| //===--- Expr.cpp - Expression AST Node Implementation --------------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements the Expr class and subclasses. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "clang/AST/Expr.h" | 
 | #include "clang/AST/ExprCXX.h" | 
 | #include "clang/AST/APValue.h" | 
 | #include "clang/AST/ASTContext.h" | 
 | #include "clang/AST/DeclObjC.h" | 
 | #include "clang/AST/DeclCXX.h" | 
 | #include "clang/AST/DeclTemplate.h" | 
 | #include "clang/AST/EvaluatedExprVisitor.h" | 
 | #include "clang/AST/RecordLayout.h" | 
 | #include "clang/AST/StmtVisitor.h" | 
 | #include "clang/Lex/LiteralSupport.h" | 
 | #include "clang/Lex/Lexer.h" | 
 | #include "clang/Sema/SemaDiagnostic.h" | 
 | #include "clang/Basic/Builtins.h" | 
 | #include "clang/Basic/SourceManager.h" | 
 | #include "clang/Basic/TargetInfo.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include <algorithm> | 
 | #include <cstring> | 
 | using namespace clang; | 
 |  | 
 | /// isKnownToHaveBooleanValue - Return true if this is an integer expression | 
 | /// that is known to return 0 or 1.  This happens for _Bool/bool expressions | 
 | /// but also int expressions which are produced by things like comparisons in | 
 | /// C. | 
 | bool Expr::isKnownToHaveBooleanValue() const { | 
 |   const Expr *E = IgnoreParens(); | 
 |  | 
 |   // If this value has _Bool type, it is obvious 0/1. | 
 |   if (E->getType()->isBooleanType()) return true; | 
 |   // If this is a non-scalar-integer type, we don't care enough to try.  | 
 |   if (!E->getType()->isIntegralOrEnumerationType()) return false; | 
 |    | 
 |   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { | 
 |     switch (UO->getOpcode()) { | 
 |     case UO_Plus: | 
 |       return UO->getSubExpr()->isKnownToHaveBooleanValue(); | 
 |     default: | 
 |       return false; | 
 |     } | 
 |   } | 
 |    | 
 |   // Only look through implicit casts.  If the user writes | 
 |   // '(int) (a && b)' treat it as an arbitrary int. | 
 |   if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) | 
 |     return CE->getSubExpr()->isKnownToHaveBooleanValue(); | 
 |    | 
 |   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { | 
 |     switch (BO->getOpcode()) { | 
 |     default: return false; | 
 |     case BO_LT:   // Relational operators. | 
 |     case BO_GT: | 
 |     case BO_LE: | 
 |     case BO_GE: | 
 |     case BO_EQ:   // Equality operators. | 
 |     case BO_NE: | 
 |     case BO_LAnd: // AND operator. | 
 |     case BO_LOr:  // Logical OR operator. | 
 |       return true; | 
 |          | 
 |     case BO_And:  // Bitwise AND operator. | 
 |     case BO_Xor:  // Bitwise XOR operator. | 
 |     case BO_Or:   // Bitwise OR operator. | 
 |       // Handle things like (x==2)|(y==12). | 
 |       return BO->getLHS()->isKnownToHaveBooleanValue() && | 
 |              BO->getRHS()->isKnownToHaveBooleanValue(); | 
 |          | 
 |     case BO_Comma: | 
 |     case BO_Assign: | 
 |       return BO->getRHS()->isKnownToHaveBooleanValue(); | 
 |     } | 
 |   } | 
 |    | 
 |   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) | 
 |     return CO->getTrueExpr()->isKnownToHaveBooleanValue() && | 
 |            CO->getFalseExpr()->isKnownToHaveBooleanValue(); | 
 |    | 
 |   return false; | 
 | } | 
 |  | 
 | // Amusing macro metaprogramming hack: check whether a class provides | 
 | // a more specific implementation of getExprLoc(). | 
 | // | 
 | // See also Stmt.cpp:{getLocStart(),getLocEnd()}. | 
 | namespace { | 
 |   /// This implementation is used when a class provides a custom | 
 |   /// implementation of getExprLoc. | 
 |   template <class E, class T> | 
 |   SourceLocation getExprLocImpl(const Expr *expr, | 
 |                                 SourceLocation (T::*v)() const) { | 
 |     return static_cast<const E*>(expr)->getExprLoc(); | 
 |   } | 
 |  | 
 |   /// This implementation is used when a class doesn't provide | 
 |   /// a custom implementation of getExprLoc.  Overload resolution | 
 |   /// should pick it over the implementation above because it's | 
 |   /// more specialized according to function template partial ordering. | 
 |   template <class E> | 
 |   SourceLocation getExprLocImpl(const Expr *expr, | 
 |                                 SourceLocation (Expr::*v)() const) { | 
 |     return static_cast<const E*>(expr)->getLocStart(); | 
 |   } | 
 | } | 
 |  | 
 | SourceLocation Expr::getExprLoc() const { | 
 |   switch (getStmtClass()) { | 
 |   case Stmt::NoStmtClass: llvm_unreachable("statement without class"); | 
 | #define ABSTRACT_STMT(type) | 
 | #define STMT(type, base) \ | 
 |   case Stmt::type##Class: llvm_unreachable(#type " is not an Expr"); break; | 
 | #define EXPR(type, base) \ | 
 |   case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc); | 
 | #include "clang/AST/StmtNodes.inc" | 
 |   } | 
 |   llvm_unreachable("unknown statement kind"); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Primary Expressions. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// \brief Compute the type-, value-, and instantiation-dependence of a  | 
 | /// declaration reference | 
 | /// based on the declaration being referenced. | 
 | static void computeDeclRefDependence(ASTContext &Ctx, NamedDecl *D, QualType T, | 
 |                                      bool &TypeDependent, | 
 |                                      bool &ValueDependent, | 
 |                                      bool &InstantiationDependent) { | 
 |   TypeDependent = false; | 
 |   ValueDependent = false; | 
 |   InstantiationDependent = false; | 
 |  | 
 |   // (TD) C++ [temp.dep.expr]p3: | 
 |   //   An id-expression is type-dependent if it contains: | 
 |   // | 
 |   // and  | 
 |   // | 
