| //==- IdempotentOperationChecker.cpp - Idempotent Operations ----*- C++ -*-==// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines a set of path-sensitive checks for idempotent and/or |
| // tautological operations. Each potential operation is checked along all paths |
| // to see if every path results in a pointless operation. |
| // +-------------------------------------------+ |
| // |Table of idempotent/tautological operations| |
| // +-------------------------------------------+ |
| //+--------------------------------------------------------------------------+ |
| //|Operator | x op x | x op 1 | 1 op x | x op 0 | 0 op x | x op ~0 | ~0 op x | |
| //+--------------------------------------------------------------------------+ |
| // +, += | | | | x | x | | |
| // -, -= | | | | x | -x | | |
| // *, *= | | x | x | 0 | 0 | | |
| // /, /= | 1 | x | | N/A | 0 | | |
| // &, &= | x | | | 0 | 0 | x | x |
| // |, |= | x | | | x | x | ~0 | ~0 |
| // ^, ^= | 0 | | | x | x | | |
| // <<, <<= | | | | x | 0 | | |
| // >>, >>= | | | | x | 0 | | |
| // || | 1 | 1 | 1 | x | x | 1 | 1 |
| // && | 1 | x | x | 0 | 0 | x | x |
| // = | x | | | | | | |
| // == | 1 | | | | | | |
| // >= | 1 | | | | | | |
| // <= | 1 | | | | | | |
| // > | 0 | | | | | | |
| // < | 0 | | | | | | |
| // != | 0 | | | | | | |
| //===----------------------------------------------------------------------===// |
| // |
| // Things TODO: |
| // - Improved error messages |
| // - Handle mixed assumptions (which assumptions can belong together?) |
| // - Finer grained false positive control (levels) |
| // - Handling ~0 values |
| |
| #include "ClangSACheckers.h" |
| #include "clang/Analysis/CFGStmtMap.h" |
| #include "clang/Analysis/Analyses/PseudoConstantAnalysis.h" |
| #include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h" |
| #include "clang/StaticAnalyzer/Core/Checker.h" |
| #include "clang/StaticAnalyzer/Core/CheckerManager.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" |
| #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h" |
| #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/CoreEngine.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" |
| #include "clang/AST/Stmt.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/Support/ErrorHandling.h" |
| |
| using namespace clang; |
| using namespace ento; |
| |
| namespace { |
| class IdempotentOperationChecker |
| : public Checker<check::PreStmt<BinaryOperator>, |
| check::PostStmt<BinaryOperator>, |
| check::EndAnalysis> { |
| public: |
| void checkPreStmt(const BinaryOperator *B, CheckerContext &C) const; |
| void checkPostStmt(const BinaryOperator *B, CheckerContext &C) const; |
| void checkEndAnalysis(ExplodedGraph &G, BugReporter &B,ExprEngine &Eng) const; |
| |
| private: |
| // Our assumption about a particular operation. |
| enum Assumption { Possible = 0, Impossible, Equal, LHSis1, RHSis1, LHSis0, |
| RHSis0 }; |
| |
| static void UpdateAssumption(Assumption &A, const Assumption &New); |
| |
| // False positive reduction methods |
| static bool isSelfAssign(const Expr *LHS, const Expr *RHS); |
| static bool isUnused(const Expr *E, AnalysisDeclContext *AC); |
| static bool isTruncationExtensionAssignment(const Expr *LHS, |
| const Expr *RHS); |
| static bool pathWasCompletelyAnalyzed(AnalysisDeclContext *AC, |
| const CFGBlock *CB, |
| const CoreEngine &CE); |
