blob: 94c02aa3e99b2840bc535823f58e7cf18b14b69b [file] [log] [blame]
//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the Expr interface and subclasses.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_EXPR_H
#define LLVM_CLANG_AST_EXPR_H
#include "clang/AST/Stmt.h"
#include "clang/AST/Type.h"
#include "clang/AST/Decl.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/APFloat.h"
namespace clang {
class IdentifierInfo;
class Decl;
class ASTContext;
struct ObjcKeywordMessage;
/// Expr - This represents one expression. Note that Expr's are subclasses of
/// Stmt. This allows an expression to be transparently used any place a Stmt
/// is required.
///
class Expr : public Stmt {
QualType TR;
protected:
Expr(StmtClass SC, QualType T) : Stmt(SC), TR(T) {}
public:
QualType getType() const { return TR; }
void setType(QualType t) { TR = t; }
/// SourceLocation tokens are not useful in isolation - they are low level
/// value objects created/interpreted by SourceManager. We assume AST
/// clients will have a pointer to the respective SourceManager.
virtual SourceRange getSourceRange() const = 0;
/// getExprLoc - Return the preferred location for the arrow when diagnosing
/// a problem with a generic expression.
virtual SourceLocation getExprLoc() const { return getLocStart(); }
/// hasLocalSideEffect - Return true if this immediate expression has side
/// effects, not counting any sub-expressions.
bool hasLocalSideEffect() const;
/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
/// incomplete type other than void. Nonarray expressions that can be lvalues:
/// - name, where name must be a variable
/// - e[i]
/// - (e), where e must be an lvalue
/// - e.name, where e must be an lvalue
/// - e->name
/// - *e, the type of e cannot be a function type
/// - string-constant
/// - reference type [C++ [expr]]
///
enum isLvalueResult {
LV_Valid,
LV_NotObjectType,
LV_IncompleteVoidType,
LV_DuplicateVectorComponents,
LV_InvalidExpression
};
isLvalueResult isLvalue() const;
/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
/// does not have an incomplete type, does not have a const-qualified type,
/// and if it is a structure or union, does not have any member (including,
/// recursively, any member or element of all contained aggregates or unions)
/// with a const-qualified type.
enum isModifiableLvalueResult {
MLV_Valid,
MLV_NotObjectType,
MLV_IncompleteVoidType,
MLV_DuplicateVectorComponents,
MLV_InvalidExpression,
MLV_IncompleteType,
MLV_ConstQualified,
MLV_ArrayType
};
isModifiableLvalueResult isModifiableLvalue() const;
bool isNullPointerConstant(ASTContext &Ctx) const;
/// isIntegerConstantExpr - Return true if this expression is a valid integer
/// constant expression, and, if so, return its value in Result. If not a
/// valid i-c-e, return false and fill in Loc (if specified) with the location
/// of the invalid expression.
bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
SourceLocation *Loc = 0,
bool isEvaluated = true) const;
bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
llvm::APSInt X(32);
return isIntegerConstantExpr(X, Ctx, Loc);
}
/// isConstantExpr - Return true if this expression is a valid constant expr.
bool isConstantExpr(ASTContext &Ctx, SourceLocation *Loc) const;
static bool classof(const Stmt *T) {
return T->getStmtClass() >= firstExprConstant &&
T->getStmtClass() <= lastExprConstant;
}
static bool classof(const Expr *) { return true; }
};
//===----------------------------------------------------------------------===//
// Primary Expressions.
