| //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements semantic analysis for C++ declarations. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Sema.h" |
| #include "SemaInit.h" |
| #include "Lookup.h" |
| #include "clang/AST/ASTConsumer.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/RecordLayout.h" |
| #include "clang/AST/CXXInheritance.h" |
| #include "clang/AST/DeclVisitor.h" |
| #include "clang/AST/TypeLoc.h" |
| #include "clang/AST/TypeOrdering.h" |
| #include "clang/AST/StmtVisitor.h" |
| #include "clang/Parse/DeclSpec.h" |
| #include "clang/Parse/Template.h" |
| #include "clang/Basic/PartialDiagnostic.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include <map> |
| #include <set> |
| |
| using namespace clang; |
| |
| //===----------------------------------------------------------------------===// |
| // CheckDefaultArgumentVisitor |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses |
| /// the default argument of a parameter to determine whether it |
| /// contains any ill-formed subexpressions. For example, this will |
| /// diagnose the use of local variables or parameters within the |
| /// default argument expression. |
| class CheckDefaultArgumentVisitor |
| : public StmtVisitor<CheckDefaultArgumentVisitor, bool> { |
| Expr *DefaultArg; |
| Sema *S; |
| |
| public: |
| CheckDefaultArgumentVisitor(Expr *defarg, Sema *s) |
| : DefaultArg(defarg), S(s) {} |
| |
| bool VisitExpr(Expr *Node); |
| bool VisitDeclRefExpr(DeclRefExpr *DRE); |
| bool VisitCXXThisExpr(CXXThisExpr *ThisE); |
| }; |
| |
| /// VisitExpr - Visit all of the children of this expression. |
| bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) { |
| bool IsInvalid = false; |
| for (Stmt::child_iterator I = Node->child_begin(), |
| E = Node->child_end(); I != E; ++I) |
| IsInvalid |= Visit(*I); |
| return IsInvalid; |
| } |
| |
| /// VisitDeclRefExpr - Visit a reference to a declaration, to |
| /// determine whether this declaration can be used in the default |
| /// argument expression. |
| bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) { |
| NamedDecl *Decl = DRE->getDecl(); |
| if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) { |
| // C++ [dcl.fct.default]p9 |
| // Default arguments are evaluated each time the function is |
| // called. The order of evaluation of function arguments is |
| // unspecified. Consequently, parameters of a function shall not |
| // be used in default argument expressions, even if they are not |
| // evaluated. Parameters of a function declared before a default |
| // argument expression are in scope and can hide namespace and |
| // class member names. |
| return S->Diag(DRE->getSourceRange().getBegin(), |
| diag::err_param_default_argument_references_param) |
| << Param->getDeclName() << DefaultArg->getSourceRange(); |
| } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) { |
| // C++ [dcl.fct.default]p7 |
| // Local variables shall not be used in default argument |
| // expressions. |
| if (VDecl->isBlockVarDecl()) |
| return S->Diag(DRE->getSourceRange().getBegin(), |
| diag::err_param_default_argument_references_local) |
| << VDecl->getDeclName() << DefaultArg->getSourceRange(); |
| } |
| |
| return false; |
| } |
| |
| /// VisitCXXThisExpr - Visit a C++ "this" expression. |
| bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) { |
| // C++ [dcl.fct.default]p8: |
| // The keyword this shall not be used in a default argument of a |
| // member function. |
| return S->Diag(ThisE->getSourceRange().getBegin(), |
| diag::err_param_default_argument_references_this) |
| << ThisE->getSourceRange(); |
| } |
| } |
| |
| bool |
| Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg, |
| SourceLocation EqualLoc) { |
| QualType ParamType = Param->getType(); |
| |
| if (RequireCompleteType(Param->getLocation(), Param->getType(), |
| diag::err_typecheck_decl_incomplete_type)) { |
| Param->setInvalidDecl(); |
| return true; |
| } |
| |
| Expr *Arg = (Expr *)DefaultArg.get(); |
| |
| // C++ [dcl.fct.default]p5 |
| // A default argument expression is implicitly converted (clause |
| // 4) to the parameter type. The default argument expression has |
| // the same semantic constraints as the initializer expression in |
| // a declaration of a variable of the parameter type, using the |
| // copy-initialization semantics (8.5). |
| InitializedEntity Entity = InitializedEntity::InitializeParameter(Param); |
| InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(), |
| EqualLoc); |
| InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1); |
| OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, |
| MultiExprArg(*this, (void**)&Arg, 1)); |
| if (Result.isInvalid()) |
| return true; |
| Arg = Result.takeAs<Expr>(); |
| |
| Arg = MaybeCreateCXXExprWithTemporaries(Arg); |
| |
| // Okay: add the default argument to the parameter |
| Param->setDefaultArg(Arg); |
| |
| DefaultArg.release(); |
| |
| return false; |
| } |
| |
| /// ActOnParamDefaultArgument - Check whether the default argument |
| /// provided for a function parameter is well-formed. If so, attach it |
| /// to the parameter declaration. |
| void |
| Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc, |
| ExprArg defarg) { |
| if (!param || !defarg.get()) |
| return; |
| |
| ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>()); |
| UnparsedDefaultArgLocs.erase(Param); |
| |
| ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>()); |
| QualType ParamType = Param->getType(); |
| |
| // Default arguments are only permitted in C++ |
| if (!getLangOptions().CPlusPlus) { |
| Diag(EqualLoc, diag::err_param_default_argument) |
| << DefaultArg->getSourceRange(); |
| Param->setInvalidDecl(); |
| return; |
| } |
| |
| // Check that the default argument is well-formed |
| CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this); |
| if (DefaultArgChecker.Visit(DefaultArg.get())) { |
| Param->setInvalidDecl(); |
| return; |
| } |
| |
| SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc); |
| } |
| |
| /// ActOnParamUnparsedDefaultArgument - We've seen a default |
| /// argument for a function parameter, but we can't parse it yet |
| /// because we're inside a class definition. Note that this default |
| /// argument will be parsed later. |
| void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param, |
| SourceLocation EqualLoc, |
| SourceLocation ArgLoc) { |
| if (!param) |
| return; |
| |
| ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>()); |
| if (Param) |
| Param->setUnparsedDefaultArg(); |
| |
| UnparsedDefaultArgLocs[Param] = ArgLoc; |
| } |
| |
| /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of |
| /// the default argument for the parameter param failed. |
| void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) { |
| if (!param) |
| return; |
| |
| ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>()); |
| |
| Param->setInvalidDecl(); |
| |
| UnparsedDefaultArgLocs.erase(Param); |
| } |
| |
| /// CheckExtraCXXDefaultArguments - Check for any extra default |
| /// arguments in the declarator, which is not a function declaration |
| /// or definition and therefore is not permitted to have default |
| /// arguments. This routine should be invoked for every declarator |
| /// that is not a function declaration or definition. |
| void Sema::CheckExtraCXXDefaultArguments(Declarator &D) { |
| // C++ [dcl.fct.default]p3 |
| // A default argument expression shall be specified only in the |
| // parameter-declaration-clause of a function declaration or in a |
| // template-parameter (14.1). It shall not be specified for a |
| // parameter pack. If it is specified in a |
| // parameter-declaration-clause, it shall not occur within a |
| // declarator or abstract-declarator of a parameter-declaration. |
| for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { |
| DeclaratorChunk &chunk = D.getTypeObject(i); |
| if (chunk.Kind == DeclaratorChunk::Function) { |
| for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) { |
| ParmVarDecl *Param = |
| cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>()); |
| if (Param->hasUnparsedDefaultArg()) { |
| CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens; |
| Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) |
| << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation()); |
| delete Toks; |
| chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0; |
| } else if (Param->getDefaultArg()) { |
| Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) |
| << Param->getDefaultArg()->getSourceRange(); |
| Param->setDefaultArg(0); |
| } |
| } |
| } |
| } |
| } |
| |
| // MergeCXXFunctionDecl - Merge two declarations of the same C++ |
| // function, once we already know that they have the same |
| // type. Subroutine of MergeFunctionDecl. Returns true if there was an |
| // error, false otherwise. |
| bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) { |
| bool Invalid = false; |
| |
| // C++ [dcl.fct.default]p4: |
| // For non-template functions, default arguments can be added in |
| // later declarations of a function in the same |
| // scope. Declarations in different scopes have completely |
| // distinct sets of default arguments. That is, declarations in |
| // inner scopes do not acquire default arguments from |
| // declarations in outer scopes, and vice versa. In a given |
| // function declaration, all parameters subsequent to a |
| // parameter with a default argument shall have default |
| // arguments supplied in this or previous declarations. A |
| // default argument shall not be redefined by a later |
| // declaration (not even to the same value). |
| // |
| // C++ [dcl.fct.default]p6: |
| // Except for member functions of class templates, the default arguments |
| // in a member function definition that appears outside of the class |
| // definition are added to the set of default arguments provided by the |
| // member function declaration in the class definition. |
| for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) { |
| ParmVarDecl *OldParam = Old->getParamDecl(p); |
| ParmVarDecl *NewParam = New->getParamDecl(p); |
| |
| if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) { |
| // FIXME: If the parameter doesn't have an identifier then the location |
| // points to the '=' which means that the fixit hint won't remove any |
| // extra spaces between the type and the '='. |
| SourceLocation Begin = NewParam->getLocation(); |
| if (NewParam->getIdentifier()) |
| Begin = PP.getLocForEndOfToken(Begin); |
| |
| Diag(NewParam->getLocation(), |
| diag::err_param_default_argument_redefinition) |
| << NewParam->getDefaultArgRange() |
| << CodeModificationHint::CreateRemoval(SourceRange(Begin, |
| NewParam->getLocEnd())); |
| |
| // Look for the function declaration where the default argument was |
| // actually written, which may be a declaration prior to Old. |
| for (FunctionDecl *Older = Old->getPreviousDeclaration(); |
| Older; Older = Older->getPreviousDeclaration()) { |
| if (!Older->getParamDecl(p)->hasDefaultArg()) |
| break; |
| |
| OldParam = Older->getParamDecl(p); |
| } |
| |
| Diag(OldParam->getLocation(), diag::note_previous_definition) |
| << OldParam->getDefaultArgRange(); |
| Invalid = true; |
| } else if (OldParam->hasDefaultArg()) { |
| // Merge the old default argument into the new parameter |
| if (OldParam->hasUninstantiatedDefaultArg()) |
| NewParam->setUninstantiatedDefaultArg( |
| OldParam->getUninstantiatedDefaultArg()); |
| else |
| NewParam->setDefaultArg(OldParam->getDefaultArg()); |
| } else if (NewParam->hasDefaultArg()) { |
| if (New->getDescribedFunctionTemplate()) { |
| // Paragraph 4, quoted above, only applies to non-template functions. |
| Diag(NewParam->getLocation(), |
| diag::err_param_default_argument_template_redecl) |
| << NewParam->getDefaultArgRange(); |
| Diag(Old->getLocation(), diag::note_template_prev_declaration) |
| << false; |
| } else if (New->getTemplateSpecializationKind() |
| != TSK_ImplicitInstantiation && |
| New->getTemplateSpecializationKind() != TSK_Undeclared) { |
| // C++ [temp.expr.spec]p21: |
| // Default function arguments shall not be specified in a declaration |
| // or a definition for one of the following explicit specializations: |
| // - the explicit specialization of a function template; |
| // - the explicit specialization of a member function template; |
| // - the explicit specialization of a member function of a class |
| // template where the class template specialization to which the |
| // member function specialization belongs is implicitly |
| // instantiated. |
| Diag(NewParam->getLocation(), diag::err_template_spec_default_arg) |
| << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization) |
| << New->getDeclName() |
| << NewParam->getDefaultArgRange(); |
| } else if (New->getDeclContext()->isDependentContext()) { |
| // C++ [dcl.fct.default]p6 (DR217): |
| // Default arguments for a member function of a class template shall |
| // be specified on the initial declaration of the member function |
| // within the class template. |
| // |
| // Reading the tea leaves a bit in DR217 and its reference to DR205 |
| // leads me to the conclusion that one cannot add default function |
| // arguments for an out-of-line definition of a member function of a |
| // dependent type. |
| int WhichKind = 2; |
| if (CXXRecordDecl *Record |
| = dyn_cast<CXXRecordDecl>(New->getDeclContext())) { |
| if (Record->getDescribedClassTemplate()) |
| WhichKind = 0; |
| else if (isa<ClassTemplatePartialSpecializationDecl>(Record)) |
| WhichKind = 1; |
| else |
| WhichKind = 2; |
| } |
| |
| Diag(NewParam->getLocation(), |
| diag::err_param_default_argument_member_template_redecl) |
| << WhichKind |
| << NewParam->getDefaultArgRange(); |
| } |
| } |
| } |
| |
| if (CheckEquivalentExceptionSpec( |
| Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(), |
| New->getType()->getAs<FunctionProtoType>(), New->getLocation())) |
| Invalid = true; |
| |
| return Invalid; |
| } |
| |
| /// CheckCXXDefaultArguments - Verify that the default arguments for a |
| /// function declaration are well-formed according to C++ |
| /// [dcl.fct.default]. |
| void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) { |
| unsigned NumParams = FD->getNumParams(); |
| unsigned p; |
| |
| // Find first parameter with a default argument |
| for (p = 0; p < NumParams; ++p) { |
| ParmVarDecl *Param = FD->getParamDecl(p); |
| if (Param->hasDefaultArg()) |
| break; |
| } |
| |
| // C++ [dcl.fct.default]p4: |
| // In a given function declaration, all parameters |
| // subsequent to a parameter with a default argument shall |
| // have default arguments supplied in this or previous |
| // declarations. A default argument shall not be redefined |
| // by a later declaration (not even to the same value). |
| unsigned LastMissingDefaultArg = 0; |
| for (; p < NumParams; ++p) { |
| ParmVarDecl *Param = FD->getParamDecl(p); |
| if (!Param->hasDefaultArg()) { |
| if (Param->isInvalidDecl()) |
| /* We already complained about this parameter. */; |
| else if (Param->getIdentifier()) |
| Diag(Param->getLocation(), |
| diag::err_param_default_argument_missing_name) |
| << Param->getIdentifier(); |
| else |
| Diag(Param->getLocation(), |
| diag::err_param_default_argument_missing); |
| |
| LastMissingDefaultArg = p; |
| } |
| } |
| |
| if (LastMissingDefaultArg > 0) { |
| // Some default arguments were missing. Clear out all of the |
| // default arguments up to (and including) the last missing |
| // default argument, so that we leave the function parameters |
| // in a semantically valid state. |
| for (p = 0; p <= LastMissingDefaultArg; ++p) { |
| ParmVarDecl *Param = FD->getParamDecl(p); |
| if (Param->hasDefaultArg()) { |
| if (!Param->hasUnparsedDefaultArg()) |
| Param->getDefaultArg()->Destroy(Context); |
| Param->setDefaultArg(0); |
| } |
| } |
| } |
| } |
| |
| /// isCurrentClassName - Determine whether the identifier II is the |
| /// name of the class type currently being defined. In the case of |
| /// nested classes, this will only return true if II is the name of |
| /// the innermost class. |
| bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *, |
| const CXXScopeSpec *SS) { |
| CXXRecordDecl *CurDecl; |
| if (SS && SS->isSet() && !SS->isInvalid()) { |
| DeclContext *DC = computeDeclContext(*SS, true); |
| CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC); |
| } else |
| CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext); |
| |
| if (CurDecl) |
| return &II == CurDecl->getIdentifier(); |
| else |
| return false; |
| } |
| |
| /// \brief Check the validity of a C++ base class specifier. |
| /// |
| /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics |
| /// and returns NULL otherwise. |
| CXXBaseSpecifier * |
| Sema::CheckBaseSpecifier(CXXRecordDecl *Class, |
| SourceRange SpecifierRange, |
| bool Virtual, AccessSpecifier Access, |
| QualType BaseType, |
| SourceLocation BaseLoc) { |
| // C++ [class.union]p1: |
| // A union shall not have base classes. |
| if (Class->isUnion()) { |
| Diag(Class->getLocation(), diag::err_base_clause_on_union) |
| << SpecifierRange; |
| return 0; |
| } |
| |
| if (BaseType->isDependentType()) |
| return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, |
| Class->getTagKind() == RecordDecl::TK_class, |
| Access, BaseType); |
| |
| // Base specifiers must be record types. |
| if (!BaseType->isRecordType()) { |
| Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange; |
| return 0; |
| } |
| |
| // C++ [class.union]p1: |
| // A union shall not be used as a base class. |
| if (BaseType->isUnionType()) { |
| Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange; |
| return 0; |
| } |
| |
| // C++ [class.derived]p2: |
| // The class-name in a base-specifier shall not be an incompletely |
| // defined class. |
| if (RequireCompleteType(BaseLoc, BaseType, |
| PDiag(diag::err_incomplete_base_class) |
| << SpecifierRange)) |
| return 0; |
| |
| // If the base class is polymorphic or isn't empty, the new one is/isn't, too. |
| RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl(); |
| assert(BaseDecl && "Record type has no declaration"); |
| BaseDecl = BaseDecl->getDefinition(Context); |
| assert(BaseDecl && "Base type is not incomplete, but has no definition"); |
| CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl); |
| assert(CXXBaseDecl && "Base type is not a C++ type"); |
| |
| // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases. |
| if (CXXBaseDecl->hasAttr<FinalAttr>()) { |
| Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString(); |
| Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl) |
| << BaseType; |
| return 0; |
| } |
| |
| SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual); |
| |
| // Create the base specifier. |
| // FIXME: Allocate via ASTContext? |
| return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, |
| Class->getTagKind() == RecordDecl::TK_class, |
| Access, BaseType); |
| } |
| |
| void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class, |
| const CXXRecordDecl *BaseClass, |
| bool BaseIsVirtual) { |
| // A class with a non-empty base class is not empty. |
| // FIXME: Standard ref? |
| if (!BaseClass->isEmpty()) |
| Class->setEmpty(false); |
| |
| // C++ [class.virtual]p1: |
| // A class that [...] inherits a virtual function is called a polymorphic |
| // class. |
| if (BaseClass->isPolymorphic()) |
| Class->setPolymorphic(true); |
| |
| // C++ [dcl.init.aggr]p1: |
| // An aggregate is [...] a class with [...] no base classes [...]. |
| Class->setAggregate(false); |
| |
| // C++ [class]p4: |
| // A POD-struct is an aggregate class... |
| Class->setPOD(false); |
| |
| if (BaseIsVirtual) { |
| // C++ [class.ctor]p5: |
| // A constructor is trivial if its class has no virtual base classes. |
| Class->setHasTrivialConstructor(false); |
| |
| // C++ [class.copy]p6: |
| // A copy constructor is trivial if its class has no virtual base classes. |
| Class->setHasTrivialCopyConstructor(false); |
| |
| // C++ [class.copy]p11: |
| // A copy assignment operator is trivial if its class has no virtual |
| // base classes. |
| Class->setHasTrivialCopyAssignment(false); |
| |
| // C++0x [meta.unary.prop] is_empty: |
| // T is a class type, but not a union type, with ... no virtual base |
| // classes |
| Class->setEmpty(false); |
| } else { |
| // C++ [class.ctor]p5: |
| // A constructor is trivial if all the direct base classes of its |
| // class have trivial constructors. |
| if (!BaseClass->hasTrivialConstructor()) |
| Class->setHasTrivialConstructor(false); |
| |
| // C++ [class.copy]p6: |
| // A copy constructor is trivial if all the direct base classes of its |
| // class have trivial copy constructors. |
| if (!BaseClass->hasTrivialCopyConstructor()) |
| Class->setHasTrivialCopyConstructor(false); |
| |
| // C++ [class.copy]p11: |
| // A copy assignment operator is trivial if all the direct base classes |
| // of its class have trivial copy assignment operators. |
| if (!BaseClass->hasTrivialCopyAssignment()) |
| Class->setHasTrivialCopyAssignment(false); |
| } |
| |
| // C++ [class.ctor]p3: |
| // A destructor is trivial if all the direct base classes of its class |
| // have trivial destructors. |
| if (!BaseClass->hasTrivialDestructor()) |
| Class->setHasTrivialDestructor(false); |
| } |
| |
| /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is |
| /// one entry in the base class list of a class specifier, for |
| /// example: |
| /// class foo : public bar, virtual private baz { |
| /// 'public bar' and 'virtual private baz' are each base-specifiers. |
| Sema::BaseResult |
| Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange, |
| bool Virtual, AccessSpecifier Access, |
| TypeTy *basetype, SourceLocation BaseLoc) { |
| if (!classdecl) |
| return true; |
| |
| AdjustDeclIfTemplate(classdecl); |
| CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>()); |
| QualType BaseType = GetTypeFromParser(basetype); |
| if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange, |
| Virtual, Access, |
| BaseType, BaseLoc)) |
| return BaseSpec; |
| |
| return true; |
| } |
| |
| /// \brief Performs the actual work of attaching the given base class |
| /// specifiers to a C++ class. |
| bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases, |
| unsigned NumBases) { |
| if (NumBases == 0) |
| return false; |
| |
| // Used to keep track of which base types we have already seen, so |
| // that we can properly diagnose redundant direct base types. Note |
| // that the key is always the unqualified canonical type of the base |
| // class. |
| std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes; |
| |
| // Copy non-redundant base specifiers into permanent storage. |
| unsigned NumGoodBases = 0; |
| bool Invalid = false; |
| for (unsigned idx = 0; idx < NumBases; ++idx) { |
| QualType NewBaseType |
| = Context.getCanonicalType(Bases[idx]->getType()); |
| NewBaseType = NewBaseType.getLocalUnqualifiedType(); |
| |
| if (KnownBaseTypes[NewBaseType]) { |
| // C++ [class.mi]p3: |
| // A class shall not be specified as a direct base class of a |
| // derived class more than once. |
| Diag(Bases[idx]->getSourceRange().getBegin(), |
| diag::err_duplicate_base_class) |
| << KnownBaseTypes[NewBaseType]->getType() |
| << Bases[idx]->getSourceRange(); |
| |
| // Delete the duplicate base class specifier; we're going to |
| // overwrite its pointer later. |
| Context.Deallocate(Bases[idx]); |
| |
| Invalid = true; |
| } else { |
| // Okay, add this new base class. |
| KnownBaseTypes[NewBaseType] = Bases[idx]; |
| Bases[NumGoodBases++] = Bases[idx]; |
| } |
| } |
| |
| // Attach the remaining base class specifiers to the derived class. |
| Class->setBases(Context, Bases, NumGoodBases); |
| |
| // Delete the remaining (good) base class specifiers, since their |
| // data has been copied into the CXXRecordDecl. |
| for (unsigned idx = 0; idx < NumGoodBases; ++idx) |
| Context.Deallocate(Bases[idx]); |
| |
| return Invalid; |
| } |
| |
| /// ActOnBaseSpecifiers - Attach the given base specifiers to the |
| /// class, after checking whether there are any duplicate base |
| /// classes. |
| void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases, |
| unsigned NumBases) { |
| if (!ClassDecl || !Bases || !NumBases) |
| return; |
| |
| AdjustDeclIfTemplate(ClassDecl); |
| AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()), |
| (CXXBaseSpecifier**)(Bases), NumBases); |
| } |
| |
| /// \brief Determine whether the type \p Derived is a C++ class that is |
| /// derived from the type \p Base. |
| bool Sema::IsDerivedFrom(QualType Derived, QualType Base) { |
| if (!getLangOptions().CPlusPlus) |
| return false; |
| |
| const RecordType *DerivedRT = Derived->getAs<RecordType>(); |
| if (!DerivedRT) |
| return false; |
| |
| const RecordType *BaseRT = Base->getAs<RecordType>(); |
| if (!BaseRT) |
| return false; |
| |
| CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl()); |
| CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); |
| return DerivedRD->isDerivedFrom(BaseRD); |
| } |
| |
| /// \brief Determine whether the type \p Derived is a C++ class that is |
| /// derived from the type \p Base. |
| bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) { |
| if (!getLangOptions().CPlusPlus) |
| return false; |
| |
| const RecordType *DerivedRT = Derived->getAs<RecordType>(); |
| if (!DerivedRT) |
| return false; |
| |
| const RecordType *BaseRT = Base->getAs<RecordType>(); |
| if (!BaseRT) |
| return false; |
| |
| CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl()); |
| CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); |
| return DerivedRD->isDerivedFrom(BaseRD, Paths); |
| } |
| |
| /// CheckDerivedToBaseConversion - Check whether the Derived-to-Base |
| /// conversion (where Derived and Base are class types) is |
| /// well-formed, meaning that the conversion is unambiguous (and |
| /// that all of the base classes are accessible). Returns true |
| /// and emits a diagnostic if the code is ill-formed, returns false |
| /// otherwise. Loc is the location where this routine should point to |
| /// if there is an error, and Range is the source range to highlight |
| /// if there is an error. |
| bool |
| Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, |
| unsigned InaccessibleBaseID, |
| unsigned AmbigiousBaseConvID, |
| SourceLocation Loc, SourceRange Range, |
| DeclarationName Name) { |
