ops[0]); |
| } |
| case X86::BI__builtin_ia32_palignr: { |
| unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue(); |
| |
| // If palignr is shifting the pair of input vectors less than 9 bytes, |
| // emit a shuffle instruction. |
| if (shiftVal <= 8) { |
| SmallVector<llvm::Constant*, 8> Indices; |
| for (unsigned i = 0; i != 8; ++i) |
| Indices.push_back(llvm::ConstantInt::get(Int32Ty, shiftVal + i)); |
| |
| Value* SV = llvm::ConstantVector::get(Indices); |
| return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr"); |
| } |
| |
| // If palignr is shifting the pair of input vectors more than 8 but less |
| // than 16 bytes, emit a logical right shift of the destination. |
| if (shiftVal < 16) { |
| // MMX has these as 1 x i64 vectors for some odd optimization reasons. |
| llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 1); |
| |
| Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast"); |
| Ops[1] = llvm::ConstantInt::get(VecTy, (shiftVal-8) * 8); |
| |
| // create i32 constant |
| llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_mmx_psrl_q); |
| return Builder.CreateCall(F, makeArrayRef(&Ops[0], 2), "palignr"); |
| } |
| |
| // If palignr is shifting the pair of vectors more than 16 bytes, emit zero. |
| return llvm::Constant::getNullValue(ConvertType(E->getType())); |
| } |
| case X86::BI__builtin_ia32_palignr128: { |
| unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue(); |
| |
| // If palignr is shifting the pair of input vectors less than 17 bytes, |
| // emit a shuffle instruction. |
| if (shiftVal <= 16) { |
| SmallVector<llvm::Constant*, 16> Indices; |
| for (unsigned i = 0; i != 16; ++i) |
| Indices.push_back(llvm::ConstantInt::get(Int32Ty, shiftVal + i)); |
| |
| Value* SV = llvm::ConstantVector::get(Indices); |
| return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr"); |
| } |
| |
| // If palignr is shifting the pair of input vectors more than 16 but less |
| // than 32 bytes, emit a logical right shift of the destination. |
| if (shiftVal < 32) { |
| llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2); |
| |
| Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast"); |
| Ops[1] = llvm::ConstantInt::get(Int32Ty, (shiftVal-16) * 8); |
| |
| // create i32 constant |
| llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_psrl_dq); |
| return Builder.CreateCall(F, makeArrayRef(&Ops[0], 2), "palignr"); |
| } |
| |
| // If palignr is shifting the pair of vectors more than 32 bytes, emit zero. |
| return llvm::Constant::getNullValue(ConvertType(E->getType())); |
| } |
| case X86::BI__builtin_ia32_palignr256: { |
| unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue(); |
| |
| // If palignr is shifting the pair of input vectors less than 17 bytes, |
| // emit a shuffle instruction. |
| if (shiftVal <= 16) { |
| SmallVector<llvm::Constant*, 32> Indices; |
| // 256-bit palignr operates on 128-bit lanes so we need to handle that |
| for (unsigned l = 0; l != 2; ++l) { |
| unsigned LaneStart = l * 16; |
| unsigned LaneEnd = (l+1) * 16; |
| for (unsigned i = 0; i != 16; ++i) { |
| unsigned Idx = shiftVal + i + LaneStart; |
| if (Idx >= LaneEnd) Idx += 16; // end of lane, switch operand |
| Indices.push_back(llvm::ConstantInt::get(Int32Ty, Idx)); |
| } |
| } |
| |
| Value* SV = llvm::ConstantVector::get(Indices); |
| return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr"); |
| } |
| |
| // If palignr is shifting the pair of input vectors more than 16 but less |
| // than 32 bytes, emit a logical right shift of the destination. |
| if (shiftVal < 32) { |
| llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 4); |
| |
| Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast"); |
| Ops[1] = llvm::ConstantInt::get(Int32Ty, (shiftVal-16) * 8); |
| |
| // create i32 constant |
| llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_avx2_psrl_dq); |
| return Builder.CreateCall(F, makeArrayRef(&Ops[0], 2), "palignr"); |
| } |
| |
| // If palignr is shifting the pair of vectors more than 32 bytes, emit zero. |
| return llvm::Constant::getNullValue(ConvertType(E->getType())); |
| } |
| case X86::BI__builtin_ia32_movntps: |
| case X86::BI__builtin_ia32_movntps256: |
| case X86::BI__builtin_ia32_movntpd: |
| case X86::BI__builtin_ia32_movntpd256: |
| case X86::BI__builtin_ia32_movntdq: |
| case X86::BI__builtin_ia32_movntdq256: |
| case X86::BI__builtin_ia32_movnti: { |
| llvm::MDNode *Node = llvm::MDNode::get(getLLVMContext(), |