| static bool CanVary(const Expr *Ex, |
| AnalysisDeclContext *AC); |
| static bool isConstantOrPseudoConstant(const DeclRefExpr *DR, |
| AnalysisDeclContext *AC); |
| static bool containsNonLocalVarDecl(const Stmt *S); |
| |
| // Hash table and related data structures |
| struct BinaryOperatorData { |
| BinaryOperatorData() : assumption(Possible) {} |
| |
| Assumption assumption; |
| ExplodedNodeSet explodedNodes; // Set of ExplodedNodes that refer to a |
| // BinaryOperator |
| }; |
| typedef llvm::DenseMap<const BinaryOperator *, BinaryOperatorData> |
| AssumptionMap; |
| mutable AssumptionMap hash; |
| mutable OwningPtr<BugType> BT; |
| }; |
| } |
| |
| void IdempotentOperationChecker::checkPreStmt(const BinaryOperator *B, |
| CheckerContext &C) const { |
| // Find or create an entry in the hash for this BinaryOperator instance. |
| // If we haven't done a lookup before, it will get default initialized to |
| // 'Possible'. At this stage we do not store the ExplodedNode, as it has not |
| // been created yet. |
| BinaryOperatorData &Data = hash[B]; |
| Assumption &A = Data.assumption; |
| AnalysisDeclContext *AC = C.getCurrentAnalysisDeclContext(); |
| |
| // If we already have visited this node on a path that does not contain an |
| // idempotent operation, return immediately. |
| if (A == Impossible) |
| return; |
| |
| // Retrieve both sides of the operator and determine if they can vary (which |
| // may mean this is a false positive. |
| const Expr *LHS = B->getLHS(); |
| const Expr *RHS = B->getRHS(); |
| |
| // At this stage we can calculate whether each side contains a false positive |
| // that applies to all operators. We only need to calculate this the first |
| // time. |
| bool LHSContainsFalsePositive = false, RHSContainsFalsePositive = false; |
| if (A == Possible) { |
| // An expression contains a false positive if it can't vary, or if it |
| // contains a known false positive VarDecl. |
| LHSContainsFalsePositive = !CanVary(LHS, AC) |
| || containsNonLocalVarDecl(LHS); |
| RHSContainsFalsePositive = !CanVary(RHS, AC) |
| || containsNonLocalVarDecl(RHS); |
| } |
| |
| ProgramStateRef state = C.getState(); |
| const LocationContext *LCtx = C.getLocationContext(); |
| SVal LHSVal = state->getSVal(LHS, LCtx); |
| SVal RHSVal = state->getSVal(RHS, LCtx); |
| |
| // If either value is unknown, we can't be 100% sure of all paths. |
| if (LHSVal.isUnknownOrUndef() || RHSVal.isUnknownOrUndef()) { |
| A = Impossible; |
| return; |
| } |
| BinaryOperator::Opcode Op = B->getOpcode(); |
| |
| // Dereference the LHS SVal if this is an assign operation |
| switch (Op) { |
| default: |
| break; |
| |
| // Fall through intentional |
| case BO_AddAssign: |
| case BO_SubAssign: |
| case BO_MulAssign: |
| case BO_DivAssign: |
| case BO_AndAssign: |
| case BO_OrAssign: |
| case BO_XorAssign: |
| case BO_ShlAssign: |
| case BO_ShrAssign: |
| case BO_Assign: |
| // Assign statements have one extra level of indirection |
| if (!isa<Loc>(LHSVal)) { |
| A = Impossible; |
| return; |
| } |
| LHSVal = state->getSVal(cast<Loc>(LHSVal), LHS->getType()); |
| } |
| |
| |
| // We now check for various cases which result in an idempotent operation. |
| |
| // x op x |
| switch (Op) { |
| default: |
| break; // We don't care about any other operators. |
| |
| // Fall through intentional |
| case BO_Assign: |
| // x Assign x can be used to silence unused variable warnings intentionally. |