//===----------------------------------------------------------------------===//
/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
/// enum, etc.
class DeclRefExpr : public Expr {
ValueDecl *D;
SourceLocation Loc;
public:
DeclRefExpr(ValueDecl *d, QualType t, SourceLocation l) :
Expr(DeclRefExprClass, t), D(d), Loc(l) {}
ValueDecl *getDecl() { return D; }
const ValueDecl *getDecl() const { return D; }
virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == DeclRefExprClass;
}
static bool classof(const DeclRefExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// PreDefinedExpr - [C99 6.4.2.2] - A pre-defined identifier such as __func__.
class PreDefinedExpr : public Expr {
public:
enum IdentType {
Func,
Function,
PrettyFunction
};
private:
SourceLocation Loc;
IdentType Type;
public:
PreDefinedExpr(SourceLocation l, QualType type, IdentType IT)
: Expr(PreDefinedExprClass, type), Loc(l), Type(IT) {}
IdentType getIdentType() const { return Type; }
virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == PreDefinedExprClass;
}
static bool classof(const PreDefinedExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
class IntegerLiteral : public Expr {
llvm::APInt Value;
SourceLocation Loc;
public:
// type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
// or UnsignedLongLongTy
IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
: Expr(IntegerLiteralClass, type), Value(V), Loc(l) {
assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
}
const llvm::APInt &getValue() const { return Value; }
virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == IntegerLiteralClass;
}
static bool classof(const IntegerLiteral *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
class CharacterLiteral : public Expr {
unsigned Value;
SourceLocation Loc;
public:
// type should be IntTy
CharacterLiteral(unsigned value, QualType type, SourceLocation l)
: Expr(CharacterLiteralClass, type), Value(value), Loc(l) {
}
SourceLocation getLoc() const { return Loc; }
virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
unsigned getValue() const { return Value; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == CharacterLiteralClass;
}
static bool classof(const CharacterLiteral *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
class FloatingLiteral : public Expr {
llvm::APFloat Value;
SourceLocation Loc;
public:
FloatingLiteral(const llvm::APFloat &V, QualType Type, SourceLocation L)
: Expr(FloatingLiteralClass, Type), Value(V), Loc(L) {}
const llvm::APFloat &getValue() const { return Value; }
double getValueAsDouble() const {
if (cast<BuiltinType>(getType())->getKind() == BuiltinType::Float)
return Value.convertToFloat();
else
return Value.convertToDouble();
}
virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == FloatingLiteralClass;
}
static bool classof(const FloatingLiteral *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// ImaginaryLiteral - We support imaginary integer and floating point literals,
/// like "1.0i". We represent these as a wrapper around FloatingLiteral and
/// IntegerLiteral classes. Instances of this class always have a Complex type
/// whose element type matches the subexpression.
///
class ImaginaryLiteral : public Expr {
Expr *Val;
public:
ImaginaryLiteral(Expr *val, QualType Ty)
: Expr(ImaginaryLiteralClass, Ty), Val(val) {}
const Expr *getSubExpr() const { return Val; }
Expr *getSubExpr() { return Val; }
virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ImaginaryLiteralClass;
}
static bool classof(const ImaginaryLiteral *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// StringLiteral - This represents a string literal expression, e.g. "foo"
/// or L"bar" (wide strings). The actual string is returned by getStrData()
/// is NOT null-terminated, and the length of the string is determined by
/// calling getByteLength().
class StringLiteral : public Expr {
const char *StrData;
unsigned ByteLength;
bool IsWide;
// if the StringLiteral was composed using token pasting, both locations
// are needed. If not (the common case), firstTokLoc == lastTokLoc.
// FIXME: if space becomes an issue, we should create a sub-class.
SourceLocation firstTokLoc, lastTokLoc;
public:
StringLiteral(const char *strData, unsigned byteLength, bool Wide,
QualType t, SourceLocation b, SourceLocation e);
virtual ~StringLiteral();
const char *getStrData() const { return StrData; }
unsigned getByteLength() const { return ByteLength; }
bool isWide() const { return IsWide; }
virtual SourceRange getSourceRange() const {
return SourceRange(firstTokLoc,lastTokLoc);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == StringLiteralClass;
}
static bool classof(const StringLiteral *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// ParenExpr - This represents a parethesized expression, e.g. "(1)". This
/// AST node is only formed if full location information is requested.
class ParenExpr : public Expr {
SourceLocation L, R;
Expr *Val;
public:
ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
: Expr(ParenExprClass, val->getType()), L(l), R(r), Val(val) {}
const Expr *getSubExpr() const { return Val; }
Expr *getSubExpr() { return Val; }
SourceRange getSourceRange() const { return SourceRange(L, R); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ParenExprClass;
}
static bool classof(const ParenExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// UnaryOperator - This represents the unary-expression's (except sizeof of
/// types), the postinc/postdec operators from postfix-expression, and various
/// extensions.