| // First, determine whether the path from Derived to Base is |
| // ambiguous. This is slightly more expensive than checking whether |
| // the Derived to Base conversion exists, because here we need to |
| // explore multiple paths to determine if there is an ambiguity. |
| CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, |
| /*DetectVirtual=*/false); |
| bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths); |
| assert(DerivationOkay && |
| "Can only be used with a derived-to-base conversion"); |
| (void)DerivationOkay; |
| |
| if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) { |
| if (InaccessibleBaseID == 0) |
| return false; |
| // Check that the base class can be accessed. |
| return CheckBaseClassAccess(Derived, Base, InaccessibleBaseID, Paths, Loc, |
| Name); |
| } |
| |
| // We know that the derived-to-base conversion is ambiguous, and |
| // we're going to produce a diagnostic. Perform the derived-to-base |
| // search just one more time to compute all of the possible paths so |
| // that we can print them out. This is more expensive than any of |
| // the previous derived-to-base checks we've done, but at this point |
| // performance isn't as much of an issue. |
| Paths.clear(); |
| Paths.setRecordingPaths(true); |
| bool StillOkay = IsDerivedFrom(Derived, Base, Paths); |
| assert(StillOkay && "Can only be used with a derived-to-base conversion"); |
| (void)StillOkay; |
| |
| // Build up a textual representation of the ambiguous paths, e.g., |
| // D -> B -> A, that will be used to illustrate the ambiguous |
| // conversions in the diagnostic. We only print one of the paths |
| // to each base class subobject. |
| std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); |
| |
| Diag(Loc, AmbigiousBaseConvID) |
| << Derived << Base << PathDisplayStr << Range << Name; |
| return true; |
| } |
| |
| bool |
| Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, |
| SourceLocation Loc, SourceRange Range, |
| bool IgnoreAccess) { |
| return CheckDerivedToBaseConversion(Derived, Base, |
| IgnoreAccess ? 0 : |
| diag::err_conv_to_inaccessible_base, |
| diag::err_ambiguous_derived_to_base_conv, |
| Loc, Range, DeclarationName()); |
| } |
| |
| |
| /// @brief Builds a string representing ambiguous paths from a |
| /// specific derived class to different subobjects of the same base |
| /// class. |
| /// |
| /// This function builds a string that can be used in error messages |
| /// to show the different paths that one can take through the |
| /// inheritance hierarchy to go from the derived class to different |
| /// subobjects of a base class. The result looks something like this: |
| /// @code |
| /// struct D -> struct B -> struct A |
| /// struct D -> struct C -> struct A |
| /// @endcode |
| std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) { |
| std::string PathDisplayStr; |
| std::set<unsigned> DisplayedPaths; |
| for (CXXBasePaths::paths_iterator Path = Paths.begin(); |
| Path != Paths.end(); ++Path) { |
| if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) { |
| // We haven't displayed a path to this particular base |
| // class subobject yet. |
| PathDisplayStr += "\n "; |
| PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString(); |
| for (CXXBasePath::const_iterator Element = Path->begin(); |
| Element != Path->end(); ++Element) |
| PathDisplayStr += " -> " + Element->Base->getType().getAsString(); |
| } |
| } |
| |
| return PathDisplayStr; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // C++ class member Handling |
| //===----------------------------------------------------------------------===// |
| |
| /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member |
| /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the |
| /// bitfield width if there is one and 'InitExpr' specifies the initializer if |
| /// any. |
| Sema::DeclPtrTy |
| Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D, |
| MultiTemplateParamsArg TemplateParameterLists, |
| ExprTy *BW, ExprTy *InitExpr, bool IsDefinition, |
| bool Deleted) { |
| const DeclSpec &DS = D.getDeclSpec(); |
| DeclarationName Name = GetNameForDeclarator(D); |
| Expr *BitWidth = static_cast<Expr*>(BW); |
| Expr *Init = static_cast<Expr*>(InitExpr); |
| SourceLocation Loc = D.getIdentifierLoc(); |
| |
| bool isFunc = D.isFunctionDeclarator(); |
| |
| assert(!DS.isFriendSpecified()); |
| |
| // C++ 9.2p6: A member shall not be declared to have automatic storage |
| // duration (auto, register) or with the extern storage-class-specifier. |
| // C++ 7.1.1p8: The mutable specifier can be applied only to names of class |
| // data members and cannot be applied to names declared const or static, |
| // and cannot be applied to reference members. |
| switch (DS.getStorageClassSpec()) { |
| case DeclSpec::SCS_unspecified: |
| case DeclSpec::SCS_typedef: |
| case DeclSpec::SCS_static: |
| // FALL THROUGH. |
| break; |
| case DeclSpec::SCS_mutable: |
| if (isFunc) { |
| if (DS.getStorageClassSpecLoc().isValid()) |
| Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function); |
| else |
| Diag(DS.getThreadSpecLoc(), diag::err_mutable_function); |
| |
| // FIXME: It would be nicer if the keyword was ignored only for this |
| // declarator. Otherwise we could get follow-up errors. |
| D.getMutableDeclSpec().ClearStorageClassSpecs(); |
| } else { |
| QualType T = GetTypeForDeclarator(D, S); |
| diag::kind err = static_cast<diag::kind>(0); |
| if (T->isReferenceType()) |
| err = diag::err_mutable_reference; |
| else if (T.isConstQualified()) |
| err = diag::err_mutable_const; |
| if (err != 0) { |
| if (DS.getStorageClassSpecLoc().isValid()) |
| Diag(DS.getStorageClassSpecLoc(), err); |
| else |
| Diag(DS.getThreadSpecLoc(), err); |
| // FIXME: It would be nicer if the keyword was ignored only for this |
| // declarator. Otherwise we could get follow-up errors. |
| D.getMutableDeclSpec().ClearStorageClassSpecs(); |
| } |
| } |
| break; |
| default: |
| if (DS.getStorageClassSpecLoc().isValid()) |
| Diag(DS.getStorageClassSpecLoc(), |
| diag::err_storageclass_invalid_for_member); |
| else |
| Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member); |
| D.getMutableDeclSpec().ClearStorageClassSpecs(); |
| } |
| |
| if (!isFunc && |
| D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename && |
| D.getNumTypeObjects() == 0) { |
| // Check also for this case: |
| // |
| // typedef int f(); |
| // f a; |
| // |
| QualType TDType = GetTypeFromParser(DS.getTypeRep()); |
| isFunc = TDType->isFunctionType(); |
| } |
| |
| bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified || |
| DS.getStorageClassSpec() == DeclSpec::SCS_mutable) && |
| !isFunc); |
| |
| Decl *Member; |
| if (isInstField) { |
| // FIXME: Check for template parameters! |
| Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth, |
| AS); |
| assert(Member && "HandleField never returns null"); |
| } else { |
| Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition) |
| .getAs<Decl>(); |
| if (!Member) { |
| if (BitWidth) DeleteExpr(BitWidth); |
| return DeclPtrTy(); |
| } |
| |
| // Non-instance-fields can't have a bitfield. |
| if (BitWidth) { |
| if (Member->isInvalidDecl()) { |
| // don't emit another diagnostic. |
| } else if (isa<VarDecl>(Member)) { |
| // C++ 9.6p3: A bit-field shall not be a static member. |
| // "static member 'A' cannot be a bit-field" |
| Diag(Loc, diag::err_static_not_bitfield) |
| << Name << BitWidth->getSourceRange(); |
| } else if (isa<TypedefDecl>(Member)) { |
| // "typedef member 'x' cannot be a bit-field" |
| Diag(Loc, diag::err_typedef_not_bitfield) |
| << Name << BitWidth->getSourceRange(); |
| } else { |
| // A function typedef ("typedef int f(); f a;"). |
| // C++ 9.6p3: A bit-field shall have integral or enumeration type. |
| Diag(Loc, diag::err_not_integral_type_bitfield) |
| << Name << cast<ValueDecl>(Member)->getType() |
| << BitWidth->getSourceRange(); |
| } |
| |
| DeleteExpr(BitWidth); |
| BitWidth = 0; |
| Member->setInvalidDecl(); |
| } |
| |
| Member->setAccess(AS); |
| |
| // If we have declared a member function template, set the access of the |
| // templated declaration as well. |
| if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member)) |
| FunTmpl->getTemplatedDecl()->setAccess(AS); |
| } |
| |
| assert((Name || isInstField) && "No identifier for non-field ?"); |
| |
| if (Init) |
| AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false); |
| if (Deleted) // FIXME: Source location is not very good. |
| SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin()); |
| |
| if (isInstField) { |
| FieldCollector->Add(cast<FieldDecl>(Member)); |
| return DeclPtrTy(); |
| } |
| return DeclPtrTy::make(Member); |
| } |
| |
| /// ActOnMemInitializer - Handle a C++ member initializer. |
| Sema::MemInitResult |
| Sema::ActOnMemInitializer(DeclPtrTy ConstructorD, |
| Scope *S, |
| const CXXScopeSpec &SS, |
| IdentifierInfo *MemberOrBase, |
| TypeTy *TemplateTypeTy, |
| SourceLocation IdLoc, |
| SourceLocation LParenLoc, |
| ExprTy **Args, unsigned NumArgs, |
| SourceLocation *CommaLocs, |
| SourceLocation RParenLoc) { |
| if (!ConstructorD) |
| return true; |
| |
| AdjustDeclIfTemplate(ConstructorD); |
| |
| CXXConstructorDecl *Constructor |
| = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>()); |
| if (!Constructor) { |
| // The user wrote a constructor initializer on a function that is |
| // not a C++ constructor. Ignore the error for now, because we may |
| // have more member initializers coming; we'll diagnose it just |
| // once in ActOnMemInitializers. |
| return true; |
| } |
| |
| CXXRecordDecl *ClassDecl = Constructor->getParent(); |
| |
| // C++ [class.base.init]p2: |
| // Names in a mem-initializer-id are looked up in the scope of the |
| // constructor’s class and, if not found in that scope, are looked |
| // up in the scope containing the constructor’s |
| // definition. [Note: if the constructor’s class contains a member |
| // with the same name as a direct or virtual base class of the |
| // class, a mem-initializer-id naming the member or base class and |
| // composed of a single identifier refers to the class member. A |
| // mem-initializer-id for the hidden base class may be specified |
| // using a qualified name. ] |
| if (!SS.getScopeRep() && !TemplateTypeTy) { |
| // Look for a member, first. |
| FieldDecl *Member = 0; |
| DeclContext::lookup_result Result |
| = ClassDecl->lookup(MemberOrBase); |
| if (Result.first != Result.second) |
| Member = dyn_cast<FieldDecl>(*Result.first); |
| |
| // FIXME: Handle members of an anonymous union. |
| |
| if (Member) |
| return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc, |
| LParenLoc, RParenLoc); |
| } |
| // It didn't name a member, so see if it names a class. |
| QualType BaseType; |
| TypeSourceInfo *TInfo = 0; |
| |
| if (TemplateTypeTy) { |
| BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo); |
| } else { |
| LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName); |
| LookupParsedName(R, S, &SS); |
| |
| TypeDecl *TyD = R.getAsSingle<TypeDecl>(); |
| if (!TyD) { |
| if (R.isAmbiguous()) return true; |
| |
| Diag(IdLoc, diag::err_mem_init_not_member_or_class) |
| << MemberOrBase << SourceRange(IdLoc, RParenLoc); |
| return true; |
| } |
| |
| BaseType = Context.getTypeDeclType(TyD); |
| if (SS.isSet()) { |
| NestedNameSpecifier *Qualifier = |
| static_cast<NestedNameSpecifier*>(SS.getScopeRep()); |
| |
| // FIXME: preserve source range information |
| BaseType = Context.getQualifiedNameType(Qualifier, BaseType); |
| } |
| } |
| |
| if (!TInfo) |
| TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc); |
| |
| return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs, |
| LParenLoc, RParenLoc, ClassDecl); |
| } |
| |
| /// Checks an initializer expression for use of uninitialized fields, such as |
| /// containing the field that is being initialized. Returns true if there is an |
| /// uninitialized field was used an updates the SourceLocation parameter; false |
| /// otherwise. |
| static bool InitExprContainsUninitializedFields(const Stmt* S, |
| const FieldDecl* LhsField, |
| SourceLocation* L) { |
| const MemberExpr* ME = dyn_cast<MemberExpr>(S); |
| if (ME) { |
| const NamedDecl* RhsField = ME->getMemberDecl(); |
| if (RhsField == LhsField) { |
| // Initializing a field with itself. Throw a warning. |
| // But wait; there are exceptions! |
| // Exception #1: The field may not belong to this record. |
| // e.g. Foo(const Foo& rhs) : A(rhs.A) {} |
| const Expr* base = ME->getBase(); |
| if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) { |
| // Even though the field matches, it does not belong to this record. |
| return false; |
| } |
| // None of the exceptions triggered; return true to indicate an |
| // uninitialized field was used. |
| *L = ME->getMemberLoc(); |
| return true; |
| } |
| } |
| bool found = false; |
| for (Stmt::const_child_iterator it = S->child_begin(); |
| it != S->child_end() && found == false; |
| ++it) { |
| if (isa<CallExpr>(S)) { |
| // Do not descend into function calls or constructors, as the use |
| // of an uninitialized field may be valid. One would have to inspect |
| // the contents of the function/ctor to determine if it is safe or not. |
| // i.e. Pass-by-value is never safe, but pass-by-reference and pointers |
| // may be safe, depending on what the function/ctor does. |
| continue; |
| } |
| found = InitExprContainsUninitializedFields(*it, LhsField, L); |
| } |
| return found; |
| } |
| |
| Sema::MemInitResult |
| Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args, |
| unsigned NumArgs, SourceLocation IdLoc, |
| SourceLocation LParenLoc, |
| SourceLocation RParenLoc) { |
| // FIXME: CXXBaseOrMemberInitializer should only contain a single |
| // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary. |
| ExprTemporaries.clear(); |
| |
| // Diagnose value-uses of fields to initialize themselves, e.g. |
| // foo(foo) |
| // where foo is not also a parameter to the constructor. |
| // TODO: implement -Wuninitialized and fold this into that framework. |
| for (unsigned i = 0; i < NumArgs; ++i) { |
| SourceLocation L; |
| if (InitExprContainsUninitializedFields(Args[i], Member, &L)) { |
| // FIXME: Return true in the case when other fields are used before being |
| // uninitialized. For example, let this field be the i'th field. When |
| // initializing the i'th field, throw a warning if any of the >= i'th |
| // fields are used, as they are not yet initialized. |
| // Right now we are only handling the case where the i'th field uses |
| // itself in its initializer. |
| Diag(L, diag::warn_field_is_uninit); |
| } |
| } |
| |
| bool HasDependentArg = false; |
| for (unsigned i = 0; i < NumArgs; i++) |
| HasDependentArg |= Args[i]->isTypeDependent(); |
| |
| CXXConstructorDecl *C = 0; |
| QualType FieldType = Member->getType(); |
| if (const ArrayType *Array = Context.getAsArrayType(FieldType)) |
| FieldType = Array->getElementType(); |
| if (FieldType->isDependentType()) { |
| // Can't check init for dependent type. |
| } else if (FieldType->isRecordType()) { |
| // Member is a record (struct/union/class), so pass the initializer |
| // arguments down to the record's constructor. |
| if (!HasDependentArg) { |
| ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this); |
| |
| C = PerformInitializationByConstructor(FieldType, |
| MultiExprArg(*this, |
| (void**)Args, |
| NumArgs), |
| IdLoc, |
| SourceRange(IdLoc, RParenLoc), |
| Member->getDeclName(), |
| InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc), |
| ConstructorArgs); |
| |
| if (C) { |
| // Take over the constructor arguments as our own. |
| NumArgs = ConstructorArgs.size(); |
| Args = (Expr **)ConstructorArgs.take(); |
| } |
| } |
| } else if (NumArgs != 1 && NumArgs != 0) { |
| // The member type is not a record type (or an array of record |
| // types), so it can be only be default- or copy-initialized. |
| return Diag(IdLoc, diag::err_mem_initializer_mismatch) |
| << Member->getDeclName() << SourceRange(IdLoc, RParenLoc); |
| } else if (!HasDependentArg) { |
| Expr *NewExp; |
| if (NumArgs == 0) { |
| if (FieldType->isReferenceType()) { |
| Diag(IdLoc, diag::err_null_intialized_reference_member) |
| << Member->getDeclName(); |
| return Diag(Member->getLocation(), diag::note_declared_at); |
| } |
| NewExp = new (Context) CXXZeroInitValueExpr(FieldType, IdLoc, RParenLoc); |
| NumArgs = 1; |
| } |
| else |
| NewExp = (Expr*)Args[0]; |
| if (PerformCopyInitialization(NewExp, FieldType, AA_Passing)) |
| return true; |
| Args[0] = NewExp; |
| } |
| |
| // FIXME: CXXBaseOrMemberInitializer should only contain a single |
| // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary. |
| ExprTemporaries.clear(); |
| |
| // FIXME: Perform direct initialization of the member. |
| return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc, |
| C, LParenLoc, (Expr **)Args, |
| NumArgs, RParenLoc); |
| } |
| |
| Sema::MemInitResult |
| Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo, |
| Expr **Args, unsigned NumArgs, |
| SourceLocation LParenLoc, SourceLocation RParenLoc, |
| CXXRecordDecl *ClassDecl) { |
| bool HasDependentArg = false; |
| for (unsigned i = 0; i < NumArgs; i++) |
| HasDependentArg |= Args[i]->isTypeDependent(); |
| |
| SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getSourceRange().getBegin(); |
| if (!BaseType->isDependentType()) { |
| if (!BaseType->isRecordType()) |
| return Diag(BaseLoc, diag::err_base_init_does_not_name_class) |
| << BaseType << BaseTInfo->getTypeLoc().getSourceRange(); |
| |
| // C++ [class.base.init]p2: |
| // [...] Unless the mem-initializer-id names a nonstatic data |
| // member of the constructor’s class or a direct or virtual base |
| // of that class, the mem-initializer is ill-formed. A |
| // mem-initializer-list can initialize a base class using any |
| // name that denotes that base class type. |
| |
| // First, check for a direct base class. |
| const CXXBaseSpecifier *DirectBaseSpec = 0; |
| for (CXXRecordDecl::base_class_const_iterator Base = |
| ClassDecl->bases_begin(); Base != ClassDecl->bases_end(); ++Base) { |
| if (Context.hasSameUnqualifiedType(BaseType, Base->getType())) { |
| // We found a direct base of this type. That's what we're |
| // initializing. |
| DirectBaseSpec = &*Base; |
| break; |
| } |
| } |
| |
| // Check for a virtual base class. |
| // FIXME: We might be able to short-circuit this if we know in advance that |
| // there are no virtual bases. |
| const CXXBaseSpecifier *VirtualBaseSpec = 0; |
| if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) { |
| // We haven't found a base yet; search the class hierarchy for a |
| // virtual base class. |
| CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, |
| /*DetectVirtual=*/false); |
| if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) { |
| for (CXXBasePaths::paths_iterator Path = Paths.begin(); |
| Path != Paths.end(); ++Path) { |
| if (Path->back().Base->isVirtual()) { |
| VirtualBaseSpec = Path->back().Base; |
| break; |
| } |
| } |
| } |
| } |
| |
| // C++ [base.class.init]p2: |
| // If a mem-initializer-id is ambiguous because it designates both |
| // a direct non-virtual base class and an inherited virtual base |
| // class, the mem-initializer is ill-formed. |
| if (DirectBaseSpec && VirtualBaseSpec) |
| return Diag(BaseLoc, diag::err_base_init_direct_and_virtual) |
| << BaseType << BaseTInfo->getTypeLoc().getSourceRange(); |
| // C++ [base.class.init]p2: |
| // Unless the mem-initializer-id names a nonstatic data membeer of the |
| // constructor's class ot a direst or virtual base of that class, the |
| // mem-initializer is ill-formed. |
| if (!DirectBaseSpec && !VirtualBaseSpec) |
| return Diag(BaseLoc, diag::err_not_direct_base_or_virtual) |
| << BaseType << ClassDecl->getNameAsCString() |
| << BaseTInfo->getTypeLoc().getSourceRange(); |
| } |
| |
| CXXConstructorDecl *C = 0; |
| if (!BaseType->isDependentType() && !HasDependentArg) { |
| DeclarationName Name = Context.DeclarationNames.getCXXConstructorName( |
| Context.getCanonicalType(BaseType).getUnqualifiedType()); |
| ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this); |
| |
| C = PerformInitializationByConstructor(BaseType, |
| MultiExprArg(*this, |
| (void**)Args, NumArgs), |
| BaseLoc, |
| SourceRange(BaseLoc, RParenLoc), |
| Name, |
| InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc), |
| ConstructorArgs); |
| if (C) { |
| // Take over the constructor arguments as our own. |
| NumArgs = ConstructorArgs.size(); |
| Args = (Expr **)ConstructorArgs.take(); |
| } |
| } |
| |
| // FIXME: CXXBaseOrMemberInitializer should only contain a single |
| // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary. |
| ExprTemporaries.clear(); |
| |
| return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo, C, |
| LParenLoc, (Expr **)Args, |
| NumArgs, RParenLoc); |
| } |
| |
| bool |
| Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor, |
| CXXBaseOrMemberInitializer **Initializers, |
| unsigned NumInitializers, |
| bool IsImplicitConstructor) { |
| // We need to build the initializer AST according to order of construction |
| // and not what user specified in the Initializers list. |
| CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Constructor->getDeclContext()); |
| llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit; |
| llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields; |
| bool HasDependentBaseInit = false; |
| bool HadError = false; |
| |
| for (unsigned i = 0; i < NumInitializers; i++) { |
| CXXBaseOrMemberInitializer *Member = Initializers[i]; |
| if (Member->isBaseInitializer()) { |
| if (Member->getBaseClass()->isDependentType()) |
| HasDependentBaseInit = true; |
| AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member; |
| } else { |
| AllBaseFields[Member->getMember()] = Member; |
| } |
| } |
| |
| if (HasDependentBaseInit) { |
| // FIXME. This does not preserve the ordering of the initializers. |
| // Try (with -Wreorder) |
| // template<class X> struct A {}; |
| // template<class X> struct B : A<X> { |
| // B() : x1(10), A<X>() {} |
| // int x1; |
| // }; |
| // B<int> x; |
| // On seeing one dependent type, we should essentially exit this routine |
| // while preserving user-declared initializer list. When this routine is |
| // called during instantiatiation process, this routine will rebuild the |
| // ordered initializer list correctly. |
| |
| // If we have a dependent base initialization, we can't determine the |
| // association between initializers and bases; just dump the known |
| // initializers into the list, and don't try to deal with other bases. |
| for (unsigned i = 0; i < NumInitializers; i++) { |
| CXXBaseOrMemberInitializer *Member = Initializers[i]; |
| if (Member->isBaseInitializer()) |
| AllToInit.push_back(Member); |
| } |
| } else { |
| // Push virtual bases before others. |
| for (CXXRecordDecl::base_class_iterator VBase = |
| ClassDecl->vbases_begin(), |
| E = ClassDecl->vbases_end(); VBase != E; ++VBase) { |
| if (VBase->getType()->isDependentType()) |
| continue; |
| if (CXXBaseOrMemberInitializer *Value |
| = AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) { |
| AllToInit.push_back(Value); |
| } |
| else { |
| CXXRecordDecl *VBaseDecl = |
| cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl()); |
| assert(VBaseDecl && "SetBaseOrMemberInitializers - VBaseDecl null"); |
| CXXConstructorDecl *Ctor = VBaseDecl->getDefaultConstructor(Context); |
| if (!Ctor) { |
| Diag(Constructor->getLocation(), diag::err_missing_default_ctor) |
| << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl) |
| << 0 << VBase->getType(); |
| Diag(VBaseDecl->getLocation(), diag::note_previous_decl) |
| << Context.getTagDeclType(VBaseDecl); |
| HadError = true; |
| continue; |
| } |
| |
| ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this); |
| if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0), |
| Constructor->getLocation(), CtorArgs)) |
| continue; |
| |
| MarkDeclarationReferenced(Constructor->getLocation(), Ctor); |
| |
| // FIXME: CXXBaseOrMemberInitializer should only contain a single |
| // subexpression so we can wrap it in a CXXExprWithTemporaries if |
| // necessary. |
| // FIXME: Is there any better source-location information we can give? |
| ExprTemporaries.clear(); |
| CXXBaseOrMemberInitializer *Member = |
| new (Context) CXXBaseOrMemberInitializer(Context, |
| Context.getTrivialTypeSourceInfo(VBase->getType(), |
| SourceLocation()), |
| Ctor, |
| SourceLocation(), |
| CtorArgs.takeAs<Expr>(), |
| CtorArgs.size(), |
| SourceLocation()); |
| AllToInit.push_back(Member); |
| } |
| } |
| |
| for (CXXRecordDecl::base_class_iterator Base = |
| ClassDecl->bases_begin(), |
| E = ClassDecl->bases_end(); Base != E; ++Base) { |
| // Virtuals are in the virtual base list and already constructed. |
| if (Base->isVirtual()) |
| continue; |
| // Skip dependent types. |
| if (Base->getType()->isDependentType()) |
| continue; |
| if (CXXBaseOrMemberInitializer *Value |
| = AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) { |
| AllToInit.push_back(Value); |
| } |
| else { |
| CXXRecordDecl *BaseDecl = |
| cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); |
| assert(BaseDecl && "SetBaseOrMemberInitializers - BaseDecl null"); |
| CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context); |
| if (!Ctor) { |
| Diag(Constructor->getLocation(), diag::err_missing_default_ctor) |
| << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl) |
| << 0 << Base->getType(); |
| Diag(BaseDecl->getLocation(), diag::note_previous_decl) |
| << Context.getTagDeclType(BaseDecl); |
| HadError = true; |
| continue; |
| } |
| |
| ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this); |
| if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0), |
| Constructor->getLocation(), CtorArgs)) |
| continue; |
| |
| MarkDeclarationReferenced(Constructor->getLocation(), Ctor); |
| |
| // FIXME: CXXBaseOrMemberInitializer should only contain a single |
| // subexpression so we can wrap it in a CXXExprWithTemporaries if |
| // necessary. |
| // FIXME: Is there any better source-location information we can give? |
| ExprTemporaries.clear(); |
| CXXBaseOrMemberInitializer *Member = |
| new (Context) CXXBaseOrMemberInitializer(Context, |
| Context.getTrivialTypeSourceInfo(Base->getType(), |
| SourceLocation()), |
| Ctor, |
| SourceLocation(), |
| CtorArgs.takeAs<Expr>(), |
