| //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements the Expr constant evaluator. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "clang/AST/APValue.h" | 
 | #include "clang/AST/ASTContext.h" | 
 | #include "clang/AST/CharUnits.h" | 
 | #include "clang/AST/RecordLayout.h" | 
 | #include "clang/AST/StmtVisitor.h" | 
 | #include "clang/AST/TypeLoc.h" | 
 | #include "clang/AST/ASTDiagnostic.h" | 
 | #include "clang/AST/Expr.h" | 
 | #include "clang/Basic/Builtins.h" | 
 | #include "clang/Basic/TargetInfo.h" | 
 | #include "llvm/ADT/SmallString.h" | 
 | #include <cstring> | 
 |  | 
 | using namespace clang; | 
 | using llvm::APSInt; | 
 | using llvm::APFloat; | 
 |  | 
 | /// EvalInfo - This is a private struct used by the evaluator to capture | 
 | /// information about a subexpression as it is folded.  It retains information | 
 | /// about the AST context, but also maintains information about the folded | 
 | /// expression. | 
 | /// | 
 | /// If an expression could be evaluated, it is still possible it is not a C | 
 | /// "integer constant expression" or constant expression.  If not, this struct | 
 | /// captures information about how and why not. | 
 | /// | 
 | /// One bit of information passed *into* the request for constant folding | 
 | /// indicates whether the subexpression is "evaluated" or not according to C | 
 | /// rules.  For example, the RHS of (0 && foo()) is not evaluated.  We can | 
 | /// evaluate the expression regardless of what the RHS is, but C only allows | 
 | /// certain things in certain situations. | 
 | struct EvalInfo { | 
 |   ASTContext &Ctx; | 
 |  | 
 |   /// EvalResult - Contains information about the evaluation. | 
 |   Expr::EvalResult &EvalResult; | 
 |  | 
 |   EvalInfo(ASTContext &ctx, Expr::EvalResult& evalresult) | 
 |     : Ctx(ctx), EvalResult(evalresult) {} | 
 | }; | 
 |  | 
 | namespace { | 
 |   struct ComplexValue { | 
 |   private: | 
 |     bool IsInt; | 
 |  | 
 |   public: | 
 |     APSInt IntReal, IntImag; | 
 |     APFloat FloatReal, FloatImag; | 
 |  | 
 |     ComplexValue() : FloatReal(APFloat::Bogus), FloatImag(APFloat::Bogus) {} | 
 |  | 
 |     void makeComplexFloat() { IsInt = false; } | 
 |     bool isComplexFloat() const { return !IsInt; } | 
 |     APFloat &getComplexFloatReal() { return FloatReal; } | 
 |     APFloat &getComplexFloatImag() { return FloatImag; } | 
 |  | 
 |     void makeComplexInt() { IsInt = true; } | 
 |     bool isComplexInt() const { return IsInt; } | 
 |     APSInt &getComplexIntReal() { return IntReal; } | 
 |     APSInt &getComplexIntImag() { return IntImag; } | 
 |  | 
 |     void moveInto(APValue &v) { | 
 |       if (isComplexFloat()) | 
 |         v = APValue(FloatReal, FloatImag); | 
 |       else | 
 |         v = APValue(IntReal, IntImag); | 
 |     } | 
 |   }; | 
 |  | 
 |   struct LValue { | 
 |     Expr *Base; | 
 |     CharUnits Offset; | 
 |  | 
 |     Expr *getLValueBase() { return Base; } | 
 |     CharUnits getLValueOffset() { return Offset; } | 
 |  | 
 |     void moveInto(APValue &v) { | 
 |       v = APValue(Base, Offset); | 
 |     } | 
 |   }; | 
 | } | 
 |  | 
 | static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info); | 
 | static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info); | 
 | static bool EvaluateInteger(const Expr *E, APSInt  &Result, EvalInfo &Info); | 
 | static bool EvaluateIntegerOrLValue(const Expr *E, APValue  &Result, | 
 |                                     EvalInfo &Info); | 
 | static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info); | 
 | static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info); | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Misc utilities | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | static bool IsGlobalLValue(const Expr* E) { | 
 |   if (!E) return true; | 
 |  | 
 |   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { | 
 |     if (isa<FunctionDecl>(DRE->getDecl())) | 
 |       return true; | 
 |     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) | 
 |       return VD->hasGlobalStorage(); | 
 |     return false; | 
 |   } | 
 |  | 
 |   if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(E)) | 
 |     return CLE->isFileScope(); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | static bool EvalPointerValueAsBool(LValue& Value, bool& Result) { | 
 |   const Expr* Base = Value.Base; | 
 |  | 
 |   // A null base expression indicates a null pointer.  These are always | 
 |   // evaluatable, and they are false unless the offset is zero. | 
 |   if (!Base) { | 
 |     Result = !Value.Offset.isZero(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   // Require the base expression to be a global l-value. | 
 |   if (!IsGlobalLValue(Base)) return false; | 
 |  | 
 |   // We have a non-null base expression.  These are generally known to | 
 |   // be true, but if it'a decl-ref to a weak symbol it can be null at | 
 |   // runtime. | 
 |   Result = true; | 
 |  | 
 |   const DeclRefExpr* DeclRef = dyn_cast<DeclRefExpr>(Base); | 
 |   if (!DeclRef) | 
 |     return true; | 
 |  | 
 |   // If it's a weak symbol, it isn't constant-evaluable. | 
 |   const ValueDecl* Decl = DeclRef->getDecl(); | 
 |   if (Decl->hasAttr<WeakAttr>() || | 
 |       Decl->hasAttr<WeakRefAttr>() || | 
 |       Decl->hasAttr<WeakImportAttr>()) | 
 |     return false; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | static bool HandleConversionToBool(const Expr* E, bool& Result, | 
 |                                    EvalInfo &Info) { | 
 |   if (E->getType()->isIntegralOrEnumerationType()) { | 
 |     APSInt IntResult; | 
 |     if (!EvaluateInteger(E, IntResult, Info)) | 
 |       return false; | 
 |     Result = IntResult != 0; | 
 |     return true; | 
 |   } else if (E->getType()->isRealFloatingType()) { | 
 |     APFloat FloatResult(0.0); | 
 |     if (!EvaluateFloat(E, FloatResult, Info)) | 
 |       return false; | 
 |     Result = !FloatResult.isZero(); | 
 |     return true; | 
 |   } else if (E->getType()->hasPointerRepresentation()) { | 
 |     LValue PointerResult; | 
 |     if (!EvaluatePointer(E, PointerResult, Info)) | 
 |       return false; | 
 |     return EvalPointerValueAsBool(PointerResult, Result); | 
 |   } else if (E->getType()->isAnyComplexType()) { | 
 |     ComplexValue ComplexResult; | 
 |     if (!EvaluateComplex(E, ComplexResult, Info)) | 
 |       return false; | 
 |     if (ComplexResult.isComplexFloat()) { | 
 |       Result = !ComplexResult.getComplexFloatReal().isZero() || | 
 |                !ComplexResult.getComplexFloatImag().isZero(); | 
 |     } else { | 
 |       Result = ComplexResult.getComplexIntReal().getBoolValue() || | 
 |                ComplexResult.getComplexIntImag().getBoolValue(); | 
 |     } | 
 |     return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | static APSInt HandleFloatToIntCast(QualType DestType, QualType SrcType, | 
 |                                    APFloat &Value, ASTContext &Ctx) { | 
 |   unsigned DestWidth = Ctx.getIntWidth(DestType); | 
 |   // Determine whether we are converting to unsigned or signed. | 
 |   bool DestSigned = DestType->isSignedIntegerType(); | 
 |  | 
 |   // FIXME: Warning for overflow. | 
 |   uint64_t Space[4]; | 
 |   bool ignored; | 
 |   (void)Value.convertToInteger(Space, DestWidth, DestSigned, | 
 |                                llvm::APFloat::rmTowardZero, &ignored); | 
 |   return APSInt(llvm::APInt(DestWidth, 4, Space), !DestSigned); | 
 | } | 
 |  | 
 | static APFloat HandleFloatToFloatCast(QualType DestType, QualType SrcType, | 
 |                                       APFloat &Value, ASTContext &Ctx) { | 
 |   bool ignored; | 
 |   APFloat Result = Value; | 
 |   Result.convert(Ctx.getFloatTypeSemantics(DestType), | 
 |                  APFloat::rmNearestTiesToEven, &ignored); | 
 |   return Result; | 
 | } | 
 |  | 
 | static APSInt HandleIntToIntCast(QualType DestType, QualType SrcType, | 
 |                                  APSInt &Value, ASTContext &Ctx) { | 
 |   unsigned DestWidth = Ctx.getIntWidth(DestType); | 
 |   APSInt Result = Value; | 
 |   // Figure out if this is a truncate, extend or noop cast. | 
 |   // If the input is signed, do a sign extend, noop, or truncate. | 
 |   Result.extOrTrunc(DestWidth); | 
 |   Result.setIsUnsigned(DestType->isUnsignedIntegerType()); | 
 |   return Result; | 
 | } | 
 |  | 
 | static APFloat HandleIntToFloatCast(QualType DestType, QualType SrcType, | 
 |                                     APSInt &Value, ASTContext &Ctx) { | 
 |  | 
 |   APFloat Result(Ctx.getFloatTypeSemantics(DestType), 1); | 
 |   Result.convertFromAPInt(Value, Value.isSigned(), | 
 |                           APFloat::rmNearestTiesToEven); | 
 |   return Result; | 
 | } | 
 |  | 
 | namespace { | 
 | class HasSideEffect | 
 |   : public StmtVisitor<HasSideEffect, bool> { | 
 |   EvalInfo &Info; | 
 | public: | 
 |  | 
 |   HasSideEffect(EvalInfo &info) : Info(info) {} | 
 |  | 
 |   // Unhandled nodes conservatively default to having side effects. | 
 |   bool VisitStmt(Stmt *S) { | 
 |     return true; | 
 |   } | 
 |  | 
 |   bool VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); } | 
 |   bool VisitDeclRefExpr(DeclRefExpr *E) { | 
 |     if (Info.Ctx.getCanonicalType(E->getType()).isVolatileQualified()) | 
 |       return true; | 
 |     return false; | 
 |   } | 
 |   // We don't want to evaluate BlockExprs multiple times, as they generate | 
 |   // a ton of code. | 
 |   bool VisitBlockExpr(BlockExpr *E) { return true; } | 
 |   bool VisitPredefinedExpr(PredefinedExpr *E) { return false; } | 
 |   bool VisitCompoundLiteralExpr(CompoundLiteralExpr *E) | 
 |     { return Visit(E->getInitializer()); } | 
 |   bool VisitMemberExpr(MemberExpr *E) { return Visit(E->getBase()); } | 
 |   bool VisitIntegerLiteral(IntegerLiteral *E) { return false; } | 
 |   bool VisitFloatingLiteral(FloatingLiteral *E) { return false; } | 
 |   bool VisitStringLiteral(StringLiteral *E) { return false; } | 
 |   bool VisitCharacterLiteral(CharacterLiteral *E) { return false; } | 
 |   bool VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E) { return false; } | 
 |   bool VisitArraySubscriptExpr(ArraySubscriptExpr *E) | 
 |     { return Visit(E->getLHS()) || Visit(E->getRHS()); } | 
 |   bool VisitChooseExpr(ChooseExpr *E) | 
 |     { return Visit(E->getChosenSubExpr(Info.Ctx)); } | 
 |   bool VisitCastExpr(CastExpr *E) { return Visit(E->getSubExpr()); } | 
 |   bool VisitBinAssign(BinaryOperator *E) { return true; } | 
 |   bool VisitCompoundAssignOperator(BinaryOperator *E) { return true; } | 
 |   bool VisitBinaryOperator(BinaryOperator *E) | 
 |   { return Visit(E->getLHS()) || Visit(E->getRHS()); } | 
 |   bool VisitUnaryPreInc(UnaryOperator *E) { return true; } | 
 |   bool VisitUnaryPostInc(UnaryOperator *E) { return true; } | 
 |   bool VisitUnaryPreDec(UnaryOperator *E) { return true; } | 
 |   bool VisitUnaryPostDec(UnaryOperator *E) { return true; } | 
 |   bool VisitUnaryDeref(UnaryOperator *E) { | 
 |     if (Info.Ctx.getCanonicalType(E->getType()).isVolatileQualified()) | 
 |       return true; | 
 |     return Visit(E->getSubExpr()); | 
 |   } | 
 |   bool VisitUnaryOperator(UnaryOperator *E) { return Visit(E->getSubExpr()); } | 
 |      | 
 |   // Has side effects if any element does. | 
 |   bool VisitInitListExpr(InitListExpr *E) { | 
 |     for (unsigned i = 0, e = E->getNumInits(); i != e; ++i) | 
 |       if (Visit(E->getInit(i))) return true; | 
 |     return false; | 
 |   } | 
 | }; | 
 |  | 
 | } // end anonymous namespace | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // LValue Evaluation | 
 | //===----------------------------------------------------------------------===// | 
 | namespace { | 
 | class LValueExprEvaluator | 
 |   : public StmtVisitor<LValueExprEvaluator, bool> { | 
 |   EvalInfo &Info; | 
 |   LValue &Result; | 
 |  | 
 |   bool Success(Expr *E) { | 
 |     Result.Base = E; | 
 |     Result.Offset = CharUnits::Zero(); | 
 |     return true; | 
 |   } | 
 | public: | 
 |  | 
 |   LValueExprEvaluator(EvalInfo &info, LValue &Result) : | 
 |     Info(info), Result(Result) {} | 
 |  | 
 |   bool VisitStmt(Stmt *S) { | 
 |     return false; | 
 |   } | 
 |    | 
 |   bool VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); } | 
 |   bool VisitDeclRefExpr(DeclRefExpr *E); | 
 |   bool VisitPredefinedExpr(PredefinedExpr *E) { return Success(E); } | 
 |   bool VisitCompoundLiteralExpr(CompoundLiteralExpr *E); | 
 |   bool VisitMemberExpr(MemberExpr *E); | 
 |   bool VisitStringLiteral(StringLiteral *E) { return Success(E); } | 
 |   bool VisitObjCEncodeExpr(ObjCEncodeExpr *E) { return Success(E); } | 
 |   bool VisitArraySubscriptExpr(ArraySubscriptExpr *E); | 
 |   bool VisitUnaryDeref(UnaryOperator *E); | 
 |   bool VisitUnaryExtension(const UnaryOperator *E) | 
 |     { return Visit(E->getSubExpr()); } | 
 |   bool VisitChooseExpr(const ChooseExpr *E) | 
 |     { return Visit(E->getChosenSubExpr(Info.Ctx)); } | 
 |  | 
 |   bool VisitCastExpr(CastExpr *E) { | 
 |     switch (E->getCastKind()) { | 
 |     default: | 
 |       return false; | 
 |  | 
 |     case CastExpr::CK_NoOp: | 
 |       return Visit(E->getSubExpr()); | 