///
/// Notes on various nodes:
///
/// Real/Imag - These return the real/imag part of a complex operand. If
/// applied to a non-complex value, the former returns its operand and the
/// later returns zero in the type of the operand.
///
/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
/// subexpression is a compound literal with the various MemberExpr and
/// ArraySubscriptExpr's applied to it.
///
class UnaryOperator : public Expr {
public:
// Note that additions to this should also update the StmtVisitor class.
enum Opcode {
PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
PreInc, PreDec, // [C99 6.5.3.1] Prefix increment and decrement operators.
AddrOf, Deref, // [C99 6.5.3.2] Address and indirection operators.
Plus, Minus, // [C99 6.5.3.3] Unary arithmetic operators.
Not, LNot, // [C99 6.5.3.3] Unary arithmetic operators.
SizeOf, AlignOf, // [C99 6.5.3.4] Sizeof (expr, not type) operator.
Real, Imag, // "__real expr"/"__imag expr" Extension.
Extension, // __extension__ marker.
OffsetOf // __builtin_offsetof
};
private:
Expr *Val;
Opcode Opc;
SourceLocation Loc;
public:
UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
: Expr(UnaryOperatorClass, type), Val(input), Opc(opc), Loc(l) {}
Opcode getOpcode() const { return Opc; }
Expr *getSubExpr() const { return Val; }
/// getOperatorLoc - Return the location of the operator.
SourceLocation getOperatorLoc() const { return Loc; }
/// isPostfix - Return true if this is a postfix operation, like x++.
static bool isPostfix(Opcode Op);
bool isPostfix() const { return isPostfix(Opc); }
bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
bool isSizeOfAlignOfOp() const { return Opc == SizeOf || Opc == AlignOf; }
static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
/// getDecl - a recursive routine that derives the base decl for an
/// expression. For example, it will return the declaration for "s" from
/// the following complex expression "s.zz[2].bb.vv".
static bool isAddressable(Expr *e);
/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
/// corresponds to, e.g. "sizeof" or "[pre]++"
static const char *getOpcodeStr(Opcode Op);
virtual SourceRange getSourceRange() const {
if (isPostfix())
return SourceRange(Val->getLocStart(), Loc);
else
return SourceRange(Loc, Val->getLocEnd());
}
virtual SourceLocation getExprLoc() const { return Loc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == UnaryOperatorClass;
}
static bool classof(const UnaryOperator *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// SizeOfAlignOfTypeExpr - [C99 6.5.3.4] - This is only for sizeof/alignof of
/// *types*. sizeof(expr) is handled by UnaryOperator.
class SizeOfAlignOfTypeExpr : public Expr {
bool isSizeof; // true if sizeof, false if alignof.
QualType Ty;
SourceLocation OpLoc, RParenLoc;
public:
SizeOfAlignOfTypeExpr(bool issizeof, QualType argType, QualType resultType,
SourceLocation op, SourceLocation rp) :
Expr(SizeOfAlignOfTypeExprClass, resultType),
isSizeof(issizeof), Ty(argType), OpLoc(op), RParenLoc(rp) {}
bool isSizeOf() const { return isSizeof; }
QualType getArgumentType() const { return Ty; }
SourceLocation getOperatorLoc() const { return OpLoc; }
SourceRange getSourceRange() const { return SourceRange(OpLoc, RParenLoc); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == SizeOfAlignOfTypeExprClass;
}
static bool classof(const SizeOfAlignOfTypeExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
//===----------------------------------------------------------------------===//
// Postfix Operators.