| // If this is a self assignment and the variable is referenced elsewhere, |
| // and the assignment is not a truncation or extension, then it is a false |
| // positive. |
| if (isSelfAssign(LHS, RHS)) { |
| if (!isUnused(LHS, AC) && !isTruncationExtensionAssignment(LHS, RHS)) { |
| UpdateAssumption(A, Equal); |
| return; |
| } |
| else { |
| A = Impossible; |
| return; |
| } |
| } |
| |
| case BO_SubAssign: |
| case BO_DivAssign: |
| case BO_AndAssign: |
| case BO_OrAssign: |
| case BO_XorAssign: |
| case BO_Sub: |
| case BO_Div: |
| case BO_And: |
| case BO_Or: |
| case BO_Xor: |
| case BO_LOr: |
| case BO_LAnd: |
| case BO_EQ: |
| case BO_NE: |
| if (LHSVal != RHSVal || LHSContainsFalsePositive |
| || RHSContainsFalsePositive) |
| break; |
| UpdateAssumption(A, Equal); |
| return; |
| } |
| |
| // x op 1 |
| switch (Op) { |
| default: |
| break; // We don't care about any other operators. |
| |
| // Fall through intentional |
| case BO_MulAssign: |
| case BO_DivAssign: |
| case BO_Mul: |
| case BO_Div: |
| case BO_LOr: |
| case BO_LAnd: |
| if (!RHSVal.isConstant(1) || RHSContainsFalsePositive) |
| break; |
| UpdateAssumption(A, RHSis1); |
| return; |
| } |
| |
| // 1 op x |
| switch (Op) { |
| default: |
| break; // We don't care about any other operators. |
| |
| // Fall through intentional |
| case BO_MulAssign: |
| case BO_Mul: |
| case BO_LOr: |
| case BO_LAnd: |
| if (!LHSVal.isConstant(1) || LHSContainsFalsePositive) |
| break; |
| UpdateAssumption(A, LHSis1); |
| return; |
| } |
| |
| // x op 0 |
| switch (Op) { |
| default: |
| break; // We don't care about any other operators. |
| |
| // Fall through intentional |
| case BO_AddAssign: |
| case BO_SubAssign: |
| case BO_MulAssign: |
| case BO_AndAssign: |
| case BO_OrAssign: |
| case BO_XorAssign: |
| case BO_Add: |
| case BO_Sub: |
| case BO_Mul: |
| case BO_And: |
| case BO_Or: |
| case BO_Xor: |
| case BO_Shl: |
| case BO_Shr: |
| case BO_LOr: |
| case BO_LAnd: |
| if (!RHSVal.isConstant(0) || RHSContainsFalsePositive) |
| break; |
| UpdateAssumption(A, RHSis0); |
| return; |
| } |
| |
| // 0 op x |
| switch (Op) { |
| default: |
| break; // We don't care about any other operators. |
| |
| // Fall through intentional |
| //case BO_AddAssign: // Common false positive |
| case BO_SubAssign: // Check only if unsigned |
| case BO_MulAssign: |
| case BO_DivAssign: |
| case BO_AndAssign: |
| //case BO_OrAssign: // Common false positive |
| //case BO_XorAssign: // Common false positive |
| case BO_ShlAssign: |
| case BO_ShrAssign: |
| case BO_Add: |
| case BO_Sub: |
| case BO_Mul: |
| case BO_Div: |
| case BO_And: |
| case BO_Or: |
| case BO_Xor: |
| case BO_Shl: |
| case BO_Shr: |
| case BO_LOr: |
| case BO_LAnd: |
| if (!LHSVal.isConstant(0) || LHSContainsFalsePositive) |
| break; |
| UpdateAssumption(A, LHSis0); |
| return; |
| } |
| |
| // If we get to this point, there has been a valid use of this operation. |
| A = Impossible; |
| } |
| |
| // At the post visit stage, the predecessor ExplodedNode will be the |
| // BinaryOperator that was just created. We use this hook to collect the |
| // ExplodedNode. |
| void IdempotentOperationChecker::checkPostStmt(const BinaryOperator *B, |
| CheckerContext &C) const { |
| // Add the ExplodedNode we just visited |
| BinaryOperatorData &Data = hash[B]; |
| |
| const Stmt *predStmt |