 |     } | 
 |   } | 
 |   // FIXME: Missing: __real__, __imag__ | 
 | }; | 
 | } // end anonymous namespace | 
 |  | 
 | static bool EvaluateLValue(const Expr* E, LValue& Result, EvalInfo &Info) { | 
 |   return LValueExprEvaluator(Info, Result).Visit(const_cast<Expr*>(E)); | 
 | } | 
 |  | 
 | bool LValueExprEvaluator::VisitDeclRefExpr(DeclRefExpr *E) { | 
 |   if (isa<FunctionDecl>(E->getDecl())) { | 
 |     return Success(E); | 
 |   } else if (VarDecl* VD = dyn_cast<VarDecl>(E->getDecl())) { | 
 |     if (!VD->getType()->isReferenceType()) | 
 |       return Success(E); | 
 |     // Reference parameters can refer to anything even if they have an | 
 |     // "initializer" in the form of a default argument. | 
 |     if (isa<ParmVarDecl>(VD)) | 
 |       return false; | 
 |     // FIXME: Check whether VD might be overridden! | 
 |     if (const Expr *Init = VD->getAnyInitializer()) | 
 |       return Visit(const_cast<Expr *>(Init)); | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | bool LValueExprEvaluator::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { | 
 |   return Success(E); | 
 | } | 
 |  | 
 | bool LValueExprEvaluator::VisitMemberExpr(MemberExpr *E) { | 
 |   QualType Ty; | 
 |   if (E->isArrow()) { | 
 |     if (!EvaluatePointer(E->getBase(), Result, Info)) | 
 |       return false; | 
 |     Ty = E->getBase()->getType()->getAs<PointerType>()->getPointeeType(); | 
 |   } else { | 
 |     if (!Visit(E->getBase())) | 
 |       return false; | 
 |     Ty = E->getBase()->getType(); | 
 |   } | 
 |  | 
 |   RecordDecl *RD = Ty->getAs<RecordType>()->getDecl(); | 
 |   const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD); | 
 |  | 
 |   FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl()); | 
 |   if (!FD) // FIXME: deal with other kinds of member expressions | 
 |     return false; | 
 |  | 
 |   if (FD->getType()->isReferenceType()) | 
 |     return false; | 
 |  | 
 |   // FIXME: This is linear time. | 
 |   unsigned i = 0; | 
 |   for (RecordDecl::field_iterator Field = RD->field_begin(), | 
 |                                FieldEnd = RD->field_end(); | 
 |        Field != FieldEnd; (void)++Field, ++i) { | 
 |     if (*Field == FD) | 
 |       break; | 
 |   } | 
 |  | 
 |   Result.Offset += CharUnits::fromQuantity(RL.getFieldOffset(i) / 8); | 
 |   return true; | 
 | } | 
 |  | 
 | bool LValueExprEvaluator::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { | 
 |   if (!EvaluatePointer(E->getBase(), Result, Info)) | 
 |     return false; | 
 |  | 
 |   APSInt Index; | 
 |   if (!EvaluateInteger(E->getIdx(), Index, Info)) | 
 |     return false; | 
 |  | 
 |   CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(E->getType()); | 
 |   Result.Offset += Index.getSExtValue() * ElementSize; | 
 |   return true; | 
 | } | 
 |  | 
 | bool LValueExprEvaluator::VisitUnaryDeref(UnaryOperator *E) { | 
 |   return EvaluatePointer(E->getSubExpr(), Result, Info); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Pointer Evaluation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | namespace { | 
 | class PointerExprEvaluator | 
 |   : public StmtVisitor<PointerExprEvaluator, bool> { | 
 |   EvalInfo &Info; | 
 |   LValue &Result; | 
 |  | 
 |   bool Success(Expr *E) { | 
 |     Result.Base = E; | 
 |     Result.Offset = CharUnits::Zero(); | 
 |     return true; | 
 |   } | 
 | public: | 
 |  | 
 |   PointerExprEvaluator(EvalInfo &info, LValue &Result) | 
 |     : Info(info), Result(Result) {} | 
 |  | 
 |   bool VisitStmt(Stmt *S) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   bool VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); } | 
 |  | 
 |   bool VisitBinaryOperator(const BinaryOperator *E); | 
 |   bool VisitCastExpr(CastExpr* E); | 
 |   bool VisitUnaryExtension(const UnaryOperator *E) | 
 |       { return Visit(E->getSubExpr()); } | 
 |   bool VisitUnaryAddrOf(const UnaryOperator *E); | 
 |   bool VisitObjCStringLiteral(ObjCStringLiteral *E) | 
 |       { return Success(E); } | 
 |   bool VisitAddrLabelExpr(AddrLabelExpr *E) | 
 |       { return Success(E); } | 
 |   bool VisitCallExpr(CallExpr *E); | 
 |   bool VisitBlockExpr(BlockExpr *E) { | 
 |     if (!E->hasBlockDeclRefExprs()) | 
 |       return Success(E); | 
 |     return false; | 
 |   } | 
 |   bool VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) | 
 |       { return Success((Expr*)0); } | 
 |   bool VisitConditionalOperator(ConditionalOperator *E); | 
 |   bool VisitChooseExpr(ChooseExpr *E) | 
 |       { return Visit(E->getChosenSubExpr(Info.Ctx)); } | 
 |   bool VisitCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr *E) | 
 |       { return Success((Expr*)0); } | 
 |   // FIXME: Missing: @protocol, @selector | 
 | }; | 
 | } // end anonymous namespace | 
 |  | 
 | static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info) { | 
 |   assert(E->getType()->hasPointerRepresentation()); | 
 |   return PointerExprEvaluator(Info, Result).Visit(const_cast<Expr*>(E)); | 
 | } | 
 |  | 
 | bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { | 
 |   if (E->getOpcode() != BinaryOperator::Add && | 
 |       E->getOpcode() != BinaryOperator::Sub) | 
 |     return false; | 
 |  | 
 |   const Expr *PExp = E->getLHS(); | 
 |   const Expr *IExp = E->getRHS(); | 
 |   if (IExp->getType()->isPointerType()) | 
 |     std::swap(PExp, IExp); | 
 |  | 
 |   if (!EvaluatePointer(PExp, Result, Info)) | 
 |     return false; | 
 |  | 
 |   llvm::APSInt Offset; | 
 |   if (!EvaluateInteger(IExp, Offset, Info)) | 
 |     return false; | 
 |   int64_t AdditionalOffset | 
 |     = Offset.isSigned() ? Offset.getSExtValue() | 
 |                         : static_cast<int64_t>(Offset.getZExtValue()); | 
 |  | 
 |   // Compute the new offset in the appropriate width. | 
 |  | 
 |   QualType PointeeType = | 
 |     PExp->getType()->getAs<PointerType>()->getPointeeType(); | 
 |   CharUnits SizeOfPointee; | 
 |  | 
 |   // Explicitly handle GNU void* and function pointer arithmetic extensions. | 
 |   if (PointeeType->isVoidType() || PointeeType->isFunctionType()) | 
 |     SizeOfPointee = CharUnits::One(); | 
 |   else | 
 |     SizeOfPointee = Info.Ctx.getTypeSizeInChars(PointeeType); | 
 |  | 
 |   if (E->getOpcode() == BinaryOperator::Add) | 
 |     Result.Offset += AdditionalOffset * SizeOfPointee; | 
 |   else | 
 |     Result.Offset -= AdditionalOffset * SizeOfPointee; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) { | 
 |   return EvaluateLValue(E->getSubExpr(), Result, Info); | 
 | } | 
 |  | 
 |  | 
 | bool PointerExprEvaluator::VisitCastExpr(CastExpr* E) { | 
 |   Expr* SubExpr = E->getSubExpr(); | 
 |  | 
 |   switch (E->getCastKind()) { | 
 |   default: | 
 |     break; | 
 |  | 
 |   case CastExpr::CK_Unknown: { | 
 |     // FIXME: The handling for CK_Unknown is ugly/shouldn't be necessary! | 
 |  | 
 |     // Check for pointer->pointer cast | 
 |     if (SubExpr->getType()->isPointerType() || | 
 |         SubExpr->getType()->isObjCObjectPointerType() || | 
 |         SubExpr->getType()->isNullPtrType() || | 
 |         SubExpr->getType()->isBlockPointerType()) | 
 |       return Visit(SubExpr); | 
 |  | 
 |     if (SubExpr->getType()->isIntegralOrEnumerationType()) { | 
 |       APValue Value; | 
 |       if (!EvaluateIntegerOrLValue(SubExpr, Value, Info)) | 
 |         break; | 
 |  | 
 |       if (Value.isInt()) { | 
 |         Value.getInt().extOrTrunc((unsigned)Info.Ctx.getTypeSize(E->getType())); | 
 |         Result.Base = 0; | 
 |         Result.Offset = CharUnits::fromQuantity(Value.getInt().getZExtValue()); | 
 |         return true; | 
 |       } else { | 
 |         Result.Base = Value.getLValueBase(); | 
 |         Result.Offset = Value.getLValueOffset(); | 
 |         return true; | 
 |       } | 
 |     } | 
 |     break; | 
 |   } | 
 |  | 
 |   case CastExpr::CK_NoOp: | 
 |   case CastExpr::CK_BitCast: | 
 |   case CastExpr::CK_LValueBitCast: | 
 |   case CastExpr::CK_AnyPointerToObjCPointerCast: | 
 |   case CastExpr::CK_AnyPointerToBlockPointerCast: | 
 |     return Visit(SubExpr); | 
 |  | 
 |   case CastExpr::CK_IntegralToPointer: { | 
 |     APValue Value; | 
 |     if (!EvaluateIntegerOrLValue(SubExpr, Value, Info)) | 
 |       break; | 
 |  | 
 |     if (Value.isInt()) { | 
 |       Value.getInt().extOrTrunc((unsigned)Info.Ctx.getTypeSize(E->getType())); | 
 |       Result.Base = 0; | 
 |       Result.Offset = CharUnits::fromQuantity(Value.getInt().getZExtValue()); | 
 |       return true; | 
 |     } else { | 
 |       // Cast is of an lvalue, no need to change value. | 
 |       Result.Base = Value.getLValueBase(); | 
 |       Result.Offset = Value.getLValueOffset(); | 
 |       return true; | 
 |     } | 
 |   } | 
 |   case CastExpr::CK_ArrayToPointerDecay: | 
 |   case CastExpr::CK_FunctionToPointerDecay: | 
 |     return EvaluateLValue(SubExpr, Result, Info); | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | bool PointerExprEvaluator::VisitCallExpr(CallExpr *E) { | 
 |   if (E->isBuiltinCall(Info.Ctx) == | 
 |         Builtin::BI__builtin___CFStringMakeConstantString || | 
 |       E->isBuiltinCall(Info.Ctx) == | 
 |         Builtin::BI__builtin___NSStringMakeConstantString) | 
 |     return Success(E); | 
 |   return false; | 
 | } | 
 |  | 
 | bool PointerExprEvaluator::VisitConditionalOperator(ConditionalOperator *E) { | 
 |   bool BoolResult; | 
 |   if (!HandleConversionToBool(E->getCond(), BoolResult, Info)) | 
 |     return false; | 
 |  | 
 |   Expr* EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr(); | 
 |   return Visit(EvalExpr); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Vector Evaluation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | namespace { | 
 |   class VectorExprEvaluator | 
 |   : public StmtVisitor<VectorExprEvaluator, APValue> { | 
 |     EvalInfo &Info; | 
 |     APValue GetZeroVector(QualType VecType); | 
 |   public: | 
 |  | 
 |     VectorExprEvaluator(EvalInfo &info) : Info(info) {} | 
 |  | 
 |     APValue VisitStmt(Stmt *S) { | 
 |       return APValue(); | 
 |     } | 
 |  | 
 |     APValue VisitParenExpr(ParenExpr *E) | 
 |         { return Visit(E->getSubExpr()); } | 
 |     APValue VisitUnaryExtension(const UnaryOperator *E) | 
 |       { return Visit(E->getSubExpr()); } | 
 |     APValue VisitUnaryPlus(const UnaryOperator *E) | 
 |       { return Visit(E->getSubExpr()); } | 
 |     APValue VisitUnaryReal(const UnaryOperator *E) | 
 |       { return Visit(E->getSubExpr()); } | 
 |     APValue VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) | 
 |       { return GetZeroVector(E->getType()); } | 
 |     APValue VisitCastExpr(const CastExpr* E); | 
 |     APValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E); | 
 |     APValue VisitInitListExpr(const InitListExpr *E); | 
 |     APValue VisitConditionalOperator(const ConditionalOperator *E); | 
 |     APValue VisitChooseExpr(const ChooseExpr *E) | 
 |       { return Visit(E->getChosenSubExpr(Info.Ctx)); } | 
 |     APValue VisitUnaryImag(const UnaryOperator *E); | 
 |     // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div, | 
 |     //                 binary comparisons, binary and/or/xor, | 
 |     //                 shufflevector, ExtVectorElementExpr | 
 |     //        (Note that these require implementing conversions | 
 |     //         between vector types.) | 
 |   }; | 
 | } // end anonymous namespace | 
 |  | 
 | static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) { | 
 |   if (!E->getType()->isVectorType()) | 
 |     return false; | 
 |   Result = VectorExprEvaluator(Info).Visit(const_cast<Expr*>(E)); | 
 |   return !Result.isUninit(); | 
 | } | 
 |  | 
 | APValue VectorExprEvaluator::VisitCastExpr(const CastExpr* E) { | 
 |   const VectorType *VTy = E->getType()->getAs<VectorType>(); | 
 |   QualType EltTy = VTy->getElementType(); | 
 |   unsigned NElts = VTy->getNumElements(); | 
 |   unsigned EltWidth = Info.Ctx.getTypeSize(EltTy); | 
 |  | 
 |   const Expr* SE = E->getSubExpr(); | 
 |   QualType SETy = SE->getType(); | 
 |   APValue Result = APValue(); | 
 |  | 
 |   // Check for vector->vector bitcast and scalar->vector splat. | 
 |   if (SETy->isVectorType()) { | 
 |     return this->Visit(const_cast<Expr*>(SE)); | 
 |   } else if (SETy->isIntegerType()) { | 
 |     APSInt IntResult; | 
 |     if (!EvaluateInteger(SE, IntResult, Info)) | 
 |       return APValue(); | 
 |     Result = APValue(IntResult); | 
 |   } else if (SETy->isRealFloatingType()) { | 
 |     APFloat F(0.0); | 
 |     if (!EvaluateFloat(SE, F, Info)) | 
 |       return APValue(); | 
 |     Result = APValue(F); | 
 |   } else | 
 |     return APValue(); | 
 |  | 
 |   // For casts of a scalar to ExtVector, convert the scalar to the element type | 
 |   // and splat it to all elements. | 
 |   if (E->getType()->isExtVectorType()) { | 
 |     if (EltTy->isIntegerType() && Result.isInt()) | 
 |       Result = APValue(HandleIntToIntCast(EltTy, SETy, Result.getInt(), | 
 |                                           Info.Ctx)); | 
 |     else if (EltTy->isIntegerType()) | 
 |       Result = APValue(HandleFloatToIntCast(EltTy, SETy, Result.getFloat(), | 
 |                                             Info.Ctx)); | 