//===----------------------------------------------------------------------===//
/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
class ArraySubscriptExpr : public Expr {
enum { LHS, RHS, END_EXPR=2 };
Expr* SubExprs[END_EXPR];
SourceLocation RBracketLoc;
public:
ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
SourceLocation rbracketloc)
: Expr(ArraySubscriptExprClass, t), RBracketLoc(rbracketloc) {
SubExprs[LHS] = lhs;
SubExprs[RHS] = rhs;
}
/// An array access can be written A[4] or 4[A] (both are equivalent).
/// - getBase() and getIdx() always present the normalized view: A[4].
/// In this case getBase() returns "A" and getIdx() returns "4".
/// - getLHS() and getRHS() present the syntactic view. e.g. for
/// 4[A] getLHS() returns "4".
Expr *getLHS() { return SubExprs[LHS]; }
const Expr *getLHS() const { return SubExprs[LHS]; }
Expr *getRHS() { return SubExprs[RHS]; }
const Expr *getRHS() const { return SubExprs[RHS]; }
Expr *getBase() {
return (getLHS()->getType()->isIntegerType()) ? getRHS() : getLHS();
}
const Expr *getBase() const {
return (getLHS()->getType()->isIntegerType()) ? getRHS() : getLHS();
}
Expr *getIdx() {
return (getLHS()->getType()->isIntegerType()) ? getLHS() : getRHS();
}
const Expr *getIdx() const {
return (getLHS()->getType()->isIntegerType()) ? getLHS() : getRHS();
}
SourceRange getSourceRange() const {
return SourceRange(getLHS()->getLocStart(), RBracketLoc);
}
virtual SourceLocation getExprLoc() const { return RBracketLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ArraySubscriptExprClass;
}
static bool classof(const ArraySubscriptExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// CallExpr - [C99 6.5.2.2] Function Calls.
///
class CallExpr : public Expr {
enum { FN=0, ARGS_START=1 };
Expr **SubExprs;
unsigned NumArgs;
SourceLocation RParenLoc;
public:
CallExpr(Expr *fn, Expr **args, unsigned numargs, QualType t,
SourceLocation rparenloc);
~CallExpr() {
delete [] SubExprs;
}
const Expr *getCallee() const { return SubExprs[FN]; }
Expr *getCallee() { return SubExprs[FN]; }
/// getNumArgs - Return the number of actual arguments to this call.
///
unsigned getNumArgs() const { return NumArgs; }
/// getArg - Return the specified argument.
Expr *getArg(unsigned Arg) {
assert(Arg < NumArgs && "Arg access out of range!");
return SubExprs[Arg+ARGS_START];
}
const Expr *getArg(unsigned Arg) const {
assert(Arg < NumArgs && "Arg access out of range!");
return SubExprs[Arg+ARGS_START];
}
/// getNumCommas - Return the number of commas that must have been present in
/// this function call.
unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
bool isBuiltinClassifyType(llvm::APSInt &Result) const;
SourceRange getSourceRange() const {
return SourceRange(getCallee()->getLocStart(), RParenLoc);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CallExprClass;
}
static bool classof(const CallExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.
///
class MemberExpr : public Expr {
Expr *Base;
FieldDecl *MemberDecl;
SourceLocation MemberLoc;
bool IsArrow; // True if this is "X->F", false if this is "X.F".
public:
MemberExpr(Expr *base, bool isarrow, FieldDecl *memberdecl, SourceLocation l)
: Expr(MemberExprClass, memberdecl->getType()),
Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow) {}
Expr *getBase() const { return Base; }
FieldDecl *getMemberDecl() const { return MemberDecl; }
bool isArrow() const { return IsArrow; }
virtual SourceRange getSourceRange() const {
return SourceRange(getBase()->getLocStart(), MemberLoc);
}
virtual SourceLocation getExprLoc() const { return MemberLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == MemberExprClass;
}
static bool classof(const MemberExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// OCUVectorElementExpr - This represents access to specific elements of a
/// vector, and may occur on the left hand side or right hand side. For example
/// the following is legal: "V.xy = V.zw" if V is a 4 element ocu vector.