 |   // (VD) C++ [temp.dep.constexpr]p2: | 
 |   //  An identifier is value-dependent if it is: | 
 |    | 
 |   //  (TD)  - an identifier that was declared with dependent type | 
 |   //  (VD)  - a name declared with a dependent type, | 
 |   if (T->isDependentType()) { | 
 |     TypeDependent = true; | 
 |     ValueDependent = true; | 
 |     InstantiationDependent = true; | 
 |     return; | 
 |   } else if (T->isInstantiationDependentType()) { | 
 |     InstantiationDependent = true; | 
 |   } | 
 |    | 
 |   //  (TD)  - a conversion-function-id that specifies a dependent type | 
 |   if (D->getDeclName().getNameKind()  | 
 |                                 == DeclarationName::CXXConversionFunctionName) { | 
 |     QualType T = D->getDeclName().getCXXNameType(); | 
 |     if (T->isDependentType()) { | 
 |       TypeDependent = true; | 
 |       ValueDependent = true; | 
 |       InstantiationDependent = true; | 
 |       return; | 
 |     } | 
 |      | 
 |     if (T->isInstantiationDependentType()) | 
 |       InstantiationDependent = true; | 
 |   } | 
 |    | 
 |   //  (VD)  - the name of a non-type template parameter, | 
 |   if (isa<NonTypeTemplateParmDecl>(D)) { | 
 |     ValueDependent = true; | 
 |     InstantiationDependent = true; | 
 |     return; | 
 |   } | 
 |    | 
 |   //  (VD) - a constant with integral or enumeration type and is | 
 |   //         initialized with an expression that is value-dependent. | 
 |   //  (VD) - a constant with literal type and is initialized with an | 
 |   //         expression that is value-dependent [C++11]. | 
 |   //  (VD) - FIXME: Missing from the standard: | 
 |   //       -  an entity with reference type and is initialized with an | 
 |   //          expression that is value-dependent [C++11] | 
 |   if (VarDecl *Var = dyn_cast<VarDecl>(D)) { | 
 |     if ((Ctx.getLangOpts().CPlusPlus0x ? | 
 |            Var->getType()->isLiteralType() : | 
 |            Var->getType()->isIntegralOrEnumerationType()) && | 
 |         (Var->getType().getCVRQualifiers() == Qualifiers::Const || | 
 |          Var->getType()->isReferenceType())) { | 
 |       if (const Expr *Init = Var->getAnyInitializer()) | 
 |         if (Init->isValueDependent()) { | 
 |           ValueDependent = true; | 
 |           InstantiationDependent = true; | 
 |         } | 
 |     } | 
 |  | 
 |     // (VD) - FIXME: Missing from the standard:  | 
 |     //      -  a member function or a static data member of the current  | 
 |     //         instantiation | 
 |     if (Var->isStaticDataMember() &&  | 
 |         Var->getDeclContext()->isDependentContext()) { | 
 |       ValueDependent = true; | 
 |       InstantiationDependent = true; | 
 |     } | 
 |      | 
 |     return; | 
 |   } | 
 |    | 
 |   // (VD) - FIXME: Missing from the standard:  | 
 |   //      -  a member function or a static data member of the current  | 
 |   //         instantiation | 
 |   if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) { | 
 |     ValueDependent = true; | 
 |     InstantiationDependent = true; | 
 |   } | 
 | } | 
 |  | 
 | void DeclRefExpr::computeDependence(ASTContext &Ctx) { | 
 |   bool TypeDependent = false; | 
 |   bool ValueDependent = false; | 
 |   bool InstantiationDependent = false; | 
 |   computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent, | 
 |                            ValueDependent, InstantiationDependent); | 
 |    | 
 |   // (TD) C++ [temp.dep.expr]p3: | 
 |   //   An id-expression is type-dependent if it contains: | 
 |   // | 
 |   // and  | 
 |   // | 
 |   // (VD) C++ [temp.dep.constexpr]p2: | 
 |   //  An identifier is value-dependent if it is: | 
 |   if (!TypeDependent && !ValueDependent && | 
 |       hasExplicitTemplateArgs() &&  | 
 |       TemplateSpecializationType::anyDependentTemplateArguments( | 
 |                                                             getTemplateArgs(),  | 
 |                                                        getNumTemplateArgs(), | 
 |                                                       InstantiationDependent)) { | 
 |     TypeDependent = true; | 
 |     ValueDependent = true; | 
 |     InstantiationDependent = true; | 
 |   } | 
 |    | 
 |   ExprBits.TypeDependent = TypeDependent; | 
 |   ExprBits.ValueDependent = ValueDependent; | 
 |   ExprBits.InstantiationDependent = InstantiationDependent; | 
 |    | 
 |   // Is the declaration a parameter pack? | 
 |   if (getDecl()->isParameterPack()) | 
 |     ExprBits.ContainsUnexpandedParameterPack = true; | 
 | } | 
 |  | 
 | DeclRefExpr::DeclRefExpr(ASTContext &Ctx, | 
 |                          NestedNameSpecifierLoc QualifierLoc, | 
 |                          SourceLocation TemplateKWLoc, | 
 |                          ValueDecl *D, bool RefersToEnclosingLocal, | 
 |                          const DeclarationNameInfo &NameInfo, | 
 |                          NamedDecl *FoundD, | 
 |                          const TemplateArgumentListInfo *TemplateArgs, | 
 |                          QualType T, ExprValueKind VK) | 
 |   : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false), | 
 |     D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) { | 
 |   DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0; | 
 |   if (QualifierLoc) | 
 |     getInternalQualifierLoc() = QualifierLoc; | 
 |   DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0; | 
 |   if (FoundD) | 
 |     getInternalFoundDecl() = FoundD; | 
 |   DeclRefExprBits.HasTemplateKWAndArgsInfo | 
 |     = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0; | 
 |   DeclRefExprBits.RefersToEnclosingLocal = RefersToEnclosingLocal; | 
 |   if (TemplateArgs) { | 
 |     bool Dependent = false; | 
 |     bool InstantiationDependent = false; | 