 |     else if (EltTy->isRealFloatingType() && Result.isInt()) | 
 |       Result = APValue(HandleIntToFloatCast(EltTy, SETy, Result.getInt(), | 
 |                                             Info.Ctx)); | 
 |     else if (EltTy->isRealFloatingType()) | 
 |       Result = APValue(HandleFloatToFloatCast(EltTy, SETy, Result.getFloat(), | 
 |                                               Info.Ctx)); | 
 |     else | 
 |       return APValue(); | 
 |  | 
 |     // Splat and create vector APValue. | 
 |     llvm::SmallVector<APValue, 4> Elts(NElts, Result); | 
 |     return APValue(&Elts[0], Elts.size()); | 
 |   } | 
 |  | 
 |   // For casts of a scalar to regular gcc-style vector type, bitcast the scalar | 
 |   // to the vector. To construct the APValue vector initializer, bitcast the | 
 |   // initializing value to an APInt, and shift out the bits pertaining to each | 
 |   // element. | 
 |   APSInt Init; | 
 |   Init = Result.isInt() ? Result.getInt() : Result.getFloat().bitcastToAPInt(); | 
 |  | 
 |   llvm::SmallVector<APValue, 4> Elts; | 
 |   for (unsigned i = 0; i != NElts; ++i) { | 
 |     APSInt Tmp = Init; | 
 |     Tmp.extOrTrunc(EltWidth); | 
 |  | 
 |     if (EltTy->isIntegerType()) | 
 |       Elts.push_back(APValue(Tmp)); | 
 |     else if (EltTy->isRealFloatingType()) | 
 |       Elts.push_back(APValue(APFloat(Tmp))); | 
 |     else | 
 |       return APValue(); | 
 |  | 
 |     Init >>= EltWidth; | 
 |   } | 
 |   return APValue(&Elts[0], Elts.size()); | 
 | } | 
 |  | 
 | APValue | 
 | VectorExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { | 
 |   return this->Visit(const_cast<Expr*>(E->getInitializer())); | 
 | } | 
 |  | 
 | APValue | 
 | VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) { | 
 |   const VectorType *VT = E->getType()->getAs<VectorType>(); | 
 |   unsigned NumInits = E->getNumInits(); | 
 |   unsigned NumElements = VT->getNumElements(); | 
 |  | 
 |   QualType EltTy = VT->getElementType(); | 
 |   llvm::SmallVector<APValue, 4> Elements; | 
 |  | 
 |   // If a vector is initialized with a single element, that value | 
 |   // becomes every element of the vector, not just the first. | 
 |   // This is the behavior described in the IBM AltiVec documentation. | 
 |   if (NumInits == 1) { | 
 |     APValue InitValue; | 
 |     if (EltTy->isIntegerType()) { | 
 |       llvm::APSInt sInt(32); | 
 |       if (!EvaluateInteger(E->getInit(0), sInt, Info)) | 
 |         return APValue(); | 
 |       InitValue = APValue(sInt); | 
 |     } else { | 
 |       llvm::APFloat f(0.0); | 
 |       if (!EvaluateFloat(E->getInit(0), f, Info)) | 
 |         return APValue(); | 
 |       InitValue = APValue(f); | 
 |     } | 
 |     for (unsigned i = 0; i < NumElements; i++) { | 
 |       Elements.push_back(InitValue); | 
 |     } | 
 |   } else { | 
 |     for (unsigned i = 0; i < NumElements; i++) { | 
 |       if (EltTy->isIntegerType()) { | 
 |         llvm::APSInt sInt(32); | 
 |         if (i < NumInits) { | 
 |           if (!EvaluateInteger(E->getInit(i), sInt, Info)) | 
 |             return APValue(); | 
 |         } else { | 
 |           sInt = Info.Ctx.MakeIntValue(0, EltTy); | 
 |         } | 
 |         Elements.push_back(APValue(sInt)); | 
 |       } else { | 
 |         llvm::APFloat f(0.0); | 
 |         if (i < NumInits) { | 
 |           if (!EvaluateFloat(E->getInit(i), f, Info)) | 
 |             return APValue(); | 
 |         } else { | 
 |           f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)); | 
 |         } | 
 |         Elements.push_back(APValue(f)); | 
 |       } | 
 |     } | 
 |   } | 
 |   return APValue(&Elements[0], Elements.size()); | 
 | } | 
 |  | 
 | APValue | 
 | VectorExprEvaluator::GetZeroVector(QualType T) { | 
 |   const VectorType *VT = T->getAs<VectorType>(); | 
 |   QualType EltTy = VT->getElementType(); | 
 |   APValue ZeroElement; | 
 |   if (EltTy->isIntegerType()) | 
 |     ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy)); | 
 |   else | 
 |     ZeroElement = | 
 |         APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy))); | 
 |  | 
 |   llvm::SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement); | 
 |   return APValue(&Elements[0], Elements.size()); | 
 | } | 
 |  | 
 | APValue VectorExprEvaluator::VisitConditionalOperator(const ConditionalOperator *E) { | 
 |   bool BoolResult; | 
 |   if (!HandleConversionToBool(E->getCond(), BoolResult, Info)) | 
 |     return APValue(); | 
 |  | 
 |   Expr* EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr(); | 
 |  | 
 |   APValue Result; | 
 |   if (EvaluateVector(EvalExpr, Result, Info)) | 
 |     return Result; | 
 |   return APValue(); | 
 | } | 
 |  | 
 | APValue VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { | 
 |   if (!E->getSubExpr()->isEvaluatable(Info.Ctx)) | 
 |     Info.EvalResult.HasSideEffects = true; | 
 |   return GetZeroVector(E->getType()); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Integer Evaluation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | namespace { | 
 | class IntExprEvaluator | 
 |   : public StmtVisitor<IntExprEvaluator, bool> { | 
 |   EvalInfo &Info; | 
 |   APValue &Result; | 
 | public: | 
 |   IntExprEvaluator(EvalInfo &info, APValue &result) | 
 |     : Info(info), Result(result) {} | 
 |  | 
 |   bool Success(const llvm::APSInt &SI, const Expr *E) { | 
 |     assert(E->getType()->isIntegralOrEnumerationType() &&  | 
 |            "Invalid evaluation result."); | 
 |     assert(SI.isSigned() == E->getType()->isSignedIntegerType() && | 
 |            "Invalid evaluation result."); | 
 |     assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && | 
 |            "Invalid evaluation result."); | 
 |     Result = APValue(SI); | 
 |     return true; | 
 |   } | 
 |  | 
 |   bool Success(const llvm::APInt &I, const Expr *E) { | 
 |     assert(E->getType()->isIntegralOrEnumerationType() &&  | 
 |            "Invalid evaluation result."); | 
 |     assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && | 
 |            "Invalid evaluation result."); | 
 |     Result = APValue(APSInt(I)); | 
 |     Result.getInt().setIsUnsigned(E->getType()->isUnsignedIntegerType()); | 
 |     return true; | 
 |   } | 
 |  | 
 |   bool Success(uint64_t Value, const Expr *E) { | 
 |     assert(E->getType()->isIntegralOrEnumerationType() &&  | 
 |            "Invalid evaluation result."); | 
 |     Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType())); | 
 |     return true; | 
 |   } | 
 |  | 
 |   bool Error(SourceLocation L, diag::kind D, const Expr *E) { | 
 |     // Take the first error. | 
 |     if (Info.EvalResult.Diag == 0) { | 
 |       Info.EvalResult.DiagLoc = L; | 
 |       Info.EvalResult.Diag = D; | 
 |       Info.EvalResult.DiagExpr = E; | 
 |     } | 
 |     return false; | 
 |   } | 
 |  | 
 |   //===--------------------------------------------------------------------===// | 
 |   //                            Visitor Methods | 
 |   //===--------------------------------------------------------------------===// | 
 |  | 
 |   bool VisitStmt(Stmt *) { | 
 |     assert(0 && "This should be called on integers, stmts are not integers"); | 
 |     return false; | 
 |   } | 
 |  | 
 |   bool VisitExpr(Expr *E) { | 
 |     return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E); | 
 |   } | 
 |  | 
 |   bool VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); } | 
 |  | 
 |   bool VisitIntegerLiteral(const IntegerLiteral *E) { | 
 |     return Success(E->getValue(), E); | 
 |   } | 
 |   bool VisitCharacterLiteral(const CharacterLiteral *E) { | 
 |     return Success(E->getValue(), E); | 
 |   } | 
 |   bool VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) { | 
 |     // Per gcc docs "this built-in function ignores top level | 
 |     // qualifiers".  We need to use the canonical version to properly | 
 |     // be able to strip CRV qualifiers from the type. | 
 |     QualType T0 = Info.Ctx.getCanonicalType(E->getArgType1()); | 
 |     QualType T1 = Info.Ctx.getCanonicalType(E->getArgType2()); | 
 |     return Success(Info.Ctx.typesAreCompatible(T0.getUnqualifiedType(), | 
 |                                                T1.getUnqualifiedType()), | 
 |                    E); | 
 |   } | 
 |  | 
 |   bool CheckReferencedDecl(const Expr *E, const Decl *D); | 
 |   bool VisitDeclRefExpr(const DeclRefExpr *E) { | 
 |     return CheckReferencedDecl(E, E->getDecl()); | 
 |   } | 
 |   bool VisitMemberExpr(const MemberExpr *E) { | 
 |     if (CheckReferencedDecl(E, E->getMemberDecl())) { | 
 |       // Conservatively assume a MemberExpr will have side-effects | 
 |       Info.EvalResult.HasSideEffects = true; | 
 |       return true; | 
 |     } | 
 |     return false; | 
 |   } | 
 |  | 
 |   bool VisitCallExpr(CallExpr *E); | 
 |   bool VisitBinaryOperator(const BinaryOperator *E); | 
 |   bool VisitOffsetOfExpr(const OffsetOfExpr *E); | 
 |   bool VisitUnaryOperator(const UnaryOperator *E); | 
 |   bool VisitConditionalOperator(const ConditionalOperator *E); | 
 |  | 
 |   bool VisitCastExpr(CastExpr* E); | 
 |   bool VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E); | 
 |  | 
 |   bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { | 
 |     return Success(E->getValue(), E); | 
 |   } | 
 |  | 
 |   bool VisitGNUNullExpr(const GNUNullExpr *E) { | 
 |     return Success(0, E); | 
 |   } | 
 |  | 
 |   bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { | 
 |     return Success(0, E); | 
 |   } | 
 |  | 
 |   bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { | 
 |     return Success(0, E); | 
 |   } | 
 |  | 
 |   bool VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) { | 
 |     return Success(E->EvaluateTrait(Info.Ctx), E); | 
 |   } | 
 |  | 
 |   bool VisitChooseExpr(const ChooseExpr *E) { | 
 |     return Visit(E->getChosenSubExpr(Info.Ctx)); | 
 |   } | 
 |  | 
 |   bool VisitUnaryReal(const UnaryOperator *E); | 
 |   bool VisitUnaryImag(const UnaryOperator *E); | 
 |  | 
 | private: | 
 |   CharUnits GetAlignOfExpr(const Expr *E); | 
 |   CharUnits GetAlignOfType(QualType T); | 
 |   static QualType GetObjectType(const Expr *E); | 
 |   bool TryEvaluateBuiltinObjectSize(CallExpr *E); | 
 |   // FIXME: Missing: array subscript of vector, member of vector | 
 | }; | 
 | } // end anonymous namespace | 
 |  | 
 | static bool EvaluateIntegerOrLValue(const Expr* E, APValue &Result, EvalInfo &Info) { | 
 |   assert(E->getType()->isIntegralOrEnumerationType()); | 
 |   return IntExprEvaluator(Info, Result).Visit(const_cast<Expr*>(E)); | 
 | } | 
 |  | 
 | static bool EvaluateInteger(const Expr* E, APSInt &Result, EvalInfo &Info) { | 
 |   assert(E->getType()->isIntegralOrEnumerationType()); | 
 |  | 
 |   APValue Val; | 
 |   if (!EvaluateIntegerOrLValue(E, Val, Info) || !Val.isInt()) | 
 |     return false; | 
 |   Result = Val.getInt(); | 
 |   return true; | 
 | } | 
 |  | 
 | bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) { | 
 |   // Enums are integer constant exprs. | 
 |   if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) | 
 |     return Success(ECD->getInitVal(), E); | 
 |  | 
 |   // In C++, const, non-volatile integers initialized with ICEs are ICEs. | 
 |   // In C, they can also be folded, although they are not ICEs. | 
 |   if (Info.Ctx.getCanonicalType(E->getType()).getCVRQualifiers()  | 
 |                                                         == Qualifiers::Const) { | 
 |  | 
 |     if (isa<ParmVarDecl>(D)) | 
 |       return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E); | 
 |  | 
 |     if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { | 
 |       if (const Expr *Init = VD->getAnyInitializer()) { | 
 |         if (APValue *V = VD->getEvaluatedValue()) { | 
 |           if (V->isInt()) | 
 |             return Success(V->getInt(), E); | 
 |           return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E); | 
 |         } | 
 |  | 
 |         if (VD->isEvaluatingValue()) | 
 |           return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E); | 
 |  | 
 |         VD->setEvaluatingValue(); | 
 |  | 
 |         if (Visit(const_cast<Expr*>(Init))) { | 
 |           // Cache the evaluated value in the variable declaration. | 
 |           VD->setEvaluatedValue(Result); | 
 |           return true; | 
 |         } | 
 |  | 
 |         VD->setEvaluatedValue(APValue()); | 
 |         return false; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Otherwise, random variable references are not constants. | 
 |   return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E); | 
 | } | 
 |  | 
 | /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way | 
 | /// as GCC. | 
 | static int EvaluateBuiltinClassifyType(const CallExpr *E) { | 
 |   // The following enum mimics the values returned by GCC. | 
 |   // FIXME: Does GCC differ between lvalue and rvalue references here? | 
 |   enum gcc_type_class { | 
 |     no_type_class = -1, | 
 |     void_type_class, integer_type_class, char_type_class, | 
 |     enumeral_type_class, boolean_type_class, | 
 |     pointer_type_class, reference_type_class, offset_type_class, | 
 |     real_type_class, complex_type_class, | 
 |     function_type_class, method_type_class, | 