| CtorArgs.size(), |
| SourceLocation()); |
| AllToInit.push_back(Member); |
| } |
| } |
| } |
| |
| // non-static data members. |
| for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), |
| E = ClassDecl->field_end(); Field != E; ++Field) { |
| if ((*Field)->isAnonymousStructOrUnion()) { |
| if (const RecordType *FieldClassType = |
| Field->getType()->getAs<RecordType>()) { |
| CXXRecordDecl *FieldClassDecl |
| = cast<CXXRecordDecl>(FieldClassType->getDecl()); |
| for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(), |
| EA = FieldClassDecl->field_end(); FA != EA; FA++) { |
| if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) { |
| // 'Member' is the anonymous union field and 'AnonUnionMember' is |
| // set to the anonymous union data member used in the initializer |
| // list. |
| Value->setMember(*Field); |
| Value->setAnonUnionMember(*FA); |
| AllToInit.push_back(Value); |
| break; |
| } |
| } |
| } |
| continue; |
| } |
| if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) { |
| AllToInit.push_back(Value); |
| continue; |
| } |
| |
| if ((*Field)->getType()->isDependentType()) |
| continue; |
| |
| QualType FT = Context.getBaseElementType((*Field)->getType()); |
| if (const RecordType* RT = FT->getAs<RecordType>()) { |
| CXXConstructorDecl *Ctor = |
| cast<CXXRecordDecl>(RT->getDecl())->getDefaultConstructor(Context); |
| if (!Ctor) { |
| Diag(Constructor->getLocation(), diag::err_missing_default_ctor) |
| << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl) |
| << 1 << (*Field)->getDeclName(); |
| Diag(Field->getLocation(), diag::note_field_decl); |
| Diag(RT->getDecl()->getLocation(), diag::note_previous_decl) |
| << Context.getTagDeclType(RT->getDecl()); |
| HadError = true; |
| continue; |
| } |
| |
| if (FT.isConstQualified() && Ctor->isTrivial()) { |
| Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor) |
| << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl) |
| << 1 << (*Field)->getDeclName(); |
| Diag((*Field)->getLocation(), diag::note_declared_at); |
| HadError = true; |
| } |
| |
| // Don't create initializers for trivial constructors, since they don't |
| // actually need to be run. |
| if (Ctor->isTrivial()) |
| continue; |
| |
| ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this); |
| if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0), |
| Constructor->getLocation(), CtorArgs)) |
| continue; |
| |
| // FIXME: CXXBaseOrMemberInitializer should only contain a single |
| // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary. |
| ExprTemporaries.clear(); |
| CXXBaseOrMemberInitializer *Member = |
| new (Context) CXXBaseOrMemberInitializer(Context, |
| *Field, SourceLocation(), |
| Ctor, |
| SourceLocation(), |
| CtorArgs.takeAs<Expr>(), |
| CtorArgs.size(), |
| SourceLocation()); |
| |
| AllToInit.push_back(Member); |
| MarkDeclarationReferenced(Constructor->getLocation(), Ctor); |
| } |
| else if (FT->isReferenceType()) { |
| Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor) |
| << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl) |
| << 0 << (*Field)->getDeclName(); |
| Diag((*Field)->getLocation(), diag::note_declared_at); |
| HadError = true; |
| } |
| else if (FT.isConstQualified()) { |
| Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor) |
| << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl) |
| << 1 << (*Field)->getDeclName(); |
| Diag((*Field)->getLocation(), diag::note_declared_at); |
| HadError = true; |
| } |
| } |
| |
| NumInitializers = AllToInit.size(); |
| if (NumInitializers > 0) { |
| Constructor->setNumBaseOrMemberInitializers(NumInitializers); |
| CXXBaseOrMemberInitializer **baseOrMemberInitializers = |
| new (Context) CXXBaseOrMemberInitializer*[NumInitializers]; |
| |
| Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers); |
| for (unsigned Idx = 0; Idx < NumInitializers; ++Idx) |
| baseOrMemberInitializers[Idx] = AllToInit[Idx]; |
| } |
| |
| return HadError; |
| } |
| |
| static void *GetKeyForTopLevelField(FieldDecl *Field) { |
| // For anonymous unions, use the class declaration as the key. |
| if (const RecordType *RT = Field->getType()->getAs<RecordType>()) { |
| if (RT->getDecl()->isAnonymousStructOrUnion()) |
| return static_cast<void *>(RT->getDecl()); |
| } |
| return static_cast<void *>(Field); |
| } |
| |
| static void *GetKeyForBase(QualType BaseType) { |
| if (const RecordType *RT = BaseType->getAs<RecordType>()) |
| return (void *)RT; |
| |
| assert(0 && "Unexpected base type!"); |
| return 0; |
| } |
| |
| static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member, |
| bool MemberMaybeAnon = false) { |
| // For fields injected into the class via declaration of an anonymous union, |
| // use its anonymous union class declaration as the unique key. |
| if (Member->isMemberInitializer()) { |
| FieldDecl *Field = Member->getMember(); |
| |
| // After SetBaseOrMemberInitializers call, Field is the anonymous union |
| // data member of the class. Data member used in the initializer list is |
| // in AnonUnionMember field. |
| if (MemberMaybeAnon && Field->isAnonymousStructOrUnion()) |
| Field = Member->getAnonUnionMember(); |
| if (Field->getDeclContext()->isRecord()) { |
| RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext()); |
| if (RD->isAnonymousStructOrUnion()) |
| return static_cast<void *>(RD); |
| } |
| return static_cast<void *>(Field); |
| } |
| |
| return GetKeyForBase(QualType(Member->getBaseClass(), 0)); |
| } |
| |
| /// ActOnMemInitializers - Handle the member initializers for a constructor. |
| void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl, |
| SourceLocation ColonLoc, |
| MemInitTy **MemInits, unsigned NumMemInits) { |
| if (!ConstructorDecl) |
| return; |
| |
| AdjustDeclIfTemplate(ConstructorDecl); |
| |
| CXXConstructorDecl *Constructor |
| = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>()); |
| |
| if (!Constructor) { |
| Diag(ColonLoc, diag::err_only_constructors_take_base_inits); |
| return; |
| } |
| |
| if (!Constructor->isDependentContext()) { |
| llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members; |
| bool err = false; |
| for (unsigned i = 0; i < NumMemInits; i++) { |
| CXXBaseOrMemberInitializer *Member = |
| static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]); |
| void *KeyToMember = GetKeyForMember(Member); |
| CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember]; |
| if (!PrevMember) { |
| PrevMember = Member; |
| continue; |
| } |
| if (FieldDecl *Field = Member->getMember()) |
| Diag(Member->getSourceLocation(), |
| diag::error_multiple_mem_initialization) |
| << Field->getNameAsString() |
| << Member->getSourceRange(); |
| else { |
| Type *BaseClass = Member->getBaseClass(); |
| assert(BaseClass && "ActOnMemInitializers - neither field or base"); |
| Diag(Member->getSourceLocation(), |
| diag::error_multiple_base_initialization) |
| << QualType(BaseClass, 0) |
| << Member->getSourceRange(); |
| } |
| Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer) |
| << 0; |
| err = true; |
| } |
| |
| if (err) |
| return; |
| } |
| |
| SetBaseOrMemberInitializers(Constructor, |
| reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits), |
| NumMemInits, false); |
| |
| if (Constructor->isDependentContext()) |
| return; |
| |
| if (Diags.getDiagnosticLevel(diag::warn_base_initialized) == |
| Diagnostic::Ignored && |
| Diags.getDiagnosticLevel(diag::warn_field_initialized) == |
| Diagnostic::Ignored) |
| return; |
| |
| // Also issue warning if order of ctor-initializer list does not match order |
| // of 1) base class declarations and 2) order of non-static data members. |
| llvm::SmallVector<const void*, 32> AllBaseOrMembers; |
| |
| CXXRecordDecl *ClassDecl |
| = cast<CXXRecordDecl>(Constructor->getDeclContext()); |
| // Push virtual bases before others. |
| for (CXXRecordDecl::base_class_iterator VBase = |
| ClassDecl->vbases_begin(), |
| E = ClassDecl->vbases_end(); VBase != E; ++VBase) |
| AllBaseOrMembers.push_back(GetKeyForBase(VBase->getType())); |
| |
| for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), |
| E = ClassDecl->bases_end(); Base != E; ++Base) { |
| // Virtuals are alread in the virtual base list and are constructed |
| // first. |
| if (Base->isVirtual()) |
| continue; |
| AllBaseOrMembers.push_back(GetKeyForBase(Base->getType())); |
| } |
| |
| for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), |
| E = ClassDecl->field_end(); Field != E; ++Field) |
| AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field)); |
| |
| int Last = AllBaseOrMembers.size(); |
| int curIndex = 0; |
| CXXBaseOrMemberInitializer *PrevMember = 0; |
| for (unsigned i = 0; i < NumMemInits; i++) { |
| CXXBaseOrMemberInitializer *Member = |
| static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]); |
| void *MemberInCtorList = GetKeyForMember(Member, true); |
| |
| for (; curIndex < Last; curIndex++) |
| if (MemberInCtorList == AllBaseOrMembers[curIndex]) |
| break; |
| if (curIndex == Last) { |
| assert(PrevMember && "Member not in member list?!"); |
| // Initializer as specified in ctor-initializer list is out of order. |
| // Issue a warning diagnostic. |
| if (PrevMember->isBaseInitializer()) { |
| // Diagnostics is for an initialized base class. |
| Type *BaseClass = PrevMember->getBaseClass(); |
| Diag(PrevMember->getSourceLocation(), |
| diag::warn_base_initialized) |
| << QualType(BaseClass, 0); |
| } else { |
| FieldDecl *Field = PrevMember->getMember(); |
| Diag(PrevMember->getSourceLocation(), |
| diag::warn_field_initialized) |
| << Field->getNameAsString(); |
| } |
| // Also the note! |
| if (FieldDecl *Field = Member->getMember()) |
| Diag(Member->getSourceLocation(), |
| diag::note_fieldorbase_initialized_here) << 0 |
| << Field->getNameAsString(); |
| else { |
| Type *BaseClass = Member->getBaseClass(); |
| Diag(Member->getSourceLocation(), |
| diag::note_fieldorbase_initialized_here) << 1 |
| << QualType(BaseClass, 0); |
| } |
| for (curIndex = 0; curIndex < Last; curIndex++) |
| if (MemberInCtorList == AllBaseOrMembers[curIndex]) |
| break; |
| } |
| PrevMember = Member; |
| } |
| } |
| |
| void |
| Sema::MarkBaseAndMemberDestructorsReferenced(CXXDestructorDecl *Destructor) { |
| // Ignore dependent destructors. |
| if (Destructor->isDependentContext()) |
| return; |
| |
| CXXRecordDecl *ClassDecl = Destructor->getParent(); |
| |
| // Non-static data members. |
| for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(), |
| E = ClassDecl->field_end(); I != E; ++I) { |
| FieldDecl *Field = *I; |
| |
| QualType FieldType = Context.getBaseElementType(Field->getType()); |
| |
| const RecordType* RT = FieldType->getAs<RecordType>(); |
| if (!RT) |
| continue; |
| |
| CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); |
| if (FieldClassDecl->hasTrivialDestructor()) |
| continue; |
| |
| const CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor(Context); |
| MarkDeclarationReferenced(Destructor->getLocation(), |
| const_cast<CXXDestructorDecl*>(Dtor)); |
| } |
| |
| // Bases. |
| for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), |
| E = ClassDecl->bases_end(); Base != E; ++Base) { |
| // Ignore virtual bases. |
| if (Base->isVirtual()) |
| continue; |
| |
| // Ignore trivial destructors. |
| CXXRecordDecl *BaseClassDecl |
| = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); |
| if (BaseClassDecl->hasTrivialDestructor()) |
| continue; |
| |
| const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context); |
| MarkDeclarationReferenced(Destructor->getLocation(), |
| const_cast<CXXDestructorDecl*>(Dtor)); |
| } |
| |
| // Virtual bases. |
| for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(), |
| E = ClassDecl->vbases_end(); VBase != E; ++VBase) { |
| // Ignore trivial destructors. |
| CXXRecordDecl *BaseClassDecl |
| = cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl()); |
| if (BaseClassDecl->hasTrivialDestructor()) |
| continue; |
| |
| const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context); |
| MarkDeclarationReferenced(Destructor->getLocation(), |
| const_cast<CXXDestructorDecl*>(Dtor)); |
| } |
| } |
| |
| void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) { |
| if (!CDtorDecl) |
| return; |
| |
| AdjustDeclIfTemplate(CDtorDecl); |
| |
| if (CXXConstructorDecl *Constructor |
| = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>())) |
| SetBaseOrMemberInitializers(Constructor, 0, 0, false); |
| } |
| |
| namespace { |
| /// PureVirtualMethodCollector - traverses a class and its superclasses |
| /// and determines if it has any pure virtual methods. |
| class PureVirtualMethodCollector { |
| ASTContext &Context; |
| |
| public: |
| typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList; |
| |
| private: |
| MethodList Methods; |
| |
| void Collect(const CXXRecordDecl* RD, MethodList& Methods); |
| |
| public: |
| PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD) |
| : Context(Ctx) { |
| |
| MethodList List; |
| Collect(RD, List); |
| |
| // Copy the temporary list to methods, and make sure to ignore any |
| // null entries. |
| for (size_t i = 0, e = List.size(); i != e; ++i) { |
| if (List[i]) |
| Methods.push_back(List[i]); |
| } |
| } |
| |
| bool empty() const { return Methods.empty(); } |
| |
| MethodList::const_iterator methods_begin() { return Methods.begin(); } |
| MethodList::const_iterator methods_end() { return Methods.end(); } |
| }; |
| |
| void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD, |
| MethodList& Methods) { |
| // First, collect the pure virtual methods for the base classes. |
| for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(), |
| BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) { |
| if (const RecordType *RT = Base->getType()->getAs<RecordType>()) { |
| const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl()); |
| if (BaseDecl && BaseDecl->isAbstract()) |
| Collect(BaseDecl, Methods); |
| } |
| } |
| |
| // Next, zero out any pure virtual methods that this class overrides. |
| typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy; |
| |
| MethodSetTy OverriddenMethods; |
| size_t MethodsSize = Methods.size(); |
| |
| for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end(); |
| i != e; ++i) { |
| // Traverse the record, looking for methods. |
| if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) { |
| // If the method is pure virtual, add it to the methods vector. |
| if (MD->isPure()) |
| Methods.push_back(MD); |
| |
| // Record all the overridden methods in our set. |
| for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(), |
| E = MD->end_overridden_methods(); I != E; ++I) { |
| // Keep track of the overridden methods. |
| OverriddenMethods.insert(*I); |
| } |
| } |
| } |
| |
| // Now go through the methods and zero out all the ones we know are |
| // overridden. |
| for (size_t i = 0, e = MethodsSize; i != e; ++i) { |
| if (OverriddenMethods.count(Methods[i])) |
| Methods[i] = 0; |
| } |
| |
| } |
| } |
| |
| |
| bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T, |
| unsigned DiagID, AbstractDiagSelID SelID, |
| const CXXRecordDecl *CurrentRD) { |
| if (SelID == -1) |
| return RequireNonAbstractType(Loc, T, |
| PDiag(DiagID), CurrentRD); |
| else |
| return RequireNonAbstractType(Loc, T, |
| PDiag(DiagID) << SelID, CurrentRD); |
| } |
| |
| bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T, |
| const PartialDiagnostic &PD, |
| const CXXRecordDecl *CurrentRD) { |
| if (!getLangOptions().CPlusPlus) |
| return false; |
| |
| if (const ArrayType *AT = Context.getAsArrayType(T)) |
| return RequireNonAbstractType(Loc, AT->getElementType(), PD, |
| CurrentRD); |
| |
| if (const PointerType *PT = T->getAs<PointerType>()) { |
| // Find the innermost pointer type. |
| while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>()) |
| PT = T; |
| |
| if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType())) |
| return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD); |
| } |
| |
| const RecordType *RT = T->getAs<RecordType>(); |
| if (!RT) |
| return false; |
| |
| const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); |
| if (!RD) |
| return false; |
| |
| if (CurrentRD && CurrentRD != RD) |
| return false; |
| |
| if (!RD->isAbstract()) |
| return false; |
| |
| Diag(Loc, PD) << RD->getDeclName(); |
| |
| // Check if we've already emitted the list of pure virtual functions for this |
| // class. |
| if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD)) |
| return true; |
| |
| PureVirtualMethodCollector Collector(Context, RD); |
| |
| for (PureVirtualMethodCollector::MethodList::const_iterator I = |
| Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) { |
| const CXXMethodDecl *MD = *I; |
| |
| Diag(MD->getLocation(), diag::note_pure_virtual_function) << |
| MD->getDeclName(); |
| } |
| |
| if (!PureVirtualClassDiagSet) |
| PureVirtualClassDiagSet.reset(new RecordDeclSetTy); |
| PureVirtualClassDiagSet->insert(RD); |
| |
| return true; |
| } |
| |
| namespace { |
| class AbstractClassUsageDiagnoser |
| : public DeclVisitor<AbstractClassUsageDiagnoser, bool> { |
| Sema &SemaRef; |
| CXXRecordDecl *AbstractClass; |
| |
| bool VisitDeclContext(const DeclContext *DC) { |
| bool Invalid = false; |
| |
| for (CXXRecordDecl::decl_iterator I = DC->decls_begin(), |
| E = DC->decls_end(); I != E; ++I) |
| Invalid |= Visit(*I); |
| |
| return Invalid; |
| } |
| |
| public: |
| AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac) |
| : SemaRef(SemaRef), AbstractClass(ac) { |
| Visit(SemaRef.Context.getTranslationUnitDecl()); |
| } |
| |
| bool VisitFunctionDecl(const FunctionDecl *FD) { |
| if (FD->isThisDeclarationADefinition()) { |
| // No need to do the check if we're in a definition, because it requires |
| // that the return/param types are complete. |
| // because that requires |
| return VisitDeclContext(FD); |
| } |
| |
| // Check the return type. |
| QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType(); |
| bool Invalid = |
| SemaRef.RequireNonAbstractType(FD->getLocation(), RTy, |
| diag::err_abstract_type_in_decl, |
| Sema::AbstractReturnType, |
| AbstractClass); |
| |
| for (FunctionDecl::param_const_iterator I = FD->param_begin(), |
| E = FD->param_end(); I != E; ++I) { |
| const ParmVarDecl *VD = *I; |
| Invalid |= |
| SemaRef.RequireNonAbstractType(VD->getLocation(), |
| VD->getOriginalType(), |
| diag::err_abstract_type_in_decl, |
| Sema::AbstractParamType, |
| AbstractClass); |
| } |
| |
| return Invalid; |
| } |
| |
| bool VisitDecl(const Decl* D) { |
| if (const DeclContext *DC = dyn_cast<DeclContext>(D)) |
| return VisitDeclContext(DC); |
| |
| return false; |
| } |
| }; |
| } |
| |
| /// \brief Perform semantic checks on a class definition that has been |
| /// completing, introducing implicitly-declared members, checking for |
| /// abstract types, etc. |
| void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) { |
| if (!Record || Record->isInvalidDecl()) |
| return; |
| |
| if (!Record->isDependentType()) |
| AddImplicitlyDeclaredMembersToClass(Record); |
| |
| if (Record->isInvalidDecl()) |
| return; |
| |
| if (!Record->isAbstract()) { |
| // Collect all the pure virtual methods and see if this is an abstract |
| // class after all. |
| PureVirtualMethodCollector Collector(Context, Record); |
| if (!Collector.empty()) |
| Record->setAbstract(true); |
| } |
| |
| if (Record->isAbstract()) |
| (void)AbstractClassUsageDiagnoser(*this, Record); |
| } |
| |
| void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc, |
| DeclPtrTy TagDecl, |
| SourceLocation LBrac, |
| SourceLocation RBrac) { |
| if (!TagDecl) |
| return; |
| |
| AdjustDeclIfTemplate(TagDecl); |
| |
| ActOnFields(S, RLoc, TagDecl, |
| (DeclPtrTy*)FieldCollector->getCurFields(), |
| FieldCollector->getCurNumFields(), LBrac, RBrac, 0); |
| |
| CheckCompletedCXXClass( |
| dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>())); |
| } |
| |
| /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared |
| /// special functions, such as the default constructor, copy |
| /// constructor, or destructor, to the given C++ class (C++ |
| /// [special]p1). This routine can only be executed just before the |
| /// definition of the class is complete. |
| void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) { |
| CanQualType ClassType |
| = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); |
| |
| // FIXME: Implicit declarations have exception specifications, which are |
| // the union of the specifications of the implicitly called functions. |
| |
| if (!ClassDecl->hasUserDeclaredConstructor()) { |
| // C++ [class.ctor]p5: |
| // A default constructor for a class X is a constructor of class X |
| // that can be called without an argument. If there is no |
| // user-declared constructor for class X, a default constructor is |
| // implicitly declared. An implicitly-declared default constructor |
| // is an inline public member of its class. |
| DeclarationName Name |
| = Context.DeclarationNames.getCXXConstructorName(ClassType); |
| CXXConstructorDecl *DefaultCon = |
| CXXConstructorDecl::Create(Context, ClassDecl, |
| ClassDecl->getLocation(), Name, |
| Context.getFunctionType(Context.VoidTy, |
| 0, 0, false, 0), |
| /*TInfo=*/0, |
| /*isExplicit=*/false, |
| /*isInline=*/true, |
| /*isImplicitlyDeclared=*/true); |
| DefaultCon->setAccess(AS_public); |
| DefaultCon->setImplicit(); |
| DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor()); |
| ClassDecl->addDecl(DefaultCon); |
| } |
| |
| if (!ClassDecl->hasUserDeclaredCopyConstructor()) { |
| // C++ [class.copy]p4: |
| // If the class definition does not explicitly declare a copy |
| // constructor, one is declared implicitly. |
| |
| // C++ [class.copy]p5: |
| // The implicitly-declared copy constructor for a class X will |
| // have the form |
| // |
| // X::X(const X&) |
| // |
| // if |
| bool HasConstCopyConstructor = true; |
| |
| // -- each direct or virtual base class B of X has a copy |
| // constructor whose first parameter is of type const B& or |
| // const volatile B&, and |
| for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(); |
| HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) { |
| const CXXRecordDecl *BaseClassDecl |
| = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); |
| HasConstCopyConstructor |
| = BaseClassDecl->hasConstCopyConstructor(Context); |
| } |
| |
| // -- for all the nonstatic data members of X that are of a |
| // class type M (or array thereof), each such class type |
| // has a copy constructor whose first parameter is of type |
| // const M& or const volatile M&. |
| for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(); |
| HasConstCopyConstructor && Field != ClassDecl->field_end(); |
| ++Field) { |
| QualType FieldType = (*Field)->getType(); |
| if (const ArrayType *Array = Context.getAsArrayType(FieldType)) |
| FieldType = Array->getElementType(); |
| if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { |
| const CXXRecordDecl *FieldClassDecl |
| = cast<CXXRecordDecl>(FieldClassType->getDecl()); |
| HasConstCopyConstructor |
| = FieldClassDecl->hasConstCopyConstructor(Context); |
| } |
| } |
| |
| // Otherwise, the implicitly declared copy constructor will have |
| // the form |
| // |
| // X::X(X&) |
| QualType ArgType = ClassType; |
| if (HasConstCopyConstructor) |
| ArgType = ArgType.withConst(); |
| ArgType = Context.getLValueReferenceType(ArgType); |
| |
| // An implicitly-declared copy constructor is an inline public |
| // member of its class. |
| DeclarationName Name |
| = Context.DeclarationNames.getCXXConstructorName(ClassType); |
| CXXConstructorDecl *CopyConstructor |
| = CXXConstructorDecl::Create(Context, ClassDecl, |
| ClassDecl->getLocation(), Name, |
| Context.getFunctionType(Context.VoidTy, |
| &ArgType, 1, |
| false, 0), |
| /*TInfo=*/0, |
| /*isExplicit=*/false, |
| /*isInline=*/true, |
| /*isImplicitlyDeclared=*/true); |
| CopyConstructor->setAccess(AS_public); |
| CopyConstructor->setImplicit(); |
| CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor()); |
| |
| // Add the parameter to the constructor. |
| ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor, |
| ClassDecl->getLocation(), |
| /*IdentifierInfo=*/0, |
| ArgType, /*TInfo=*/0, |
| VarDecl::None, 0); |
| CopyConstructor->setParams(Context, &FromParam, 1); |
| ClassDecl->addDecl(CopyConstructor); |
| } |
| |
| if (!ClassDecl->hasUserDeclaredCopyAssignment()) { |
| // Note: The following rules are largely analoguous to the copy |
| // constructor rules. Note that virtual bases are not taken into account |
| // for determining the argument type of the operator. Note also that |
| // operators taking an object instead of a reference are allowed. |
| // |
| // C++ [class.copy]p10: |
| // If the class definition does not explicitly declare a copy |
| // assignment operator, one is declared implicitly. |
| // The implicitly-defined copy assignment operator for a class X |
| // will have the form |
| // |
| // X& X::operator=(const X&) |
| // |
| // if |
| bool HasConstCopyAssignment = true; |
| |
| // -- each direct base class B of X has a copy assignment operator |
| // whose parameter is of type const B&, const volatile B& or B, |
| // and |
| for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(); |
| HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) { |
| assert(!Base->getType()->isDependentType() && |
| "Cannot generate implicit members for class with dependent bases."); |
| const CXXRecordDecl *BaseClassDecl |
| = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); |
| const CXXMethodDecl *MD = 0; |
| HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context, |
| MD); |
| } |
| |
| // -- for all the nonstatic data members of X that are of a class |
| // type M (or array thereof), each such class type has a copy |
| // assignment operator whose parameter is of type const M&, |
| // const volatile M& or M. |
| for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(); |
| HasConstCopyAssignment && Field != ClassDecl->field_end(); |
| ++Field) { |
| QualType FieldType = (*Field)->getType(); |
| if (const ArrayType *Array = Context.getAsArrayType(FieldType)) |
| FieldType = Array->getElementType(); |
| if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { |
| const CXXRecordDecl *FieldClassDecl |
| = cast<CXXRecordDecl>(FieldClassType->getDecl()); |
| const CXXMethodDecl *MD = 0; |
| HasConstCopyAssignment |
| = FieldClassDecl->hasConstCopyAssignment(Context, MD); |