| = cast<StmtPoint>(C.getPredecessor()->getLocation()).getStmt(); |
| |
| // Ignore implicit calls to setters. |
| if (!isa<BinaryOperator>(predStmt)) |
| return; |
| |
| Data.explodedNodes.Add(C.getPredecessor()); |
| } |
| |
| void IdempotentOperationChecker::checkEndAnalysis(ExplodedGraph &G, |
| BugReporter &BR, |
| ExprEngine &Eng) const { |
| if (!BT) |
| BT.reset(new BugType("Idempotent operation", "Dead code")); |
| |
| // Iterate over the hash to see if we have any paths with definite |
| // idempotent operations. |
| for (AssumptionMap::const_iterator i = hash.begin(); i != hash.end(); ++i) { |
| // Unpack the hash contents |
| const BinaryOperatorData &Data = i->second; |
| const Assumption &A = Data.assumption; |
| const ExplodedNodeSet &ES = Data.explodedNodes; |
| |
| // If there are no nodes accosted with the expression, nothing to report. |
| // FIXME: This is possible because the checker does part of processing in |
| // checkPreStmt and part in checkPostStmt. |
| if (ES.begin() == ES.end()) |
| continue; |
| |
| const BinaryOperator *B = i->first; |
| |
| if (A == Impossible) |
| continue; |
| |
| // If the analyzer did not finish, check to see if we can still emit this |
| // warning |
| if (Eng.hasWorkRemaining()) { |
| // If we can trace back |
| AnalysisDeclContext *AC = (*ES.begin())->getLocationContext() |
| ->getAnalysisDeclContext(); |
| if (!pathWasCompletelyAnalyzed(AC, |
| AC->getCFGStmtMap()->getBlock(B), |
| Eng.getCoreEngine())) |
| continue; |
| } |
| |
| // Select the error message and SourceRanges to report. |
| SmallString<128> buf; |
| llvm::raw_svector_ostream os(buf); |
| bool LHSRelevant = false, RHSRelevant = false; |
| switch (A) { |
| case Equal: |
| LHSRelevant = true; |
| RHSRelevant = true; |
| if (B->getOpcode() == BO_Assign) |
| os << "Assigned value is always the same as the existing value"; |
| else |
| os << "Both operands to '" << B->getOpcodeStr() |
| << "' always have the same value"; |
| break; |
| case LHSis1: |
| LHSRelevant = true; |
| os << "The left operand to '" << B->getOpcodeStr() << "' is always 1"; |
| break; |
| case RHSis1: |
| RHSRelevant = true; |
| os << "The right operand to '" << B->getOpcodeStr() << "' is always 1"; |
| break; |
| case LHSis0: |
| LHSRelevant = true; |
| os << "The left operand to '" << B->getOpcodeStr() << "' is always 0"; |
| break; |
| case RHSis0: |
| RHSRelevant = true; |
| os << "The right operand to '" << B->getOpcodeStr() << "' is always 0"; |
| break; |
| case Possible: |
| llvm_unreachable("Operation was never marked with an assumption"); |
| case Impossible: |
| llvm_unreachable(0); |
| } |
| |
| // Add a report for each ExplodedNode |
| for (ExplodedNodeSet::iterator I = ES.begin(), E = ES.end(); I != E; ++I) { |
| BugReport *report = new BugReport(*BT, os.str(), *I); |
| |
| // Add source ranges and visitor hooks |
| if (LHSRelevant) { |
| const Expr *LHS = i->first->getLHS(); |
| report->addRange(LHS->getSourceRange()); |
| FindLastStoreBRVisitor::registerStatementVarDecls(*report, LHS); |
| } |
| if (RHSRelevant) { |
| const Expr *RHS = i->first->getRHS(); |
| report->addRange(i->first->getRHS()->getSourceRange()); |
| FindLastStoreBRVisitor::registerStatementVarDecls(*report, RHS); |
| } |
| |
| BR.EmitReport(report); |
| } |
| } |
| |
| hash.clear(); |
| } |
| |
| // Updates the current assumption given the new assumption |