 |     record_type_class, union_type_class, | 
 |     array_type_class, string_type_class, | 
 |     lang_type_class | 
 |   }; | 
 |  | 
 |   // If no argument was supplied, default to "no_type_class". This isn't | 
 |   // ideal, however it is what gcc does. | 
 |   if (E->getNumArgs() == 0) | 
 |     return no_type_class; | 
 |  | 
 |   QualType ArgTy = E->getArg(0)->getType(); | 
 |   if (ArgTy->isVoidType()) | 
 |     return void_type_class; | 
 |   else if (ArgTy->isEnumeralType()) | 
 |     return enumeral_type_class; | 
 |   else if (ArgTy->isBooleanType()) | 
 |     return boolean_type_class; | 
 |   else if (ArgTy->isCharType()) | 
 |     return string_type_class; // gcc doesn't appear to use char_type_class | 
 |   else if (ArgTy->isIntegerType()) | 
 |     return integer_type_class; | 
 |   else if (ArgTy->isPointerType()) | 
 |     return pointer_type_class; | 
 |   else if (ArgTy->isReferenceType()) | 
 |     return reference_type_class; | 
 |   else if (ArgTy->isRealType()) | 
 |     return real_type_class; | 
 |   else if (ArgTy->isComplexType()) | 
 |     return complex_type_class; | 
 |   else if (ArgTy->isFunctionType()) | 
 |     return function_type_class; | 
 |   else if (ArgTy->isStructureOrClassType()) | 
 |     return record_type_class; | 
 |   else if (ArgTy->isUnionType()) | 
 |     return union_type_class; | 
 |   else if (ArgTy->isArrayType()) | 
 |     return array_type_class; | 
 |   else if (ArgTy->isUnionType()) | 
 |     return union_type_class; | 
 |   else  // FIXME: offset_type_class, method_type_class, & lang_type_class? | 
 |     assert(0 && "CallExpr::isBuiltinClassifyType(): unimplemented type"); | 
 |   return -1; | 
 | } | 
 |  | 
 | /// Retrieves the "underlying object type" of the given expression, | 
 | /// as used by __builtin_object_size. | 
 | QualType IntExprEvaluator::GetObjectType(const Expr *E) { | 
 |   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { | 
 |     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) | 
 |       return VD->getType(); | 
 |   } else if (isa<CompoundLiteralExpr>(E)) { | 
 |     return E->getType(); | 
 |   } | 
 |  | 
 |   return QualType(); | 
 | } | 
 |  | 
 | bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(CallExpr *E) { | 
 |   // TODO: Perhaps we should let LLVM lower this? | 
 |   LValue Base; | 
 |   if (!EvaluatePointer(E->getArg(0), Base, Info)) | 
 |     return false; | 
 |  | 
 |   // If we can prove the base is null, lower to zero now. | 
 |   const Expr *LVBase = Base.getLValueBase(); | 
 |   if (!LVBase) return Success(0, E); | 
 |  | 
 |   QualType T = GetObjectType(LVBase); | 
 |   if (T.isNull() || | 
 |       T->isIncompleteType() || | 
 |       T->isFunctionType() || | 
 |       T->isVariablyModifiedType() || | 
 |       T->isDependentType()) | 
 |     return false; | 
 |  | 
 |   CharUnits Size = Info.Ctx.getTypeSizeInChars(T); | 
 |   CharUnits Offset = Base.getLValueOffset(); | 
 |  | 
 |   if (!Offset.isNegative() && Offset <= Size) | 
 |     Size -= Offset; | 
 |   else | 
 |     Size = CharUnits::Zero(); | 
 |   return Success(Size.getQuantity(), E); | 
 | } | 
 |  | 
 | bool IntExprEvaluator::VisitCallExpr(CallExpr *E) { | 
 |   switch (E->isBuiltinCall(Info.Ctx)) { | 
 |   default: | 
 |     return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E); | 
 |  | 
 |   case Builtin::BI__builtin_object_size: { | 
 |     if (TryEvaluateBuiltinObjectSize(E)) | 
 |       return true; | 
 |  | 
 |     // If evaluating the argument has side-effects we can't determine | 
 |     // the size of the object and lower it to unknown now. | 
 |     if (E->getArg(0)->HasSideEffects(Info.Ctx)) { | 
 |       if (E->getArg(1)->EvaluateAsInt(Info.Ctx).getZExtValue() <= 1) | 
 |         return Success(-1ULL, E); | 
 |       return Success(0, E); | 
 |     } | 
 |  | 
 |     return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E); | 
 |   } | 
 |  | 
 |   case Builtin::BI__builtin_classify_type: | 
 |     return Success(EvaluateBuiltinClassifyType(E), E); | 
 |  | 
 |   case Builtin::BI__builtin_constant_p: | 
 |     // __builtin_constant_p always has one operand: it returns true if that | 
 |     // operand can be folded, false otherwise. | 
 |     return Success(E->getArg(0)->isEvaluatable(Info.Ctx), E); | 
 |        | 
 |   case Builtin::BI__builtin_eh_return_data_regno: { | 
 |     int Operand = E->getArg(0)->EvaluateAsInt(Info.Ctx).getZExtValue(); | 
 |     Operand = Info.Ctx.Target.getEHDataRegisterNumber(Operand); | 
 |     return Success(Operand, E); | 
 |   } | 
 |  | 
 |   case Builtin::BI__builtin_expect: | 
 |     return Visit(E->getArg(0)); | 
 |   } | 
 | } | 
 |  | 
 | bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { | 
 |   if (E->getOpcode() == BinaryOperator::Comma) { | 
 |     if (!Visit(E->getRHS())) | 
 |       return false; | 
 |  | 
 |     // If we can't evaluate the LHS, it might have side effects; | 
 |     // conservatively mark it. | 
 |     if (!E->getLHS()->isEvaluatable(Info.Ctx)) | 
 |       Info.EvalResult.HasSideEffects = true; | 
 |  | 
 |     return true; | 
 |   } | 
 |  | 
 |   if (E->isLogicalOp()) { | 
 |     // These need to be handled specially because the operands aren't | 
 |     // necessarily integral | 
 |     bool lhsResult, rhsResult; | 
 |  | 
 |     if (HandleConversionToBool(E->getLHS(), lhsResult, Info)) { | 
 |       // We were able to evaluate the LHS, see if we can get away with not | 
 |       // evaluating the RHS: 0 && X -> 0, 1 || X -> 1 | 
 |       if (lhsResult == (E->getOpcode() == BinaryOperator::LOr)) | 
 |         return Success(lhsResult, E); | 
 |  | 
 |       if (HandleConversionToBool(E->getRHS(), rhsResult, Info)) { | 
 |         if (E->getOpcode() == BinaryOperator::LOr) | 
 |           return Success(lhsResult || rhsResult, E); | 
 |         else | 
 |           return Success(lhsResult && rhsResult, E); | 
 |       } | 
 |     } else { | 
 |       if (HandleConversionToBool(E->getRHS(), rhsResult, Info)) { | 
 |         // We can't evaluate the LHS; however, sometimes the result | 
 |         // is determined by the RHS: X && 0 -> 0, X || 1 -> 1. | 
 |         if (rhsResult == (E->getOpcode() == BinaryOperator::LOr) || | 
 |             !rhsResult == (E->getOpcode() == BinaryOperator::LAnd)) { | 
 |           // Since we weren't able to evaluate the left hand side, it | 
 |           // must have had side effects. | 
 |           Info.EvalResult.HasSideEffects = true; | 
 |  | 
 |           return Success(rhsResult, E); | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     return false; | 
 |   } | 
 |  | 
 |   QualType LHSTy = E->getLHS()->getType(); | 
 |   QualType RHSTy = E->getRHS()->getType(); | 
 |  | 
 |   if (LHSTy->isAnyComplexType()) { | 
 |     assert(RHSTy->isAnyComplexType() && "Invalid comparison"); | 
 |     ComplexValue LHS, RHS; | 
 |  | 
 |     if (!EvaluateComplex(E->getLHS(), LHS, Info)) | 
 |       return false; | 
 |  | 
 |     if (!EvaluateComplex(E->getRHS(), RHS, Info)) | 
 |       return false; | 
 |  | 
 |     if (LHS.isComplexFloat()) { | 
 |       APFloat::cmpResult CR_r = | 
 |         LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal()); | 
 |       APFloat::cmpResult CR_i = | 
 |         LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag()); | 
 |  | 
 |       if (E->getOpcode() == BinaryOperator::EQ) | 
 |         return Success((CR_r == APFloat::cmpEqual && | 
 |                         CR_i == APFloat::cmpEqual), E); | 
 |       else { | 
 |         assert(E->getOpcode() == BinaryOperator::NE && | 
 |                "Invalid complex comparison."); | 
 |         return Success(((CR_r == APFloat::cmpGreaterThan || | 
 |                          CR_r == APFloat::cmpLessThan || | 
 |                          CR_r == APFloat::cmpUnordered) || | 
 |                         (CR_i == APFloat::cmpGreaterThan || | 
 |                          CR_i == APFloat::cmpLessThan || | 
 |                          CR_i == APFloat::cmpUnordered)), E); | 
 |       } | 
 |     } else { | 
 |       if (E->getOpcode() == BinaryOperator::EQ) | 
 |         return Success((LHS.getComplexIntReal() == RHS.getComplexIntReal() && | 
 |                         LHS.getComplexIntImag() == RHS.getComplexIntImag()), E); | 
 |       else { | 
 |         assert(E->getOpcode() == BinaryOperator::NE && | 
 |                "Invalid compex comparison."); | 
 |         return Success((LHS.getComplexIntReal() != RHS.getComplexIntReal() || | 
 |                         LHS.getComplexIntImag() != RHS.getComplexIntImag()), E); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (LHSTy->isRealFloatingType() && | 
 |       RHSTy->isRealFloatingType()) { | 
 |     APFloat RHS(0.0), LHS(0.0); | 
 |  | 
 |     if (!EvaluateFloat(E->getRHS(), RHS, Info)) | 
 |       return false; | 
 |  | 
 |     if (!EvaluateFloat(E->getLHS(), LHS, Info)) | 
 |       return false; | 
 |  | 
 |     APFloat::cmpResult CR = LHS.compare(RHS); | 
 |  | 
 |     switch (E->getOpcode()) { | 
 |     default: | 
 |       assert(0 && "Invalid binary operator!"); | 
 |     case BinaryOperator::LT: | 
 |       return Success(CR == APFloat::cmpLessThan, E); | 
 |     case BinaryOperator::GT: | 
 |       return Success(CR == APFloat::cmpGreaterThan, E); | 
 |     case BinaryOperator::LE: | 
 |       return Success(CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual, E); | 
 |     case BinaryOperator::GE: | 
 |       return Success(CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual, | 
 |                      E); | 
 |     case BinaryOperator::EQ: | 
 |       return Success(CR == APFloat::cmpEqual, E); | 
 |     case BinaryOperator::NE: | 
 |       return Success(CR == APFloat::cmpGreaterThan | 
 |                      || CR == APFloat::cmpLessThan | 
 |                      || CR == APFloat::cmpUnordered, E); | 
 |     } | 
 |   } | 
 |  | 
 |   if (LHSTy->isPointerType() && RHSTy->isPointerType()) { | 
 |     if (E->getOpcode() == BinaryOperator::Sub || E->isEqualityOp()) { | 
 |       LValue LHSValue; | 
 |       if (!EvaluatePointer(E->getLHS(), LHSValue, Info)) | 
 |         return false; | 
 |  | 
 |       LValue RHSValue; | 
 |       if (!EvaluatePointer(E->getRHS(), RHSValue, Info)) | 
 |         return false; | 
 |  | 
 |       // Reject any bases from the normal codepath; we special-case comparisons | 
 |       // to null. | 
 |       if (LHSValue.getLValueBase()) { | 
 |         if (!E->isEqualityOp()) | 
 |           return false; | 
 |         if (RHSValue.getLValueBase() || !RHSValue.getLValueOffset().isZero()) | 
 |           return false; | 
 |         bool bres; | 
 |         if (!EvalPointerValueAsBool(LHSValue, bres)) | 
 |           return false; | 
 |         return Success(bres ^ (E->getOpcode() == BinaryOperator::EQ), E); | 
 |       } else if (RHSValue.getLValueBase()) { | 
 |         if (!E->isEqualityOp()) | 
 |           return false; | 
 |         if (LHSValue.getLValueBase() || !LHSValue.getLValueOffset().isZero()) | 
 |           return false; | 
 |         bool bres; | 
 |         if (!EvalPointerValueAsBool(RHSValue, bres)) | 
 |           return false; | 
 |         return Success(bres ^ (E->getOpcode() == BinaryOperator::EQ), E); | 
 |       } | 
 |  | 
 |       if (E->getOpcode() == BinaryOperator::Sub) { | 
 |         QualType Type = E->getLHS()->getType(); | 
 |         QualType ElementType = Type->getAs<PointerType>()->getPointeeType(); | 
 |  | 
 |         CharUnits ElementSize = CharUnits::One(); | 
 |         if (!ElementType->isVoidType() && !ElementType->isFunctionType()) | 
 |           ElementSize = Info.Ctx.getTypeSizeInChars(ElementType); | 
 |  | 
 |         CharUnits Diff = LHSValue.getLValueOffset() -  | 
 |                              RHSValue.getLValueOffset(); | 
 |         return Success(Diff / ElementSize, E); | 
 |       } | 
 |       bool Result; | 
 |       if (E->getOpcode() == BinaryOperator::EQ) { | 
 |         Result = LHSValue.getLValueOffset() == RHSValue.getLValueOffset(); | 
 |       } else { | 
 |         Result = LHSValue.getLValueOffset() != RHSValue.getLValueOffset(); | 
 |       } | 
 |       return Success(Result, E); | 
 |     } | 
 |   } | 
 |   if (!LHSTy->isIntegralOrEnumerationType() || | 
 |       !RHSTy->isIntegralOrEnumerationType()) { | 
 |     // We can't continue from here for non-integral types, and they | 
 |     // could potentially confuse the following operations. | 
 |     return false; | 
 |   } | 
 |  | 
 |   // The LHS of a constant expr is always evaluated and needed. | 
 |   if (!Visit(E->getLHS())) | 
 |     return false; // error in subexpression. | 
 |  | 
 |   APValue RHSVal; | 
 |   if (!EvaluateIntegerOrLValue(E->getRHS(), RHSVal, Info)) | 
 |     return false; | 
 |  | 
 |   // Handle cases like (unsigned long)&a + 4. | 
 |   if (E->isAdditiveOp() && Result.isLValue() && RHSVal.isInt()) { | 
 |     CharUnits Offset = Result.getLValueOffset(); | 
 |     CharUnits AdditionalOffset = CharUnits::fromQuantity( | 
 |                                      RHSVal.getInt().getZExtValue()); | 
 |     if (E->getOpcode() == BinaryOperator::Add) | 
 |       Offset += AdditionalOffset; | 
 |     else | 
 |       Offset -= AdditionalOffset; | 
 |     Result = APValue(Result.getLValueBase(), Offset); | 