///
class OCUVectorElementExpr : public Expr {
Expr *Base;
IdentifierInfo &Accessor;
SourceLocation AccessorLoc;
public:
enum ElementType {
Point, // xywz
Color, // rgba
Texture // stpq
};
OCUVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
SourceLocation loc)
: Expr(OCUVectorElementExprClass, ty),
Base(base), Accessor(accessor), AccessorLoc(loc) {}
const Expr *getBase() const { return Base; }
Expr *getBase() { return Base; }
IdentifierInfo &getAccessor() const { return Accessor; }
/// getNumElements - Get the number of components being selected.
unsigned getNumElements() const;
/// getElementType - Determine whether the components of this access are
/// "point" "color" or "texture" elements.
ElementType getElementType() const;
/// containsDuplicateElements - Return true if any element access is
/// repeated.
bool containsDuplicateElements() const;
/// getEncodedElementAccess - Encode the elements accessed into a bit vector.
/// The encoding currently uses 2-bit bitfields, but clients should use the
/// accessors below to access them.
///
unsigned getEncodedElementAccess() const;
/// getAccessedFieldNo - Given an encoded value and a result number, return
/// the input field number being accessed.
static unsigned getAccessedFieldNo(unsigned Idx, unsigned EncodedVal) {
return (EncodedVal >> (Idx*2)) & 3;
}
virtual SourceRange getSourceRange() const {
return SourceRange(getBase()->getLocStart(), AccessorLoc);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == OCUVectorElementExprClass;
}
static bool classof(const OCUVectorElementExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// CompoundLiteralExpr - [C99 6.5.2.5]
///
class CompoundLiteralExpr : public Expr {
Expr *Init;
public:
CompoundLiteralExpr(QualType ty, Expr *init) :
Expr(CompoundLiteralExprClass, ty), Init(init) {}
const Expr *getInitializer() const { return Init; }
Expr *getInitializer() { return Init; }
virtual SourceRange getSourceRange() const {
if (Init)
return Init->getSourceRange();
return SourceRange();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CompoundLiteralExprClass;
}
static bool classof(const CompoundLiteralExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// ImplicitCastExpr - Allows us to explicitly represent implicit type
/// conversions. For example: converting T[]->T*, void f()->void (*f)(),
/// float->double, short->int, etc.
///
class ImplicitCastExpr : public Expr {
Expr *Op;
public:
ImplicitCastExpr(QualType ty, Expr *op) :
Expr(ImplicitCastExprClass, ty), Op(op) {}
Expr *getSubExpr() { return Op; }
const Expr *getSubExpr() const { return Op; }
virtual SourceRange getSourceRange() const { return Op->getSourceRange(); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ImplicitCastExprClass;
}
static bool classof(const ImplicitCastExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// CastExpr - [C99 6.5.4] Cast Operators.
///
class CastExpr : public Expr {
Expr *Op;
SourceLocation Loc; // the location of the left paren
public:
CastExpr(QualType ty, Expr *op, SourceLocation l) :
Expr(CastExprClass, ty), Op(op), Loc(l) {}
SourceLocation getLParenLoc() const { return Loc; }
Expr *getSubExpr() const { return Op; }
virtual SourceRange getSourceRange() const {
return SourceRange(Loc, getSubExpr()->getSourceRange().End());
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CastExprClass;
}
static bool classof(const CastExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
class BinaryOperator : public Expr {
public:
enum Opcode {
// Operators listed in order of precedence.
// Note that additions to this should also update the StmtVisitor class.
Mul, Div, Rem, // [C99 6.5.5] Multiplicative operators.
Add, Sub, // [C99 6.5.6] Additive operators.
Shl, Shr, // [C99 6.5.7] Bitwise shift operators.
LT, GT, LE, GE, // [C99 6.5.8] Relational operators.