| inline void IdempotentOperationChecker::UpdateAssumption(Assumption &A, |
| const Assumption &New) { |
| // If the assumption is the same, there is nothing to do |
| if (A == New) |
| return; |
| |
| switch (A) { |
| // If we don't currently have an assumption, set it |
| case Possible: |
| A = New; |
| return; |
| |
| // If we have determined that a valid state happened, ignore the new |
| // assumption. |
| case Impossible: |
| return; |
| |
| // Any other case means that we had a different assumption last time. We don't |
| // currently support mixing assumptions for diagnostic reasons, so we set |
| // our assumption to be impossible. |
| default: |
| A = Impossible; |
| return; |
| } |
| } |
| |
| // Check for a statement where a variable is self assigned to possibly avoid an |
| // unused variable warning. |
| bool IdempotentOperationChecker::isSelfAssign(const Expr *LHS, const Expr *RHS) { |
| LHS = LHS->IgnoreParenCasts(); |
| RHS = RHS->IgnoreParenCasts(); |
| |
| const DeclRefExpr *LHS_DR = dyn_cast<DeclRefExpr>(LHS); |
| if (!LHS_DR) |
| return false; |
| |
| const VarDecl *VD = dyn_cast<VarDecl>(LHS_DR->getDecl()); |
| if (!VD) |
| return false; |
| |
| const DeclRefExpr *RHS_DR = dyn_cast<DeclRefExpr>(RHS); |
| if (!RHS_DR) |
| return false; |
| |
| if (VD != RHS_DR->getDecl()) |
| return false; |
| |
| return true; |
| } |
| |
| // Returns true if the Expr points to a VarDecl that is not read anywhere |
| // outside of self-assignments. |
| bool IdempotentOperationChecker::isUnused(const Expr *E, |
| AnalysisDeclContext *AC) { |
| if (!E) |
| return false; |
| |
| const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()); |
| if (!DR) |
| return false; |
| |
| const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl()); |
| if (!VD) |
| return false; |
| |
| if (AC->getPseudoConstantAnalysis()->wasReferenced(VD)) |
| return false; |
| |
| return true; |
| } |
| |
| // Check for self casts truncating/extending a variable |
| bool IdempotentOperationChecker::isTruncationExtensionAssignment( |
| const Expr *LHS, |
| const Expr *RHS) { |
| |
| const DeclRefExpr *LHS_DR = dyn_cast<DeclRefExpr>(LHS->IgnoreParenCasts()); |
| if (!LHS_DR) |
| return false; |
| |
| const VarDecl *VD = dyn_cast<VarDecl>(LHS_DR->getDecl()); |
| if (!VD) |
| return false; |
| |
| const DeclRefExpr *RHS_DR = dyn_cast<DeclRefExpr>(RHS->IgnoreParenCasts()); |
| if (!RHS_DR) |
| return false; |
| |
| if (VD != RHS_DR->getDecl()) |
| return false; |
| |
| return dyn_cast<DeclRefExpr>(RHS->IgnoreParenLValueCasts()) == NULL; |
| } |
| |
| // Returns false if a path to this block was not completely analyzed, or true |
| // otherwise. |
| bool |
| IdempotentOperationChecker::pathWasCompletelyAnalyzed(AnalysisDeclContext *AC, |
| const CFGBlock *CB, |
| const CoreEngine &CE) { |
| |
| CFGReverseBlockReachabilityAnalysis *CRA = AC->getCFGReachablityAnalysis(); |
| |
| // Test for reachability from any aborted blocks to this block |
| typedef CoreEngine::BlocksExhausted::const_iterator ExhaustedIterator; |
| for (ExhaustedIterator I = CE.blocks_exhausted_begin(), |
| E = CE.blocks_exhausted_end(); I != E; ++I) { |
| const BlockEdge &BE = I->first; |
| |
| // The destination block on the BlockEdge is the first block that was not |
| // analyzed. If we can reach this block from the aborted block, then this |
| // block was not completely analyzed. |