 |     return true; | 
 |   } | 
 |  | 
 |   // Handle cases like 4 + (unsigned long)&a | 
 |   if (E->getOpcode() == BinaryOperator::Add && | 
 |         RHSVal.isLValue() && Result.isInt()) { | 
 |     CharUnits Offset = RHSVal.getLValueOffset(); | 
 |     Offset += CharUnits::fromQuantity(Result.getInt().getZExtValue()); | 
 |     Result = APValue(RHSVal.getLValueBase(), Offset); | 
 |     return true; | 
 |   } | 
 |  | 
 |   // All the following cases expect both operands to be an integer | 
 |   if (!Result.isInt() || !RHSVal.isInt()) | 
 |     return false; | 
 |  | 
 |   APSInt& RHS = RHSVal.getInt(); | 
 |  | 
 |   switch (E->getOpcode()) { | 
 |   default: | 
 |     return Error(E->getOperatorLoc(), diag::note_invalid_subexpr_in_ice, E); | 
 |   case BinaryOperator::Mul: return Success(Result.getInt() * RHS, E); | 
 |   case BinaryOperator::Add: return Success(Result.getInt() + RHS, E); | 
 |   case BinaryOperator::Sub: return Success(Result.getInt() - RHS, E); | 
 |   case BinaryOperator::And: return Success(Result.getInt() & RHS, E); | 
 |   case BinaryOperator::Xor: return Success(Result.getInt() ^ RHS, E); | 
 |   case BinaryOperator::Or:  return Success(Result.getInt() | RHS, E); | 
 |   case BinaryOperator::Div: | 
 |     if (RHS == 0) | 
 |       return Error(E->getOperatorLoc(), diag::note_expr_divide_by_zero, E); | 
 |     return Success(Result.getInt() / RHS, E); | 
 |   case BinaryOperator::Rem: | 
 |     if (RHS == 0) | 
 |       return Error(E->getOperatorLoc(), diag::note_expr_divide_by_zero, E); | 
 |     return Success(Result.getInt() % RHS, E); | 
 |   case BinaryOperator::Shl: { | 
 |     // FIXME: Warn about out of range shift amounts! | 
 |     unsigned SA = | 
 |       (unsigned) RHS.getLimitedValue(Result.getInt().getBitWidth()-1); | 
 |     return Success(Result.getInt() << SA, E); | 
 |   } | 
 |   case BinaryOperator::Shr: { | 
 |     unsigned SA = | 
 |       (unsigned) RHS.getLimitedValue(Result.getInt().getBitWidth()-1); | 
 |     return Success(Result.getInt() >> SA, E); | 
 |   } | 
 |  | 
 |   case BinaryOperator::LT: return Success(Result.getInt() < RHS, E); | 
 |   case BinaryOperator::GT: return Success(Result.getInt() > RHS, E); | 
 |   case BinaryOperator::LE: return Success(Result.getInt() <= RHS, E); | 
 |   case BinaryOperator::GE: return Success(Result.getInt() >= RHS, E); | 
 |   case BinaryOperator::EQ: return Success(Result.getInt() == RHS, E); | 
 |   case BinaryOperator::NE: return Success(Result.getInt() != RHS, E); | 
 |   } | 
 | } | 
 |  | 
 | bool IntExprEvaluator::VisitConditionalOperator(const ConditionalOperator *E) { | 
 |   bool Cond; | 
 |   if (!HandleConversionToBool(E->getCond(), Cond, Info)) | 
 |     return false; | 
 |  | 
 |   return Visit(Cond ? E->getTrueExpr() : E->getFalseExpr()); | 
 | } | 
 |  | 
 | CharUnits IntExprEvaluator::GetAlignOfType(QualType T) { | 
 |   // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, | 
 |   //   the result is the size of the referenced type." | 
 |   // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the | 
 |   //   result shall be the alignment of the referenced type." | 
 |   if (const ReferenceType *Ref = T->getAs<ReferenceType>()) | 
 |     T = Ref->getPointeeType(); | 
 |  | 
 |   // Get information about the alignment. | 
 |   unsigned CharSize = Info.Ctx.Target.getCharWidth(); | 
 |  | 
 |   // __alignof is defined to return the preferred alignment. | 
 |   return CharUnits::fromQuantity( | 
 |       Info.Ctx.getPreferredTypeAlign(T.getTypePtr()) / CharSize); | 
 | } | 
 |  | 
 | CharUnits IntExprEvaluator::GetAlignOfExpr(const Expr *E) { | 
 |   E = E->IgnoreParens(); | 
 |  | 
 |   // alignof decl is always accepted, even if it doesn't make sense: we default | 
 |   // to 1 in those cases. | 
 |   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) | 
 |     return Info.Ctx.getDeclAlign(DRE->getDecl(),  | 
 |                                  /*RefAsPointee*/true); | 
 |  | 
 |   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) | 
 |     return Info.Ctx.getDeclAlign(ME->getMemberDecl(), | 
 |                                  /*RefAsPointee*/true); | 
 |  | 
 |   return GetAlignOfType(E->getType()); | 
 | } | 
 |  | 
 |  | 
 | /// VisitSizeAlignOfExpr - Evaluate a sizeof or alignof with a result as the | 
 | /// expression's type. | 
 | bool IntExprEvaluator::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) { | 
 |   // Handle alignof separately. | 
 |   if (!E->isSizeOf()) { | 
 |     if (E->isArgumentType()) | 
 |       return Success(GetAlignOfType(E->getArgumentType()).getQuantity(), E); | 
 |     else | 
 |       return Success(GetAlignOfExpr(E->getArgumentExpr()).getQuantity(), E); | 
 |   } | 
 |  | 
 |   QualType SrcTy = E->getTypeOfArgument(); | 
 |   // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, | 
 |   //   the result is the size of the referenced type." | 
 |   // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the | 
 |   //   result shall be the alignment of the referenced type." | 
 |   if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>()) | 
 |     SrcTy = Ref->getPointeeType(); | 
 |  | 
 |   // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc | 
 |   // extension. | 
 |   if (SrcTy->isVoidType() || SrcTy->isFunctionType()) | 
 |     return Success(1, E); | 
 |  | 
 |   // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2. | 
 |   if (!SrcTy->isConstantSizeType()) | 
 |     return false; | 
 |  | 
 |   // Get information about the size. | 
 |   return Success(Info.Ctx.getTypeSizeInChars(SrcTy).getQuantity(), E); | 
 | } | 
 |  | 
 | bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *E) { | 
 |   CharUnits Result; | 
 |   unsigned n = E->getNumComponents(); | 
 |   OffsetOfExpr* OOE = const_cast<OffsetOfExpr*>(E); | 
 |   if (n == 0) | 
 |     return false; | 
 |   QualType CurrentType = E->getTypeSourceInfo()->getType(); | 
 |   for (unsigned i = 0; i != n; ++i) { | 
 |     OffsetOfExpr::OffsetOfNode ON = OOE->getComponent(i); | 
 |     switch (ON.getKind()) { | 
 |     case OffsetOfExpr::OffsetOfNode::Array: { | 
 |       Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex()); | 
 |       APSInt IdxResult; | 
 |       if (!EvaluateInteger(Idx, IdxResult, Info)) | 
 |         return false; | 
 |       const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType); | 
 |       if (!AT) | 
 |         return false; | 
 |       CurrentType = AT->getElementType(); | 
 |       CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType); | 
 |       Result += IdxResult.getSExtValue() * ElementSize; | 
 |         break; | 
 |     } | 
 |          | 
 |     case OffsetOfExpr::OffsetOfNode::Field: { | 
 |       FieldDecl *MemberDecl = ON.getField(); | 
 |       const RecordType *RT = CurrentType->getAs<RecordType>(); | 
 |       if (!RT)  | 
 |         return false; | 
 |       RecordDecl *RD = RT->getDecl(); | 
 |       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD); | 
 |       unsigned i = 0; | 
 |       // FIXME: It would be nice if we didn't have to loop here! | 
 |       for (RecordDecl::field_iterator Field = RD->field_begin(), | 
 |                                       FieldEnd = RD->field_end(); | 
 |            Field != FieldEnd; (void)++Field, ++i) { | 
 |         if (*Field == MemberDecl) | 
 |           break; | 
 |       } | 
 |       assert(i < RL.getFieldCount() && "offsetof field in wrong type"); | 
 |       Result += CharUnits::fromQuantity( | 
 |                            RL.getFieldOffset(i) / Info.Ctx.getCharWidth()); | 
 |       CurrentType = MemberDecl->getType().getNonReferenceType(); | 
 |       break; | 
 |     } | 
 |          | 
 |     case OffsetOfExpr::OffsetOfNode::Identifier: | 
 |       llvm_unreachable("dependent __builtin_offsetof"); | 
 |       return false; | 
 |          | 
 |     case OffsetOfExpr::OffsetOfNode::Base: { | 
 |       CXXBaseSpecifier *BaseSpec = ON.getBase(); | 
 |       if (BaseSpec->isVirtual()) | 
 |         return false; | 
 |  | 
 |       // Find the layout of the class whose base we are looking into. | 
 |       const RecordType *RT = CurrentType->getAs<RecordType>(); | 
 |       if (!RT)  | 
 |         return false; | 
 |       RecordDecl *RD = RT->getDecl(); | 
 |       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD); | 
 |  | 
 |       // Find the base class itself. | 
 |       CurrentType = BaseSpec->getType(); | 
 |       const RecordType *BaseRT = CurrentType->getAs<RecordType>(); | 
 |       if (!BaseRT) | 
 |         return false; | 
 |        | 
 |       // Add the offset to the base. | 
 |       Result += CharUnits::fromQuantity( | 
 |                 RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl())) | 
 |                                         / Info.Ctx.getCharWidth()); | 
 |       break; | 
 |     } | 
 |     } | 
 |   } | 
 |   return Success(Result.getQuantity(), E); | 
 | } | 
 |  | 
 | bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { | 
 |   // Special case unary operators that do not need their subexpression | 
 |   // evaluated.  offsetof/sizeof/alignof are all special. | 
 |   if (E->isOffsetOfOp()) { | 
 |     // The AST for offsetof is defined in such a way that we can just | 
 |     // directly Evaluate it as an l-value. | 
 |     LValue LV; | 
 |     if (!EvaluateLValue(E->getSubExpr(), LV, Info)) | 
 |         return false; | 
 |     if (LV.getLValueBase()) | 
 |         return false; | 
 |     return Success(LV.getLValueOffset().getQuantity(), E); | 
 |   } | 
 |      | 
 |   if (E->getOpcode() == UnaryOperator::LNot) { | 
 |     // LNot's operand isn't necessarily an integer, so we handle it specially. | 
 |     bool bres; | 
 |     if (!HandleConversionToBool(E->getSubExpr(), bres, Info)) | 
 |       return false; | 
 |     return Success(!bres, E); | 
 |   } | 
 |  | 
 |   // Only handle integral operations... | 
 |   if (!E->getSubExpr()->getType()->isIntegralOrEnumerationType()) | 
 |     return false; | 
 |  | 
 |   // Get the operand value into 'Result'. | 
 |   if (!Visit(E->getSubExpr())) | 
 |     return false; | 
 |  | 
 |   switch (E->getOpcode()) { | 
 |   default: | 
 |     // Address, indirect, pre/post inc/dec, etc are not valid constant exprs. | 
 |     // See C99 6.6p3. | 
 |     return Error(E->getOperatorLoc(), diag::note_invalid_subexpr_in_ice, E); | 
 |   case UnaryOperator::Extension: | 
 |     // FIXME: Should extension allow i-c-e extension expressions in its scope? | 
 |     // If so, we could clear the diagnostic ID. | 
 |     return true; | 
 |   case UnaryOperator::Plus: | 
 |     // The result is always just the subexpr. | 
 |     return true; | 
 |   case UnaryOperator::Minus: | 
 |     if (!Result.isInt()) return false; | 
 |     return Success(-Result.getInt(), E); | 
 |   case UnaryOperator::Not: | 
 |     if (!Result.isInt()) return false; | 
 |     return Success(~Result.getInt(), E); | 
 |   } | 
 | } | 
 |  | 
 | /// HandleCast - This is used to evaluate implicit or explicit casts where the | 
 | /// result type is integer. | 
 | bool IntExprEvaluator::VisitCastExpr(CastExpr *E) { | 
 |   Expr *SubExpr = E->getSubExpr(); | 
 |   QualType DestType = E->getType(); | 
 |   QualType SrcType = SubExpr->getType(); | 
 |  | 
 |   if (DestType->isBooleanType()) { | 
 |     bool BoolResult; | 
 |     if (!HandleConversionToBool(SubExpr, BoolResult, Info)) | 
 |       return false; | 
 |     return Success(BoolResult, E); | 
 |   } | 
 |  | 
 |   // Handle simple integer->integer casts. | 
 |   if (SrcType->isIntegralOrEnumerationType()) { | 
 |     if (!Visit(SubExpr)) | 
 |       return false; | 
 |  | 
 |     if (!Result.isInt()) { | 
 |       // Only allow casts of lvalues if they are lossless. | 
 |       return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType); | 
 |     } | 
 |  | 
 |     return Success(HandleIntToIntCast(DestType, SrcType, | 
 |                                       Result.getInt(), Info.Ctx), E); | 
 |   } | 
 |  | 
 |   // FIXME: Clean this up! | 
 |   if (SrcType->isPointerType()) { | 
 |     LValue LV; | 
 |     if (!EvaluatePointer(SubExpr, LV, Info)) | 
 |       return false; | 
 |  | 
 |     if (LV.getLValueBase()) { | 
 |       // Only allow based lvalue casts if they are lossless. | 
 |       if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType)) | 
 |         return false; | 
 |  | 
 |       LV.moveInto(Result); | 
 |       return true; | 
 |     } | 
 |  | 
 |     APSInt AsInt = Info.Ctx.MakeIntValue(LV.getLValueOffset().getQuantity(),  | 
 |                                          SrcType); | 
 |     return Success(HandleIntToIntCast(DestType, SrcType, AsInt, Info.Ctx), E); | 
 |   } | 
 |  | 
 |   if (SrcType->isArrayType() || SrcType->isFunctionType()) { | 
 |     // This handles double-conversion cases, where there's both | 
 |     // an l-value promotion and an implicit conversion to int. | 
 |     LValue LV; | 
 |     if (!EvaluateLValue(SubExpr, LV, Info)) | 
 |       return false; | 
 |  | 
 |     if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(Info.Ctx.VoidPtrTy)) | 
 |       return false; | 
 |  | 
 |     LV.moveInto(Result); | 
 |     return true; | 
 |   } | 
 |  | 