EQ, NE, // [C99 6.5.9] Equality operators.
And, // [C99 6.5.10] Bitwise AND operator.
Xor, // [C99 6.5.11] Bitwise XOR operator.
Or, // [C99 6.5.12] Bitwise OR operator.
LAnd, // [C99 6.5.13] Logical AND operator.
LOr, // [C99 6.5.14] Logical OR operator.
Assign, MulAssign,// [C99 6.5.16] Assignment operators.
DivAssign, RemAssign,
AddAssign, SubAssign,
ShlAssign, ShrAssign,
AndAssign, XorAssign,
OrAssign,
Comma // [C99 6.5.17] Comma operator.
};
private:
enum { LHS, RHS, END_EXPR };
Expr* SubExprs[END_EXPR];
Opcode Opc;
SourceLocation OpLoc;
public:
BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
SourceLocation opLoc)
: Expr(BinaryOperatorClass, ResTy), Opc(opc), OpLoc(opLoc) {
SubExprs[LHS] = lhs;
SubExprs[RHS] = rhs;
assert(!isCompoundAssignmentOp() &&
"Use ArithAssignBinaryOperator for compound assignments");
}
SourceLocation getOperatorLoc() const { return OpLoc; }
Opcode getOpcode() const { return Opc; }
Expr *getLHS() const { return SubExprs[LHS]; }
Expr *getRHS() const { return SubExprs[RHS]; }
virtual SourceRange getSourceRange() const {
return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
}
/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
/// corresponds to, e.g. "<<=".
static const char *getOpcodeStr(Opcode Op);
/// predicates to categorize the respective opcodes.
bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
bool isAdditiveOp() const { return Opc == Add || Opc == Sub; }
bool isShiftOp() const { return Opc == Shl || Opc == Shr; }
bool isBitwiseOp() const { return Opc >= And && Opc <= Or; }
bool isRelationalOp() const { return Opc >= LT && Opc <= GE; }
bool isEqualityOp() const { return Opc == EQ || Opc == NE; }
bool isLogicalOp() const { return Opc == LAnd || Opc == LOr; }
bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
static bool classof(const Stmt *S) {
return S->getStmtClass() == BinaryOperatorClass ||
S->getStmtClass() == CompoundAssignOperatorClass;
}
static bool classof(const BinaryOperator *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
protected:
BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
SourceLocation oploc, bool dead)
: Expr(CompoundAssignOperatorClass, ResTy), Opc(opc), OpLoc(oploc) {
SubExprs[LHS] = lhs;
SubExprs[RHS] = rhs;
}
};
/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
/// track of the type the operation is performed in. Due to the semantics of
/// these operators, the operands are promoted, the aritmetic performed, an
/// implicit conversion back to the result type done, then the assignment takes
/// place. This captures the intermediate type which the computation is done
/// in.
class CompoundAssignOperator : public BinaryOperator {
QualType ComputationType;
public:
CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
QualType ResType, QualType CompType,
SourceLocation OpLoc)
: BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
ComputationType(CompType) {
assert(isCompoundAssignmentOp() &&
"Only should be used for compound assignments");
}
QualType getComputationType() const { return ComputationType; }
static bool classof(const CompoundAssignOperator *) { return true; }
static bool classof(const Stmt *S) {
return S->getStmtClass() == CompoundAssignOperatorClass;
}
};
/// ConditionalOperator - The ?: operator. Note that LHS may be null when the
/// GNU "missing LHS" extension is in use.