 |     bool ContainsUnexpandedParameterPack = false; | 
 |     getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *TemplateArgs, | 
 |                                                Dependent, | 
 |                                                InstantiationDependent, | 
 |                                                ContainsUnexpandedParameterPack); | 
 |     if (InstantiationDependent) | 
 |       setInstantiationDependent(true); | 
 |   } else if (TemplateKWLoc.isValid()) { | 
 |     getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc); | 
 |   } | 
 |   DeclRefExprBits.HadMultipleCandidates = 0; | 
 |  | 
 |   computeDependence(Ctx); | 
 | } | 
 |  | 
 | DeclRefExpr *DeclRefExpr::Create(ASTContext &Context, | 
 |                                  NestedNameSpecifierLoc QualifierLoc, | 
 |                                  SourceLocation TemplateKWLoc, | 
 |                                  ValueDecl *D, | 
 |                                  bool RefersToEnclosingLocal, | 
 |                                  SourceLocation NameLoc, | 
 |                                  QualType T, | 
 |                                  ExprValueKind VK, | 
 |                                  NamedDecl *FoundD, | 
 |                                  const TemplateArgumentListInfo *TemplateArgs) { | 
 |   return Create(Context, QualifierLoc, TemplateKWLoc, D, | 
 |                 RefersToEnclosingLocal, | 
 |                 DeclarationNameInfo(D->getDeclName(), NameLoc), | 
 |                 T, VK, FoundD, TemplateArgs); | 
 | } | 
 |  | 
 | DeclRefExpr *DeclRefExpr::Create(ASTContext &Context, | 
 |                                  NestedNameSpecifierLoc QualifierLoc, | 
 |                                  SourceLocation TemplateKWLoc, | 
 |                                  ValueDecl *D, | 
 |                                  bool RefersToEnclosingLocal, | 
 |                                  const DeclarationNameInfo &NameInfo, | 
 |                                  QualType T, | 
 |                                  ExprValueKind VK, | 
 |                                  NamedDecl *FoundD, | 
 |                                  const TemplateArgumentListInfo *TemplateArgs) { | 
 |   // Filter out cases where the found Decl is the same as the value refenenced. | 
 |   if (D == FoundD) | 
 |     FoundD = 0; | 
 |  | 
 |   std::size_t Size = sizeof(DeclRefExpr); | 
 |   if (QualifierLoc != 0) | 
 |     Size += sizeof(NestedNameSpecifierLoc); | 
 |   if (FoundD) | 
 |     Size += sizeof(NamedDecl *); | 
 |   if (TemplateArgs) | 
 |     Size += ASTTemplateKWAndArgsInfo::sizeFor(TemplateArgs->size()); | 
 |   else if (TemplateKWLoc.isValid()) | 
 |     Size += ASTTemplateKWAndArgsInfo::sizeFor(0); | 
 |  | 
 |   void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>()); | 
 |   return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D, | 
 |                                RefersToEnclosingLocal, | 
 |                                NameInfo, FoundD, TemplateArgs, T, VK); | 
 | } | 
 |  | 
 | DeclRefExpr *DeclRefExpr::CreateEmpty(ASTContext &Context, | 
 |                                       bool HasQualifier, | 
 |                                       bool HasFoundDecl, | 
 |                                       bool HasTemplateKWAndArgsInfo, | 
 |                                       unsigned NumTemplateArgs) { | 
 |   std::size_t Size = sizeof(DeclRefExpr); | 
 |   if (HasQualifier) | 
 |     Size += sizeof(NestedNameSpecifierLoc); | 
 |   if (HasFoundDecl) | 
 |     Size += sizeof(NamedDecl *); | 
 |   if (HasTemplateKWAndArgsInfo) | 
 |     Size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs); | 
 |  | 
 |   void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>()); | 
 |   return new (Mem) DeclRefExpr(EmptyShell()); | 
 | } | 
 |  | 
 | SourceRange DeclRefExpr::getSourceRange() const { | 
 |   SourceRange R = getNameInfo().getSourceRange(); | 
 |   if (hasQualifier()) | 
 |     R.setBegin(getQualifierLoc().getBeginLoc()); | 
 |   if (hasExplicitTemplateArgs()) | 
 |     R.setEnd(getRAngleLoc()); | 
 |   return R; | 
 | } | 
 | SourceLocation DeclRefExpr::getLocStart() const { | 
 |   if (hasQualifier()) | 
 |     return getQualifierLoc().getBeginLoc(); | 
 |   return getNameInfo().getLocStart(); | 
 | } | 
 | SourceLocation DeclRefExpr::getLocEnd() const { | 
 |   if (hasExplicitTemplateArgs()) | 
 |     return getRAngleLoc(); | 
 |   return getNameInfo().getLocEnd(); | 
 | } | 
 |  | 
 | // FIXME: Maybe this should use DeclPrinter with a special "print predefined | 
 | // expr" policy instead. | 
 | std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) { | 
 |   ASTContext &Context = CurrentDecl->getASTContext(); | 
 |  | 
 |   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) { | 
 |     if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual) | 
 |       return FD->getNameAsString(); | 
 |  | 
 |     SmallString<256> Name; | 
 |     llvm::raw_svector_ostream Out(Name); | 
 |  | 
 |     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { | 
 |       if (MD->isVirtual() && IT != PrettyFunctionNoVirtual) | 
 |         Out << "virtual "; | 
 |       if (MD->isStatic()) | 
 |         Out << "static "; | 
 |     } | 
 |  | 
 |     PrintingPolicy Policy(Context.getLangOpts()); | 
 |     std::string Proto = FD->getQualifiedNameAsString(Policy); | 
 |     llvm::raw_string_ostream POut(Proto); | 
 |  | 
 |     const FunctionDecl *Decl = FD; | 
 |     if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern()) | 
 |       Decl = Pattern; | 
 |     const FunctionType *AFT = Decl->getType()->getAs<FunctionType>(); | 
 |     const FunctionProtoType *FT = 0; | 
 |     if (FD->hasWrittenPrototype()) | 