| } |
| } |
| |
| // Otherwise, the implicitly declared copy assignment operator will |
| // have the form |
| // |
| // X& X::operator=(X&) |
| QualType ArgType = ClassType; |
| QualType RetType = Context.getLValueReferenceType(ArgType); |
| if (HasConstCopyAssignment) |
| ArgType = ArgType.withConst(); |
| ArgType = Context.getLValueReferenceType(ArgType); |
| |
| // An implicitly-declared copy assignment operator is an inline public |
| // member of its class. |
| DeclarationName Name = |
| Context.DeclarationNames.getCXXOperatorName(OO_Equal); |
| CXXMethodDecl *CopyAssignment = |
| CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name, |
| Context.getFunctionType(RetType, &ArgType, 1, |
| false, 0), |
| /*TInfo=*/0, /*isStatic=*/false, /*isInline=*/true); |
| CopyAssignment->setAccess(AS_public); |
| CopyAssignment->setImplicit(); |
| CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment()); |
| CopyAssignment->setCopyAssignment(true); |
| |
| // Add the parameter to the operator. |
| ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment, |
| ClassDecl->getLocation(), |
| /*IdentifierInfo=*/0, |
| ArgType, /*TInfo=*/0, |
| VarDecl::None, 0); |
| CopyAssignment->setParams(Context, &FromParam, 1); |
| |
| // Don't call addedAssignmentOperator. There is no way to distinguish an |
| // implicit from an explicit assignment operator. |
| ClassDecl->addDecl(CopyAssignment); |
| AddOverriddenMethods(ClassDecl, CopyAssignment); |
| } |
| |
| if (!ClassDecl->hasUserDeclaredDestructor()) { |
| // C++ [class.dtor]p2: |
| // If a class has no user-declared destructor, a destructor is |
| // declared implicitly. An implicitly-declared destructor is an |
| // inline public member of its class. |
| DeclarationName Name |
| = Context.DeclarationNames.getCXXDestructorName(ClassType); |
| CXXDestructorDecl *Destructor |
| = CXXDestructorDecl::Create(Context, ClassDecl, |
| ClassDecl->getLocation(), Name, |
| Context.getFunctionType(Context.VoidTy, |
| 0, 0, false, 0), |
| /*isInline=*/true, |
| /*isImplicitlyDeclared=*/true); |
| Destructor->setAccess(AS_public); |
| Destructor->setImplicit(); |
| Destructor->setTrivial(ClassDecl->hasTrivialDestructor()); |
| ClassDecl->addDecl(Destructor); |
| |
| AddOverriddenMethods(ClassDecl, Destructor); |
| } |
| } |
| |
| void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) { |
| Decl *D = TemplateD.getAs<Decl>(); |
| if (!D) |
| return; |
| |
| TemplateParameterList *Params = 0; |
| if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) |
| Params = Template->getTemplateParameters(); |
| else if (ClassTemplatePartialSpecializationDecl *PartialSpec |
| = dyn_cast<ClassTemplatePartialSpecializationDecl>(D)) |
| Params = PartialSpec->getTemplateParameters(); |
| else |
| return; |
| |
| for (TemplateParameterList::iterator Param = Params->begin(), |
| ParamEnd = Params->end(); |
| Param != ParamEnd; ++Param) { |
| NamedDecl *Named = cast<NamedDecl>(*Param); |
| if (Named->getDeclName()) { |
| S->AddDecl(DeclPtrTy::make(Named)); |
| IdResolver.AddDecl(Named); |
| } |
| } |
| } |
| |
| void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) { |
| if (!RecordD) return; |
| AdjustDeclIfTemplate(RecordD); |
| CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD.getAs<Decl>()); |
| PushDeclContext(S, Record); |
| } |
| |
| void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) { |
| if (!RecordD) return; |
| PopDeclContext(); |
| } |
| |
| /// ActOnStartDelayedCXXMethodDeclaration - We have completed |
| /// parsing a top-level (non-nested) C++ class, and we are now |
| /// parsing those parts of the given Method declaration that could |
| /// not be parsed earlier (C++ [class.mem]p2), such as default |
| /// arguments. This action should enter the scope of the given |
| /// Method declaration as if we had just parsed the qualified method |
| /// name. However, it should not bring the parameters into scope; |
| /// that will be performed by ActOnDelayedCXXMethodParameter. |
| void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) { |
| } |
| |
| /// ActOnDelayedCXXMethodParameter - We've already started a delayed |
| /// C++ method declaration. We're (re-)introducing the given |
| /// function parameter into scope for use in parsing later parts of |
| /// the method declaration. For example, we could see an |
| /// ActOnParamDefaultArgument event for this parameter. |
| void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) { |
| if (!ParamD) |
| return; |
| |
| ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>()); |
| |
| // If this parameter has an unparsed default argument, clear it out |
| // to make way for the parsed default argument. |
| if (Param->hasUnparsedDefaultArg()) |
| Param->setDefaultArg(0); |
| |
| S->AddDecl(DeclPtrTy::make(Param)); |
| if (Param->getDeclName()) |
| IdResolver.AddDecl(Param); |
| } |
| |
| /// ActOnFinishDelayedCXXMethodDeclaration - We have finished |
| /// processing the delayed method declaration for Method. The method |
| /// declaration is now considered finished. There may be a separate |
| /// ActOnStartOfFunctionDef action later (not necessarily |
| /// immediately!) for this method, if it was also defined inside the |
| /// class body. |
| void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) { |
| if (!MethodD) |
| return; |
| |
| AdjustDeclIfTemplate(MethodD); |
| |
| FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>()); |
| |
| // Now that we have our default arguments, check the constructor |
| // again. It could produce additional diagnostics or affect whether |
| // the class has implicitly-declared destructors, among other |
| // things. |
| if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method)) |
| CheckConstructor(Constructor); |
| |
| // Check the default arguments, which we may have added. |
| if (!Method->isInvalidDecl()) |
| CheckCXXDefaultArguments(Method); |
| } |
| |
| /// CheckConstructorDeclarator - Called by ActOnDeclarator to check |
| /// the well-formedness of the constructor declarator @p D with type @p |
| /// R. If there are any errors in the declarator, this routine will |
| /// emit diagnostics and set the invalid bit to true. In any case, the type |
| /// will be updated to reflect a well-formed type for the constructor and |
| /// returned. |
| QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R, |
| FunctionDecl::StorageClass &SC) { |
| bool isVirtual = D.getDeclSpec().isVirtualSpecified(); |
| |
| // C++ [class.ctor]p3: |
| // A constructor shall not be virtual (10.3) or static (9.4). A |
| // constructor can be invoked for a const, volatile or const |
| // volatile object. A constructor shall not be declared const, |
| // volatile, or const volatile (9.3.2). |
| if (isVirtual) { |
| if (!D.isInvalidType()) |
| Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) |
| << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc()) |
| << SourceRange(D.getIdentifierLoc()); |
| D.setInvalidType(); |
| } |
| if (SC == FunctionDecl::Static) { |
| if (!D.isInvalidType()) |
| Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) |
| << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) |
| << SourceRange(D.getIdentifierLoc()); |
| D.setInvalidType(); |
| SC = FunctionDecl::None; |
| } |
| |
| DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; |
| if (FTI.TypeQuals != 0) { |
| if (FTI.TypeQuals & Qualifiers::Const) |
| Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor) |
| << "const" << SourceRange(D.getIdentifierLoc()); |
| if (FTI.TypeQuals & Qualifiers::Volatile) |
| Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor) |
| << "volatile" << SourceRange(D.getIdentifierLoc()); |
| if (FTI.TypeQuals & Qualifiers::Restrict) |
| Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor) |
| << "restrict" << SourceRange(D.getIdentifierLoc()); |
| } |
| |
| // Rebuild the function type "R" without any type qualifiers (in |
| // case any of the errors above fired) and with "void" as the |
| // return type, since constructors don't have return types. We |
| // *always* have to do this, because GetTypeForDeclarator will |
| // put in a result type of "int" when none was specified. |
| const FunctionProtoType *Proto = R->getAs<FunctionProtoType>(); |
| return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(), |
| Proto->getNumArgs(), |
| Proto->isVariadic(), 0); |
| } |
| |
| /// CheckConstructor - Checks a fully-formed constructor for |
| /// well-formedness, issuing any diagnostics required. Returns true if |
| /// the constructor declarator is invalid. |
| void Sema::CheckConstructor(CXXConstructorDecl *Constructor) { |
| CXXRecordDecl *ClassDecl |
| = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext()); |
| if (!ClassDecl) |
| return Constructor->setInvalidDecl(); |
| |
| // C++ [class.copy]p3: |
| // A declaration of a constructor for a class X is ill-formed if |
| // its first parameter is of type (optionally cv-qualified) X and |
| // either there are no other parameters or else all other |
| // parameters have default arguments. |
| if (!Constructor->isInvalidDecl() && |
| ((Constructor->getNumParams() == 1) || |
| (Constructor->getNumParams() > 1 && |
| Constructor->getParamDecl(1)->hasDefaultArg())) && |
| Constructor->getTemplateSpecializationKind() |
| != TSK_ImplicitInstantiation) { |
| QualType ParamType = Constructor->getParamDecl(0)->getType(); |
| QualType ClassTy = Context.getTagDeclType(ClassDecl); |
| if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) { |
| SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation(); |
| Diag(ParamLoc, diag::err_constructor_byvalue_arg) |
| << CodeModificationHint::CreateInsertion(ParamLoc, " const &"); |
| |
| // FIXME: Rather that making the constructor invalid, we should endeavor |
| // to fix the type. |
| Constructor->setInvalidDecl(); |
| } |
| } |
| |
| // Notify the class that we've added a constructor. |
| ClassDecl->addedConstructor(Context, Constructor); |
| } |
| |
| /// CheckDestructor - Checks a fully-formed destructor for well-formedness, |
| /// issuing any diagnostics required. Returns true on error. |
| bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) { |
| CXXRecordDecl *RD = Destructor->getParent(); |
| |
| if (Destructor->isVirtual()) { |
| SourceLocation Loc; |
| |
| if (!Destructor->isImplicit()) |
| Loc = Destructor->getLocation(); |
| else |
| Loc = RD->getLocation(); |
| |
| // If we have a virtual destructor, look up the deallocation function |
| FunctionDecl *OperatorDelete = 0; |
| DeclarationName Name = |
| Context.DeclarationNames.getCXXOperatorName(OO_Delete); |
| if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete)) |
| return true; |
| |
| Destructor->setOperatorDelete(OperatorDelete); |
| } |
| |
| return false; |
| } |
| |
| static inline bool |
| FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) { |
| return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 && |
| FTI.ArgInfo[0].Param && |
| FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()); |
| } |
| |
| /// CheckDestructorDeclarator - Called by ActOnDeclarator to check |
| /// the well-formednes of the destructor declarator @p D with type @p |
| /// R. If there are any errors in the declarator, this routine will |
| /// emit diagnostics and set the declarator to invalid. Even if this happens, |
| /// will be updated to reflect a well-formed type for the destructor and |
| /// returned. |
| QualType Sema::CheckDestructorDeclarator(Declarator &D, |
| FunctionDecl::StorageClass& SC) { |
| // C++ [class.dtor]p1: |
| // [...] A typedef-name that names a class is a class-name |
| // (7.1.3); however, a typedef-name that names a class shall not |
| // be used as the identifier in the declarator for a destructor |
| // declaration. |
| QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName); |
| if (isa<TypedefType>(DeclaratorType)) { |
| Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name) |
| << DeclaratorType; |
| D.setInvalidType(); |
| } |
| |
| // C++ [class.dtor]p2: |
| // A destructor is used to destroy objects of its class type. A |
| // destructor takes no parameters, and no return type can be |
| // specified for it (not even void). The address of a destructor |
| // shall not be taken. A destructor shall not be static. A |
| // destructor can be invoked for a const, volatile or const |
| // volatile object. A destructor shall not be declared const, |
| // volatile or const volatile (9.3.2). |
| if (SC == FunctionDecl::Static) { |
| if (!D.isInvalidType()) |
| Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be) |
| << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) |
| << SourceRange(D.getIdentifierLoc()); |
| SC = FunctionDecl::None; |
| D.setInvalidType(); |
| } |
| if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) { |
| // Destructors don't have return types, but the parser will |
| // happily parse something like: |
| // |
| // class X { |
| // float ~X(); |
| // }; |
| // |
| // The return type will be eliminated later. |
| Diag(D.getIdentifierLoc(), diag::err_destructor_return_type) |
| << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) |
| << SourceRange(D.getIdentifierLoc()); |
| } |
| |
| DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; |
| if (FTI.TypeQuals != 0 && !D.isInvalidType()) { |
| if (FTI.TypeQuals & Qualifiers::Const) |
| Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor) |
| << "const" << SourceRange(D.getIdentifierLoc()); |
| if (FTI.TypeQuals & Qualifiers::Volatile) |
| Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor) |
| << "volatile" << SourceRange(D.getIdentifierLoc()); |
| if (FTI.TypeQuals & Qualifiers::Restrict) |
| Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor) |
| << "restrict" << SourceRange(D.getIdentifierLoc()); |
| D.setInvalidType(); |
| } |
| |
| // Make sure we don't have any parameters. |
| if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) { |
| Diag(D.getIdentifierLoc(), diag::err_destructor_with_params); |
| |
| // Delete the parameters. |
| FTI.freeArgs(); |
| D.setInvalidType(); |
| } |
| |
| // Make sure the destructor isn't variadic. |
| if (FTI.isVariadic) { |
| Diag(D.getIdentifierLoc(), diag::err_destructor_variadic); |
| D.setInvalidType(); |
| } |
| |
| // Rebuild the function type "R" without any type qualifiers or |
| // parameters (in case any of the errors above fired) and with |
| // "void" as the return type, since destructors don't have return |
| // types. We *always* have to do this, because GetTypeForDeclarator |
| // will put in a result type of "int" when none was specified. |
| return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0); |
| } |
| |
| /// CheckConversionDeclarator - Called by ActOnDeclarator to check the |
| /// well-formednes of the conversion function declarator @p D with |
| /// type @p R. If there are any errors in the declarator, this routine |
| /// will emit diagnostics and return true. Otherwise, it will return |
| /// false. Either way, the type @p R will be updated to reflect a |
| /// well-formed type for the conversion operator. |
| void Sema::CheckConversionDeclarator(Declarator &D, QualType &R, |
| FunctionDecl::StorageClass& SC) { |
| // C++ [class.conv.fct]p1: |
| // Neither parameter types nor return type can be specified. The |
| // type of a conversion function (8.3.5) is "function taking no |
| // parameter returning conversion-type-id." |
| if (SC == FunctionDecl::Static) { |
| if (!D.isInvalidType()) |
| Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member) |
| << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) |
| << SourceRange(D.getIdentifierLoc()); |
| D.setInvalidType(); |
| SC = FunctionDecl::None; |
| } |
| if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) { |
| // Conversion functions don't have return types, but the parser will |
| // happily parse something like: |
| // |
| // class X { |
| // float operator bool(); |
| // }; |
| // |
| // The return type will be changed later anyway. |
| Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type) |
| << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) |
| << SourceRange(D.getIdentifierLoc()); |
| } |
| |
| // Make sure we don't have any parameters. |
| if (R->getAs<FunctionProtoType>()->getNumArgs() > 0) { |
| Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params); |
| |
| // Delete the parameters. |
| D.getTypeObject(0).Fun.freeArgs(); |
| D.setInvalidType(); |
| } |
| |
| // Make sure the conversion function isn't variadic. |
| if (R->getAs<FunctionProtoType>()->isVariadic() && !D.isInvalidType()) { |
| Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic); |
| D.setInvalidType(); |
| } |
| |
| // C++ [class.conv.fct]p4: |
| // The conversion-type-id shall not represent a function type nor |
| // an array type. |
| QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId); |
| if (ConvType->isArrayType()) { |
| Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array); |
| ConvType = Context.getPointerType(ConvType); |
| D.setInvalidType(); |
| } else if (ConvType->isFunctionType()) { |
| Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function); |
| ConvType = Context.getPointerType(ConvType); |
| D.setInvalidType(); |
| } |
| |
| // Rebuild the function type "R" without any parameters (in case any |
| // of the errors above fired) and with the conversion type as the |
| // return type. |
| R = Context.getFunctionType(ConvType, 0, 0, false, |
| R->getAs<FunctionProtoType>()->getTypeQuals()); |
| |
| // C++0x explicit conversion operators. |
| if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x) |
| Diag(D.getDeclSpec().getExplicitSpecLoc(), |
| diag::warn_explicit_conversion_functions) |
| << SourceRange(D.getDeclSpec().getExplicitSpecLoc()); |
| } |
| |
| /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete |
| /// the declaration of the given C++ conversion function. This routine |
| /// is responsible for recording the conversion function in the C++ |
| /// class, if possible. |
| Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) { |
| assert(Conversion && "Expected to receive a conversion function declaration"); |
| |
| CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext()); |
| |
| // Make sure we aren't redeclaring the conversion function. |
| QualType ConvType = Context.getCanonicalType(Conversion->getConversionType()); |
| |
| // C++ [class.conv.fct]p1: |
| // [...] A conversion function is never used to convert a |
| // (possibly cv-qualified) object to the (possibly cv-qualified) |
| // same object type (or a reference to it), to a (possibly |
| // cv-qualified) base class of that type (or a reference to it), |
| // or to (possibly cv-qualified) void. |
| // FIXME: Suppress this warning if the conversion function ends up being a |
| // virtual function that overrides a virtual function in a base class. |
| QualType ClassType |
| = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); |
| if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>()) |
| ConvType = ConvTypeRef->getPointeeType(); |
| if (ConvType->isRecordType()) { |
| ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType(); |
| if (ConvType == ClassType) |
| Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used) |
| << ClassType; |
| else if (IsDerivedFrom(ClassType, ConvType)) |
| Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used) |
| << ClassType << ConvType; |
| } else if (ConvType->isVoidType()) { |
| Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used) |
| << ClassType << ConvType; |
| } |
| |
| if (Conversion->getPreviousDeclaration()) { |
| const NamedDecl *ExpectedPrevDecl = Conversion->getPreviousDeclaration(); |
| if (FunctionTemplateDecl *ConversionTemplate |
| = Conversion->getDescribedFunctionTemplate()) |
| ExpectedPrevDecl = ConversionTemplate->getPreviousDeclaration(); |
| if (ClassDecl->replaceConversion(ExpectedPrevDecl, Conversion)) |
| return DeclPtrTy::make(Conversion); |
| assert(Conversion->isInvalidDecl() && "Conversion should not get here."); |
| } else if (FunctionTemplateDecl *ConversionTemplate |
| = Conversion->getDescribedFunctionTemplate()) |
| ClassDecl->addConversionFunction(ConversionTemplate); |
| else if (!Conversion->getPrimaryTemplate()) // ignore specializations |
| ClassDecl->addConversionFunction(Conversion); |
| |
| return DeclPtrTy::make(Conversion); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Namespace Handling |
| //===----------------------------------------------------------------------===// |
| |
| /// ActOnStartNamespaceDef - This is called at the start of a namespace |
| /// definition. |
| Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope, |
| SourceLocation IdentLoc, |
| IdentifierInfo *II, |
| SourceLocation LBrace) { |
| NamespaceDecl *Namespc = |
| NamespaceDecl::Create(Context, CurContext, IdentLoc, II); |
| Namespc->setLBracLoc(LBrace); |
| |
| Scope *DeclRegionScope = NamespcScope->getParent(); |
| |
| if (II) { |
| // C++ [namespace.def]p2: |
| // The identifier in an original-namespace-definition shall not have been |
| // previously defined in the declarative region in which the |
| // original-namespace-definition appears. The identifier in an |
| // original-namespace-definition is the name of the namespace. Subsequently |
| // in that declarative region, it is treated as an original-namespace-name. |
| |
| NamedDecl *PrevDecl |
| = LookupSingleName(DeclRegionScope, II, LookupOrdinaryName, |
| ForRedeclaration); |
| |
| if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) { |
| // This is an extended namespace definition. |
| // Attach this namespace decl to the chain of extended namespace |
| // definitions. |
| OrigNS->setNextNamespace(Namespc); |
| Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace()); |
| |
| // Remove the previous declaration from the scope. |
| if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) { |
| IdResolver.RemoveDecl(OrigNS); |
| DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS)); |
| } |
| } else if (PrevDecl) { |
| // This is an invalid name redefinition. |
| Diag(Namespc->getLocation(), diag::err_redefinition_different_kind) |
| << Namespc->getDeclName(); |
| Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
| Namespc->setInvalidDecl(); |
| // Continue on to push Namespc as current DeclContext and return it. |
| } else if (II->isStr("std") && |
| CurContext->getLookupContext()->isTranslationUnit()) { |
| // This is the first "real" definition of the namespace "std", so update |
| // our cache of the "std" namespace to point at this definition. |
| if (StdNamespace) { |
| // We had already defined a dummy namespace "std". Link this new |
| // namespace definition to the dummy namespace "std". |
| StdNamespace->setNextNamespace(Namespc); |
| StdNamespace->setLocation(IdentLoc); |
| Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace()); |
| } |
| |
| // Make our StdNamespace cache point at the first real definition of the |
| // "std" namespace. |
| StdNamespace = Namespc; |
| } |
| |
| PushOnScopeChains(Namespc, DeclRegionScope); |
| } else { |
| // Anonymous namespaces. |
| assert(Namespc->isAnonymousNamespace()); |
| CurContext->addDecl(Namespc); |
| |
| // Link the anonymous namespace into its parent. |
| NamespaceDecl *PrevDecl; |
| DeclContext *Parent = CurContext->getLookupContext(); |
| if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) { |
| PrevDecl = TU->getAnonymousNamespace(); |
| TU->setAnonymousNamespace(Namespc); |
| } else { |
| NamespaceDecl *ND = cast<NamespaceDecl>(Parent); |
| PrevDecl = ND->getAnonymousNamespace(); |
| ND->setAnonymousNamespace(Namespc); |
| } |
| |
| // Link the anonymous namespace with its previous declaration. |
| if (PrevDecl) { |
| assert(PrevDecl->isAnonymousNamespace()); |
| assert(!PrevDecl->getNextNamespace()); |
| Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace()); |
| PrevDecl->setNextNamespace(Namespc); |
| } |
| |
| // C++ [namespace.unnamed]p1. An unnamed-namespace-definition |
| // behaves as if it were replaced by |
| // namespace unique { /* empty body */ } |
| // using namespace unique; |
| // namespace unique { namespace-body } |
| // where all occurrences of 'unique' in a translation unit are |
| // replaced by the same identifier and this identifier differs |
| // from all other identifiers in the entire program. |
| |
| // We just create the namespace with an empty name and then add an |
| // implicit using declaration, just like the standard suggests. |
| // |
| // CodeGen enforces the "universally unique" aspect by giving all |
| // declarations semantically contained within an anonymous |
| // namespace internal linkage. |
| |
| if (!PrevDecl) { |
| UsingDirectiveDecl* UD |
| = UsingDirectiveDecl::Create(Context, CurContext, |
| /* 'using' */ LBrace, |
| /* 'namespace' */ SourceLocation(), |
| /* qualifier */ SourceRange(), |
| /* NNS */ NULL, |
| /* identifier */ SourceLocation(), |
| Namespc, |
| /* Ancestor */ CurContext); |
| UD->setImplicit(); |
| CurContext->addDecl(UD); |
| } |
| } |
| |
| // Although we could have an invalid decl (i.e. the namespace name is a |
| // redefinition), push it as current DeclContext and try to continue parsing. |
| // FIXME: We should be able to push Namespc here, so that the each DeclContext |
| // for the namespace has the declarations that showed up in that particular |
| // namespace definition. |
| PushDeclContext(NamespcScope, Namespc); |
| return DeclPtrTy::make(Namespc); |
| } |
| |
| /// getNamespaceDecl - Returns the namespace a decl represents. If the decl |
| /// is a namespace alias, returns the namespace it points to. |
| static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) { |
| if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D)) |
| return AD->getNamespace(); |
| return dyn_cast_or_null<NamespaceDecl>(D); |
| } |
| |
| /// ActOnFinishNamespaceDef - This callback is called after a namespace is |
| /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef. |
| void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) { |
| Decl *Dcl = D.getAs<Decl>(); |
| NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl); |
| assert(Namespc && "Invalid parameter, expected NamespaceDecl"); |
| Namespc->setRBracLoc(RBrace); |
| PopDeclContext(); |
| } |
| |
| Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S, |
| SourceLocation UsingLoc, |
| SourceLocation NamespcLoc, |
| const CXXScopeSpec &SS, |