///
class ConditionalOperator : public Expr {
enum { COND, LHS, RHS, END_EXPR };
Expr* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
public:
ConditionalOperator(Expr *cond, Expr *lhs, Expr *rhs, QualType t)
: Expr(ConditionalOperatorClass, t) {
SubExprs[COND] = cond;
SubExprs[LHS] = lhs;
SubExprs[RHS] = rhs;
}
Expr *getCond() const { return SubExprs[COND]; }
Expr *getLHS() const { return SubExprs[LHS]; }
Expr *getRHS() const { return SubExprs[RHS]; }
virtual SourceRange getSourceRange() const {
return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == ConditionalOperatorClass;
}
static bool classof(const ConditionalOperator *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// AddrLabelExpr - The GNU address of label extension, representing &&label.
class AddrLabelExpr : public Expr {
SourceLocation AmpAmpLoc, LabelLoc;
LabelStmt *Label;
public:
AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
QualType t)
: Expr(AddrLabelExprClass, t), AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
virtual SourceRange getSourceRange() const {
return SourceRange(AmpAmpLoc, LabelLoc);
}
LabelStmt *getLabel() const { return Label; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == AddrLabelExprClass;
}
static bool classof(const AddrLabelExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
/// takes the value of the last subexpression.
class StmtExpr : public Expr {
CompoundStmt *SubStmt;
SourceLocation LParenLoc, RParenLoc;
public:
StmtExpr(CompoundStmt *substmt, QualType T,
SourceLocation lp, SourceLocation rp) :
Expr(StmtExprClass, T), SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
CompoundStmt *getSubStmt() { return SubStmt; }
const CompoundStmt *getSubStmt() const { return SubStmt; }
virtual SourceRange getSourceRange() const {
return SourceRange(LParenLoc, RParenLoc);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == StmtExprClass;
}
static bool classof(const StmtExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// TypesCompatibleExpr - GNU builtin-in function __builtin_type_compatible_p.
/// This AST node represents a function that returns 1 if two *types* (not
/// expressions) are compatible. The result of this built-in function can be
/// used in integer constant expressions.
class TypesCompatibleExpr : public Expr {
QualType Type1;
QualType Type2;
SourceLocation BuiltinLoc, RParenLoc;
public:
TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
QualType t1, QualType t2, SourceLocation RP) :
Expr(TypesCompatibleExprClass, ReturnType), Type1(t1), Type2(t2),
BuiltinLoc(BLoc), RParenLoc(RP) {}
QualType getArgType1() const { return Type1; }
QualType getArgType2() const { return Type2; }
int typesAreCompatible() const {return Type::typesAreCompatible(Type1,Type2);}
virtual SourceRange getSourceRange() const {
return SourceRange(BuiltinLoc, RParenLoc);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == TypesCompatibleExprClass;
}
static bool classof(const TypesCompatibleExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
/// This AST node is similar to the conditional operator (?:) in C, with
/// the following exceptions:
/// - the test expression much be a constant expression.
/// - the expression returned has it's type unaltered by promotion rules.
/// - does not evaluate the expression that was not chosen.
class ChooseExpr : public Expr {
enum { COND, LHS, RHS, END_EXPR };
Expr* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
SourceLocation BuiltinLoc, RParenLoc;
public:
ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
SourceLocation RP)
: Expr(ChooseExprClass, t),
BuiltinLoc(BLoc), RParenLoc(RP) {
SubExprs[COND] = cond;
SubExprs[LHS] = lhs;
SubExprs[RHS] = rhs;
}
Expr *getCond() const { return SubExprs[COND]; }
Expr *getLHS() const { return SubExprs[LHS]; }
Expr *getRHS() const { return SubExprs[RHS]; }
virtual SourceRange getSourceRange() const {
return SourceRange(BuiltinLoc, RParenLoc);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == ChooseExprClass;
}
static bool classof(const ChooseExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// InitListExpr, used for struct and array initializers.
class InitListExpr : public Expr {
Expr **InitExprs;
unsigned NumInits;
SourceLocation LBraceLoc, RBraceLoc;
public:
InitListExpr(SourceLocation lbraceloc, Expr **initexprs, unsigned numinits,
SourceLocation rbraceloc);
~InitListExpr() {
delete [] InitExprs;
}
unsigned getNumInits() const { return NumInits; }
const Expr* getInit(unsigned Init) const {
assert(Init < NumInits && "Initializer access out of range!");
return InitExprs[Init];
}
Expr* getInit(unsigned Init) {
assert(Init < NumInits && "Initializer access out of range!");
return InitExprs[Init];
}
void setInit(unsigned Init, Expr *expr) {
assert(Init < NumInits && "Initializer access out of range!");
InitExprs[Init] = expr;
}
virtual SourceRange getSourceRange() const {
return SourceRange(LBraceLoc, RBraceLoc);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == InitListExprClass;
}
static bool classof(const InitListExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// ObjCStringLiteral, used for Objective-C string literals
/// i.e. @"foo".