 |       FT = dyn_cast<FunctionProtoType>(AFT); | 
 |  | 
 |     POut << "("; | 
 |     if (FT) { | 
 |       for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) { | 
 |         if (i) POut << ", "; | 
 |         std::string Param; | 
 |         Decl->getParamDecl(i)->getType().getAsStringInternal(Param, Policy); | 
 |         POut << Param; | 
 |       } | 
 |  | 
 |       if (FT->isVariadic()) { | 
 |         if (FD->getNumParams()) POut << ", "; | 
 |         POut << "..."; | 
 |       } | 
 |     } | 
 |     POut << ")"; | 
 |  | 
 |     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { | 
 |       Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers()); | 
 |       if (ThisQuals.hasConst()) | 
 |         POut << " const"; | 
 |       if (ThisQuals.hasVolatile()) | 
 |         POut << " volatile"; | 
 |       RefQualifierKind Ref = MD->getRefQualifier(); | 
 |       if (Ref == RQ_LValue) | 
 |         POut << " &"; | 
 |       else if (Ref == RQ_RValue) | 
 |         POut << " &&"; | 
 |     } | 
 |  | 
 |     typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy; | 
 |     SpecsTy Specs; | 
 |     const DeclContext *Ctx = FD->getDeclContext(); | 
 |     while (Ctx && isa<NamedDecl>(Ctx)) { | 
 |       const ClassTemplateSpecializationDecl *Spec | 
 |                                = dyn_cast<ClassTemplateSpecializationDecl>(Ctx); | 
 |       if (Spec && !Spec->isExplicitSpecialization()) | 
 |         Specs.push_back(Spec); | 
 |       Ctx = Ctx->getParent(); | 
 |     } | 
 |  | 
 |     std::string TemplateParams; | 
 |     llvm::raw_string_ostream TOut(TemplateParams); | 
 |     for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend(); | 
 |          I != E; ++I) { | 
 |       const TemplateParameterList *Params  | 
 |                   = (*I)->getSpecializedTemplate()->getTemplateParameters(); | 
 |       const TemplateArgumentList &Args = (*I)->getTemplateArgs(); | 
 |       assert(Params->size() == Args.size()); | 
 |       for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) { | 
 |         StringRef Param = Params->getParam(i)->getName(); | 
 |         if (Param.empty()) continue; | 
 |         TOut << Param << " = "; | 
 |         Args.get(i).print(Policy, TOut); | 
 |         TOut << ", "; | 
 |       } | 
 |     } | 
 |  | 
 |     FunctionTemplateSpecializationInfo *FSI  | 
 |                                           = FD->getTemplateSpecializationInfo(); | 
 |     if (FSI && !FSI->isExplicitSpecialization()) { | 
 |       const TemplateParameterList* Params  | 
 |                                   = FSI->getTemplate()->getTemplateParameters(); | 
 |       const TemplateArgumentList* Args = FSI->TemplateArguments; | 
 |       assert(Params->size() == Args->size()); | 
 |       for (unsigned i = 0, e = Params->size(); i != e; ++i) { | 
 |         StringRef Param = Params->getParam(i)->getName(); | 
 |         if (Param.empty()) continue; | 
 |         TOut << Param << " = "; | 
 |         Args->get(i).print(Policy, TOut); | 
 |         TOut << ", "; | 
 |       } | 
 |     } | 
 |  | 
 |     TOut.flush(); | 
 |     if (!TemplateParams.empty()) { | 
 |       // remove the trailing comma and space | 
 |       TemplateParams.resize(TemplateParams.size() - 2); | 
 |       POut << " [" << TemplateParams << "]"; | 
 |     } | 
 |  | 
 |     POut.flush(); | 
 |  | 
 |     if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD)) | 
 |       AFT->getResultType().getAsStringInternal(Proto, Policy); | 
 |  | 
 |     Out << Proto; | 
 |  | 
 |     Out.flush(); | 
 |     return Name.str().str(); | 
 |   } | 
 |   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) { | 
 |     SmallString<256> Name; | 
 |     llvm::raw_svector_ostream Out(Name); | 
 |     Out << (MD->isInstanceMethod() ? '-' : '+'); | 
 |     Out << '['; | 
 |  | 
 |     // For incorrect code, there might not be an ObjCInterfaceDecl.  Do | 
 |     // a null check to avoid a crash. | 
 |     if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) | 
 |       Out << *ID; | 
 |  | 
 |     if (const ObjCCategoryImplDecl *CID = | 
 |         dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) | 
 |       Out << '(' << *CID << ')'; | 
 |  | 
 |     Out <<  ' '; | 
 |     Out << MD->getSelector().getAsString(); | 
 |     Out <<  ']'; | 
 |  | 
 |     Out.flush(); | 
 |     return Name.str().str(); | 
 |   } | 
 |   if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) { | 
 |     // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string. | 
 |     return "top level"; | 
 |   } | 
 |   return ""; | 
 | } | 
 |  | 
 | void APNumericStorage::setIntValue(ASTContext &C, const llvm::APInt &Val) { | 
 |   if (hasAllocation()) | 
 |     C.Deallocate(pVal); | 
 |  | 
 |   BitWidth = Val.getBitWidth(); | 
 |   unsigned NumWords = Val.getNumWords(); | 
 |   const uint64_t* Words = Val.getRawData(); | 
 |   if (NumWords > 1) { | 
 |     pVal = new (C) uint64_t[NumWords]; | 
 |     std::copy(Words, Words + NumWords, pVal); | 
 |   } else if (NumWords == 1) | 
 |     VAL = Words[0]; | 
 |   else | 
 |     VAL = 0; | 
 | } | 
 |  | 
 | IntegerLiteral * | 
 | IntegerLiteral::Create(ASTContext &C, const llvm::APInt &V, | 
 |                        QualType type, SourceLocation l) { | 
 |   return new (C) IntegerLiteral(C, V, type, l); | 
 | } | 
 |  | 
 | IntegerLiteral * | 
 | IntegerLiteral::Create(ASTContext &C, EmptyShell Empty) { | 
 |   return new (C) IntegerLiteral(Empty); | 
 | } | 
 |  | 
 | FloatingLiteral * | 
 | FloatingLiteral::Create(ASTContext &C, const llvm::APFloat &V, | 
 |                         bool isexact, QualType Type, SourceLocation L) { | 
 |   return new (C) FloatingLiteral(C, V, isexact, Type, L); | 
 | } | 
 |  | 
 | FloatingLiteral * | 