 |   if (SrcType->isAnyComplexType()) { | 
 |     ComplexValue C; | 
 |     if (!EvaluateComplex(SubExpr, C, Info)) | 
 |       return false; | 
 |     if (C.isComplexFloat()) | 
 |       return Success(HandleFloatToIntCast(DestType, SrcType, | 
 |                                           C.getComplexFloatReal(), Info.Ctx), | 
 |                      E); | 
 |     else | 
 |       return Success(HandleIntToIntCast(DestType, SrcType, | 
 |                                         C.getComplexIntReal(), Info.Ctx), E); | 
 |   } | 
 |   // FIXME: Handle vectors | 
 |  | 
 |   if (!SrcType->isRealFloatingType()) | 
 |     return Error(E->getExprLoc(), diag::note_invalid_subexpr_in_ice, E); | 
 |  | 
 |   APFloat F(0.0); | 
 |   if (!EvaluateFloat(SubExpr, F, Info)) | 
 |     return Error(E->getExprLoc(), diag::note_invalid_subexpr_in_ice, E); | 
 |  | 
 |   return Success(HandleFloatToIntCast(DestType, SrcType, F, Info.Ctx), E); | 
 | } | 
 |  | 
 | bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { | 
 |   if (E->getSubExpr()->getType()->isAnyComplexType()) { | 
 |     ComplexValue LV; | 
 |     if (!EvaluateComplex(E->getSubExpr(), LV, Info) || !LV.isComplexInt()) | 
 |       return Error(E->getExprLoc(), diag::note_invalid_subexpr_in_ice, E); | 
 |     return Success(LV.getComplexIntReal(), E); | 
 |   } | 
 |  | 
 |   return Visit(E->getSubExpr()); | 
 | } | 
 |  | 
 | bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { | 
 |   if (E->getSubExpr()->getType()->isComplexIntegerType()) { | 
 |     ComplexValue LV; | 
 |     if (!EvaluateComplex(E->getSubExpr(), LV, Info) || !LV.isComplexInt()) | 
 |       return Error(E->getExprLoc(), diag::note_invalid_subexpr_in_ice, E); | 
 |     return Success(LV.getComplexIntImag(), E); | 
 |   } | 
 |  | 
 |   if (!E->getSubExpr()->isEvaluatable(Info.Ctx)) | 
 |     Info.EvalResult.HasSideEffects = true; | 
 |   return Success(0, E); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Float Evaluation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | namespace { | 
 | class FloatExprEvaluator | 
 |   : public StmtVisitor<FloatExprEvaluator, bool> { | 
 |   EvalInfo &Info; | 
 |   APFloat &Result; | 
 | public: | 
 |   FloatExprEvaluator(EvalInfo &info, APFloat &result) | 
 |     : Info(info), Result(result) {} | 
 |  | 
 |   bool VisitStmt(Stmt *S) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   bool VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); } | 
 |   bool VisitCallExpr(const CallExpr *E); | 
 |  | 
 |   bool VisitUnaryOperator(const UnaryOperator *E); | 
 |   bool VisitBinaryOperator(const BinaryOperator *E); | 
 |   bool VisitFloatingLiteral(const FloatingLiteral *E); | 
 |   bool VisitCastExpr(CastExpr *E); | 
 |   bool VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); | 
 |   bool VisitConditionalOperator(ConditionalOperator *E); | 
 |  | 
 |   bool VisitChooseExpr(const ChooseExpr *E) | 
 |     { return Visit(E->getChosenSubExpr(Info.Ctx)); } | 
 |   bool VisitUnaryExtension(const UnaryOperator *E) | 
 |     { return Visit(E->getSubExpr()); } | 
 |   bool VisitUnaryReal(const UnaryOperator *E); | 
 |   bool VisitUnaryImag(const UnaryOperator *E); | 
 |  | 
 |   // FIXME: Missing: array subscript of vector, member of vector, | 
 |   //                 ImplicitValueInitExpr | 
 | }; | 
 | } // end anonymous namespace | 
 |  | 
 | static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) { | 
 |   assert(E->getType()->isRealFloatingType()); | 
 |   return FloatExprEvaluator(Info, Result).Visit(const_cast<Expr*>(E)); | 
 | } | 
 |  | 
 | static bool TryEvaluateBuiltinNaN(ASTContext &Context, | 
 |                                   QualType ResultTy, | 
 |                                   const Expr *Arg, | 
 |                                   bool SNaN, | 
 |                                   llvm::APFloat &Result) { | 
 |   const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts()); | 
 |   if (!S) return false; | 
 |  | 
 |   const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy); | 
 |  | 
 |   llvm::APInt fill; | 
 |  | 
 |   // Treat empty strings as if they were zero. | 
 |   if (S->getString().empty()) | 
 |     fill = llvm::APInt(32, 0); | 
 |   else if (S->getString().getAsInteger(0, fill)) | 
 |     return false; | 
 |  | 
 |   if (SNaN) | 
 |     Result = llvm::APFloat::getSNaN(Sem, false, &fill); | 
 |   else | 
 |     Result = llvm::APFloat::getQNaN(Sem, false, &fill); | 
 |   return true; | 
 | } | 
 |  | 
 | bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) { | 
 |   switch (E->isBuiltinCall(Info.Ctx)) { | 
 |   default: return false; | 
 |   case Builtin::BI__builtin_huge_val: | 
 |   case Builtin::BI__builtin_huge_valf: | 
 |   case Builtin::BI__builtin_huge_vall: | 
 |   case Builtin::BI__builtin_inf: | 
 |   case Builtin::BI__builtin_inff: | 
 |   case Builtin::BI__builtin_infl: { | 
 |     const llvm::fltSemantics &Sem = | 
 |       Info.Ctx.getFloatTypeSemantics(E->getType()); | 
 |     Result = llvm::APFloat::getInf(Sem); | 
 |     return true; | 
 |   } | 
 |  | 
 |   case Builtin::BI__builtin_nans: | 
 |   case Builtin::BI__builtin_nansf: | 
 |   case Builtin::BI__builtin_nansl: | 
 |     return TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0), | 
 |                                  true, Result); | 
 |  | 
 |   case Builtin::BI__builtin_nan: | 
 |   case Builtin::BI__builtin_nanf: | 
 |   case Builtin::BI__builtin_nanl: | 
 |     // If this is __builtin_nan() turn this into a nan, otherwise we | 
 |     // can't constant fold it. | 
 |     return TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0), | 
 |                                  false, Result); | 
 |  | 
 |   case Builtin::BI__builtin_fabs: | 
 |   case Builtin::BI__builtin_fabsf: | 
 |   case Builtin::BI__builtin_fabsl: | 
 |     if (!EvaluateFloat(E->getArg(0), Result, Info)) | 
 |       return false; | 
 |  | 
 |     if (Result.isNegative()) | 
 |       Result.changeSign(); | 
 |     return true; | 
 |  | 
 |   case Builtin::BI__builtin_copysign: | 
 |   case Builtin::BI__builtin_copysignf: | 
 |   case Builtin::BI__builtin_copysignl: { | 
 |     APFloat RHS(0.); | 
 |     if (!EvaluateFloat(E->getArg(0), Result, Info) || | 
 |         !EvaluateFloat(E->getArg(1), RHS, Info)) | 
 |       return false; | 
 |     Result.copySign(RHS); | 
 |     return true; | 
 |   } | 
 |   } | 
 | } | 
 |  | 
 | bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { | 
 |   ComplexValue CV; | 
 |   if (!EvaluateComplex(E->getSubExpr(), CV, Info)) | 
 |     return false; | 
 |   Result = CV.FloatReal; | 
 |   return true; | 
 | } | 
 |  | 
 | bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { | 
 |   ComplexValue CV; | 
 |   if (!EvaluateComplex(E->getSubExpr(), CV, Info)) | 
 |     return false; | 
 |   Result = CV.FloatImag; | 
 |   return true; | 
 | } | 
 |  | 
 | bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { | 
 |   if (E->getOpcode() == UnaryOperator::Deref) | 
 |     return false; | 
 |  | 
 |   if (!EvaluateFloat(E->getSubExpr(), Result, Info)) | 
 |     return false; | 
 |  | 
 |   switch (E->getOpcode()) { | 
 |   default: return false; | 
 |   case UnaryOperator::Plus: | 
 |     return true; | 
 |   case UnaryOperator::Minus: | 
 |     Result.changeSign(); | 
 |     return true; | 
 |   } | 
 | } | 
 |  | 
 | bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { | 
 |   if (E->getOpcode() == BinaryOperator::Comma) { | 
 |     if (!EvaluateFloat(E->getRHS(), Result, Info)) | 
 |       return false; | 
 |  | 
 |     // If we can't evaluate the LHS, it might have side effects; | 
 |     // conservatively mark it. | 
 |     if (!E->getLHS()->isEvaluatable(Info.Ctx)) | 
 |       Info.EvalResult.HasSideEffects = true; | 
 |  | 
 |     return true; | 
 |   } | 
 |  | 
 |   // FIXME: Diagnostics?  I really don't understand how the warnings | 
 |   // and errors are supposed to work. | 
 |   APFloat RHS(0.0); | 
 |   if (!EvaluateFloat(E->getLHS(), Result, Info)) | 
 |     return false; | 
 |   if (!EvaluateFloat(E->getRHS(), RHS, Info)) | 
 |     return false; | 
 |  | 
 |   switch (E->getOpcode()) { | 
 |   default: return false; | 
 |   case BinaryOperator::Mul: | 
 |     Result.multiply(RHS, APFloat::rmNearestTiesToEven); | 
 |     return true; | 
 |   case BinaryOperator::Add: | 
 |     Result.add(RHS, APFloat::rmNearestTiesToEven); | 
 |     return true; | 
 |   case BinaryOperator::Sub: | 
 |     Result.subtract(RHS, APFloat::rmNearestTiesToEven); | 
 |     return true; | 
 |   case BinaryOperator::Div: | 
 |     Result.divide(RHS, APFloat::rmNearestTiesToEven); | 
 |     return true; | 
 |   } | 
 | } | 
 |  | 
 | bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) { | 
 |   Result = E->getValue(); | 
 |   return true; | 
 | } | 
 |  | 
 | bool FloatExprEvaluator::VisitCastExpr(CastExpr *E) { | 
 |   Expr* SubExpr = E->getSubExpr(); | 
 |  | 
 |   if (SubExpr->getType()->isIntegralOrEnumerationType()) { | 
 |     APSInt IntResult; | 
 |     if (!EvaluateInteger(SubExpr, IntResult, Info)) | 
 |       return false; | 
 |     Result = HandleIntToFloatCast(E->getType(), SubExpr->getType(), | 
 |                                   IntResult, Info.Ctx); | 
 |     return true; | 
 |   } | 
 |   if (SubExpr->getType()->isRealFloatingType()) { | 
 |     if (!Visit(SubExpr)) | 
 |       return false; | 
 |     Result = HandleFloatToFloatCast(E->getType(), SubExpr->getType(), | 
 |                                     Result, Info.Ctx); | 
 |     return true; | 
 |   } | 
 |   // FIXME: Handle complex types | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | bool FloatExprEvaluator::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { | 
 |   Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType())); | 
 |   return true; | 
 | } | 
 |  | 
 | bool FloatExprEvaluator::VisitConditionalOperator(ConditionalOperator *E) { | 
 |   bool Cond; | 
 |   if (!HandleConversionToBool(E->getCond(), Cond, Info)) | 
 |     return false; | 
 |  | 
 |   return Visit(Cond ? E->getTrueExpr() : E->getFalseExpr()); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Complex Evaluation (for float and integer) | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | namespace { | 
 | class ComplexExprEvaluator | 
 |   : public StmtVisitor<ComplexExprEvaluator, bool> { | 
 |   EvalInfo &Info; | 
 |   ComplexValue &Result; | 
 |  | 
 | public: | 
 |   ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result) | 
 |     : Info(info), Result(Result) {} | 
 |  | 
 |   //===--------------------------------------------------------------------===// | 
 |   //                            Visitor Methods | 
 |   //===--------------------------------------------------------------------===// | 
 |  | 
 |   bool VisitStmt(Stmt *S) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   bool VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); } | 
 |  | 
 |   bool VisitImaginaryLiteral(ImaginaryLiteral *E) { | 
 |     Expr* SubExpr = E->getSubExpr(); | 
 |  | 
 |     if (SubExpr->getType()->isRealFloatingType()) { | 
 |       Result.makeComplexFloat(); | 
 |       APFloat &Imag = Result.FloatImag; | 
 |       if (!EvaluateFloat(SubExpr, Imag, Info)) | 
 |         return false; | 
 |  | 
 |       Result.FloatReal = APFloat(Imag.getSemantics()); | 
 |       return true; | 
 |     } else { | 
 |       assert(SubExpr->getType()->isIntegerType() && | 
 |              "Unexpected imaginary literal."); | 
 |  | 
 |       Result.makeComplexInt(); | 
 |       APSInt &Imag = Result.IntImag; | 
 |       if (!EvaluateInteger(SubExpr, Imag, Info)) | 
 |         return false; | 
 |  | 
 |       Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned()); | 
 |       return true; | 
 |     } | 
 |   } | 
 |  | 
 |   bool VisitCastExpr(CastExpr *E) { | 
 |     Expr* SubExpr = E->getSubExpr(); | 
 |     QualType EltType = E->getType()->getAs<ComplexType>()->getElementType(); | 
 |     QualType SubType = SubExpr->getType(); | 
 |  | 
 |     if (SubType->isRealFloatingType()) { | 
 |       APFloat &Real = Result.FloatReal; | 
 |       if (!EvaluateFloat(SubExpr, Real, Info)) | 
 |         return false; | 
 |  | 
 |       if (EltType->isRealFloatingType()) { | 
 |         Result.makeComplexFloat(); | 
 |         Real = HandleFloatToFloatCast(EltType, SubType, Real, Info.Ctx); | 
 |         Result.FloatImag = APFloat(Real.getSemantics()); | 
 |         return true; | 
 |       } else { | 
 |         Result.makeComplexInt(); | 
 |         Result.IntReal = HandleFloatToIntCast(EltType, SubType, Real, Info.Ctx); | 
 |         Result.IntImag = APSInt(Result.IntReal.getBitWidth(), | 
 |                                 !Result.IntReal.isSigned()); | 
 |         return true; | 
 |       } | 
 |     } else if (SubType->isIntegerType()) { | 
 |       APSInt &Real = Result.IntReal; | 
 |       if (!EvaluateInteger(SubExpr, Real, Info)) | 
 |         return false; | 
 |  | 
 |       if (EltType->isRealFloatingType()) { | 
 |         Result.makeComplexFloat(); | 
 |         Result.FloatReal | 
 |           = HandleIntToFloatCast(EltType, SubType, Real, Info.Ctx); | 
 |         Result.FloatImag = APFloat(Result.FloatReal.getSemantics()); | 
 |         return true; | 
 |       } else { | 