class ObjCStringLiteral : public Expr {
StringLiteral *String;
public:
ObjCStringLiteral(StringLiteral *SL, QualType T)
: Expr(ObjCStringLiteralClass, T), String(SL) {}
StringLiteral* getString() { return String; }
const StringLiteral* getString() const { return String; }
virtual SourceRange getSourceRange() const {
return String->getSourceRange();
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == ObjCStringLiteralClass;
}
static bool classof(const ObjCStringLiteral *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// ObjCEncodeExpr, used for @encode in Objective-C.
class ObjCEncodeExpr : public Expr {
QualType EncType;
SourceLocation EncLoc, RParenLoc;
public:
ObjCEncodeExpr(QualType T, QualType ET,
SourceLocation enc, SourceLocation rp)
: Expr(ObjCEncodeExprClass, T), EncType(ET), EncLoc(enc), RParenLoc(rp) {}
SourceRange getSourceRange() const { return SourceRange(EncLoc, RParenLoc); }
QualType getEncodedType() const { return EncType; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ObjCEncodeExprClass;
}
static bool classof(const ObjCEncodeExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
class ObjCMessageExpr : public Expr {
enum { RECEIVER=0, ARGS_START=1 };
// The following 3 slots are only used for keyword messages.
// Adding a subclass could save us some space. For now, we keep it simple.
Expr **SubExprs;
unsigned NumArgs;
// A unigue name for this message.
IdentifierInfo &Selector;
IdentifierInfo **KeyIdents;
IdentifierInfo *ClassName;
SourceLocation LBracloc, RBracloc;
public:
// constructor for unary messages.
// FIXME: clsName should be typed to ObjCInterfaceType
ObjCMessageExpr(IdentifierInfo *clsName, IdentifierInfo &selInfo,
QualType retType, SourceLocation LBrac, SourceLocation RBrac);
ObjCMessageExpr(Expr *receiver, IdentifierInfo &selInfo,
QualType retType, SourceLocation LBrac, SourceLocation RBrac);
// constructor for keyword messages.
// FIXME: clsName should be typed to ObjCInterfaceType
ObjCMessageExpr(IdentifierInfo *clsName, IdentifierInfo &selInfo,
ObjcKeywordMessage *keys, unsigned numargs, QualType retType,
SourceLocation LBrac, SourceLocation RBrac);
ObjCMessageExpr(Expr *receiver, IdentifierInfo &selInfo,
ObjcKeywordMessage *keys, unsigned numargs, QualType retType,
SourceLocation LBrac, SourceLocation RBrac);
~ObjCMessageExpr() {
delete [] SubExprs;
}
const Expr *getReceiver() const { return SubExprs[RECEIVER]; }
Expr *getReceiver() { return SubExprs[RECEIVER]; }
/// getNumArgs - Return the number of actual arguments to this call.
///
unsigned getNumArgs() const { return NumArgs; }
/// getArg - Return the specified argument.
Expr *getArg(unsigned Arg) {
assert(Arg < NumArgs && "Arg access out of range!");
return SubExprs[Arg+ARGS_START];
}
const Expr *getArg(unsigned Arg) const {
assert(Arg < NumArgs && "Arg access out of range!");
return SubExprs[Arg+ARGS_START];
}
SourceRange getSourceRange() const { return SourceRange(LBracloc, RBracloc); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ObjCMessageExprClass;
}
static bool classof(const ObjCMessageExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
} // end namespace clang
#endif