 | FloatingLiteral::Create(ASTContext &C, EmptyShell Empty) { | 
 |   return new (C) FloatingLiteral(C, Empty); | 
 | } | 
 |  | 
 | /// getValueAsApproximateDouble - This returns the value as an inaccurate | 
 | /// double.  Note that this may cause loss of precision, but is useful for | 
 | /// debugging dumps, etc. | 
 | double FloatingLiteral::getValueAsApproximateDouble() const { | 
 |   llvm::APFloat V = getValue(); | 
 |   bool ignored; | 
 |   V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven, | 
 |             &ignored); | 
 |   return V.convertToDouble(); | 
 | } | 
 |  | 
 | int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) { | 
 |   int CharByteWidth = 0; | 
 |   switch(k) { | 
 |     case Ascii: | 
 |     case UTF8: | 
 |       CharByteWidth = target.getCharWidth(); | 
 |       break; | 
 |     case Wide: | 
 |       CharByteWidth = target.getWCharWidth(); | 
 |       break; | 
 |     case UTF16: | 
 |       CharByteWidth = target.getChar16Width(); | 
 |       break; | 
 |     case UTF32: | 
 |       CharByteWidth = target.getChar32Width(); | 
 |       break; | 
 |   } | 
 |   assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple"); | 
 |   CharByteWidth /= 8; | 
 |   assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4) | 
 |          && "character byte widths supported are 1, 2, and 4 only"); | 
 |   return CharByteWidth; | 
 | } | 
 |  | 
 | StringLiteral *StringLiteral::Create(ASTContext &C, StringRef Str, | 
 |                                      StringKind Kind, bool Pascal, QualType Ty, | 
 |                                      const SourceLocation *Loc, | 
 |                                      unsigned NumStrs) { | 
 |   // Allocate enough space for the StringLiteral plus an array of locations for | 
 |   // any concatenated string tokens. | 
 |   void *Mem = C.Allocate(sizeof(StringLiteral)+ | 
 |                          sizeof(SourceLocation)*(NumStrs-1), | 
 |                          llvm::alignOf<StringLiteral>()); | 
 |   StringLiteral *SL = new (Mem) StringLiteral(Ty); | 
 |  | 
 |   // OPTIMIZE: could allocate this appended to the StringLiteral. | 
 |   SL->setString(C,Str,Kind,Pascal); | 
 |  | 
 |   SL->TokLocs[0] = Loc[0]; | 
 |   SL->NumConcatenated = NumStrs; | 
 |  | 
 |   if (NumStrs != 1) | 
 |     memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1)); | 
 |   return SL; | 
 | } | 
 |  | 
 | StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) { | 
 |   void *Mem = C.Allocate(sizeof(StringLiteral)+ | 
 |                          sizeof(SourceLocation)*(NumStrs-1), | 
 |                          llvm::alignOf<StringLiteral>()); | 
 |   StringLiteral *SL = new (Mem) StringLiteral(QualType()); | 
 |   SL->CharByteWidth = 0; | 
 |   SL->Length = 0; | 
 |   SL->NumConcatenated = NumStrs; | 
 |   return SL; | 
 | } | 
 |  | 
 | void StringLiteral::setString(ASTContext &C, StringRef Str, | 
 |                               StringKind Kind, bool IsPascal) { | 
 |   //FIXME: we assume that the string data comes from a target that uses the same | 
 |   // code unit size and endianess for the type of string. | 
 |   this->Kind = Kind; | 
 |   this->IsPascal = IsPascal; | 
 |    | 
 |   CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind); | 
 |   assert((Str.size()%CharByteWidth == 0) | 
 |          && "size of data must be multiple of CharByteWidth"); | 
 |   Length = Str.size()/CharByteWidth; | 
 |  | 
 |   switch(CharByteWidth) { | 
 |     case 1: { | 
 |       char *AStrData = new (C) char[Length]; | 
 |       std::memcpy(AStrData,Str.data(),Str.size()); | 
 |       StrData.asChar = AStrData; | 
 |       break; | 
 |     } | 
 |     case 2: { | 
 |       uint16_t *AStrData = new (C) uint16_t[Length]; | 
 |       std::memcpy(AStrData,Str.data(),Str.size()); | 
 |       StrData.asUInt16 = AStrData; | 
 |       break; | 
 |     } | 
 |     case 4: { | 
 |       uint32_t *AStrData = new (C) uint32_t[Length]; | 
 |       std::memcpy(AStrData,Str.data(),Str.size()); | 
 |       StrData.asUInt32 = AStrData; | 
 |       break; | 
 |     } | 
 |     default: | 
 |       assert(false && "unsupported CharByteWidth"); | 
 |   } | 
 | } | 
 |  | 
 | /// getLocationOfByte - Return a source location that points to the specified | 
 | /// byte of this string literal. | 
 | /// | 
 | /// Strings are amazingly complex.  They can be formed from multiple tokens and | 
 | /// can have escape sequences in them in addition to the usual trigraph and | 
 | /// escaped newline business.  This routine handles this complexity. | 
 | /// | 
 | SourceLocation StringLiteral:: | 
 | getLocationOfByte(unsigned ByteNo, const SourceManager &SM, | 
 |                   const LangOptions &Features, const TargetInfo &Target) const { | 
 |   assert(Kind == StringLiteral::Ascii && "This only works for ASCII strings"); | 
 |  | 
 |   // Loop over all of the tokens in this string until we find the one that | 
 |   // contains the byte we're looking for. | 
 |   unsigned TokNo = 0; | 
 |   while (1) { | 
 |     assert(TokNo < getNumConcatenated() && "Invalid byte number!"); | 
 |     SourceLocation StrTokLoc = getStrTokenLoc(TokNo); | 
 |      | 
 |     // Get the spelling of the string so that we can get the data that makes up | 
 |     // the string literal, not the identifier for the macro it is potentially | 
 |     // expanded through. | 
 |     SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc); | 
 |      | 
 |     // Re-lex the token to get its length and original spelling. | 
 |     std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc); | 
 |     bool Invalid = false; | 
 |     StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); | 
 |     if (Invalid) | 
 |       return StrTokSpellingLoc; | 
 |      | 