 |         Result.makeComplexInt(); | 
 |         Real = HandleIntToIntCast(EltType, SubType, Real, Info.Ctx); | 
 |         Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned()); | 
 |         return true; | 
 |       } | 
 |     } else if (const ComplexType *CT = SubType->getAs<ComplexType>()) { | 
 |       if (!Visit(SubExpr)) | 
 |         return false; | 
 |  | 
 |       QualType SrcType = CT->getElementType(); | 
 |  | 
 |       if (Result.isComplexFloat()) { | 
 |         if (EltType->isRealFloatingType()) { | 
 |           Result.makeComplexFloat(); | 
 |           Result.FloatReal = HandleFloatToFloatCast(EltType, SrcType, | 
 |                                                     Result.FloatReal, | 
 |                                                     Info.Ctx); | 
 |           Result.FloatImag = HandleFloatToFloatCast(EltType, SrcType, | 
 |                                                     Result.FloatImag, | 
 |                                                     Info.Ctx); | 
 |           return true; | 
 |         } else { | 
 |           Result.makeComplexInt(); | 
 |           Result.IntReal = HandleFloatToIntCast(EltType, SrcType, | 
 |                                                 Result.FloatReal, | 
 |                                                 Info.Ctx); | 
 |           Result.IntImag = HandleFloatToIntCast(EltType, SrcType, | 
 |                                                 Result.FloatImag, | 
 |                                                 Info.Ctx); | 
 |           return true; | 
 |         } | 
 |       } else { | 
 |         assert(Result.isComplexInt() && "Invalid evaluate result."); | 
 |         if (EltType->isRealFloatingType()) { | 
 |           Result.makeComplexFloat(); | 
 |           Result.FloatReal = HandleIntToFloatCast(EltType, SrcType, | 
 |                                                   Result.IntReal, | 
 |                                                   Info.Ctx); | 
 |           Result.FloatImag = HandleIntToFloatCast(EltType, SrcType, | 
 |                                                   Result.IntImag, | 
 |                                                   Info.Ctx); | 
 |           return true; | 
 |         } else { | 
 |           Result.makeComplexInt(); | 
 |           Result.IntReal = HandleIntToIntCast(EltType, SrcType, | 
 |                                               Result.IntReal, | 
 |                                               Info.Ctx); | 
 |           Result.IntImag = HandleIntToIntCast(EltType, SrcType, | 
 |                                               Result.IntImag, | 
 |                                               Info.Ctx); | 
 |           return true; | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // FIXME: Handle more casts. | 
 |     return false; | 
 |   } | 
 |  | 
 |   bool VisitBinaryOperator(const BinaryOperator *E); | 
 |   bool VisitChooseExpr(const ChooseExpr *E) | 
 |     { return Visit(E->getChosenSubExpr(Info.Ctx)); } | 
 |   bool VisitUnaryExtension(const UnaryOperator *E) | 
 |     { return Visit(E->getSubExpr()); } | 
 |   // FIXME Missing: unary +/-/~, binary div, ImplicitValueInitExpr, | 
 |   //                conditional ?:, comma | 
 | }; | 
 | } // end anonymous namespace | 
 |  | 
 | static bool EvaluateComplex(const Expr *E, ComplexValue &Result, | 
 |                             EvalInfo &Info) { | 
 |   assert(E->getType()->isAnyComplexType()); | 
 |   return ComplexExprEvaluator(Info, Result).Visit(const_cast<Expr*>(E)); | 
 | } | 
 |  | 
 | bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { | 
 |   if (!Visit(E->getLHS())) | 
 |     return false; | 
 |  | 
 |   ComplexValue RHS; | 
 |   if (!EvaluateComplex(E->getRHS(), RHS, Info)) | 
 |     return false; | 
 |  | 
 |   assert(Result.isComplexFloat() == RHS.isComplexFloat() && | 
 |          "Invalid operands to binary operator."); | 
 |   switch (E->getOpcode()) { | 
 |   default: return false; | 
 |   case BinaryOperator::Add: | 
 |     if (Result.isComplexFloat()) { | 
 |       Result.getComplexFloatReal().add(RHS.getComplexFloatReal(), | 
 |                                        APFloat::rmNearestTiesToEven); | 
 |       Result.getComplexFloatImag().add(RHS.getComplexFloatImag(), | 
 |                                        APFloat::rmNearestTiesToEven); | 
 |     } else { | 
 |       Result.getComplexIntReal() += RHS.getComplexIntReal(); | 
 |       Result.getComplexIntImag() += RHS.getComplexIntImag(); | 
 |     } | 
 |     break; | 
 |   case BinaryOperator::Sub: | 
 |     if (Result.isComplexFloat()) { | 
 |       Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(), | 
 |                                             APFloat::rmNearestTiesToEven); | 
 |       Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(), | 
 |                                             APFloat::rmNearestTiesToEven); | 
 |     } else { | 
 |       Result.getComplexIntReal() -= RHS.getComplexIntReal(); | 
 |       Result.getComplexIntImag() -= RHS.getComplexIntImag(); | 
 |     } | 
 |     break; | 
 |   case BinaryOperator::Mul: | 
 |     if (Result.isComplexFloat()) { | 
 |       ComplexValue LHS = Result; | 
 |       APFloat &LHS_r = LHS.getComplexFloatReal(); | 
 |       APFloat &LHS_i = LHS.getComplexFloatImag(); | 
 |       APFloat &RHS_r = RHS.getComplexFloatReal(); | 
 |       APFloat &RHS_i = RHS.getComplexFloatImag(); | 
 |  | 
 |       APFloat Tmp = LHS_r; | 
 |       Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven); | 
 |       Result.getComplexFloatReal() = Tmp; | 
 |       Tmp = LHS_i; | 
 |       Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven); | 
 |       Result.getComplexFloatReal().subtract(Tmp, APFloat::rmNearestTiesToEven); | 
 |  | 
 |       Tmp = LHS_r; | 
 |       Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven); | 
 |       Result.getComplexFloatImag() = Tmp; | 
 |       Tmp = LHS_i; | 
 |       Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven); | 
 |       Result.getComplexFloatImag().add(Tmp, APFloat::rmNearestTiesToEven); | 
 |     } else { | 
 |       ComplexValue LHS = Result; | 
 |       Result.getComplexIntReal() = | 
 |         (LHS.getComplexIntReal() * RHS.getComplexIntReal() - | 
 |          LHS.getComplexIntImag() * RHS.getComplexIntImag()); | 
 |       Result.getComplexIntImag() = | 
 |         (LHS.getComplexIntReal() * RHS.getComplexIntImag() + | 
 |          LHS.getComplexIntImag() * RHS.getComplexIntReal()); | 
 |     } | 
 |     break; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Top level Expr::Evaluate method. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// Evaluate - Return true if this is a constant which we can fold using | 
 | /// any crazy technique (that has nothing to do with language standards) that | 
 | /// we want to.  If this function returns true, it returns the folded constant | 
 | /// in Result. | 
 | bool Expr::Evaluate(EvalResult &Result, ASTContext &Ctx) const { | 
 |   const Expr *E = this; | 
 |   EvalInfo Info(Ctx, Result); | 
 |   if (E->getType()->isVectorType()) { | 
 |     if (!EvaluateVector(E, Info.EvalResult.Val, Info)) | 
 |       return false; | 
 |   } else if (E->getType()->isIntegerType()) { | 
 |     if (!IntExprEvaluator(Info, Info.EvalResult.Val).Visit(const_cast<Expr*>(E))) | 
 |       return false; | 
 |     if (Result.Val.isLValue() && !IsGlobalLValue(Result.Val.getLValueBase())) | 
 |       return false; | 
 |   } else if (E->getType()->hasPointerRepresentation()) { | 
 |     LValue LV; | 
 |     if (!EvaluatePointer(E, LV, Info)) | 
 |       return false; | 
 |     if (!IsGlobalLValue(LV.Base)) | 
 |       return false; | 
 |     LV.moveInto(Info.EvalResult.Val); | 
 |   } else if (E->getType()->isRealFloatingType()) { | 
 |     llvm::APFloat F(0.0); | 
 |     if (!EvaluateFloat(E, F, Info)) | 
 |       return false; | 
 |  | 
 |     Info.EvalResult.Val = APValue(F); | 
 |   } else if (E->getType()->isAnyComplexType()) { | 
 |     ComplexValue C; | 
 |     if (!EvaluateComplex(E, C, Info)) | 
 |       return false; | 
 |     C.moveInto(Info.EvalResult.Val); | 
 |   } else | 
 |     return false; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool Expr::EvaluateAsBooleanCondition(bool &Result, ASTContext &Ctx) const { | 
 |   EvalResult Scratch; | 
 |   EvalInfo Info(Ctx, Scratch); | 
 |  | 
 |   return HandleConversionToBool(this, Result, Info); | 
 | } | 
 |  | 
 | bool Expr::EvaluateAsLValue(EvalResult &Result, ASTContext &Ctx) const { | 
 |   EvalInfo Info(Ctx, Result); | 
 |  | 
 |   LValue LV; | 
 |   if (EvaluateLValue(this, LV, Info) && | 
 |       !Result.HasSideEffects && | 
 |       IsGlobalLValue(LV.Base)) { | 
 |     LV.moveInto(Result.Val); | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | bool Expr::EvaluateAsAnyLValue(EvalResult &Result, ASTContext &Ctx) const { | 
 |   EvalInfo Info(Ctx, Result); | 
 |  | 
 |   LValue LV; | 
 |   if (EvaluateLValue(this, LV, Info)) { | 
 |     LV.moveInto(Result.Val); | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | /// isEvaluatable - Call Evaluate to see if this expression can be constant | 
 | /// folded, but discard the result. | 
 | bool Expr::isEvaluatable(ASTContext &Ctx) const { | 
 |   EvalResult Result; | 
 |   return Evaluate(Result, Ctx) && !Result.HasSideEffects; | 
 | } | 
 |  | 
 | bool Expr::HasSideEffects(ASTContext &Ctx) const { | 
 |   Expr::EvalResult Result; | 
 |   EvalInfo Info(Ctx, Result); | 
 |   return HasSideEffect(Info).Visit(const_cast<Expr*>(this)); | 
 | } | 
 |  | 
 | APSInt Expr::EvaluateAsInt(ASTContext &Ctx) const { | 
 |   EvalResult EvalResult; | 
 |   bool Result = Evaluate(EvalResult, Ctx); | 
 |   Result = Result; | 
 |   assert(Result && "Could not evaluate expression"); | 
 |   assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer"); | 
 |  | 
 |   return EvalResult.Val.getInt(); | 
 | } | 
 |  | 
 |  bool Expr::EvalResult::isGlobalLValue() const { | 
 |    assert(Val.isLValue()); | 
 |    return IsGlobalLValue(Val.getLValueBase()); | 
 |  } | 
 |  | 
 |  | 
 | /// isIntegerConstantExpr - this recursive routine will test if an expression is | 
 | /// an integer constant expression. | 
 |  | 
 | /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero, | 
 | /// comma, etc | 
 | /// | 
 | /// FIXME: Handle offsetof.  Two things to do:  Handle GCC's __builtin_offsetof | 
 | /// to support gcc 4.0+  and handle the idiom GCC recognizes with a null pointer | 
 | /// cast+dereference. | 
 |  | 
 | // CheckICE - This function does the fundamental ICE checking: the returned | 
 | // ICEDiag contains a Val of 0, 1, or 2, and a possibly null SourceLocation. | 
 | // Note that to reduce code duplication, this helper does no evaluation | 
 | // itself; the caller checks whether the expression is evaluatable, and | 
 | // in the rare cases where CheckICE actually cares about the evaluated | 
 | // value, it calls into Evalute. | 
 | // | 
 | // Meanings of Val: | 
 | // 0: This expression is an ICE if it can be evaluated by Evaluate. | 
 | // 1: This expression is not an ICE, but if it isn't evaluated, it's | 
 | //    a legal subexpression for an ICE. This return value is used to handle | 
 | //    the comma operator in C99 mode. | 
 | // 2: This expression is not an ICE, and is not a legal subexpression for one. | 
 |  | 
 | namespace { | 
 |  | 
 | struct ICEDiag { | 
 |   unsigned Val; | 
 |   SourceLocation Loc; | 
 |  | 
 |   public: | 
 |   ICEDiag(unsigned v, SourceLocation l) : Val(v), Loc(l) {} | 
 |   ICEDiag() : Val(0) {} | 
 | }; | 
 |  | 
 | } | 
 |  | 
 | static ICEDiag NoDiag() { return ICEDiag(); } | 
 |  | 
 | static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) { | 
 |   Expr::EvalResult EVResult; | 
 |   if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects || | 
 |       !EVResult.Val.isInt()) { | 
 |     return ICEDiag(2, E->getLocStart()); | 
 |   } | 
 |   return NoDiag(); | 
 | } | 
 |  | 
 | static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) { | 
 |   assert(!E->isValueDependent() && "Should not see value dependent exprs!"); | 
 |   if (!E->getType()->isIntegralOrEnumerationType()) { | 
 |     return ICEDiag(2, E->getLocStart()); | 
 |   } | 
 |  | 
 |   switch (E->getStmtClass()) { | 
 | #define STMT(Node, Base) case Expr::Node##Class: | 
 | #define EXPR(Node, Base) | 
 | #include "clang/AST/StmtNodes.inc" | 
 |   case Expr::PredefinedExprClass: | 
 |   case Expr::FloatingLiteralClass: | 
 |   case Expr::ImaginaryLiteralClass: | 
 |   case Expr::StringLiteralClass: | 
 |   case Expr::ArraySubscriptExprClass: | 
 |   case Expr::MemberExprClass: | 
 |   case Expr::CompoundAssignOperatorClass: | 
 |   case Expr::CompoundLiteralExprClass: | 
 |   case Expr::ExtVectorElementExprClass: | 
 |   case Expr::InitListExprClass: | 
 |   case Expr::DesignatedInitExprClass: | 
 |   case Expr::ImplicitValueInitExprClass: | 
 |   case Expr::ParenListExprClass: | 
 |   case Expr::VAArgExprClass: | 
 |   case Expr::AddrLabelExprClass: | 
 |   case Expr::StmtExprClass: | 
 |   case Expr::CXXMemberCallExprClass: | 
 |   case Expr::CXXDynamicCastExprClass: | 
 |   case Expr::CXXTypeidExprClass: | 
 |   case Expr::CXXNullPtrLiteralExprClass: | 
 |   case Expr::CXXThisExprClass: | 