| Builder.getInt32(1)); |
| |
| // Convert the type of the pointer to a pointer to the stored type. |
| Value *BC = Builder.CreateBitCast(Ops[0], |
| llvm::PointerType::getUnqual(Ops[1]->getType()), |
| "cast"); |
| StoreInst *SI = Builder.CreateStore(Ops[1], BC); |
| SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); |
| SI->setAlignment(16); |
| return SI; |
| } |
| // 3DNow! |
| case X86::BI__builtin_ia32_pswapdsf: |
| case X86::BI__builtin_ia32_pswapdsi: { |
| const char *name = 0; |
| Intrinsic::ID ID = Intrinsic::not_intrinsic; |
| switch(BuiltinID) { |
| default: llvm_unreachable("Unsupported intrinsic!"); |
| case X86::BI__builtin_ia32_pswapdsf: |
| case X86::BI__builtin_ia32_pswapdsi: |
| name = "pswapd"; |
| ID = Intrinsic::x86_3dnowa_pswapd; |
| break; |
| } |
| llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext()); |
| Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast"); |
| llvm::Function *F = CGM.getIntrinsic(ID); |
| return Builder.CreateCall(F, Ops, name); |
| } |
| case X86::BI__builtin_ia32_rdrand16_step: |
| case X86::BI__builtin_ia32_rdrand32_step: |
| case X86::BI__builtin_ia32_rdrand64_step: { |
| Intrinsic::ID ID; |
| switch (BuiltinID) { |
| default: llvm_unreachable("Unsupported intrinsic!"); |
| case X86::BI__builtin_ia32_rdrand16_step: |
| ID = Intrinsic::x86_rdrand_16; |
| break; |
| case X86::BI__builtin_ia32_rdrand32_step: |
| ID = Intrinsic::x86_rdrand_32; |
| break; |
| case X86::BI__builtin_ia32_rdrand64_step: |
| ID = Intrinsic::x86_rdrand_64; |
| break; |
| } |
| |
| Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID)); |
| Builder.CreateStore(Builder.CreateExtractValue(Call, 0), Ops[0]); |
| return Builder.CreateExtractValue(Call, 1); |
| } |
| } |
| } |
| |
| |
| Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID, |
| const CallExpr *E) { |
| SmallVector<Value*, 4> Ops; |
| |
| for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) |
| Ops.push_back(EmitScalarExpr(E->getArg(i))); |
| |
| Intrinsic::ID ID = Intrinsic::not_intrinsic; |
| |
| switch (BuiltinID) { |
| default: return 0; |
| |
| // vec_ld, vec_lvsl, vec_lvsr |
| case PPC::BI__builtin_altivec_lvx: |
| case PPC::BI__builtin_altivec_lvxl: |
| case PPC::BI__builtin_altivec_lvebx: |
| case PPC::BI__builtin_altivec_lvehx: |
| case PPC::BI__builtin_altivec_lvewx: |
| case PPC::BI__builtin_altivec_lvsl: |
| case PPC::BI__builtin_altivec_lvsr: |
| { |
| Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy); |
| |
| Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]); |
| Ops.pop_back(); |
| |
| switch (BuiltinID) { |
| default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!"); |
| case PPC::BI__builtin_altivec_lvx: |
| ID = Intrinsic::ppc_altivec_lvx; |
| break; |
| case PPC::BI__builtin_altivec_lvxl: |
| ID = Intrinsic::ppc_altivec_lvxl; |
| break; |
| case PPC::BI__builtin_altivec_lvebx: |
| ID = Intrinsic::ppc_altivec_lvebx; |
| break; |
| case PPC::BI__builtin_altivec_lvehx: |
| ID = Intrinsic::ppc_altivec_lvehx; |
| break; |
| case PPC::BI__builtin_altivec_lvewx: |
| ID = Intrinsic::ppc_altivec_lvewx; |
| break; |
| case PPC::BI__builtin_altivec_lvsl: |
| ID = Intrinsic::ppc_altivec_lvsl; |
| break; |
| case PPC::BI__builtin_altivec_lvsr: |
| ID = Intrinsic::ppc_altivec_lvsr; |
| break; |
| } |
| llvm::Function *F = CGM.getIntrinsic(ID); |
| return Builder.CreateCall(F, Ops, ""); |
| } |
| |
| // vec_st |
| case PPC::BI__builtin_altivec_stvx: |
| case PPC::BI__builtin_altivec_stvxl: |
| case PPC::BI__builtin_altivec_stvebx: |
| case PPC::BI__builtin_altivec_stvehx: |
| case PPC::BI__builtin_altivec_stvewx: |
| { |
| Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy); |
| Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]); |
| Ops.pop_back(); |
| |
| switch (BuiltinID) { |
| default: llvm_unreachable("Unsupported st intrinsic!"); |
| case PPC::BI__builtin_altivec_stvx: |
| ID = Intrinsic::ppc_altivec_stvx; |
| break; |
| case PPC::BI__builtin_altivec_stvxl: |
| ID = Intrinsic::ppc_altivec_stvxl; |
| break; |
| case PPC::BI__builtin_altivec_stvebx: |
| ID = Intrinsic::ppc_altivec_stvebx; |
| break; |
| case PPC::BI__builtin_altivec_stvehx: |
| ID = Intrinsic::ppc_altivec_stvehx; |
| break; |
| case PPC::BI__builtin_altivec_stvewx: |
| ID = Intrinsic::ppc_altivec_stvewx; |
| break; |
| } |
| llvm::Function *F = CGM.getIntrinsic(ID); |
| return Builder.CreateCall(F, Ops, ""); |
| } |
| } |
| } |