| SourceLocation IdentLoc, |
| IdentifierInfo *NamespcName, |
| AttributeList *AttrList) { |
| assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); |
| assert(NamespcName && "Invalid NamespcName."); |
| assert(IdentLoc.isValid() && "Invalid NamespceName location."); |
| assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); |
| |
| UsingDirectiveDecl *UDir = 0; |
| |
| // Lookup namespace name. |
| LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName); |
| LookupParsedName(R, S, &SS); |
| if (R.isAmbiguous()) |
| return DeclPtrTy(); |
| |
| if (!R.empty()) { |
| NamedDecl *Named = R.getFoundDecl(); |
| assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named)) |
| && "expected namespace decl"); |
| // C++ [namespace.udir]p1: |
| // A using-directive specifies that the names in the nominated |
| // namespace can be used in the scope in which the |
| // using-directive appears after the using-directive. During |
| // unqualified name lookup (3.4.1), the names appear as if they |
| // were declared in the nearest enclosing namespace which |
| // contains both the using-directive and the nominated |
| // namespace. [Note: in this context, "contains" means "contains |
| // directly or indirectly". ] |
| |
| // Find enclosing context containing both using-directive and |
| // nominated namespace. |
| NamespaceDecl *NS = getNamespaceDecl(Named); |
| DeclContext *CommonAncestor = cast<DeclContext>(NS); |
| while (CommonAncestor && !CommonAncestor->Encloses(CurContext)) |
| CommonAncestor = CommonAncestor->getParent(); |
| |
| UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc, |
| SS.getRange(), |
| (NestedNameSpecifier *)SS.getScopeRep(), |
| IdentLoc, Named, CommonAncestor); |
| PushUsingDirective(S, UDir); |
| } else { |
| Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); |
| } |
| |
| // FIXME: We ignore attributes for now. |
| delete AttrList; |
| return DeclPtrTy::make(UDir); |
| } |
| |
| void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) { |
| // If scope has associated entity, then using directive is at namespace |
| // or translation unit scope. We add UsingDirectiveDecls, into |
| // it's lookup structure. |
| if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) |
| Ctx->addDecl(UDir); |
| else |
| // Otherwise it is block-sope. using-directives will affect lookup |
| // only to the end of scope. |
| S->PushUsingDirective(DeclPtrTy::make(UDir)); |
| } |
| |
| |
| Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S, |
| AccessSpecifier AS, |
| bool HasUsingKeyword, |
| SourceLocation UsingLoc, |
| const CXXScopeSpec &SS, |
| UnqualifiedId &Name, |
| AttributeList *AttrList, |
| bool IsTypeName, |
| SourceLocation TypenameLoc) { |
| assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); |
| |
| switch (Name.getKind()) { |
| case UnqualifiedId::IK_Identifier: |
| case UnqualifiedId::IK_OperatorFunctionId: |
| case UnqualifiedId::IK_LiteralOperatorId: |
| case UnqualifiedId::IK_ConversionFunctionId: |
| break; |
| |
| case UnqualifiedId::IK_ConstructorName: |
| // C++0x inherited constructors. |
| if (getLangOptions().CPlusPlus0x) break; |
| |
| Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor) |
| << SS.getRange(); |
| return DeclPtrTy(); |
| |
| case UnqualifiedId::IK_DestructorName: |
| Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor) |
| << SS.getRange(); |
| return DeclPtrTy(); |
| |
| case UnqualifiedId::IK_TemplateId: |
| Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id) |
| << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc); |
| return DeclPtrTy(); |
| } |
| |
| DeclarationName TargetName = GetNameFromUnqualifiedId(Name); |
| if (!TargetName) |
| return DeclPtrTy(); |
| |
| // Warn about using declarations. |
| // TODO: store that the declaration was written without 'using' and |
| // talk about access decls instead of using decls in the |
| // diagnostics. |
| if (!HasUsingKeyword) { |
| UsingLoc = Name.getSourceRange().getBegin(); |
| |
| Diag(UsingLoc, diag::warn_access_decl_deprecated) |
| << CodeModificationHint::CreateInsertion(SS.getRange().getBegin(), |
| "using "); |
| } |
| |
| NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS, |
| Name.getSourceRange().getBegin(), |
| TargetName, AttrList, |
| /* IsInstantiation */ false, |
| IsTypeName, TypenameLoc); |
| if (UD) |
| PushOnScopeChains(UD, S, /*AddToContext*/ false); |
| |
| return DeclPtrTy::make(UD); |
| } |
| |
| /// Determines whether to create a using shadow decl for a particular |
| /// decl, given the set of decls existing prior to this using lookup. |
| bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig, |
| const LookupResult &Previous) { |
| // Diagnose finding a decl which is not from a base class of the |
| // current class. We do this now because there are cases where this |
| // function will silently decide not to build a shadow decl, which |
| // will pre-empt further diagnostics. |
| // |
| // We don't need to do this in C++0x because we do the check once on |
| // the qualifier. |
| // |
| // FIXME: diagnose the following if we care enough: |
| // struct A { int foo; }; |
| // struct B : A { using A::foo; }; |
| // template <class T> struct C : A {}; |
| // template <class T> struct D : C<T> { using B::foo; } // <--- |
| // This is invalid (during instantiation) in C++03 because B::foo |
| // resolves to the using decl in B, which is not a base class of D<T>. |
| // We can't diagnose it immediately because C<T> is an unknown |
| // specialization. The UsingShadowDecl in D<T> then points directly |
| // to A::foo, which will look well-formed when we instantiate. |
| // The right solution is to not collapse the shadow-decl chain. |
| if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) { |
| DeclContext *OrigDC = Orig->getDeclContext(); |
| |
| // Handle enums and anonymous structs. |
| if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent(); |
| CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC); |
| while (OrigRec->isAnonymousStructOrUnion()) |
| OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext()); |
| |
| if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) { |
| if (OrigDC == CurContext) { |
| Diag(Using->getLocation(), |
| diag::err_using_decl_nested_name_specifier_is_current_class) |
| << Using->getNestedNameRange(); |
| Diag(Orig->getLocation(), diag::note_using_decl_target); |
| return true; |
| } |
| |
| Diag(Using->getNestedNameRange().getBegin(), |
| diag::err_using_decl_nested_name_specifier_is_not_base_class) |
| << Using->getTargetNestedNameDecl() |
| << cast<CXXRecordDecl>(CurContext) |
| << Using->getNestedNameRange(); |
| Diag(Orig->getLocation(), diag::note_using_decl_target); |
| return true; |
| } |
| } |
| |
| if (Previous.empty()) return false; |
| |
| NamedDecl *Target = Orig; |
| if (isa<UsingShadowDecl>(Target)) |
| Target = cast<UsingShadowDecl>(Target)->getTargetDecl(); |
| |
| // If the target happens to be one of the previous declarations, we |
| // don't have a conflict. |
| // |
| // FIXME: but we might be increasing its access, in which case we |
| // should redeclare it. |
| NamedDecl *NonTag = 0, *Tag = 0; |
| for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); |
| I != E; ++I) { |
| NamedDecl *D = (*I)->getUnderlyingDecl(); |
| if (D->getCanonicalDecl() == Target->getCanonicalDecl()) |
| return false; |
| |
| (isa<TagDecl>(D) ? Tag : NonTag) = D; |
| } |
| |
| if (Target->isFunctionOrFunctionTemplate()) { |
| FunctionDecl *FD; |
| if (isa<FunctionTemplateDecl>(Target)) |
| FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl(); |
| else |
| FD = cast<FunctionDecl>(Target); |
| |
| NamedDecl *OldDecl = 0; |
| switch (CheckOverload(FD, Previous, OldDecl)) { |
| case Ovl_Overload: |
| return false; |
| |
| case Ovl_NonFunction: |
| Diag(Using->getLocation(), diag::err_using_decl_conflict); |
| break; |
| |
| // We found a decl with the exact signature. |
| case Ovl_Match: |
| if (isa<UsingShadowDecl>(OldDecl)) { |
| // Silently ignore the possible conflict. |
| return false; |
| } |
| |
| // If we're in a record, we want to hide the target, so we |
| // return true (without a diagnostic) to tell the caller not to |
| // build a shadow decl. |
| if (CurContext->isRecord()) |
| return true; |
| |
| // If we're not in a record, this is an error. |
| Diag(Using->getLocation(), diag::err_using_decl_conflict); |
| break; |
| } |
| |
| Diag(Target->getLocation(), diag::note_using_decl_target); |
| Diag(OldDecl->getLocation(), diag::note_using_decl_conflict); |
| return true; |
| } |
| |
| // Target is not a function. |
| |
| if (isa<TagDecl>(Target)) { |
| // No conflict between a tag and a non-tag. |
| if (!Tag) return false; |
| |
| Diag(Using->getLocation(), diag::err_using_decl_conflict); |
| Diag(Target->getLocation(), diag::note_using_decl_target); |
| Diag(Tag->getLocation(), diag::note_using_decl_conflict); |
| return true; |
| } |
| |
| // No conflict between a tag and a non-tag. |
| if (!NonTag) return false; |
| |
| Diag(Using->getLocation(), diag::err_using_decl_conflict); |
| Diag(Target->getLocation(), diag::note_using_decl_target); |
| Diag(NonTag->getLocation(), diag::note_using_decl_conflict); |
| return true; |
| } |
| |
| /// Builds a shadow declaration corresponding to a 'using' declaration. |
| UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S, |
| UsingDecl *UD, |
| NamedDecl *Orig) { |
| |
| // If we resolved to another shadow declaration, just coalesce them. |
| NamedDecl *Target = Orig; |
| if (isa<UsingShadowDecl>(Target)) { |
| Target = cast<UsingShadowDecl>(Target)->getTargetDecl(); |
| assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration"); |
| } |
| |
| UsingShadowDecl *Shadow |
| = UsingShadowDecl::Create(Context, CurContext, |
| UD->getLocation(), UD, Target); |
| UD->addShadowDecl(Shadow); |
| |
| if (S) |
| PushOnScopeChains(Shadow, S); |
| else |
| CurContext->addDecl(Shadow); |
| Shadow->setAccess(UD->getAccess()); |
| |
| if (Orig->isInvalidDecl() || UD->isInvalidDecl()) |
| Shadow->setInvalidDecl(); |
| |
| return Shadow; |
| } |
| |
| /// Hides a using shadow declaration. This is required by the current |
| /// using-decl implementation when a resolvable using declaration in a |
| /// class is followed by a declaration which would hide or override |
| /// one or more of the using decl's targets; for example: |
| /// |
| /// struct Base { void foo(int); }; |
| /// struct Derived : Base { |
| /// using Base::foo; |
| /// void foo(int); |
| /// }; |
| /// |
| /// The governing language is C++03 [namespace.udecl]p12: |
| /// |
| /// When a using-declaration brings names from a base class into a |
| /// derived class scope, member functions in the derived class |
| /// override and/or hide member functions with the same name and |
| /// parameter types in a base class (rather than conflicting). |
| /// |
| /// There are two ways to implement this: |
| /// (1) optimistically create shadow decls when they're not hidden |
| /// by existing declarations, or |
| /// (2) don't create any shadow decls (or at least don't make them |
| /// visible) until we've fully parsed/instantiated the class. |
| /// The problem with (1) is that we might have to retroactively remove |
| /// a shadow decl, which requires several O(n) operations because the |
| /// decl structures are (very reasonably) not designed for removal. |
| /// (2) avoids this but is very fiddly and phase-dependent. |
| void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) { |
| // Remove it from the DeclContext... |
| Shadow->getDeclContext()->removeDecl(Shadow); |
| |
| // ...and the scope, if applicable... |
| if (S) { |
| S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow))); |
| IdResolver.RemoveDecl(Shadow); |
| } |
| |
| // ...and the using decl. |
| Shadow->getUsingDecl()->removeShadowDecl(Shadow); |
| |
| // TODO: complain somehow if Shadow was used. It shouldn't |
| // be possible for this to happen, because |
| } |
| |
| /// Builds a using declaration. |
| /// |
| /// \param IsInstantiation - Whether this call arises from an |
| /// instantiation of an unresolved using declaration. We treat |
| /// the lookup differently for these declarations. |
| NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS, |
| SourceLocation UsingLoc, |
| const CXXScopeSpec &SS, |
| SourceLocation IdentLoc, |
| DeclarationName Name, |
| AttributeList *AttrList, |
| bool IsInstantiation, |
| bool IsTypeName, |
| SourceLocation TypenameLoc) { |
| assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); |
| assert(IdentLoc.isValid() && "Invalid TargetName location."); |
| |
| // FIXME: We ignore attributes for now. |
| delete AttrList; |
| |
| if (SS.isEmpty()) { |
| Diag(IdentLoc, diag::err_using_requires_qualname); |
| return 0; |
| } |
| |
| // Do the redeclaration lookup in the current scope. |
| LookupResult Previous(*this, Name, IdentLoc, LookupUsingDeclName, |
| ForRedeclaration); |
| Previous.setHideTags(false); |
| if (S) { |
| LookupName(Previous, S); |
| |
| // It is really dumb that we have to do this. |
| LookupResult::Filter F = Previous.makeFilter(); |
| while (F.hasNext()) { |
| NamedDecl *D = F.next(); |
| if (!isDeclInScope(D, CurContext, S)) |
| F.erase(); |
| } |
| F.done(); |
| } else { |
| assert(IsInstantiation && "no scope in non-instantiation"); |
| assert(CurContext->isRecord() && "scope not record in instantiation"); |
| LookupQualifiedName(Previous, CurContext); |
| } |
| |
| NestedNameSpecifier *NNS = |
| static_cast<NestedNameSpecifier *>(SS.getScopeRep()); |
| |
| // Check for invalid redeclarations. |
| if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous)) |
| return 0; |
| |
| // Check for bad qualifiers. |
| if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc)) |
| return 0; |
| |
| DeclContext *LookupContext = computeDeclContext(SS); |
| NamedDecl *D; |
| if (!LookupContext) { |
| if (IsTypeName) { |
| // FIXME: not all declaration name kinds are legal here |
| D = UnresolvedUsingTypenameDecl::Create(Context, CurContext, |
| UsingLoc, TypenameLoc, |
| SS.getRange(), NNS, |
| IdentLoc, Name); |
| } else { |
| D = UnresolvedUsingValueDecl::Create(Context, CurContext, |
| UsingLoc, SS.getRange(), NNS, |
| IdentLoc, Name); |
| } |
| } else { |
| D = UsingDecl::Create(Context, CurContext, IdentLoc, |
| SS.getRange(), UsingLoc, NNS, Name, |
| IsTypeName); |
| } |
| D->setAccess(AS); |
| CurContext->addDecl(D); |
| |
| if (!LookupContext) return D; |
| UsingDecl *UD = cast<UsingDecl>(D); |
| |
| if (RequireCompleteDeclContext(SS)) { |
| UD->setInvalidDecl(); |
| return UD; |
| } |
| |
| // Look up the target name. |
| |
| LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName); |
| |
| // Unlike most lookups, we don't always want to hide tag |
| // declarations: tag names are visible through the using declaration |
| // even if hidden by ordinary names, *except* in a dependent context |
| // where it's important for the sanity of two-phase lookup. |
| if (!IsInstantiation) |
| R.setHideTags(false); |
| |
| LookupQualifiedName(R, LookupContext); |
| |
| if (R.empty()) { |
| Diag(IdentLoc, diag::err_no_member) |
| << Name << LookupContext << SS.getRange(); |
| UD->setInvalidDecl(); |
| return UD; |
| } |
| |
| if (R.isAmbiguous()) { |
| UD->setInvalidDecl(); |
| return UD; |
| } |
| |
| if (IsTypeName) { |
| // If we asked for a typename and got a non-type decl, error out. |
| if (!R.getAsSingle<TypeDecl>()) { |
| Diag(IdentLoc, diag::err_using_typename_non_type); |
| for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) |
| Diag((*I)->getUnderlyingDecl()->getLocation(), |
| diag::note_using_decl_target); |
| UD->setInvalidDecl(); |
| return UD; |
| } |
| } else { |
| // If we asked for a non-typename and we got a type, error out, |
| // but only if this is an instantiation of an unresolved using |
| // decl. Otherwise just silently find the type name. |
| if (IsInstantiation && R.getAsSingle<TypeDecl>()) { |
| Diag(IdentLoc, diag::err_using_dependent_value_is_type); |
| Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target); |
| UD->setInvalidDecl(); |
| return UD; |
| } |
| } |
| |
| // C++0x N2914 [namespace.udecl]p6: |
| // A using-declaration shall not name a namespace. |
| if (R.getAsSingle<NamespaceDecl>()) { |
| Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace) |
| << SS.getRange(); |
| UD->setInvalidDecl(); |
| return UD; |
| } |
| |
| for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { |
| if (!CheckUsingShadowDecl(UD, *I, Previous)) |
| BuildUsingShadowDecl(S, UD, *I); |
| } |
| |
| return UD; |
| } |
| |
| /// Checks that the given using declaration is not an invalid |
| /// redeclaration. Note that this is checking only for the using decl |
| /// itself, not for any ill-formedness among the UsingShadowDecls. |
| bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc, |
| bool isTypeName, |
| const CXXScopeSpec &SS, |
| SourceLocation NameLoc, |
| const LookupResult &Prev) { |
| // C++03 [namespace.udecl]p8: |
| // C++0x [namespace.udecl]p10: |
| // A using-declaration is a declaration and can therefore be used |
| // repeatedly where (and only where) multiple declarations are |
| // allowed. |
| // That's only in file contexts. |
| if (CurContext->getLookupContext()->isFileContext()) |
| return false; |
| |
| NestedNameSpecifier *Qual |
| = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); |
| |
| for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) { |
| NamedDecl *D = *I; |
| |
| bool DTypename; |
| NestedNameSpecifier *DQual; |
| if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) { |
| DTypename = UD->isTypeName(); |
| DQual = UD->getTargetNestedNameDecl(); |
| } else if (UnresolvedUsingValueDecl *UD |
| = dyn_cast<UnresolvedUsingValueDecl>(D)) { |
| DTypename = false; |
| DQual = UD->getTargetNestedNameSpecifier(); |
| } else if (UnresolvedUsingTypenameDecl *UD |
| = dyn_cast<UnresolvedUsingTypenameDecl>(D)) { |
| DTypename = true; |
| DQual = UD->getTargetNestedNameSpecifier(); |
| } else continue; |
| |
| // using decls differ if one says 'typename' and the other doesn't. |
| // FIXME: non-dependent using decls? |
| if (isTypeName != DTypename) continue; |
| |
| // using decls differ if they name different scopes (but note that |
| // template instantiation can cause this check to trigger when it |
| // didn't before instantiation). |
| if (Context.getCanonicalNestedNameSpecifier(Qual) != |
| Context.getCanonicalNestedNameSpecifier(DQual)) |
| continue; |
| |
| Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange(); |
| Diag(D->getLocation(), diag::note_using_decl) << 1; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| |
| /// Checks that the given nested-name qualifier used in a using decl |
| /// in the current context is appropriately related to the current |
| /// scope. If an error is found, diagnoses it and returns true. |
| bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc, |
| const CXXScopeSpec &SS, |
| SourceLocation NameLoc) { |
| DeclContext *NamedContext = computeDeclContext(SS); |
| |
| if (!CurContext->isRecord()) { |
| // C++03 [namespace.udecl]p3: |
| // C++0x [namespace.udecl]p8: |
| // A using-declaration for a class member shall be a member-declaration. |
| |
| // If we weren't able to compute a valid scope, it must be a |
| // dependent class scope. |
| if (!NamedContext || NamedContext->isRecord()) { |
| Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member) |
| << SS.getRange(); |
| return true; |
| } |
| |
| // Otherwise, everything is known to be fine. |
| return false; |
| } |
| |
| // The current scope is a record. |
| |
| // If the named context is dependent, we can't decide much. |
| if (!NamedContext) { |
| // FIXME: in C++0x, we can diagnose if we can prove that the |
| // nested-name-specifier does not refer to a base class, which is |
| // still possible in some cases. |
| |
| // Otherwise we have to conservatively report that things might be |
| // okay. |
| return false; |
| } |
| |
| if (!NamedContext->isRecord()) { |
| // Ideally this would point at the last name in the specifier, |
| // but we don't have that level of source info. |
| Diag(SS.getRange().getBegin(), |
| diag::err_using_decl_nested_name_specifier_is_not_class) |
| << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange(); |
| return true; |
| } |
| |
| if (getLangOptions().CPlusPlus0x) { |
| // C++0x [namespace.udecl]p3: |
| // In a using-declaration used as a member-declaration, the |
| // nested-name-specifier shall name a base class of the class |
| // being defined. |
| |
| if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom( |
| cast<CXXRecordDecl>(NamedContext))) { |
| if (CurContext == NamedContext) { |
| Diag(NameLoc, |
| diag::err_using_decl_nested_name_specifier_is_current_class) |
| << SS.getRange(); |
| return true; |
| } |
| |
| Diag(SS.getRange().getBegin(), |
| diag::err_using_decl_nested_name_specifier_is_not_base_class) |
| << (NestedNameSpecifier*) SS.getScopeRep() |
| << cast<CXXRecordDecl>(CurContext) |
| << SS.getRange(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // C++03 [namespace.udecl]p4: |
| // A using-declaration used as a member-declaration shall refer |
| // to a member of a base class of the class being defined [etc.]. |
| |
| // Salient point: SS doesn't have to name a base class as long as |
| // lookup only finds members from base classes. Therefore we can |
| // diagnose here only if we can prove that that can't happen, |
| // i.e. if the class hierarchies provably don't intersect. |
| |
| // TODO: it would be nice if "definitely valid" results were cached |
| // in the UsingDecl and UsingShadowDecl so that these checks didn't |
| // need to be repeated. |
| |
| struct UserData { |
| llvm::DenseSet<const CXXRecordDecl*> Bases; |
| |
| static bool collect(const CXXRecordDecl *Base, void *OpaqueData) { |
| UserData *Data = reinterpret_cast<UserData*>(OpaqueData); |
| Data->Bases.insert(Base); |
| return true; |
| } |
| |
| bool hasDependentBases(const CXXRecordDecl *Class) { |
| return !Class->forallBases(collect, this); |
| } |
| |
| /// Returns true if the base is dependent or is one of the |
| /// accumulated base classes. |
| static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) { |
| UserData *Data = reinterpret_cast<UserData*>(OpaqueData); |
| return !Data->Bases.count(Base); |
| } |
| |
| bool mightShareBases(const CXXRecordDecl *Class) { |
| return Bases.count(Class) || !Class->forallBases(doesNotContain, this); |
| } |
| }; |
| |
| UserData Data; |
| |
| // Returns false if we find a dependent base. |
| if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext))) |
| return false; |
| |
| // Returns false if the class has a dependent base or if it or one |
| // of its bases is present in the base set of the current context. |
| if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext))) |
| return false; |
| |
| Diag(SS.getRange().getBegin(), |
| diag::err_using_decl_nested_name_specifier_is_not_base_class) |
| << (NestedNameSpecifier*) SS.getScopeRep() |
| << cast<CXXRecordDecl>(CurContext) |
| << SS.getRange(); |
| |
| return true; |
| } |
| |
| Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S, |
| SourceLocation NamespaceLoc, |
| SourceLocation AliasLoc, |
| IdentifierInfo *Alias, |
| const CXXScopeSpec &SS, |
| SourceLocation IdentLoc, |
| IdentifierInfo *Ident) { |
| |
| // Lookup the namespace name. |
| LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName); |
| LookupParsedName(R, S, &SS); |
| |
| // Check if we have a previous declaration with the same name. |
| if (NamedDecl *PrevDecl |
| = LookupSingleName(S, Alias, LookupOrdinaryName, ForRedeclaration)) { |
| if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) { |
| // We already have an alias with the same name that points to the same |
| // namespace, so don't create a new one. |
| if (!R.isAmbiguous() && !R.empty() && |
| AD->getNamespace() == getNamespaceDecl(R.getFoundDecl())) |
| return DeclPtrTy(); |
| } |
| |
| unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition : |
| diag::err_redefinition_different_kind; |
| Diag(AliasLoc, DiagID) << Alias; |
| Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
| return DeclPtrTy(); |
| } |
| |
| if (R.isAmbiguous()) |
| return DeclPtrTy(); |
| |
| if (R.empty()) { |
| Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange(); |
| return DeclPtrTy(); |
| } |
| |
| NamespaceAliasDecl *AliasDecl = |
| NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc, |
| Alias, SS.getRange(), |
| (NestedNameSpecifier *)SS.getScopeRep(), |
| IdentLoc, R.getFoundDecl()); |
| |
| CurContext->addDecl(AliasDecl); |
| return DeclPtrTy::make(AliasDecl); |
| } |
| |
| void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation, |
| CXXConstructorDecl *Constructor) { |
| assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() && |
| !Constructor->isUsed()) && |
| "DefineImplicitDefaultConstructor - call it for implicit default ctor"); |
| |
| CXXRecordDecl *ClassDecl |
| = cast<CXXRecordDecl>(Constructor->getDeclContext()); |
| assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor"); |
| |
| if (SetBaseOrMemberInitializers(Constructor, 0, 0, true)) { |
| Diag(CurrentLocation, diag::note_member_synthesized_at) |
| << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl); |
| Constructor->setInvalidDecl(); |
| } else { |
| Constructor->setUsed(); |
| } |
| } |
| |
| void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation, |
| CXXDestructorDecl *Destructor) { |
| assert((Destructor->isImplicit() && !Destructor->isUsed()) && |
| "DefineImplicitDestructor - call it for implicit default dtor"); |
| CXXRecordDecl *ClassDecl = Destructor->getParent(); |
| assert(ClassDecl && "DefineImplicitDestructor - invalid destructor"); |
| // C++ [class.dtor] p5 |
| // Before the implicitly-declared default destructor for a class is |
| // implicitly defined, all the implicitly-declared default destructors |
| // for its base class and its non-static data members shall have been |
| // implicitly defined. |
| for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), |
| E = ClassDecl->bases_end(); Base != E; ++Base) { |
| CXXRecordDecl *BaseClassDecl |
| = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); |
| if (!BaseClassDecl->hasTrivialDestructor()) { |
| if (CXXDestructorDecl *BaseDtor = |
| const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context))) |