 |   case Expr::CXXThrowExprClass: | 
 |   case Expr::CXXNewExprClass: | 
 |   case Expr::CXXDeleteExprClass: | 
 |   case Expr::CXXPseudoDestructorExprClass: | 
 |   case Expr::UnresolvedLookupExprClass: | 
 |   case Expr::DependentScopeDeclRefExprClass: | 
 |   case Expr::CXXConstructExprClass: | 
 |   case Expr::CXXBindTemporaryExprClass: | 
 |   case Expr::CXXBindReferenceExprClass: | 
 |   case Expr::CXXExprWithTemporariesClass: | 
 |   case Expr::CXXTemporaryObjectExprClass: | 
 |   case Expr::CXXUnresolvedConstructExprClass: | 
 |   case Expr::CXXDependentScopeMemberExprClass: | 
 |   case Expr::UnresolvedMemberExprClass: | 
 |   case Expr::ObjCStringLiteralClass: | 
 |   case Expr::ObjCEncodeExprClass: | 
 |   case Expr::ObjCMessageExprClass: | 
 |   case Expr::ObjCSelectorExprClass: | 
 |   case Expr::ObjCProtocolExprClass: | 
 |   case Expr::ObjCIvarRefExprClass: | 
 |   case Expr::ObjCPropertyRefExprClass: | 
 |   case Expr::ObjCImplicitSetterGetterRefExprClass: | 
 |   case Expr::ObjCSuperExprClass: | 
 |   case Expr::ObjCIsaExprClass: | 
 |   case Expr::ShuffleVectorExprClass: | 
 |   case Expr::BlockExprClass: | 
 |   case Expr::BlockDeclRefExprClass: | 
 |   case Expr::NoStmtClass: | 
 |     return ICEDiag(2, E->getLocStart()); | 
 |  | 
 |   case Expr::GNUNullExprClass: | 
 |     // GCC considers the GNU __null value to be an integral constant expression. | 
 |     return NoDiag(); | 
 |  | 
 |   case Expr::ParenExprClass: | 
 |     return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx); | 
 |   case Expr::IntegerLiteralClass: | 
 |   case Expr::CharacterLiteralClass: | 
 |   case Expr::CXXBoolLiteralExprClass: | 
 |   case Expr::CXXScalarValueInitExprClass: | 
 |   case Expr::TypesCompatibleExprClass: | 
 |   case Expr::UnaryTypeTraitExprClass: | 
 |     return NoDiag(); | 
 |   case Expr::CallExprClass: | 
 |   case Expr::CXXOperatorCallExprClass: { | 
 |     const CallExpr *CE = cast<CallExpr>(E); | 
 |     if (CE->isBuiltinCall(Ctx)) | 
 |       return CheckEvalInICE(E, Ctx); | 
 |     return ICEDiag(2, E->getLocStart()); | 
 |   } | 
 |   case Expr::DeclRefExprClass: | 
 |     if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl())) | 
 |       return NoDiag(); | 
 |     if (Ctx.getLangOptions().CPlusPlus && | 
 |         E->getType().getCVRQualifiers() == Qualifiers::Const) { | 
 |       const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl(); | 
 |  | 
 |       // Parameter variables are never constants.  Without this check, | 
 |       // getAnyInitializer() can find a default argument, which leads | 
 |       // to chaos. | 
 |       if (isa<ParmVarDecl>(D)) | 
 |         return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation()); | 
 |  | 
 |       // C++ 7.1.5.1p2 | 
 |       //   A variable of non-volatile const-qualified integral or enumeration | 
 |       //   type initialized by an ICE can be used in ICEs. | 
 |       if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) { | 
 |         Qualifiers Quals = Ctx.getCanonicalType(Dcl->getType()).getQualifiers(); | 
 |         if (Quals.hasVolatile() || !Quals.hasConst()) | 
 |           return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation()); | 
 |          | 
 |         // Look for a declaration of this variable that has an initializer. | 
 |         const VarDecl *ID = 0; | 
 |         const Expr *Init = Dcl->getAnyInitializer(ID); | 
 |         if (Init) { | 
 |           if (ID->isInitKnownICE()) { | 
 |             // We have already checked whether this subexpression is an | 
 |             // integral constant expression. | 
 |             if (ID->isInitICE()) | 
 |               return NoDiag(); | 
 |             else | 
 |               return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation()); | 
 |           } | 
 |  | 
 |           // It's an ICE whether or not the definition we found is | 
 |           // out-of-line.  See DR 721 and the discussion in Clang PR | 
 |           // 6206 for details. | 
 |  | 
 |           if (Dcl->isCheckingICE()) { | 
 |             return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation()); | 
 |           } | 
 |  | 
 |           Dcl->setCheckingICE(); | 
 |           ICEDiag Result = CheckICE(Init, Ctx); | 
 |           // Cache the result of the ICE test. | 
 |           Dcl->setInitKnownICE(Result.Val == 0); | 
 |           return Result; | 
 |         } | 
 |       } | 
 |     } | 
 |     return ICEDiag(2, E->getLocStart()); | 
 |   case Expr::UnaryOperatorClass: { | 
 |     const UnaryOperator *Exp = cast<UnaryOperator>(E); | 
 |     switch (Exp->getOpcode()) { | 
 |     case UnaryOperator::PostInc: | 
 |     case UnaryOperator::PostDec: | 
 |     case UnaryOperator::PreInc: | 
 |     case UnaryOperator::PreDec: | 
 |     case UnaryOperator::AddrOf: | 
 |     case UnaryOperator::Deref: | 
 |       return ICEDiag(2, E->getLocStart()); | 
 |     case UnaryOperator::Extension: | 
 |     case UnaryOperator::LNot: | 
 |     case UnaryOperator::Plus: | 
 |     case UnaryOperator::Minus: | 
 |     case UnaryOperator::Not: | 
 |     case UnaryOperator::Real: | 
 |     case UnaryOperator::Imag: | 
 |       return CheckICE(Exp->getSubExpr(), Ctx); | 
 |     case UnaryOperator::OffsetOf: | 
 |       break; | 
 |     } | 
 |      | 
 |     // OffsetOf falls through here. | 
 |   } | 
 |   case Expr::OffsetOfExprClass: { | 
 |       // Note that per C99, offsetof must be an ICE. And AFAIK, using | 
 |       // Evaluate matches the proposed gcc behavior for cases like | 
 |       // "offsetof(struct s{int x[4];}, x[!.0])".  This doesn't affect | 
 |       // compliance: we should warn earlier for offsetof expressions with | 
 |       // array subscripts that aren't ICEs, and if the array subscripts | 
 |       // are ICEs, the value of the offsetof must be an integer constant. | 
 |       return CheckEvalInICE(E, Ctx); | 
 |   } | 
 |   case Expr::SizeOfAlignOfExprClass: { | 
 |     const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(E); | 
 |     if (Exp->isSizeOf() && Exp->getTypeOfArgument()->isVariableArrayType()) | 
 |       return ICEDiag(2, E->getLocStart()); | 
 |     return NoDiag(); | 
 |   } | 
 |   case Expr::BinaryOperatorClass: { | 
 |     const BinaryOperator *Exp = cast<BinaryOperator>(E); | 
 |     switch (Exp->getOpcode()) { | 
 |     case BinaryOperator::PtrMemD: | 
 |     case BinaryOperator::PtrMemI: | 
 |     case BinaryOperator::Assign: | 
 |     case BinaryOperator::MulAssign: | 
 |     case BinaryOperator::DivAssign: | 
 |     case BinaryOperator::RemAssign: | 
 |     case BinaryOperator::AddAssign: | 
 |     case BinaryOperator::SubAssign: | 
 |     case BinaryOperator::ShlAssign: | 
 |     case BinaryOperator::ShrAssign: | 
 |     case BinaryOperator::AndAssign: | 
 |     case BinaryOperator::XorAssign: | 
 |     case BinaryOperator::OrAssign: | 
 |       return ICEDiag(2, E->getLocStart()); | 
 |  | 
 |     case BinaryOperator::Mul: | 
 |     case BinaryOperator::Div: | 
 |     case BinaryOperator::Rem: | 
 |     case BinaryOperator::Add: | 
 |     case BinaryOperator::Sub: | 
 |     case BinaryOperator::Shl: | 
 |     case BinaryOperator::Shr: | 
 |     case BinaryOperator::LT: | 
 |     case BinaryOperator::GT: | 
 |     case BinaryOperator::LE: | 
 |     case BinaryOperator::GE: | 
 |     case BinaryOperator::EQ: | 
 |     case BinaryOperator::NE: | 
 |     case BinaryOperator::And: | 
 |     case BinaryOperator::Xor: | 
 |     case BinaryOperator::Or: | 
 |     case BinaryOperator::Comma: { | 
 |       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx); | 
 |       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx); | 
 |       if (Exp->getOpcode() == BinaryOperator::Div || | 
 |           Exp->getOpcode() == BinaryOperator::Rem) { | 
 |         // Evaluate gives an error for undefined Div/Rem, so make sure | 
 |         // we don't evaluate one. | 
 |         if (LHSResult.Val != 2 && RHSResult.Val != 2) { | 
 |           llvm::APSInt REval = Exp->getRHS()->EvaluateAsInt(Ctx); | 
 |           if (REval == 0) | 
 |             return ICEDiag(1, E->getLocStart()); | 
 |           if (REval.isSigned() && REval.isAllOnesValue()) { | 
 |             llvm::APSInt LEval = Exp->getLHS()->EvaluateAsInt(Ctx); | 
 |             if (LEval.isMinSignedValue()) | 
 |               return ICEDiag(1, E->getLocStart()); | 
 |           } | 
 |         } | 
 |       } | 
 |       if (Exp->getOpcode() == BinaryOperator::Comma) { | 
 |         if (Ctx.getLangOptions().C99) { | 
 |           // C99 6.6p3 introduces a strange edge case: comma can be in an ICE | 
 |           // if it isn't evaluated. | 
 |           if (LHSResult.Val == 0 && RHSResult.Val == 0) | 
 |             return ICEDiag(1, E->getLocStart()); | 
 |         } else { | 
 |           // In both C89 and C++, commas in ICEs are illegal. | 
 |           return ICEDiag(2, E->getLocStart()); | 
 |         } | 
 |       } | 
 |       if (LHSResult.Val >= RHSResult.Val) | 
 |         return LHSResult; | 
 |       return RHSResult; | 
 |     } | 
 |     case BinaryOperator::LAnd: | 
 |     case BinaryOperator::LOr: { | 
 |       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx); | 
 |       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx); | 
 |       if (LHSResult.Val == 0 && RHSResult.Val == 1) { | 
 |         // Rare case where the RHS has a comma "side-effect"; we need | 
 |         // to actually check the condition to see whether the side | 
 |         // with the comma is evaluated. | 
 |         if ((Exp->getOpcode() == BinaryOperator::LAnd) != | 
 |             (Exp->getLHS()->EvaluateAsInt(Ctx) == 0)) | 
 |           return RHSResult; | 
 |         return NoDiag(); | 
 |       } | 
 |  | 
 |       if (LHSResult.Val >= RHSResult.Val) | 
 |         return LHSResult; | 
 |       return RHSResult; | 
 |     } | 
 |     } | 
 |   } | 
 |   case Expr::ImplicitCastExprClass: | 
 |   case Expr::CStyleCastExprClass: | 
 |   case Expr::CXXFunctionalCastExprClass: | 
 |   case Expr::CXXStaticCastExprClass: | 
 |   case Expr::CXXReinterpretCastExprClass: | 
 |   case Expr::CXXConstCastExprClass: { | 
 |     const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr(); | 
 |     if (SubExpr->getType()->isIntegralOrEnumerationType()) | 
 |       return CheckICE(SubExpr, Ctx); | 
 |     if (isa<FloatingLiteral>(SubExpr->IgnoreParens())) | 
 |       return NoDiag(); | 
 |     return ICEDiag(2, E->getLocStart()); | 
 |   } | 
 |   case Expr::ConditionalOperatorClass: { | 
 |     const ConditionalOperator *Exp = cast<ConditionalOperator>(E); | 
 |     // If the condition (ignoring parens) is a __builtin_constant_p call, | 
 |     // then only the true side is actually considered in an integer constant | 
 |     // expression, and it is fully evaluated.  This is an important GNU | 
 |     // extension.  See GCC PR38377 for discussion. | 
 |     if (const CallExpr *CallCE | 
 |         = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts())) | 
 |       if (CallCE->isBuiltinCall(Ctx) == Builtin::BI__builtin_constant_p) { | 
 |         Expr::EvalResult EVResult; | 
 |         if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects || | 
 |             !EVResult.Val.isInt()) { | 
 |           return ICEDiag(2, E->getLocStart()); | 
 |         } | 
 |         return NoDiag(); | 
 |       } | 
 |     ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx); | 
 |     ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx); | 
 |     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx); | 
 |     if (CondResult.Val == 2) | 
 |       return CondResult; | 
 |     if (TrueResult.Val == 2) | 
 |       return TrueResult; | 
 |     if (FalseResult.Val == 2) | 
 |       return FalseResult; | 
 |     if (CondResult.Val == 1) | 
 |       return CondResult; | 
 |     if (TrueResult.Val == 0 && FalseResult.Val == 0) | 
 |       return NoDiag(); | 
 |     // Rare case where the diagnostics depend on which side is evaluated | 
 |     // Note that if we get here, CondResult is 0, and at least one of | 
 |     // TrueResult and FalseResult is non-zero. | 
 |     if (Exp->getCond()->EvaluateAsInt(Ctx) == 0) { | 
 |       return FalseResult; | 
 |     } | 
 |     return TrueResult; | 
 |   } | 
 |   case Expr::CXXDefaultArgExprClass: | 
 |     return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx); | 
 |   case Expr::ChooseExprClass: { | 
 |     return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx); | 
 |   } | 
 |   } | 
 |  | 
 |   // Silence a GCC warning | 
 |   return ICEDiag(2, E->getLocStart()); | 
 | } | 
 |  | 
 | bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx, | 
 |                                  SourceLocation *Loc, bool isEvaluated) const { | 
 |   ICEDiag d = CheckICE(this, Ctx); | 
 |   if (d.Val != 0) { | 
 |     if (Loc) *Loc = d.Loc; | 
 |     return false; | 
 |   } | 
 |   EvalResult EvalResult; | 
 |   if (!Evaluate(EvalResult, Ctx)) | 
 |     llvm_unreachable("ICE cannot be evaluated!"); | 
 |   assert(!EvalResult.HasSideEffects && "ICE with side effects!"); | 
 |   assert(EvalResult.Val.isInt() && "ICE that isn't integer!"); | 
 |   Result = EvalResult.Val.getInt(); | 
 |   return true; | 
 | } |