| // |
| // Also explicitly check if the current block is the destination block. |
| // While technically reachable, it means we aborted the analysis on |
| // a path that included that block. |
| const CFGBlock *destBlock = BE.getDst(); |
| if (destBlock == CB || CRA->isReachable(destBlock, CB)) |
| return false; |
| } |
| |
| // Test for reachability from blocks we just gave up on. |
| typedef CoreEngine::BlocksAborted::const_iterator AbortedIterator; |
| for (AbortedIterator I = CE.blocks_aborted_begin(), |
| E = CE.blocks_aborted_end(); I != E; ++I) { |
| const CFGBlock *destBlock = I->first; |
| if (destBlock == CB || CRA->isReachable(destBlock, CB)) |
| return false; |
| } |
| |
| // For the items still on the worklist, see if they are in blocks that |
| // can eventually reach 'CB'. |
| class VisitWL : public WorkList::Visitor { |
| const CFGStmtMap *CBM; |
| const CFGBlock *TargetBlock; |
| CFGReverseBlockReachabilityAnalysis &CRA; |
| public: |
| VisitWL(const CFGStmtMap *cbm, const CFGBlock *targetBlock, |
| CFGReverseBlockReachabilityAnalysis &cra) |
| : CBM(cbm), TargetBlock(targetBlock), CRA(cra) {} |
| virtual bool visit(const WorkListUnit &U) { |
| ProgramPoint P = U.getNode()->getLocation(); |
| const CFGBlock *B = 0; |
| if (StmtPoint *SP = dyn_cast<StmtPoint>(&P)) { |
| B = CBM->getBlock(SP->getStmt()); |
| } |
| else if (BlockEdge *BE = dyn_cast<BlockEdge>(&P)) { |
| B = BE->getDst(); |
| } |
| else if (BlockEntrance *BEnt = dyn_cast<BlockEntrance>(&P)) { |
| B = BEnt->getBlock(); |
| } |
| else if (BlockExit *BExit = dyn_cast<BlockExit>(&P)) { |
| B = BExit->getBlock(); |
| } |
| if (!B) |
| return true; |
| |
| return B == TargetBlock || CRA.isReachable(B, TargetBlock); |
| } |
| }; |
| VisitWL visitWL(AC->getCFGStmtMap(), CB, *CRA); |
| // Were there any items in the worklist that could potentially reach |
| // this block? |
| if (CE.getWorkList()->visitItemsInWorkList(visitWL)) |
| return false; |
| |
| // Verify that this block is reachable from the entry block |
| if (!CRA->isReachable(&AC->getCFG()->getEntry(), CB)) |
| return false; |
| |
| // If we get to this point, there is no connection to the entry block or an |
| // aborted block. This path is unreachable and we can report the error. |
| return true; |
| } |
| |
| // Recursive function that determines whether an expression contains any element |
| // that varies. This could be due to a compile-time constant like sizeof. An |
| // expression may also involve a variable that behaves like a constant. The |
| // function returns true if the expression varies, and false otherwise. |
| bool IdempotentOperationChecker::CanVary(const Expr *Ex, |
| AnalysisDeclContext *AC) { |
| // Parentheses and casts are irrelevant here |
| Ex = Ex->IgnoreParenCasts(); |
| |
| if (Ex->getLocStart().isMacroID()) |
| return false; |
| |
| switch (Ex->getStmtClass()) { |
| // Trivially true cases |
| case Stmt::ArraySubscriptExprClass: |
| case Stmt::MemberExprClass: |
| case Stmt::StmtExprClass: |
| case Stmt::CallExprClass: |
| case Stmt::VAArgExprClass: |
| case Stmt::ShuffleVectorExprClass: |
| return true; |
| default: |
| return true; |
| |
| // Trivially false cases |
| case Stmt::IntegerLiteralClass: |
| case Stmt::CharacterLiteralClass: |
| case Stmt::FloatingLiteralClass: |
| case Stmt::PredefinedExprClass: |
| case Stmt::ImaginaryLiteralClass: |