| MarkDeclarationReferenced(CurrentLocation, BaseDtor); |
| else |
| assert(false && |
| "DefineImplicitDestructor - missing dtor in a base class"); |
| } |
| } |
| |
| for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), |
| E = ClassDecl->field_end(); Field != E; ++Field) { |
| QualType FieldType = Context.getCanonicalType((*Field)->getType()); |
| if (const ArrayType *Array = Context.getAsArrayType(FieldType)) |
| FieldType = Array->getElementType(); |
| if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { |
| CXXRecordDecl *FieldClassDecl |
| = cast<CXXRecordDecl>(FieldClassType->getDecl()); |
| if (!FieldClassDecl->hasTrivialDestructor()) { |
| if (CXXDestructorDecl *FieldDtor = |
| const_cast<CXXDestructorDecl*>( |
| FieldClassDecl->getDestructor(Context))) |
| MarkDeclarationReferenced(CurrentLocation, FieldDtor); |
| else |
| assert(false && |
| "DefineImplicitDestructor - missing dtor in class of a data member"); |
| } |
| } |
| } |
| |
| // FIXME: If CheckDestructor fails, we should emit a note about where the |
| // implicit destructor was needed. |
| if (CheckDestructor(Destructor)) { |
| Diag(CurrentLocation, diag::note_member_synthesized_at) |
| << CXXDestructor << Context.getTagDeclType(ClassDecl); |
| |
| Destructor->setInvalidDecl(); |
| return; |
| } |
| |
| Destructor->setUsed(); |
| } |
| |
| void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation, |
| CXXMethodDecl *MethodDecl) { |
| assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() && |
| MethodDecl->getOverloadedOperator() == OO_Equal && |
| !MethodDecl->isUsed()) && |
| "DefineImplicitOverloadedAssign - call it for implicit assignment op"); |
| |
| CXXRecordDecl *ClassDecl |
| = cast<CXXRecordDecl>(MethodDecl->getDeclContext()); |
| |
| // C++[class.copy] p12 |
| // Before the implicitly-declared copy assignment operator for a class is |
| // implicitly defined, all implicitly-declared copy assignment operators |
| // for its direct base classes and its nonstatic data members shall have |
| // been implicitly defined. |
| bool err = false; |
| for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), |
| E = ClassDecl->bases_end(); Base != E; ++Base) { |
| CXXRecordDecl *BaseClassDecl |
| = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); |
| if (CXXMethodDecl *BaseAssignOpMethod = |
| getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0), |
| BaseClassDecl)) |
| MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod); |
| } |
| for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), |
| E = ClassDecl->field_end(); Field != E; ++Field) { |
| QualType FieldType = Context.getCanonicalType((*Field)->getType()); |
| if (const ArrayType *Array = Context.getAsArrayType(FieldType)) |
| FieldType = Array->getElementType(); |
| if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { |
| CXXRecordDecl *FieldClassDecl |
| = cast<CXXRecordDecl>(FieldClassType->getDecl()); |
| if (CXXMethodDecl *FieldAssignOpMethod = |
| getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0), |
| FieldClassDecl)) |
| MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod); |
| } else if (FieldType->isReferenceType()) { |
| Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) |
| << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); |
| Diag(Field->getLocation(), diag::note_declared_at); |
| Diag(CurrentLocation, diag::note_first_required_here); |
| err = true; |
| } else if (FieldType.isConstQualified()) { |
| Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) |
| << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); |
| Diag(Field->getLocation(), diag::note_declared_at); |
| Diag(CurrentLocation, diag::note_first_required_here); |
| err = true; |
| } |
| } |
| if (!err) |
| MethodDecl->setUsed(); |
| } |
| |
| CXXMethodDecl * |
| Sema::getAssignOperatorMethod(SourceLocation CurrentLocation, |
| ParmVarDecl *ParmDecl, |
| CXXRecordDecl *ClassDecl) { |
| QualType LHSType = Context.getTypeDeclType(ClassDecl); |
| QualType RHSType(LHSType); |
| // If class's assignment operator argument is const/volatile qualified, |
| // look for operator = (const/volatile B&). Otherwise, look for |
| // operator = (B&). |
| RHSType = Context.getCVRQualifiedType(RHSType, |
| ParmDecl->getType().getCVRQualifiers()); |
| ExprOwningPtr<Expr> LHS(this, new (Context) DeclRefExpr(ParmDecl, |
| LHSType, |
| SourceLocation())); |
| ExprOwningPtr<Expr> RHS(this, new (Context) DeclRefExpr(ParmDecl, |
| RHSType, |
| CurrentLocation)); |
| Expr *Args[2] = { &*LHS, &*RHS }; |
| OverloadCandidateSet CandidateSet; |
| AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2, |
| CandidateSet); |
| OverloadCandidateSet::iterator Best; |
| if (BestViableFunction(CandidateSet, CurrentLocation, Best) == OR_Success) |
| return cast<CXXMethodDecl>(Best->Function); |
| assert(false && |
| "getAssignOperatorMethod - copy assignment operator method not found"); |
| return 0; |
| } |
| |
| void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation, |
| CXXConstructorDecl *CopyConstructor, |
| unsigned TypeQuals) { |
| assert((CopyConstructor->isImplicit() && |
| CopyConstructor->isCopyConstructor(TypeQuals) && |
| !CopyConstructor->isUsed()) && |
| "DefineImplicitCopyConstructor - call it for implicit copy ctor"); |
| |
| CXXRecordDecl *ClassDecl |
| = cast<CXXRecordDecl>(CopyConstructor->getDeclContext()); |
| assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor"); |
| // C++ [class.copy] p209 |
| // Before the implicitly-declared copy constructor for a class is |
| // implicitly defined, all the implicitly-declared copy constructors |
| // for its base class and its non-static data members shall have been |
| // implicitly defined. |
| for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(); |
| Base != ClassDecl->bases_end(); ++Base) { |
| CXXRecordDecl *BaseClassDecl |
| = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); |
| if (CXXConstructorDecl *BaseCopyCtor = |
| BaseClassDecl->getCopyConstructor(Context, TypeQuals)) |
| MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor); |
| } |
| for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), |
| FieldEnd = ClassDecl->field_end(); |
| Field != FieldEnd; ++Field) { |
| QualType FieldType = Context.getCanonicalType((*Field)->getType()); |
| if (const ArrayType *Array = Context.getAsArrayType(FieldType)) |
| FieldType = Array->getElementType(); |
| if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { |
| CXXRecordDecl *FieldClassDecl |
| = cast<CXXRecordDecl>(FieldClassType->getDecl()); |
| if (CXXConstructorDecl *FieldCopyCtor = |
| FieldClassDecl->getCopyConstructor(Context, TypeQuals)) |
| MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor); |
| } |
| } |
| CopyConstructor->setUsed(); |
| } |
| |
| Sema::OwningExprResult |
| Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, |
| CXXConstructorDecl *Constructor, |
| MultiExprArg ExprArgs, |
| bool RequiresZeroInit) { |
| bool Elidable = false; |
| |
| // C++ [class.copy]p15: |
| // Whenever a temporary class object is copied using a copy constructor, and |
| // this object and the copy have the same cv-unqualified type, an |
| // implementation is permitted to treat the original and the copy as two |
| // different ways of referring to the same object and not perform a copy at |
| // all, even if the class copy constructor or destructor have side effects. |
| |
| // FIXME: Is this enough? |
| if (Constructor->isCopyConstructor()) { |
| Expr *E = ((Expr **)ExprArgs.get())[0]; |
| if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) |
| if (ICE->getCastKind() == CastExpr::CK_NoOp) |
| E = ICE->getSubExpr(); |
| while (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E)) |
| E = BE->getSubExpr(); |
| if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) |
| if (ICE->getCastKind() == CastExpr::CK_NoOp) |
| E = ICE->getSubExpr(); |
| |
| if (CallExpr *CE = dyn_cast<CallExpr>(E)) |
| Elidable = !CE->getCallReturnType()->isReferenceType(); |
| else if (isa<CXXTemporaryObjectExpr>(E)) |
| Elidable = true; |
| } |
| |
| return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor, |
| Elidable, move(ExprArgs), RequiresZeroInit); |
| } |
| |
| /// BuildCXXConstructExpr - Creates a complete call to a constructor, |
| /// including handling of its default argument expressions. |
| Sema::OwningExprResult |
| Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, |
| CXXConstructorDecl *Constructor, bool Elidable, |
| MultiExprArg ExprArgs, |
| bool RequiresZeroInit) { |
| unsigned NumExprs = ExprArgs.size(); |
| Expr **Exprs = (Expr **)ExprArgs.release(); |
| |
| MarkDeclarationReferenced(ConstructLoc, Constructor); |
| return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc, |
| Constructor, Elidable, Exprs, NumExprs, |
| RequiresZeroInit)); |
| } |
| |
| Sema::OwningExprResult |
| Sema::BuildCXXTemporaryObjectExpr(CXXConstructorDecl *Constructor, |
| QualType Ty, |
| SourceLocation TyBeginLoc, |
| MultiExprArg Args, |
| SourceLocation RParenLoc) { |
| unsigned NumExprs = Args.size(); |
| Expr **Exprs = (Expr **)Args.release(); |
| |
| MarkDeclarationReferenced(TyBeginLoc, Constructor); |
| return Owned(new (Context) CXXTemporaryObjectExpr(Context, Constructor, Ty, |
| TyBeginLoc, Exprs, |
| NumExprs, RParenLoc)); |
| } |
| |
| |
| bool Sema::InitializeVarWithConstructor(VarDecl *VD, |
| CXXConstructorDecl *Constructor, |
| MultiExprArg Exprs) { |
| OwningExprResult TempResult = |
| BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor, |
| move(Exprs)); |
| if (TempResult.isInvalid()) |
| return true; |
| |
| Expr *Temp = TempResult.takeAs<Expr>(); |
| MarkDeclarationReferenced(VD->getLocation(), Constructor); |
| Temp = MaybeCreateCXXExprWithTemporaries(Temp); |
| VD->setInit(Context, Temp); |
| |
| return false; |
| } |
| |
| void Sema::FinalizeVarWithDestructor(VarDecl *VD, QualType DeclInitType) { |
| CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>( |
| DeclInitType->getAs<RecordType>()->getDecl()); |
| if (!ClassDecl->hasTrivialDestructor()) |
| if (CXXDestructorDecl *Destructor = |
| const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context))) |
| MarkDeclarationReferenced(VD->getLocation(), Destructor); |
| } |
| |
| /// AddCXXDirectInitializerToDecl - This action is called immediately after |
| /// ActOnDeclarator, when a C++ direct initializer is present. |
| /// e.g: "int x(1);" |
| void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl, |
| SourceLocation LParenLoc, |
| MultiExprArg Exprs, |
| SourceLocation *CommaLocs, |
| SourceLocation RParenLoc) { |
| unsigned NumExprs = Exprs.size(); |
| assert(NumExprs != 0 && Exprs.get() && "missing expressions"); |
| Decl *RealDecl = Dcl.getAs<Decl>(); |
| |
| // If there is no declaration, there was an error parsing it. Just ignore |
| // the initializer. |
| if (RealDecl == 0) |
| return; |
| |
| VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl); |
| if (!VDecl) { |
| Diag(RealDecl->getLocation(), diag::err_illegal_initializer); |
| RealDecl->setInvalidDecl(); |
| return; |
| } |
| |
| // We will represent direct-initialization similarly to copy-initialization: |
| // int x(1); -as-> int x = 1; |
| // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c); |
| // |
| // Clients that want to distinguish between the two forms, can check for |
| // direct initializer using VarDecl::hasCXXDirectInitializer(). |
| // A major benefit is that clients that don't particularly care about which |
| // exactly form was it (like the CodeGen) can handle both cases without |
| // special case code. |
| |
| // If either the declaration has a dependent type or if any of the expressions |
| // is type-dependent, we represent the initialization via a ParenListExpr for |
| // later use during template instantiation. |
| if (VDecl->getType()->isDependentType() || |
| Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) { |
| // Let clients know that initialization was done with a direct initializer. |
| VDecl->setCXXDirectInitializer(true); |
| |
| // Store the initialization expressions as a ParenListExpr. |
| unsigned NumExprs = Exprs.size(); |
| VDecl->setInit(Context, |
| new (Context) ParenListExpr(Context, LParenLoc, |
| (Expr **)Exprs.release(), |
| NumExprs, RParenLoc)); |
| return; |
| } |
| |
| |
| // C++ 8.5p11: |
| // The form of initialization (using parentheses or '=') is generally |
| // insignificant, but does matter when the entity being initialized has a |
| // class type. |
| QualType DeclInitType = VDecl->getType(); |
| if (const ArrayType *Array = Context.getAsArrayType(DeclInitType)) |
| DeclInitType = Context.getBaseElementType(Array); |
| |
| if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(), |
| diag::err_typecheck_decl_incomplete_type)) { |
| VDecl->setInvalidDecl(); |
| return; |
| } |
| |
| // The variable can not have an abstract class type. |
| if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(), |
| diag::err_abstract_type_in_decl, |
| AbstractVariableType)) |
| VDecl->setInvalidDecl(); |
| |
| const VarDecl *Def = 0; |
| if (VDecl->getDefinition(Def)) { |
| Diag(VDecl->getLocation(), diag::err_redefinition) |
| << VDecl->getDeclName(); |
| Diag(Def->getLocation(), diag::note_previous_definition); |
| VDecl->setInvalidDecl(); |
| return; |
| } |
| |
| // Capture the variable that is being initialized and the style of |
| // initialization. |
| InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl); |
| |
| // FIXME: Poor source location information. |
| InitializationKind Kind |
| = InitializationKind::CreateDirect(VDecl->getLocation(), |
| LParenLoc, RParenLoc); |
| |
| InitializationSequence InitSeq(*this, Entity, Kind, |
| (Expr**)Exprs.get(), Exprs.size()); |
| OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs)); |
| if (Result.isInvalid()) { |
| VDecl->setInvalidDecl(); |
| return; |
| } |
| |
| Result = MaybeCreateCXXExprWithTemporaries(move(Result)); |
| VDecl->setInit(Context, Result.takeAs<Expr>()); |
| VDecl->setCXXDirectInitializer(true); |
| |
| if (VDecl->getType()->getAs<RecordType>()) |
| FinalizeVarWithDestructor(VDecl, DeclInitType); |
| } |
| |
| /// \brief Add the applicable constructor candidates for an initialization |
| /// by constructor. |
| static void AddConstructorInitializationCandidates(Sema &SemaRef, |
| QualType ClassType, |
| Expr **Args, |
| unsigned NumArgs, |
| InitializationKind Kind, |
| OverloadCandidateSet &CandidateSet) { |
| // C++ [dcl.init]p14: |
| // If the initialization is direct-initialization, or if it is |
| // copy-initialization where the cv-unqualified version of the |
| // source type is the same class as, or a derived class of, the |
| // class of the destination, constructors are considered. The |
| // applicable constructors are enumerated (13.3.1.3), and the |
| // best one is chosen through overload resolution (13.3). The |
| // constructor so selected is called to initialize the object, |
| // with the initializer expression(s) as its argument(s). If no |
| // constructor applies, or the overload resolution is ambiguous, |
| // the initialization is ill-formed. |
| const RecordType *ClassRec = ClassType->getAs<RecordType>(); |
| assert(ClassRec && "Can only initialize a class type here"); |
| |
| // FIXME: When we decide not to synthesize the implicitly-declared |
| // constructors, we'll need to make them appear here. |
| |
| const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl()); |
| DeclarationName ConstructorName |
| = SemaRef.Context.DeclarationNames.getCXXConstructorName( |
| SemaRef.Context.getCanonicalType(ClassType).getUnqualifiedType()); |
| DeclContext::lookup_const_iterator Con, ConEnd; |
| for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName); |
| Con != ConEnd; ++Con) { |
| // Find the constructor (which may be a template). |
| CXXConstructorDecl *Constructor = 0; |
| FunctionTemplateDecl *ConstructorTmpl= dyn_cast<FunctionTemplateDecl>(*Con); |
| if (ConstructorTmpl) |
| Constructor |
| = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl()); |
| else |
| Constructor = cast<CXXConstructorDecl>(*Con); |
| |
| if ((Kind.getKind() == InitializationKind::IK_Direct) || |
| (Kind.getKind() == InitializationKind::IK_Value) || |
| (Kind.getKind() == InitializationKind::IK_Copy && |
| Constructor->isConvertingConstructor(/*AllowExplicit=*/false)) || |
| ((Kind.getKind() == InitializationKind::IK_Default) && |
| Constructor->isDefaultConstructor())) { |
| if (ConstructorTmpl) |
| SemaRef.AddTemplateOverloadCandidate(ConstructorTmpl, |
| /*ExplicitArgs*/ 0, |
| Args, NumArgs, CandidateSet); |
| else |
| SemaRef.AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet); |
| } |
| } |
| } |
| |
| /// \brief Attempt to perform initialization by constructor |
| /// (C++ [dcl.init]p14), which may occur as part of direct-initialization or |
| /// copy-initialization. |
| /// |
| /// This routine determines whether initialization by constructor is possible, |
| /// but it does not emit any diagnostics in the case where the initialization |
| /// is ill-formed. |
| /// |
| /// \param ClassType the type of the object being initialized, which must have |
| /// class type. |
| /// |
| /// \param Args the arguments provided to initialize the object |
| /// |
| /// \param NumArgs the number of arguments provided to initialize the object |
| /// |
| /// \param Kind the type of initialization being performed |
| /// |
| /// \returns the constructor used to initialize the object, if successful. |
| /// Otherwise, emits a diagnostic and returns NULL. |
| CXXConstructorDecl * |
| Sema::TryInitializationByConstructor(QualType ClassType, |
| Expr **Args, unsigned NumArgs, |
| SourceLocation Loc, |
| InitializationKind Kind) { |
| // Build the overload candidate set |
| OverloadCandidateSet CandidateSet; |
| AddConstructorInitializationCandidates(*this, ClassType, Args, NumArgs, Kind, |
| CandidateSet); |
| |
| // Determine whether we found a constructor we can use. |
| OverloadCandidateSet::iterator Best; |
| switch (BestViableFunction(CandidateSet, Loc, Best)) { |
| case OR_Success: |
| case OR_Deleted: |
| // We found a constructor. Return it. |
| return cast<CXXConstructorDecl>(Best->Function); |
| |
| case OR_No_Viable_Function: |
| case OR_Ambiguous: |
| // Overload resolution failed. Return nothing. |
| return 0; |
| } |
| |
| // Silence GCC warning |
| return 0; |
| } |
| |
| /// \brief Perform initialization by constructor (C++ [dcl.init]p14), which |
| /// may occur as part of direct-initialization or copy-initialization. |
| /// |
| /// \param ClassType the type of the object being initialized, which must have |
| /// class type. |
| /// |
| /// \param ArgsPtr the arguments provided to initialize the object |
| /// |
| /// \param Loc the source location where the initialization occurs |
| /// |
| /// \param Range the source range that covers the entire initialization |
| /// |
| /// \param InitEntity the name of the entity being initialized, if known |
| /// |
| /// \param Kind the type of initialization being performed |
| /// |
| /// \param ConvertedArgs a vector that will be filled in with the |
| /// appropriately-converted arguments to the constructor (if initialization |
| /// succeeded). |
| /// |
| /// \returns the constructor used to initialize the object, if successful. |
| /// Otherwise, emits a diagnostic and returns NULL. |
| CXXConstructorDecl * |
| Sema::PerformInitializationByConstructor(QualType ClassType, |
| MultiExprArg ArgsPtr, |
| SourceLocation Loc, SourceRange Range, |
| DeclarationName InitEntity, |
| InitializationKind Kind, |
| ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) { |
| |
| // Build the overload candidate set |
| Expr **Args = (Expr **)ArgsPtr.get(); |
| unsigned NumArgs = ArgsPtr.size(); |
| OverloadCandidateSet CandidateSet; |
| AddConstructorInitializationCandidates(*this, ClassType, Args, NumArgs, Kind, |
| CandidateSet); |
| |
| OverloadCandidateSet::iterator Best; |
| switch (BestViableFunction(CandidateSet, Loc, Best)) { |
| case OR_Success: |
| // We found a constructor. Break out so that we can convert the arguments |
| // appropriately. |
| break; |
| |
| case OR_No_Viable_Function: |
| if (InitEntity) |
| Diag(Loc, diag::err_ovl_no_viable_function_in_init) |
| << InitEntity << Range; |
| else |
| Diag(Loc, diag::err_ovl_no_viable_function_in_init) |
| << ClassType << Range; |
| PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); |
| return 0; |
| |
| case OR_Ambiguous: |
| if (InitEntity) |
| Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range; |
| else |
| Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range; |
| PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); |
| return 0; |
| |
| case OR_Deleted: |
| if (InitEntity) |
| Diag(Loc, diag::err_ovl_deleted_init) |
| << Best->Function->isDeleted() |
| << InitEntity << Range; |
| else { |
| const CXXRecordDecl *RD = |
| cast<CXXRecordDecl>(ClassType->getAs<RecordType>()->getDecl()); |
| Diag(Loc, diag::err_ovl_deleted_init) |
| << Best->Function->isDeleted() |
| << RD->getDeclName() << Range; |
| } |
| PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); |
| return 0; |
| } |
| |
| // Convert the arguments, fill in default arguments, etc. |
| CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); |
| if (CompleteConstructorCall(Constructor, move(ArgsPtr), Loc, ConvertedArgs)) |
| return 0; |
| |
| return Constructor; |
| } |
| |
| /// \brief Given a constructor and the set of arguments provided for the |
| /// constructor, convert the arguments and add any required default arguments |
| /// to form a proper call to this constructor. |
| /// |
| /// \returns true if an error occurred, false otherwise. |
| bool |
| Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor, |
| MultiExprArg ArgsPtr, |
| SourceLocation Loc, |
| ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) { |
| // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall. |
| unsigned NumArgs = ArgsPtr.size(); |
| Expr **Args = (Expr **)ArgsPtr.get(); |
| |
| const FunctionProtoType *Proto |
| = Constructor->getType()->getAs<FunctionProtoType>(); |
| assert(Proto && "Constructor without a prototype?"); |
| unsigned NumArgsInProto = Proto->getNumArgs(); |
| |
| // If too few arguments are available, we'll fill in the rest with defaults. |
| if (NumArgs < NumArgsInProto) |
| ConvertedArgs.reserve(NumArgsInProto); |
| else |
| ConvertedArgs.reserve(NumArgs); |
| |
| VariadicCallType CallType = |
| Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply; |
| llvm::SmallVector<Expr *, 8> AllArgs; |
| bool Invalid = GatherArgumentsForCall(Loc, Constructor, |
| Proto, 0, Args, NumArgs, AllArgs, |
| CallType); |
| for (unsigned i =0, size = AllArgs.size(); i < size; i++) |
| ConvertedArgs.push_back(AllArgs[i]); |
| return Invalid; |
| } |
| |
| /// CompareReferenceRelationship - Compare the two types T1 and T2 to |
| /// determine whether they are reference-related, |
| /// reference-compatible, reference-compatible with added |
| /// qualification, or incompatible, for use in C++ initialization by |
| /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference |
| /// type, and the first type (T1) is the pointee type of the reference |
| /// type being initialized. |
| Sema::ReferenceCompareResult |
| Sema::CompareReferenceRelationship(SourceLocation Loc, |
| QualType OrigT1, QualType OrigT2, |
| bool& DerivedToBase) { |
| assert(!OrigT1->isReferenceType() && |
| "T1 must be the pointee type of the reference type"); |
| assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type"); |
| |
| QualType T1 = Context.getCanonicalType(OrigT1); |
| QualType T2 = Context.getCanonicalType(OrigT2); |
| QualType UnqualT1 = T1.getLocalUnqualifiedType(); |
| QualType UnqualT2 = T2.getLocalUnqualifiedType(); |
| |
| // C++ [dcl.init.ref]p4: |
| // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is |
| // reference-related to "cv2 T2" if T1 is the same type as T2, or |
| // T1 is a base class of T2. |
| if (UnqualT1 == UnqualT2) |
| DerivedToBase = false; |
| else if (!RequireCompleteType(Loc, OrigT1, PDiag()) && |
| !RequireCompleteType(Loc, OrigT2, PDiag()) && |
| IsDerivedFrom(UnqualT2, UnqualT1)) |
| DerivedToBase = true; |
| else |
| return Ref_Incompatible; |
| |
| // At this point, we know that T1 and T2 are reference-related (at |
| // least). |
| |
| // C++ [dcl.init.ref]p4: |
| // "cv1 T1" is reference-compatible with "cv2 T2" if T1 is |
| // reference-related to T2 and cv1 is the same cv-qualification |
| // as, or greater cv-qualification than, cv2. For purposes of |
| // overload resolution, cases for which cv1 is greater |
| // cv-qualification than cv2 are identified as |
| // reference-compatible with added qualification (see 13.3.3.2). |
| if (T1.getCVRQualifiers() == T2.getCVRQualifiers()) |
| return Ref_Compatible; |
| else if (T1.isMoreQualifiedThan(T2)) |
| return Ref_Compatible_With_Added_Qualification; |
| else |
| return Ref_Related; |
| } |
| |
| /// CheckReferenceInit - Check the initialization of a reference |
| /// variable with the given initializer (C++ [dcl.init.ref]). Init is |
| /// the initializer (either a simple initializer or an initializer |
| /// list), and DeclType is the type of the declaration. When ICS is |
| /// non-null, this routine will compute the implicit conversion |
| /// sequence according to C++ [over.ics.ref] and will not produce any |
| /// diagnostics; when ICS is null, it will emit diagnostics when any |
| /// errors are found. Either way, a return value of true indicates |
| /// that there was a failure, a return value of false indicates that |
| /// the reference initialization succeeded. |
| /// |
| /// When @p SuppressUserConversions, user-defined conversions are |
| /// suppressed. |
| /// When @p AllowExplicit, we also permit explicit user-defined |
| /// conversion functions. |
| /// When @p ForceRValue, we unconditionally treat the initializer as an rvalue. |
| /// When @p IgnoreBaseAccess, we don't do access control on to-base conversion. |
| /// This is used when this is called from a C-style cast. |
| bool |
| Sema::CheckReferenceInit(Expr *&Init, QualType DeclType, |
| SourceLocation DeclLoc, |
| bool SuppressUserConversions, |
| bool AllowExplicit, bool ForceRValue, |
| ImplicitConversionSequence *ICS, |
| bool IgnoreBaseAccess) { |
| assert(DeclType->isReferenceType() && "Reference init needs a reference"); |
| |
| QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType(); |
| QualType T2 = Init->getType(); |
| |
| // If the initializer is the address of an overloaded function, try |
| // to resolve the overloaded function. If all goes well, T2 is the |
| // type of the resulting function. |
| if (Context.getCanonicalType(T2) == Context.OverloadTy) { |
| FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType, |
| ICS != 0); |
| if (Fn) { |
| // Since we're performing this reference-initialization for |
| // real, update the initializer with the resulting function. |
| if (!ICS) { |
| if (DiagnoseUseOfDecl(Fn, DeclLoc)) |
| return true; |
| |
| Init = FixOverloadedFunctionReference(Init, Fn); |
| } |
| |
| T2 = Fn->getType(); |
| } |
| } |
| |
| // Compute some basic properties of the types and the initializer. |
| bool isRValRef = DeclType->isRValueReferenceType(); |
| bool DerivedToBase = false; |
| Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression : |
| Init->isLvalue(Context); |
| ReferenceCompareResult RefRelationship |
| = CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase); |
| |
| // Most paths end in a failed conversion. |
| if (ICS) |
| ICS->ConversionKind = ImplicitConversionSequence::BadConversion; |
| |
| // C++ [dcl.init.ref]p5: |
| // A reference to type "cv1 T1" is initialized by an expression |
| // of type "cv2 T2" as follows: |
| |
| // -- If the initializer expression |
| |
| // Rvalue references cannot bind to lvalues (N2812). |
| // There is absolutely no situation where they can. In particular, note that |
| // this is ill-formed, even if B has a user-defined conversion to A&&: |
| // B b; |
| // A&& r = b; |
| if (isRValRef && InitLvalue == Expr::LV_Valid) { |
| if (!ICS) |
| Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref) |
| << Init->getSourceRange(); |
| return true; |
| } |
| |
| bool BindsDirectly = false; |
| // -- is an lvalue (but is not a bit-field), and "cv1 T1" is |
| // reference-compatible with "cv2 T2," or |
| // |
| // Note that the bit-field check is skipped if we are just computing |
| // the implicit conversion sequence (C++ [over.best.ics]p2). |
| if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) && |
| RefRelationship >= Ref_Compatible_With_Added_Qualification) { |
| BindsDirectly = true; |
| |
| if (ICS) { |
| // C++ [over.ics.ref]p1: |
| // When a parameter of reference type binds directly (8.5.3) |
| // to an argument expression, the implicit conversion sequence |
| // is the identity conversion, unless the argument expression |
| // has a type that is a derived class of the parameter type, |
| // in which case the implicit conversion sequence is a |
| // derived-to-base Conversion (13.3.3.1). |
| ICS->ConversionKind = ImplicitConversionSequence::StandardConversion; |
| ICS->Standard.First = ICK_Identity; |
| ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity; |
| ICS->Standard.Third = ICK_Identity; |
| ICS->Standard.FromTypePtr = T2.getAsOpaquePtr(); |
| ICS->Standard.ToTypePtr = T1.getAsOpaquePtr(); |
| ICS->Standard.ReferenceBinding = true; |
| ICS->Standard.DirectBinding = true; |
| ICS->Standard.RRefBinding = false; |
| ICS->Standard.CopyConstructor = 0; |
| |
| // Nothing more to do: the inaccessibility/ambiguity check for |
| // derived-to-base conversions is suppressed when we're |
| // computing the implicit conversion sequence (C++ |
| // [over.best.ics]p2). |
| return false; |
| } else { |
| // Perform the conversion. |
| CastExpr::CastKind CK = CastExpr::CK_NoOp; |
| if (DerivedToBase) |
| CK = CastExpr::CK_DerivedToBase; |
| else if(CheckExceptionSpecCompatibility(Init, T1)) |
| return true; |
| ImpCastExprToType(Init, T1, CK, /*isLvalue=*/true); |
| } |
| } |
| |
| // -- has a class type (i.e., T2 is a class type) and can be |
| // implicitly converted to an lvalue of type "cv3 T3," |
| // where "cv1 T1" is reference-compatible with "cv3 T3" |
| // 92) (this conversion is selected by enumerating the |
| // applicable conversion functions (13.3.1.6) and choosing |
| // the best one through overload resolution (13.3)), |
| if (!isRValRef && !SuppressUserConversions && T2->isRecordType() && |
| !RequireCompleteType(DeclLoc, T2, 0)) { |
| CXXRecordDecl *T2RecordDecl |
| = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl()); |
| |
| OverloadCandidateSet CandidateSet; |
| const UnresolvedSet *Conversions |
| = T2RecordDecl->getVisibleConversionFunctions(); |
| for (UnresolvedSet::iterator I = Conversions->begin(), |
| E = Conversions->end(); I != E; ++I) { |
| NamedDecl *D = *I; |
| CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); |
| if (isa<UsingShadowDecl>(D)) |
| D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
| |
| FunctionTemplateDecl *ConvTemplate |
| = dyn_cast<FunctionTemplateDecl>(D); |
| CXXConversionDecl *Conv; |
| if (ConvTemplate) |
| Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); |
| else |
| Conv = cast<CXXConversionDecl>(D); |
| |
| // If the conversion function doesn't return a reference type, |
| // it can't be considered for this conversion. |
| if (Conv->getConversionType()->isLValueReferenceType() && |
| (AllowExplicit || !Conv->isExplicit())) { |
| if (ConvTemplate) |
| AddTemplateConversionCandidate(ConvTemplate, ActingDC, |
| Init, DeclType, CandidateSet); |
| else |
| AddConversionCandidate(Conv, ActingDC, Init, DeclType, CandidateSet); |
| } |
| } |
| |
| OverloadCandidateSet::iterator Best; |
| switch (BestViableFunction(CandidateSet, DeclLoc, Best)) { |
| case OR_Success: |
| // This is a direct binding. |
| BindsDirectly = true; |
| |
| if (ICS) { |
| // C++ [over.ics.ref]p1: |
| // |
| // [...] If the parameter binds directly to the result of |
| // applying a conversion function to the argument |
| // expression, the implicit conversion sequence is a |
| // user-defined conversion sequence (13.3.3.1.2), with the |
| // second standard conversion sequence either an identity |
| // conversion or, if the conversion function returns an |
| // entity of a type that is a derived class of the parameter |
| // type, a derived-to-base Conversion. |
| ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion; |
| ICS->UserDefined.Before = Best->Conversions[0].Standard; |
| ICS->UserDefined.After = Best->FinalConversion; |
| ICS->UserDefined.ConversionFunction = Best->Function; |
| ICS->UserDefined.EllipsisConversion = false; |
| assert(ICS->UserDefined.After.ReferenceBinding && |
| ICS->UserDefined.After.DirectBinding && |
| "Expected a direct reference binding!"); |
| return false; |
| } else { |
| OwningExprResult InitConversion = |
| BuildCXXCastArgument(DeclLoc, QualType(), |
| CastExpr::CK_UserDefinedConversion, |
| cast<CXXMethodDecl>(Best->Function), |
| Owned(Init)); |
| Init = InitConversion.takeAs<Expr>(); |
| |
| if (CheckExceptionSpecCompatibility(Init, T1)) |
| return true; |
| ImpCastExprToType(Init, T1, CastExpr::CK_UserDefinedConversion, |
| /*isLvalue=*/true); |
| } |
| break; |
| |
| case OR_Ambiguous: |
| if (ICS) { |
| for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); |
| Cand != CandidateSet.end(); ++Cand) |
| if (Cand->Viable) |
| ICS->ConversionFunctionSet.push_back(Cand->Function); |
| break; |
| } |
| Diag(DeclLoc, diag::err_ref_init_ambiguous) << DeclType << Init->getType() |
| << Init->getSourceRange(); |
| PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); |
| return true; |
| |
| case OR_No_Viable_Function: |
| case OR_Deleted: |
| // There was no suitable conversion, or we found a deleted |
| // conversion; continue with other checks. |
| break; |
| } |
| } |
| |
| if (BindsDirectly) { |
| // C++ [dcl.init.ref]p4: |
| // [...] In all cases where the reference-related or |
| // reference-compatible relationship of two types is used to |
| // establish the validity of a reference binding, and T1 is a |
| // base class of T2, a program that necessitates such a binding |
| // is ill-formed if T1 is an inaccessible (clause 11) or |
| // ambiguous (10.2) base class of T2. |
| // |
| // Note that we only check this condition when we're allowed to |
| // complain about errors, because we should not be checking for |
| // ambiguity (or inaccessibility) unless the reference binding |
| // actually happens. |
| if (DerivedToBase) |
| return CheckDerivedToBaseConversion(T2, T1, DeclLoc, |
| Init->getSourceRange(), |
| IgnoreBaseAccess); |
| else |
| return false; |
| } |
| |
| // -- Otherwise, the reference shall be to a non-volatile const |
| // type (i.e., cv1 shall be const), or the reference shall be an |
| // rvalue reference and the initializer expression shall be an rvalue. |
| if (!isRValRef && T1.getCVRQualifiers() != Qualifiers::Const) { |
| if (!ICS) |
| Diag(DeclLoc, diag::err_not_reference_to_const_init) |
| << T1 << int(InitLvalue != Expr::LV_Valid) |
| << T2 << Init->getSourceRange(); |
| return true; |
| } |
| |
| // -- If the initializer expression is an rvalue, with T2 a |
| // class type, and "cv1 T1" is reference-compatible with |
| // "cv2 T2," the reference is bound in one of the |
| // following ways (the choice is implementation-defined): |
| // |
| // -- The reference is bound to the object represented by |
| // the rvalue (see 3.10) or to a sub-object within that |
| // object. |
| // |
| // -- A temporary of type "cv1 T2" [sic] is created, and |
| // a constructor is called to copy the entire rvalue |
| // object into the temporary. The reference is bound to |
| // the temporary or to a sub-object within the |
| // temporary. |
| // |
| // The constructor that would be used to make the copy |
| // shall be callable whether or not the copy is actually |
| // done. |
| // |
| // Note that C++0x [dcl.init.ref]p5 takes away this implementation |
| // freedom, so we will always take the first option and never build |
| // a temporary in this case. FIXME: We will, however, have to check |
| // for the presence of a copy constructor in C++98/03 mode. |
| if (InitLvalue != Expr::LV_Valid && T2->isRecordType() && |
| RefRelationship >= Ref_Compatible_With_Added_Qualification) { |
| if (ICS) { |
| ICS->ConversionKind = ImplicitConversionSequence::StandardConversion; |
| ICS->Standard.First = ICK_Identity; |
| ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity; |
| ICS->Standard.Third = ICK_Identity; |
| ICS->Standard.FromTypePtr = T2.getAsOpaquePtr(); |
| ICS->Standard.ToTypePtr = T1.getAsOpaquePtr(); |
| ICS->Standard.ReferenceBinding = true; |
| ICS->Standard.DirectBinding = false; |
| ICS->Standard.RRefBinding = isRValRef; |
| ICS->Standard.CopyConstructor = 0; |
| } else { |
| CastExpr::CastKind CK = CastExpr::CK_NoOp; |
| if (DerivedToBase) |
| CK = CastExpr::CK_DerivedToBase; |
| else if(CheckExceptionSpecCompatibility(Init, T1)) |
| return true; |
| ImpCastExprToType(Init, T1, CK, /*isLvalue=*/false); |
| } |
| return false; |
| } |
| |
| // -- Otherwise, a temporary of type "cv1 T1" is created and |
| // initialized from the initializer expression using the |
| // rules for a non-reference copy initialization (8.5). The |
| // reference is then bound to the temporary. If T1 is |
| // reference-related to T2, cv1 must be the same |
| // cv-qualification as, or greater cv-qualification than, |
| // cv2; otherwise, the program is ill-formed. |
| if (RefRelationship == Ref_Related) { |
| // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then |
| // we would be reference-compatible or reference-compatible with |
| // added qualification. But that wasn't the case, so the reference |
| // initialization fails. |
| if (!ICS) |
| Diag(DeclLoc, diag::err_reference_init_drops_quals) |
| << T1 << int(InitLvalue != Expr::LV_Valid) |
| << T2 << Init->getSourceRange(); |
| return true; |
| } |
| |
| // If at least one of the types is a class type, the types are not |
| // related, and we aren't allowed any user conversions, the |
| // reference binding fails. This case is important for breaking |
| // recursion, since TryImplicitConversion below will attempt to |
| // create a temporary through the use of a copy constructor. |
| if (SuppressUserConversions && RefRelationship == Ref_Incompatible && |
| (T1->isRecordType() || T2->isRecordType())) { |
| if (!ICS) |
| Diag(DeclLoc, diag::err_typecheck_convert_incompatible) |
| << DeclType << Init->getType() << AA_Initializing << Init->getSourceRange(); |
| return true; |
| } |
| |
| // Actually try to convert the initializer to T1. |
| if (ICS) { |
| // C++ [over.ics.ref]p2: |
| // |
| // When a parameter of reference type is not bound directly to |
| // an argument expression, the conversion sequence is the one |
| // required to convert the argument expression to the |
| // underlying type of the reference according to |
| // 13.3.3.1. Conceptually, this conversion sequence corresponds |
| // to copy-initializing a temporary of the underlying type with |
| // the argument expression. Any difference in top-level |
| // cv-qualification is subsumed by the initialization itself |
| // and does not constitute a conversion. |
| *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions, |
| /*AllowExplicit=*/false, |
| /*ForceRValue=*/false, |
| /*InOverloadResolution=*/false); |
| |
| // Of course, that's still a reference binding. |
| if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) { |
| ICS->Standard.ReferenceBinding = true; |
| ICS->Standard.RRefBinding = isRValRef; |
| } else if (ICS->ConversionKind == |
| ImplicitConversionSequence::UserDefinedConversion) { |
| ICS->UserDefined.After.ReferenceBinding = true; |
| ICS->UserDefined.After.RRefBinding = isRValRef; |
| } |
| return ICS->ConversionKind == ImplicitConversionSequence::BadConversion; |
| } else { |
| ImplicitConversionSequence Conversions; |
| bool badConversion = PerformImplicitConversion(Init, T1, AA_Initializing, |
| false, false, |
| Conversions); |
| if (badConversion) { |
| if ((Conversions.ConversionKind == |
| ImplicitConversionSequence::BadConversion) |
| && !Conversions.ConversionFunctionSet.empty()) { |
| Diag(DeclLoc, |
| diag::err_lvalue_to_rvalue_ambig_ref) << Init->getSourceRange(); |
| for (int j = Conversions.ConversionFunctionSet.size()-1; |
| j >= 0; j--) { |
| FunctionDecl *Func = Conversions.ConversionFunctionSet[j]; |
| Diag(Func->getLocation(), diag::err_ovl_candidate); |
| } |
| } |
| else { |
| if (isRValRef) |
| Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref) |
| << Init->getSourceRange(); |
| else |
| Diag(DeclLoc, diag::err_invalid_initialization) |
| << DeclType << Init->getType() << Init->getSourceRange(); |
| } |
| } |
| return badConversion; |
| } |
| } |
| |
| static inline bool |
| CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef, |
| const FunctionDecl *FnDecl) { |
| const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext(); |
| if (isa<NamespaceDecl>(DC)) { |
| return SemaRef.Diag(FnDecl->getLocation(), |
| diag::err_operator_new_delete_declared_in_namespace) |
| << FnDecl->getDeclName(); |
| } |
| |
| if (isa<TranslationUnitDecl>(DC) && |
| FnDecl->getStorageClass() == FunctionDecl::Static) { |
| return SemaRef.Diag(FnDecl->getLocation(), |
| diag::err_operator_new_delete_declared_static) |
| << FnDecl->getDeclName(); |
| } |
| |
| return false; |
| } |
| |
| static inline bool |
| CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl, |
| CanQualType ExpectedResultType, |
| CanQualType ExpectedFirstParamType, |
| unsigned DependentParamTypeDiag, |
| unsigned InvalidParamTypeDiag) { |
| QualType ResultType = |
| FnDecl->getType()->getAs<FunctionType>()->getResultType(); |
| |
| // Check that the result type is not dependent. |
| if (ResultType->isDependentType()) |
| return SemaRef.Diag(FnDecl->getLocation(), |
| diag::err_operator_new_delete_dependent_result_type) |
| << FnDecl->getDeclName() << ExpectedResultType; |
| |
| // Check that the result type is what we expect. |
| if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType) |
| return SemaRef.Diag(FnDecl->getLocation(), |
| diag::err_operator_new_delete_invalid_result_type) |
| << FnDecl->getDeclName() << ExpectedResultType; |
| |
| // A function template must have at least 2 parameters. |
| if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2) |
| return SemaRef.Diag(FnDecl->getLocation(), |
| diag::err_operator_new_delete_template_too_few_parameters) |
| << FnDecl->getDeclName(); |
| |
| // The function decl must have at least 1 parameter. |
| if (FnDecl->getNumParams() == 0) |
| return SemaRef.Diag(FnDecl->getLocation(), |
| diag::err_operator_new_delete_too_few_parameters) |
| << FnDecl->getDeclName(); |
| |
| // Check the the first parameter type is not dependent. |
| QualType FirstParamType = FnDecl->getParamDecl(0)->getType(); |
| if (FirstParamType->isDependentType()) |
| return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag) |
| << FnDecl->getDeclName() << ExpectedFirstParamType; |
| |
| // Check that the first parameter type is what we expect. |
| if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() != |
| ExpectedFirstParamType) |
| return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag) |
| << FnDecl->getDeclName() << ExpectedFirstParamType; |
| |
| return false; |
| } |
| |
| static bool |
| CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) { |
| // C++ [basic.stc.dynamic.allocation]p1: |
| // A program is ill-formed if an allocation function is declared in a |
| // namespace scope other than global scope or declared static in global |
| // scope. |
| if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) |
| return true; |
| |
| CanQualType SizeTy = |
| SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType()); |
| |
| // C++ [basic.stc.dynamic.allocation]p1: |
| // The return type shall be void*. The first parameter shall have type |
| // std::size_t. |
| if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy, |
| SizeTy, |
| diag::err_operator_new_dependent_param_type, |
| diag::err_operator_new_param_type)) |
| return true; |
| |
| // C++ [basic.stc.dynamic.allocation]p1: |
| // The first parameter shall not have an associated default argument. |
| if (FnDecl->getParamDecl(0)->hasDefaultArg()) |
| return SemaRef.Diag(FnDecl->getLocation(), |
| diag::err_operator_new_default_arg) |
| << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange(); |
| |
| return false; |
| } |
| |
| static bool |
| CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) { |
| // C++ [basic.stc.dynamic.deallocation]p1: |
| // A program is ill-formed if deallocation functions are declared in a |
| // namespace scope other than global scope or declared static in global |
| // scope. |
| if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) |
| return true; |
| |
| // C++ [basic.stc.dynamic.deallocation]p2: |
| // Each deallocation function shall return void and its first parameter |
| // shall be void*. |
| if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy, |
| SemaRef.Context.VoidPtrTy, |
| diag::err_operator_delete_dependent_param_type, |
| diag::err_operator_delete_param_type)) |
| return true; |
| |
| QualType FirstParamType = FnDecl->getParamDecl(0)->getType(); |
| if (FirstParamType->isDependentType()) |
| return SemaRef.Diag(FnDecl->getLocation(), |
| diag::err_operator_delete_dependent_param_type) |
| << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy; |
| |
| if (SemaRef.Context.getCanonicalType(FirstParamType) != |
| SemaRef.Context.VoidPtrTy) |
| return SemaRef.Diag(FnDecl->getLocation(), |
| diag::err_operator_delete_param_type) |
| << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy; |
| |
| return false; |
| } |
| |
| /// CheckOverloadedOperatorDeclaration - Check whether the declaration |
| /// of this overloaded operator is well-formed. If so, returns false; |
| /// otherwise, emits appropriate diagnostics and returns true. |
| bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) { |
| assert(FnDecl && FnDecl->isOverloadedOperator() && |
| "Expected an overloaded operator declaration"); |
| |
| OverloadedOperatorKind Op = FnDecl->getOverloadedOperator(); |
| |
| // C++ [over.oper]p5: |
| // The allocation and deallocation functions, operator new, |
| // operator new[], operator delete and operator delete[], are |
| // described completely in 3.7.3. The attributes and restrictions |
| // found in the rest of this subclause do not apply to them unless |
| // explicitly stated in 3.7.3. |
| if (Op == OO_Delete || Op == OO_Array_Delete) |
| return CheckOperatorDeleteDeclaration(*this, FnDecl); |
| |
| if (Op == OO_New || Op == OO_Array_New) |
| return CheckOperatorNewDeclaration(*this, FnDecl); |
| |
| // C++ [over.oper]p6: |
| // An operator function shall either be a non-static member |
| // function or be a non-member function and have at least one |
| // parameter whose type is a class, a reference to a class, an |
| // enumeration, or a reference to an enumeration. |
| if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) { |
| if (MethodDecl->isStatic()) |
| return Diag(FnDecl->getLocation(), |
| diag::err_operator_overload_static) << FnDecl->getDeclName(); |
| } else { |
| bool ClassOrEnumParam = false; |
| for (FunctionDecl::param_iterator Param = FnDecl->param_begin(), |
| ParamEnd = FnDecl->param_end(); |
| Param != ParamEnd; ++Param) { |
| QualType ParamType = (*Param)->getType().getNonReferenceType(); |
| if (ParamType->isDependentType() || ParamType->isRecordType() || |
| ParamType->isEnumeralType()) { |
| ClassOrEnumParam = true; |
| break; |
| } |
| } |
| |
| if (!ClassOrEnumParam) |
| return Diag(FnDecl->getLocation(), |
| diag::err_operator_overload_needs_class_or_enum) |
| << FnDecl->getDeclName(); |
| } |
| |
| // C++ [over.oper]p8: |
| // An operator function cannot have default arguments (8.3.6), |
| // except where explicitly stated below. |
| // |
| // Only the function-call operator allows default arguments |
| // (C++ [over.call]p1). |
| if (Op != OO_Call) { |
| for (FunctionDecl::param_iterator Param = FnDecl->param_begin(); |
| Param != FnDecl->param_end(); ++Param) { |
| if ((*Param)->hasDefaultArg()) |
| return Diag((*Param)->getLocation(), |
| diag::err_operator_overload_default_arg) |
| << FnDecl->getDeclName() << (*Param)->getDefaultArgRange(); |
| } |
| } |
| |
| static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = { |
| { false, false, false } |
| #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ |
| , { Unary, Binary, MemberOnly } |
| #include "clang/Basic/OperatorKinds.def" |
| }; |
| |
| bool CanBeUnaryOperator = OperatorUses[Op][0]; |
| bool CanBeBinaryOperator = OperatorUses[Op][1]; |
| bool MustBeMemberOperator = OperatorUses[Op][2]; |
| |
| // C++ [over.oper]p8: |
| // [...] Operator functions cannot have more or fewer parameters |
| // than the number required for the corresponding operator, as |
| // described in the rest of this subclause. |
| unsigned NumParams = FnDecl->getNumParams() |
| + (isa<CXXMethodDecl>(FnDecl)? 1 : 0); |
| if (Op != OO_Call && |
| ((NumParams == 1 && !CanBeUnaryOperator) || |
| (NumParams == 2 && !CanBeBinaryOperator) || |
| (NumParams < 1) || (NumParams > 2))) { |
| // We have the wrong number of parameters. |
| unsigned ErrorKind; |
| if (CanBeUnaryOperator && CanBeBinaryOperator) { |
| ErrorKind = 2; // 2 -> unary or binary. |
| } else if (CanBeUnaryOperator) { |
| ErrorKind = 0; // 0 -> unary |
| } else { |
| assert(CanBeBinaryOperator && |
| "All non-call overloaded operators are unary or binary!"); |
| ErrorKind = 1; // 1 -> binary |
| } |
| |
| return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be) |
| << FnDecl->getDeclName() << NumParams << ErrorKind; |
| } |
| |
| // Overloaded operators other than operator() cannot be variadic. |
| if (Op != OO_Call && |
| FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) { |
| return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic) |
| << FnDecl->getDeclName(); |
| } |
| |
| // Some operators must be non-static member functions. |
| if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) { |
| return Diag(FnDecl->getLocation(), |
| diag::err_operator_overload_must_be_member) |
| << FnDecl->getDeclName(); |
| } |
| |
| // C++ [over.inc]p1: |
| // The user-defined function called operator++ implements the |
| // prefix and postfix ++ operator. If this function is a member |
| // function with no parameters, or a non-member function with one |
| // parameter of class or enumeration type, it defines the prefix |
| // increment operator ++ for objects of that type. If the function |
| // is a member function with one parameter (which shall be of type |
| // int) or a non-member function with two parameters (the second |
| // of which shall be of type int), it defines the postfix |
| // increment operator ++ for objects of that type. |
| if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) { |
| ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1); |
| bool ParamIsInt = false; |
| if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>()) |
| ParamIsInt = BT->getKind() == BuiltinType::Int; |
| |
| if (!ParamIsInt) |
| return Diag(LastParam->getLocation(), |
| diag::err_operator_overload_post_incdec_must_be_int) |
| << LastParam->getType() << (Op == OO_MinusMinus); |
| } |
| |
| // Notify the class if it got an assignment operator. |
| if (Op == OO_Equal) { |
| // Would have returned earlier otherwise. |
| assert(isa<CXXMethodDecl>(FnDecl) && |
| "Overloaded = not member, but not filtered."); |
| CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl); |
| Method->getParent()->addedAssignmentOperator(Context, Method); |
| } |
| |
| return false; |
| } |
| |
| /// ActOnStartLinkageSpecification - Parsed the beginning of a C++ |
| /// linkage specification, including the language and (if present) |
| /// the '{'. ExternLoc is the location of the 'extern', LangLoc is |
| /// the location of the language string literal, which is provided |
| /// by Lang/StrSize. LBraceLoc, if valid, provides the location of |
| /// the '{' brace. Otherwise, this linkage specification does not |
| /// have any braces. |
| Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S, |
| SourceLocation ExternLoc, |
| SourceLocation LangLoc, |
| const char *Lang, |
| unsigned StrSize, |
| SourceLocation LBraceLoc) { |
| LinkageSpecDecl::LanguageIDs Language; |
| if (strncmp(Lang, "\"C\"", StrSize) == 0) |
| Language = LinkageSpecDecl::lang_c; |
| else if (strncmp(Lang, "\"C++\"", StrSize) == 0) |
| Language = LinkageSpecDecl::lang_cxx; |
| else { |
| Diag(LangLoc, diag::err_bad_language); |
| return DeclPtrTy(); |