 |     const char *StrData = Buffer.data()+LocInfo.second; | 
 |      | 
 |     // Create a langops struct and enable trigraphs.  This is sufficient for | 
 |     // relexing tokens. | 
 |     LangOptions LangOpts; | 
 |     LangOpts.Trigraphs = true; | 
 |      | 
 |     // Create a lexer starting at the beginning of this token. | 
 |     Lexer TheLexer(StrTokSpellingLoc, Features, Buffer.begin(), StrData, | 
 |                    Buffer.end()); | 
 |     Token TheTok; | 
 |     TheLexer.LexFromRawLexer(TheTok); | 
 |      | 
 |     // Use the StringLiteralParser to compute the length of the string in bytes. | 
 |     StringLiteralParser SLP(&TheTok, 1, SM, Features, Target); | 
 |     unsigned TokNumBytes = SLP.GetStringLength(); | 
 |      | 
 |     // If the byte is in this token, return the location of the byte. | 
 |     if (ByteNo < TokNumBytes || | 
 |         (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) { | 
 |       unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);  | 
 |        | 
 |       // Now that we know the offset of the token in the spelling, use the | 
 |       // preprocessor to get the offset in the original source. | 
 |       return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features); | 
 |     } | 
 |      | 
 |     // Move to the next string token. | 
 |     ++TokNo; | 
 |     ByteNo -= TokNumBytes; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 |  | 
 | /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it | 
 | /// corresponds to, e.g. "sizeof" or "[pre]++". | 
 | const char *UnaryOperator::getOpcodeStr(Opcode Op) { | 
 |   switch (Op) { | 
 |   case UO_PostInc: return "++"; | 
 |   case UO_PostDec: return "--"; | 
 |   case UO_PreInc:  return "++"; | 
 |   case UO_PreDec:  return "--"; | 
 |   case UO_AddrOf:  return "&"; | 
 |   case UO_Deref:   return "*"; | 
 |   case UO_Plus:    return "+"; | 
 |   case UO_Minus:   return "-"; | 
 |   case UO_Not:     return "~"; | 
 |   case UO_LNot:    return "!"; | 
 |   case UO_Real:    return "__real"; | 
 |   case UO_Imag:    return "__imag"; | 
 |   case UO_Extension: return "__extension__"; | 
 |   } | 
 |   llvm_unreachable("Unknown unary operator"); | 
 | } | 
 |  | 
 | UnaryOperatorKind | 
 | UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) { | 
 |   switch (OO) { | 
 |   default: llvm_unreachable("No unary operator for overloaded function"); | 
 |   case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc; | 
 |   case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec; | 
 |   case OO_Amp:        return UO_AddrOf; | 
 |   case OO_Star:       return UO_Deref; | 
 |   case OO_Plus:       return UO_Plus; | 
 |   case OO_Minus:      return UO_Minus; | 
 |   case OO_Tilde:      return UO_Not; | 
 |   case OO_Exclaim:    return UO_LNot; | 
 |   } | 
 | } | 
 |  | 
 | OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) { | 
 |   switch (Opc) { | 
 |   case UO_PostInc: case UO_PreInc: return OO_PlusPlus; | 
 |   case UO_PostDec: case UO_PreDec: return OO_MinusMinus; | 
 |   case UO_AddrOf: return OO_Amp; | 
 |   case UO_Deref: return OO_Star; | 
 |   case UO_Plus: return OO_Plus; | 
 |   case UO_Minus: return OO_Minus; | 
 |   case UO_Not: return OO_Tilde; | 
 |   case UO_LNot: return OO_Exclaim; | 
 |   default: return OO_None; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Postfix Operators. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs, | 
 |                    Expr **args, unsigned numargs, QualType t, ExprValueKind VK, | 
 |                    SourceLocation rparenloc) | 
 |   : Expr(SC, t, VK, OK_Ordinary, | 
 |          fn->isTypeDependent(), | 
 |          fn->isValueDependent(), | 
 |          fn->isInstantiationDependent(), | 
 |          fn->containsUnexpandedParameterPack()), | 
 |     NumArgs(numargs) { | 
 |  | 
 |   SubExprs = new (C) Stmt*[numargs+PREARGS_START+NumPreArgs]; | 
 |   SubExprs[FN] = fn; | 
 |   for (unsigned i = 0; i != numargs; ++i) { | 
 |     if (args[i]->isTypeDependent()) | 
 |       ExprBits.TypeDependent = true; | 
 |     if (args[i]->isValueDependent()) | 
 |       ExprBits.ValueDependent = true; | 
 |     if (args[i]->isInstantiationDependent()) | 
 |       ExprBits.InstantiationDependent = true; | 
 |     if (args[i]->containsUnexpandedParameterPack()) | 
 |       ExprBits.ContainsUnexpandedParameterPack = true; | 
 |  | 
 |     SubExprs[i+PREARGS_START+NumPreArgs] = args[i]; | 
 |   } | 
 |  | 
 |   CallExprBits.NumPreArgs = NumPreArgs; | 
 |   RParenLoc = rparenloc; | 
 | } | 
 |  | 
 | CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, | 
 |                    QualType t, ExprValueKind VK, SourceLocation rparenloc) | 
 |   : Expr(CallExprClass, t, VK, OK_Ordinary, | 
 |          fn->isTypeDependent(), | 
 |          fn->isValueDependent(), | 
 |          fn->isInstantiationDependent(), | 
 |          fn->containsUnexpandedParameterPack()), | 
 |     NumArgs(numargs) { | 
 |  | 
 |   SubExprs = new (C) Stmt*[numargs+PREARGS_START]; | 
 |   SubExprs[FN] = fn; | 
 |   for (unsigned i = 0; i != numargs; ++i) { | 
 |     if (args[i]->isTypeDependent()) | 
 |       ExprBits.TypeDependent = true; | 
 |     if (args[i]->isValueDependent()) | 
 |       ExprBits.ValueDependent = true; | 
 |     if (args[i]->isInstantiationDependent()) | 
 |       ExprBits.InstantiationDependent = true; | 
 |     if (args[i]->containsUnexpandedParameterPack()) | 
 |       ExprBits.ContainsUnexpandedParameterPack = true; | 
 |  | 
 |     SubExprs[i+PREARGS_START] = args[i]; | 
 |   } | 
 |  | 
 |   CallExprBits.NumPreArgs = 0; | 
 |   RParenLoc = rparenloc; | 
 | } | 
 |  | 
 | CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty) | 
 |   : Expr(SC, Empty), SubExprs(0), NumArgs(0) { | 