| case Stmt::StringLiteralClass: |
| case Stmt::OffsetOfExprClass: |
| case Stmt::CompoundLiteralExprClass: |
| case Stmt::AddrLabelExprClass: |
| case Stmt::BinaryTypeTraitExprClass: |
| case Stmt::GNUNullExprClass: |
| case Stmt::InitListExprClass: |
| case Stmt::DesignatedInitExprClass: |
| case Stmt::BlockExprClass: |
| return false; |
| |
| // Cases requiring custom logic |
| case Stmt::UnaryExprOrTypeTraitExprClass: { |
| const UnaryExprOrTypeTraitExpr *SE = |
| cast<const UnaryExprOrTypeTraitExpr>(Ex); |
| if (SE->getKind() != UETT_SizeOf) |
| return false; |
| return SE->getTypeOfArgument()->isVariableArrayType(); |
| } |
| case Stmt::DeclRefExprClass: |
| // Check for constants/pseudoconstants |
| return !isConstantOrPseudoConstant(cast<DeclRefExpr>(Ex), AC); |
| |
| // The next cases require recursion for subexpressions |
| case Stmt::BinaryOperatorClass: { |
| const BinaryOperator *B = cast<const BinaryOperator>(Ex); |
| |
| // Exclude cases involving pointer arithmetic. These are usually |
| // false positives. |
| if (B->getOpcode() == BO_Sub || B->getOpcode() == BO_Add) |
| if (B->getLHS()->getType()->getAs<PointerType>()) |
| return false; |
| |
| return CanVary(B->getRHS(), AC) |
| || CanVary(B->getLHS(), AC); |
| } |
| case Stmt::UnaryOperatorClass: { |
| const UnaryOperator *U = cast<const UnaryOperator>(Ex); |
| // Handle trivial case first |
| switch (U->getOpcode()) { |
| case UO_Extension: |
| return false; |
| default: |
| return CanVary(U->getSubExpr(), AC); |
| } |
| } |
| case Stmt::ChooseExprClass: |
| return CanVary(cast<const ChooseExpr>(Ex)->getChosenSubExpr( |
| AC->getASTContext()), AC); |
| case Stmt::ConditionalOperatorClass: |
| case Stmt::BinaryConditionalOperatorClass: |
| return CanVary(cast<AbstractConditionalOperator>(Ex)->getCond(), AC); |
| } |
| } |
| |
| // Returns true if a DeclRefExpr is or behaves like a constant. |
| bool IdempotentOperationChecker::isConstantOrPseudoConstant( |
| const DeclRefExpr *DR, |
| AnalysisDeclContext *AC) { |
| // Check if the type of the Decl is const-qualified |
| if (DR->getType().isConstQualified()) |
| return true; |
| |
| // Check for an enum |
| if (isa<EnumConstantDecl>(DR->getDecl())) |
| return true; |
| |
| const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl()); |
| if (!VD) |
| return true; |
| |
| // Check if the Decl behaves like a constant. This check also takes care of |
| // static variables, which can only change between function calls if they are |
| // modified in the AST. |
| PseudoConstantAnalysis *PCA = AC->getPseudoConstantAnalysis(); |
| if (PCA->isPseudoConstant(VD)) |
| return true; |
| |
| return false; |
| } |
| |
| // Recursively find any substatements containing VarDecl's with storage other |
| // than local |
| bool IdempotentOperationChecker::containsNonLocalVarDecl(const Stmt *S) { |
| const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(S); |
| |
| if (DR) |
| if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) |
| if (!VD->hasLocalStorage()) |
| return true; |
| |
| for (Stmt::const_child_iterator I = S->child_begin(); I != S->child_end(); |
| ++I) |
| if (const Stmt *child = *I) |
| if (containsNonLocalVarDecl(child)) |
| return true; |
| |
| return false; |
| } |
| |
| |
| void ento::registerIdempotentOperationChecker(CheckerManager &mgr) { |
| mgr.registerChecker<IdempotentOperationChecker>(); |
| } |