| } |
| |
| // FIXME: Add all the various semantics of linkage specifications |
| |
| LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, |
| LangLoc, Language, |
| LBraceLoc.isValid()); |
| CurContext->addDecl(D); |
| PushDeclContext(S, D); |
| return DeclPtrTy::make(D); |
| } |
| |
| /// ActOnFinishLinkageSpecification - Completely the definition of |
| /// the C++ linkage specification LinkageSpec. If RBraceLoc is |
| /// valid, it's the position of the closing '}' brace in a linkage |
| /// specification that uses braces. |
| Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S, |
| DeclPtrTy LinkageSpec, |
| SourceLocation RBraceLoc) { |
| if (LinkageSpec) |
| PopDeclContext(); |
| return LinkageSpec; |
| } |
| |
| /// \brief Perform semantic analysis for the variable declaration that |
| /// occurs within a C++ catch clause, returning the newly-created |
| /// variable. |
| VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType, |
| TypeSourceInfo *TInfo, |
| IdentifierInfo *Name, |
| SourceLocation Loc, |
| SourceRange Range) { |
| bool Invalid = false; |
| |
| // Arrays and functions decay. |
| if (ExDeclType->isArrayType()) |
| ExDeclType = Context.getArrayDecayedType(ExDeclType); |
| else if (ExDeclType->isFunctionType()) |
| ExDeclType = Context.getPointerType(ExDeclType); |
| |
| // C++ 15.3p1: The exception-declaration shall not denote an incomplete type. |
| // The exception-declaration shall not denote a pointer or reference to an |
| // incomplete type, other than [cv] void*. |
| // N2844 forbids rvalue references. |
| if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) { |
| Diag(Loc, diag::err_catch_rvalue_ref) << Range; |
| Invalid = true; |
| } |
| |
| QualType BaseType = ExDeclType; |
| int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference |
| unsigned DK = diag::err_catch_incomplete; |
| if (const PointerType *Ptr = BaseType->getAs<PointerType>()) { |
| BaseType = Ptr->getPointeeType(); |
| Mode = 1; |
| DK = diag::err_catch_incomplete_ptr; |
| } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) { |
| // For the purpose of error recovery, we treat rvalue refs like lvalue refs. |
| BaseType = Ref->getPointeeType(); |
| Mode = 2; |
| DK = diag::err_catch_incomplete_ref; |
| } |
| if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) && |
| !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK)) |
| Invalid = true; |
| |
| if (!Invalid && !ExDeclType->isDependentType() && |
| RequireNonAbstractType(Loc, ExDeclType, |
| diag::err_abstract_type_in_decl, |
| AbstractVariableType)) |
| Invalid = true; |
| |
| // FIXME: Need to test for ability to copy-construct and destroy the |
| // exception variable. |
| |
| // FIXME: Need to check for abstract classes. |
| |
| VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc, |
| Name, ExDeclType, TInfo, VarDecl::None); |
| |
| if (Invalid) |
| ExDecl->setInvalidDecl(); |
| |
| return ExDecl; |
| } |
| |
| /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch |
| /// handler. |
| Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) { |
| TypeSourceInfo *TInfo = 0; |
| QualType ExDeclType = GetTypeForDeclarator(D, S, &TInfo); |
| |
| bool Invalid = D.isInvalidType(); |
| IdentifierInfo *II = D.getIdentifier(); |
| if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) { |
| // The scope should be freshly made just for us. There is just no way |
| // it contains any previous declaration. |
| assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl))); |
| if (PrevDecl->isTemplateParameter()) { |
| // Maybe we will complain about the shadowed template parameter. |
| DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); |
| } |
| } |
| |
| if (D.getCXXScopeSpec().isSet() && !Invalid) { |
| Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator) |
| << D.getCXXScopeSpec().getRange(); |
| Invalid = true; |
| } |
| |
| VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo, |
| D.getIdentifier(), |
| D.getIdentifierLoc(), |
| D.getDeclSpec().getSourceRange()); |
| |
| if (Invalid) |
| ExDecl->setInvalidDecl(); |
| |
| // Add the exception declaration into this scope. |
| if (II) |
| PushOnScopeChains(ExDecl, S); |
| else |
| CurContext->addDecl(ExDecl); |
| |
| ProcessDeclAttributes(S, ExDecl, D); |
| return DeclPtrTy::make(ExDecl); |
| } |
| |
| Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc, |
| ExprArg assertexpr, |
| ExprArg assertmessageexpr) { |
| Expr *AssertExpr = (Expr *)assertexpr.get(); |
| StringLiteral *AssertMessage = |
| cast<StringLiteral>((Expr *)assertmessageexpr.get()); |
| |
| if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) { |
| llvm::APSInt Value(32); |
| if (!AssertExpr->isIntegerConstantExpr(Value, Context)) { |
| Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) << |
| AssertExpr->getSourceRange(); |
| return DeclPtrTy(); |
| } |
| |
| if (Value == 0) { |
| Diag(AssertLoc, diag::err_static_assert_failed) |
| << AssertMessage->getString() << AssertExpr->getSourceRange(); |
| } |
| } |
| |
| assertexpr.release(); |
| assertmessageexpr.release(); |
| Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc, |
| AssertExpr, AssertMessage); |
| |
| CurContext->addDecl(Decl); |
| return DeclPtrTy::make(Decl); |
| } |
| |
| /// Handle a friend type declaration. This works in tandem with |
| /// ActOnTag. |
| /// |
| /// Notes on friend class templates: |
| /// |
| /// We generally treat friend class declarations as if they were |
| /// declaring a class. So, for example, the elaborated type specifier |
| /// in a friend declaration is required to obey the restrictions of a |
| /// class-head (i.e. no typedefs in the scope chain), template |
| /// parameters are required to match up with simple template-ids, &c. |
| /// However, unlike when declaring a template specialization, it's |
| /// okay to refer to a template specialization without an empty |
| /// template parameter declaration, e.g. |
| /// friend class A<T>::B<unsigned>; |
| /// We permit this as a special case; if there are any template |
| /// parameters present at all, require proper matching, i.e. |
| /// template <> template <class T> friend class A<int>::B; |
| Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS, |
| MultiTemplateParamsArg TempParams) { |
| SourceLocation Loc = DS.getSourceRange().getBegin(); |
| |
| assert(DS.isFriendSpecified()); |
| assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); |
| |
| // Try to convert the decl specifier to a type. This works for |
| // friend templates because ActOnTag never produces a ClassTemplateDecl |
| // for a TUK_Friend. |
| Declarator TheDeclarator(DS, Declarator::MemberContext); |
| QualType T = GetTypeForDeclarator(TheDeclarator, S); |
| if (TheDeclarator.isInvalidType()) |
| return DeclPtrTy(); |
| |
| // This is definitely an error in C++98. It's probably meant to |
| // be forbidden in C++0x, too, but the specification is just |
| // poorly written. |
| // |
| // The problem is with declarations like the following: |
| // template <T> friend A<T>::foo; |
| // where deciding whether a class C is a friend or not now hinges |
| // on whether there exists an instantiation of A that causes |
| // 'foo' to equal C. There are restrictions on class-heads |
| // (which we declare (by fiat) elaborated friend declarations to |
| // be) that makes this tractable. |
| // |
| // FIXME: handle "template <> friend class A<T>;", which |
| // is possibly well-formed? Who even knows? |
| if (TempParams.size() && !isa<ElaboratedType>(T)) { |
| Diag(Loc, diag::err_tagless_friend_type_template) |
| << DS.getSourceRange(); |
| return DeclPtrTy(); |
| } |
| |
| // C++ [class.friend]p2: |
| // An elaborated-type-specifier shall be used in a friend declaration |
| // for a class.* |
| // * The class-key of the elaborated-type-specifier is required. |
| // This is one of the rare places in Clang where it's legitimate to |
| // ask about the "spelling" of the type. |
| if (!getLangOptions().CPlusPlus0x && !isa<ElaboratedType>(T)) { |
| // If we evaluated the type to a record type, suggest putting |
| // a tag in front. |
| if (const RecordType *RT = T->getAs<RecordType>()) { |
| RecordDecl *RD = RT->getDecl(); |
| |
| std::string InsertionText = std::string(" ") + RD->getKindName(); |
| |
| Diag(DS.getTypeSpecTypeLoc(), diag::err_unelaborated_friend_type) |
| << (unsigned) RD->getTagKind() |
| << T |
| << SourceRange(DS.getFriendSpecLoc()) |
| << CodeModificationHint::CreateInsertion(DS.getTypeSpecTypeLoc(), |
| InsertionText); |
| return DeclPtrTy(); |
| }else { |
| Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend) |
| << DS.getSourceRange(); |
| return DeclPtrTy(); |
| } |
| } |
| |
| // Enum types cannot be friends. |
| if (T->getAs<EnumType>()) { |
| Diag(DS.getTypeSpecTypeLoc(), diag::err_enum_friend) |
| << SourceRange(DS.getFriendSpecLoc()); |
| return DeclPtrTy(); |
| } |
| |
| // C++98 [class.friend]p1: A friend of a class is a function |
| // or class that is not a member of the class . . . |
| // This is fixed in DR77, which just barely didn't make the C++03 |
| // deadline. It's also a very silly restriction that seriously |
| // affects inner classes and which nobody else seems to implement; |
| // thus we never diagnose it, not even in -pedantic. |
| |
| Decl *D; |
| if (TempParams.size()) |
| D = FriendTemplateDecl::Create(Context, CurContext, Loc, |
| TempParams.size(), |
| (TemplateParameterList**) TempParams.release(), |
| T.getTypePtr(), |
| DS.getFriendSpecLoc()); |
| else |
| D = FriendDecl::Create(Context, CurContext, Loc, T.getTypePtr(), |
| DS.getFriendSpecLoc()); |
| D->setAccess(AS_public); |
| CurContext->addDecl(D); |
| |
| return DeclPtrTy::make(D); |
| } |
| |
| Sema::DeclPtrTy |
| Sema::ActOnFriendFunctionDecl(Scope *S, |
| Declarator &D, |
| bool IsDefinition, |
| MultiTemplateParamsArg TemplateParams) { |
| const DeclSpec &DS = D.getDeclSpec(); |
| |
| assert(DS.isFriendSpecified()); |
| assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); |
| |
| SourceLocation Loc = D.getIdentifierLoc(); |
| TypeSourceInfo *TInfo = 0; |
| QualType T = GetTypeForDeclarator(D, S, &TInfo); |
| |
| // C++ [class.friend]p1 |
| // A friend of a class is a function or class.... |
| // Note that this sees through typedefs, which is intended. |
| // It *doesn't* see through dependent types, which is correct |
| // according to [temp.arg.type]p3: |
| // If a declaration acquires a function type through a |
| // type dependent on a template-parameter and this causes |
| // a declaration that does not use the syntactic form of a |
| // function declarator to have a function type, the program |
| // is ill-formed. |
| if (!T->isFunctionType()) { |
| Diag(Loc, diag::err_unexpected_friend); |
| |
| // It might be worthwhile to try to recover by creating an |
| // appropriate declaration. |
| return DeclPtrTy(); |
| } |
| |
| // C++ [namespace.memdef]p3 |
| // - If a friend declaration in a non-local class first declares a |
| // class or function, the friend class or function is a member |
| // of the innermost enclosing namespace. |
| // - The name of the friend is not found by simple name lookup |
| // until a matching declaration is provided in that namespace |
| // scope (either before or after the class declaration granting |
| // friendship). |
| // - If a friend function is called, its name may be found by the |
| // name lookup that considers functions from namespaces and |
| // classes associated with the types of the function arguments. |
| // - When looking for a prior declaration of a class or a function |
| // declared as a friend, scopes outside the innermost enclosing |
| // namespace scope are not considered. |
| |
| CXXScopeSpec &ScopeQual = D.getCXXScopeSpec(); |
| DeclarationName Name = GetNameForDeclarator(D); |
| assert(Name); |
| |
| // The context we found the declaration in, or in which we should |
| // create the declaration. |
| DeclContext *DC; |
| |
| // FIXME: handle local classes |
| |
| // Recover from invalid scope qualifiers as if they just weren't there. |
| LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName, |
| ForRedeclaration); |
| if (!ScopeQual.isInvalid() && ScopeQual.isSet()) { |
| // FIXME: RequireCompleteDeclContext |
| DC = computeDeclContext(ScopeQual); |
| |
| // FIXME: handle dependent contexts |
| if (!DC) return DeclPtrTy(); |
| |
| LookupQualifiedName(Previous, DC); |
| |
| // If searching in that context implicitly found a declaration in |
| // a different context, treat it like it wasn't found at all. |
| // TODO: better diagnostics for this case. Suggesting the right |
| // qualified scope would be nice... |
| // FIXME: getRepresentativeDecl() is not right here at all |
| if (Previous.empty() || |
| !Previous.getRepresentativeDecl()->getDeclContext()->Equals(DC)) { |
| D.setInvalidType(); |
| Diag(Loc, diag::err_qualified_friend_not_found) << Name << T; |
| return DeclPtrTy(); |
| } |
| |
| // C++ [class.friend]p1: A friend of a class is a function or |
| // class that is not a member of the class . . . |
| if (DC->Equals(CurContext)) |
| Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member); |
| |
| // Otherwise walk out to the nearest namespace scope looking for matches. |
| } else { |
| // TODO: handle local class contexts. |
| |
| DC = CurContext; |
| while (true) { |
| // Skip class contexts. If someone can cite chapter and verse |
| // for this behavior, that would be nice --- it's what GCC and |
| // EDG do, and it seems like a reasonable intent, but the spec |
| // really only says that checks for unqualified existing |
| // declarations should stop at the nearest enclosing namespace, |
| // not that they should only consider the nearest enclosing |
| // namespace. |
| while (DC->isRecord()) |
| DC = DC->getParent(); |
| |
| LookupQualifiedName(Previous, DC); |
| |
| // TODO: decide what we think about using declarations. |
| if (!Previous.empty()) |
| break; |
| |
| if (DC->isFileContext()) break; |
| DC = DC->getParent(); |
| } |
| |
| // C++ [class.friend]p1: A friend of a class is a function or |
| // class that is not a member of the class . . . |
| // C++0x changes this for both friend types and functions. |
| // Most C++ 98 compilers do seem to give an error here, so |
| // we do, too. |
| if (!Previous.empty() && DC->Equals(CurContext) |
| && !getLangOptions().CPlusPlus0x) |
| Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member); |
| } |
| |
| if (DC->isFileContext()) { |
| // This implies that it has to be an operator or function. |
| if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName || |
| D.getName().getKind() == UnqualifiedId::IK_DestructorName || |
| D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) { |
| Diag(Loc, diag::err_introducing_special_friend) << |
| (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 : |
| D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2); |
| return DeclPtrTy(); |
| } |
| } |
| |
| bool Redeclaration = false; |
| NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous, |
| move(TemplateParams), |
| IsDefinition, |
| Redeclaration); |
| if (!ND) return DeclPtrTy(); |
| |
| assert(ND->getDeclContext() == DC); |
| assert(ND->getLexicalDeclContext() == CurContext); |
| |
| // Add the function declaration to the appropriate lookup tables, |
| // adjusting the redeclarations list as necessary. We don't |
| // want to do this yet if the friending class is dependent. |
| // |
| // Also update the scope-based lookup if the target context's |
| // lookup context is in lexical scope. |
| if (!CurContext->isDependentContext()) { |
| DC = DC->getLookupContext(); |
| DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false); |
| if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) |
| PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false); |
| } |
| |
| FriendDecl *FrD = FriendDecl::Create(Context, CurContext, |
| D.getIdentifierLoc(), ND, |
| DS.getFriendSpecLoc()); |
| FrD->setAccess(AS_public); |
| CurContext->addDecl(FrD); |
| |
| return DeclPtrTy::make(ND); |
| } |
| |
| void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) { |
| AdjustDeclIfTemplate(dcl); |
| |
| Decl *Dcl = dcl.getAs<Decl>(); |
| FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl); |
| if (!Fn) { |
| Diag(DelLoc, diag::err_deleted_non_function); |
| return; |
| } |
| if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) { |
| Diag(DelLoc, diag::err_deleted_decl_not_first); |
| Diag(Prev->getLocation(), diag::note_previous_declaration); |
| // If the declaration wasn't the first, we delete the function anyway for |
| // recovery. |
| } |
| Fn->setDeleted(); |
| } |
| |
| static void SearchForReturnInStmt(Sema &Self, Stmt *S) { |
| for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E; |
| ++CI) { |
| Stmt *SubStmt = *CI; |
| if (!SubStmt) |
| continue; |
| if (isa<ReturnStmt>(SubStmt)) |
| Self.Diag(SubStmt->getSourceRange().getBegin(), |
| diag::err_return_in_constructor_handler); |
| if (!isa<Expr>(SubStmt)) |
| SearchForReturnInStmt(Self, SubStmt); |
| } |
| } |
| |
| void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) { |
| for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) { |
| CXXCatchStmt *Handler = TryBlock->getHandler(I); |
| SearchForReturnInStmt(*this, Handler); |
| } |
| } |
| |
| bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New, |
| const CXXMethodDecl *Old) { |
| QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType(); |
| QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType(); |
| |
| QualType CNewTy = Context.getCanonicalType(NewTy); |
| QualType COldTy = Context.getCanonicalType(OldTy); |
| |
| if (CNewTy == COldTy && |
| CNewTy.getLocalCVRQualifiers() == COldTy.getLocalCVRQualifiers()) |
| return false; |
| |
| // Check if the return types are covariant |
| QualType NewClassTy, OldClassTy; |
| |
| /// Both types must be pointers or references to classes. |
| if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) { |
| if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) { |
| NewClassTy = NewPT->getPointeeType(); |
| OldClassTy = OldPT->getPointeeType(); |
| } |
| } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) { |
| if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) { |
| NewClassTy = NewRT->getPointeeType(); |
| OldClassTy = OldRT->getPointeeType(); |
| } |
| } |
| |
| // The return types aren't either both pointers or references to a class type. |
| if (NewClassTy.isNull()) { |
| Diag(New->getLocation(), |
| diag::err_different_return_type_for_overriding_virtual_function) |
| << New->getDeclName() << NewTy << OldTy; |
| Diag(Old->getLocation(), diag::note_overridden_virtual_function); |
| |
| return true; |
| } |
| |
| if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) { |
| // Check if the new class derives from the old class. |
| if (!IsDerivedFrom(NewClassTy, OldClassTy)) { |
| Diag(New->getLocation(), |
| diag::err_covariant_return_not_derived) |
| << New->getDeclName() << NewTy << OldTy; |
| Diag(Old->getLocation(), diag::note_overridden_virtual_function); |
| return true; |
| } |
| |
| // Check if we the conversion from derived to base is valid. |
| if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy, |
| diag::err_covariant_return_inaccessible_base, |
| diag::err_covariant_return_ambiguous_derived_to_base_conv, |
| // FIXME: Should this point to the return type? |
| New->getLocation(), SourceRange(), New->getDeclName())) { |
| Diag(Old->getLocation(), diag::note_overridden_virtual_function); |
| return true; |
| } |
| } |
| |
| // The qualifiers of the return types must be the same. |
| if (CNewTy.getLocalCVRQualifiers() != COldTy.getLocalCVRQualifiers()) { |
| Diag(New->getLocation(), |
| diag::err_covariant_return_type_different_qualifications) |
| << New->getDeclName() << NewTy << OldTy; |
| Diag(Old->getLocation(), diag::note_overridden_virtual_function); |
| return true; |
| }; |
| |
| |
| // The new class type must have the same or less qualifiers as the old type. |
| if (NewClassTy.isMoreQualifiedThan(OldClassTy)) { |
| Diag(New->getLocation(), |
| diag::err_covariant_return_type_class_type_more_qualified) |
| << New->getDeclName() << NewTy << OldTy; |
| Diag(Old->getLocation(), diag::note_overridden_virtual_function); |
| return true; |
| }; |
| |
| return false; |
| } |
| |
| bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New, |
| const CXXMethodDecl *Old) |
| { |
| if (Old->hasAttr<FinalAttr>()) { |
| Diag(New->getLocation(), diag::err_final_function_overridden) |
| << New->getDeclName(); |
| Diag(Old->getLocation(), diag::note_overridden_virtual_function); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// \brief Mark the given method pure. |
| /// |
| /// \param Method the method to be marked pure. |
| /// |
| /// \param InitRange the source range that covers the "0" initializer. |
| bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) { |
| if (Method->isVirtual() || Method->getParent()->isDependentContext()) { |
| Method->setPure(); |
| |
| // A class is abstract if at least one function is pure virtual. |
| Method->getParent()->setAbstract(true); |
| return false; |
| } |
| |
| if (!Method->isInvalidDecl()) |
| Diag(Method->getLocation(), diag::err_non_virtual_pure) |
| << Method->getDeclName() << InitRange; |
| return true; |
| } |
| |
| /// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse |
| /// an initializer for the out-of-line declaration 'Dcl'. The scope |
| /// is a fresh scope pushed for just this purpose. |
| /// |
| /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a |
| /// static data member of class X, names should be looked up in the scope of |
| /// class X. |
| void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) { |
| // If there is no declaration, there was an error parsing it. |
| Decl *D = Dcl.getAs<Decl>(); |
| if (D == 0) return; |
| |
| // We should only get called for declarations with scope specifiers, like: |
| // int foo::bar; |
| assert(D->isOutOfLine()); |
| EnterDeclaratorContext(S, D->getDeclContext()); |
| } |
| |
| /// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an |
| /// initializer for the out-of-line declaration 'Dcl'. |
| void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) { |
| // If there is no declaration, there was an error parsing it. |
| Decl *D = Dcl.getAs<Decl>(); |
| if (D == 0) return; |
| |
| assert(D->isOutOfLine()); |
| ExitDeclaratorContext(S); |
| } |
| |
| /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a |
| /// C++ if/switch/while/for statement. |
| /// e.g: "if (int x = f()) {...}" |
| Action::DeclResult |
| Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) { |
| // C++ 6.4p2: |
| // The declarator shall not specify a function or an array. |
| // The type-specifier-seq shall not contain typedef and shall not declare a |
| // new class or enumeration. |
| assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && |
| "Parser allowed 'typedef' as storage class of condition decl."); |
| |
| TypeSourceInfo *TInfo = 0; |
| TagDecl *OwnedTag = 0; |
| QualType Ty = GetTypeForDeclarator(D, S, &TInfo, &OwnedTag); |
| |
| if (Ty->isFunctionType()) { // The declarator shall not specify a function... |
| // We exit without creating a CXXConditionDeclExpr because a FunctionDecl |
| // would be created and CXXConditionDeclExpr wants a VarDecl. |
| Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type) |
| << D.getSourceRange(); |
| return DeclResult(); |
| } else if (OwnedTag && OwnedTag->isDefinition()) { |
| // The type-specifier-seq shall not declare a new class or enumeration. |
| Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition); |
| } |
| |
| DeclPtrTy Dcl = ActOnDeclarator(S, D); |
| if (!Dcl) |
| return DeclResult(); |
| |
| VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>()); |
| VD->setDeclaredInCondition(true); |
| return Dcl; |
| } |
| |
| void Sema::MaybeMarkVirtualMembersReferenced(SourceLocation Loc, |
| CXXMethodDecl *MD) { |
| // Ignore dependent types. |
| if (MD->isDependentContext()) |
| return; |
| |
| CXXRecordDecl *RD = MD->getParent(); |
| |
| // Ignore classes without a vtable. |
| if (!RD->isDynamicClass()) |
| return; |
| |
| if (!MD->isOutOfLine()) { |
| // The only inline functions we care about are constructors. We also defer |
| // marking the virtual members as referenced until we've reached the end |
| // of the translation unit. We do this because we need to know the key |
| // function of the class in order to determine the key function. |
| if (isa<CXXConstructorDecl>(MD)) |
| ClassesWithUnmarkedVirtualMembers.insert(std::make_pair(RD, Loc)); |
| return; |
| } |
| |
| const CXXMethodDecl *KeyFunction = Context.getKeyFunction(RD); |
| |
| if (!KeyFunction) { |
| // This record does not have a key function, so we assume that the vtable |
| // will be emitted when it's used by the constructor. |
| if (!isa<CXXConstructorDecl>(MD)) |
| return; |
| } else if (KeyFunction->getCanonicalDecl() != MD->getCanonicalDecl()) { |
| // We don't have the right key function. |
| return; |
| } |
| |
| // Mark the members as referenced. |
| MarkVirtualMembersReferenced(Loc, RD); |
| ClassesWithUnmarkedVirtualMembers.erase(RD); |
| } |
| |
| bool Sema::ProcessPendingClassesWithUnmarkedVirtualMembers() { |
| if (ClassesWithUnmarkedVirtualMembers.empty()) |
| return false; |
| |
| for (std::map<CXXRecordDecl *, SourceLocation>::iterator i = |
| ClassesWithUnmarkedVirtualMembers.begin(), |
| e = ClassesWithUnmarkedVirtualMembers.end(); i != e; ++i) { |
| CXXRecordDecl *RD = i->first; |
| |
| const CXXMethodDecl *KeyFunction = Context.getKeyFunction(RD); |
| if (KeyFunction) { |
| // We know that the class has a key function. If the key function was |
| // declared in this translation unit, then it the class decl would not |
| // have been in the ClassesWithUnmarkedVirtualMembers map. |
| continue; |
| } |
| |
| SourceLocation Loc = i->second; |
| MarkVirtualMembersReferenced(Loc, RD); |
| } |
| |
| ClassesWithUnmarkedVirtualMembers.clear(); |
| return true; |
| } |
| |
| void Sema::MarkVirtualMembersReferenced(SourceLocation Loc, CXXRecordDecl *RD) { |
| for (CXXRecordDecl::method_iterator i = RD->method_begin(), |
| e = RD->method_end(); i != e; ++i) { |
| CXXMethodDecl *MD = *i; |
| |
| // C++ [basic.def.odr]p2: |
| // [...] A virtual member function is used if it is not pure. [...] |
| if (MD->isVirtual() && !MD->isPure()) |
| MarkDeclarationReferenced(Loc, MD); |
| } |
| } |
| |