 |   // FIXME: Why do we allocate this? | 
 |   SubExprs = new (C) Stmt*[PREARGS_START]; | 
 |   CallExprBits.NumPreArgs = 0; | 
 | } | 
 |  | 
 | CallExpr::CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs, | 
 |                    EmptyShell Empty) | 
 |   : Expr(SC, Empty), SubExprs(0), NumArgs(0) { | 
 |   // FIXME: Why do we allocate this? | 
 |   SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs]; | 
 |   CallExprBits.NumPreArgs = NumPreArgs; | 
 | } | 
 |  | 
 | Decl *CallExpr::getCalleeDecl() { | 
 |   Expr *CEE = getCallee()->IgnoreParenImpCasts(); | 
 |      | 
 |   while (SubstNonTypeTemplateParmExpr *NTTP | 
 |                                 = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) { | 
 |     CEE = NTTP->getReplacement()->IgnoreParenCasts(); | 
 |   } | 
 |    | 
 |   // If we're calling a dereference, look at the pointer instead. | 
 |   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) { | 
 |     if (BO->isPtrMemOp()) | 
 |       CEE = BO->getRHS()->IgnoreParenCasts(); | 
 |   } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) { | 
 |     if (UO->getOpcode() == UO_Deref) | 
 |       CEE = UO->getSubExpr()->IgnoreParenCasts(); | 
 |   } | 
 |   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) | 
 |     return DRE->getDecl(); | 
 |   if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE)) | 
 |     return ME->getMemberDecl(); | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | FunctionDecl *CallExpr::getDirectCallee() { | 
 |   return dyn_cast_or_null<FunctionDecl>(getCalleeDecl()); | 
 | } | 
 |  | 
 | /// setNumArgs - This changes the number of arguments present in this call. | 
 | /// Any orphaned expressions are deleted by this, and any new operands are set | 
 | /// to null. | 
 | void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) { | 
 |   // No change, just return. | 
 |   if (NumArgs == getNumArgs()) return; | 
 |  | 
 |   // If shrinking # arguments, just delete the extras and forgot them. | 
 |   if (NumArgs < getNumArgs()) { | 
 |     this->NumArgs = NumArgs; | 
 |     return; | 
 |   } | 
 |  | 
 |   // Otherwise, we are growing the # arguments.  New an bigger argument array. | 
 |   unsigned NumPreArgs = getNumPreArgs(); | 
 |   Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs]; | 
 |   // Copy over args. | 
 |   for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i) | 
 |     NewSubExprs[i] = SubExprs[i]; | 
 |   // Null out new args. | 
 |   for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs; | 
 |        i != NumArgs+PREARGS_START+NumPreArgs; ++i) | 
 |     NewSubExprs[i] = 0; | 
 |  | 
 |   if (SubExprs) C.Deallocate(SubExprs); | 
 |   SubExprs = NewSubExprs; | 
 |   this->NumArgs = NumArgs; | 
 | } | 
 |  | 
 | /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If | 
 | /// not, return 0. | 
 | unsigned CallExpr::isBuiltinCall() const { | 
 |   // All simple function calls (e.g. func()) are implicitly cast to pointer to | 
 |   // function. As a result, we try and obtain the DeclRefExpr from the | 
 |   // ImplicitCastExpr. | 
 |   const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee()); | 
 |   if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()). | 
 |     return 0; | 
 |  | 
 |   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()); | 
 |   if (!DRE) | 
 |     return 0; | 
 |  | 
 |   const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl()); | 
 |   if (!FDecl) | 
 |     return 0; | 
 |  | 
 |   if (!FDecl->getIdentifier()) | 
 |     return 0; | 
 |  | 
 |   return FDecl->getBuiltinID(); | 
 | } | 
 |  | 
 | QualType CallExpr::getCallReturnType() const { | 
 |   QualType CalleeType = getCallee()->getType(); | 
 |   if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>()) | 
 |     CalleeType = FnTypePtr->getPointeeType(); | 
 |   else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>()) | 
 |     CalleeType = BPT->getPointeeType(); | 
 |   else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) | 
 |     // This should never be overloaded and so should never return null. | 
 |     CalleeType = Expr::findBoundMemberType(getCallee()); | 
 |      | 
 |   const FunctionType *FnType = CalleeType->castAs<FunctionType>(); | 
 |   return FnType->getResultType(); | 
 | } | 
 |  | 
 | SourceRange CallExpr::getSourceRange() const { | 
 |   if (isa<CXXOperatorCallExpr>(this)) | 
 |     return cast<CXXOperatorCallExpr>(this)->getSourceRange(); | 
 |  | 
 |   SourceLocation begin = getCallee()->getLocStart(); | 
 |   if (begin.isInvalid() && getNumArgs() > 0) | 
 |     begin = getArg(0)->getLocStart(); | 
 |   SourceLocation end = getRParenLoc(); | 
 |   if (end.isInvalid() && getNumArgs() > 0) | 
 |     end = getArg(getNumArgs() - 1)->getLocEnd(); | 
 |   return SourceRange(begin, end); | 
 | } | 
 | SourceLocation CallExpr::getLocStart() const { | 
 |   if (isa<CXXOperatorCallExpr>(this)) | 
 |     return cast<CXXOperatorCallExpr>(this)->getSourceRange().getBegin(); | 
 |  | 
 |   SourceLocation begin = getCallee()->getLocStart(); | 
 |   if (begin.isInvalid() && getNumArgs() > 0) | 
 |     begin = getArg(0)->getLocStart(); | 
 |   return begin; | 
 | } | 
 | SourceLocation CallExpr::getLocEnd() const { | 
 |   if (isa<CXXOperatorCallExpr>(this)) | 
 |     return cast<CXXOperatorCallExpr>(this)->getSourceRange().getEnd(); | 
 |  | 
 |   SourceLocation end = getRParenLoc(); | 
 |   if (end.isInvalid() && getNumArgs() > 0) | 
 |     end = getArg(getNumArgs() - 1)->getLocEnd(); | 
 |   return end; | 
 | } | 
 |  | 
 | OffsetOfExpr *OffsetOfExpr::Create(ASTContext &C, QualType type,  | 
 |                                    SourceLocation OperatorLoc, | 
 |                                    TypeSourceInfo *tsi,  | 
 |                                    OffsetOfNode* compsPtr, unsigned numComps,  | 
 |                                    Expr** exprsPtr, unsigned numExprs, | 
 |                                    SourceLocation RParenLoc) { | 
 |   void *Mem = C.Allocate(sizeof(OffsetOfExpr) + | 
 |                          sizeof(OffsetOfNode) * numComps +  | 
 |                          sizeof(Expr*) * numExprs); | 
 |  | 
 |   return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, compsPtr, numComps, | 
 |                                 exprsPtr, numExprs, RParenLoc); | 
 | } | 
 |  | 
 | OffsetOfExpr *OffsetOfExpr::CreateEmpty(ASTContext &C, | 
 |                                         unsigned numComps, unsigned numExprs) { | 
 |   void *Mem = C.Allocate(sizeof(OffsetOfExpr) + | 
 |                          sizeof(OffsetOfNode) * numComps + | 
 |                          sizeof(Expr*) * numExprs); | 
 |   return new (Mem) OffsetOfExpr(numComps, numExprs); | 
 | } | 
 |  | 
 | OffsetOfExpr::OffsetOfExpr(ASTContext &C, QualType type,  | 
 |                            SourceLocation OperatorLoc, TypeSourceInfo *tsi, | 
 |                            OffsetOfNode* compsPtr, unsigned numComps,  | 
 |                            Expr** exprsPtr, unsigned numExprs, | 
 |                            SourceLocation RParenLoc) | 
 |   : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary, | 
 |          /*TypeDependent=*/false,  | 
 |          /*ValueDependent=*/tsi->getType()->isDependentType(), | 
 |          tsi->getType()->isInstantiationDependentType(), | 
 |          tsi->getType()->containsUnexpandedParameterPack()), | 
 |     OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),  | 
 |     NumComps(numComps), NumExprs(numExprs)  | 
 | { | 
 |   for(unsigned i = 0; i < numComps; ++i) { | 
 |     setComponent(i, compsPtr[i]); | 
 |   } | 
 |    | 
 |   for(unsigned i = 0; i < numExprs; ++i) { | 
 |     if (exprsPtr[i]->isTypeDependent() || exprsPtr[i]->isValueDependent()) | 
 |       ExprBits.ValueDependent = true; | 
 |     if (exprsPtr[i]->containsUnexpandedParameterPack()) | 
 |       ExprBits.ContainsUnexpandedParameterPack = true; | 
 |  | 
 |     setIndexExpr(i, exprsPtr[i]); | 
 |   } | 
 | } | 
 |  | 
 | IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const { | 
 |   assert(getKind() == Field || getKind() == Identifier); | 
 |   if (getKind() == Field) | 
 |     return getField()->getIdentifier(); | 
 |    | 
 |   return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask); | 
 | } | 
 |  | 
 | MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow, | 
 |                                NestedNameSpecifierLoc QualifierLoc, | 
 |                                SourceLocation TemplateKWLoc, | 
 |                                ValueDecl *memberdecl, | 
 |                                DeclAccessPair founddecl, | 
 |                                DeclarationNameInfo nameinfo, | 
 |                                const TemplateArgumentListInfo *targs, | 
 |                                QualType ty, | 
 |                                ExprValueKind vk, | 
 |                                ExprObjectKind ok) { | 
 |   std::size_t Size = sizeof(MemberExpr); | 
 |  | 
 |   bool hasQualOrFound = (QualifierLoc || | 
 |                          founddecl.getDecl() != memberdecl || | 
 |                          founddecl.getAccess() != memberdecl->getAccess()); | 
 |   if (hasQualOrFound) | 
 |     Size += sizeof(MemberNameQualifier); | 
 |  | 
 |   if (targs) | 
 |     Size += ASTTemplateKWAndArgsInfo::sizeFor(targs->size()); | 
 |   else if (TemplateKWLoc.isValid()) | 
 |     Size += ASTTemplateKWAndArgsInfo::sizeFor(0); | 
 |  | 
 |   void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>()); | 
 |   MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo, | 
 |                                        ty, vk, ok); | 
 |  | 
 |   if (hasQualOrFound) { | 
 |     // FIXME: Wrong. We should be looking at the member declaration we found. | 
 |     if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) { | 
 |       E->setValueDependent(true); | 
 |       E->setTypeDependent(true); | 
 |       E->setInstantiationDependent(true); | 
 |     }  | 
 |     else if (QualifierLoc &&  | 
 |              QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())  | 
 |       E->setInstantiationDependent(true); | 
 |      | 
 |     E->HasQualifierOrFoundDecl = true; | 
 |  | 
 |     MemberNameQualifier *NQ = E->getMemberQualifier(); | 
 |     NQ->QualifierLoc = QualifierLoc; | 
 |     NQ->FoundDecl = founddecl; | 
 |   } | 
 |  | 
 |   E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid()); | 
 |  | 
 |   if (targs) { | 
 |     bool Dependent = false; | 
 |     bool InstantiationDependent = false; | 
 |     bool ContainsUnexpandedParameterPack = false; | 
 |     E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *targs, | 
 |                                                   Dependent, | 
 |                                                   InstantiationDependent, | 
 |                                              ContainsUnexpandedParameterPack); | 
 |     if (InstantiationDependent) | 
 |       E->setInstantiationDependent(true); | 
 |   } else if (TemplateKWLoc.isValid()) { | 
 |     E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc); | 
 |   } | 
 |  | 
 |   return E; | 
 | } | 
 |  | 
 | SourceRange MemberExpr::getSourceRange() const { | 
 |   return SourceRange(getLocStart(), getLocEnd()); | 
 | } | 
 | SourceLocation MemberExpr::getLocStart() const { | 
 |   if (isImplicitAccess()) { | 
 |     if (hasQualifier()) | 
 |       return getQualifierLoc().getBeginLoc(); | 
 |     return MemberLoc; | 
 |   } | 
 |  | 
 |   // FIXME: We don't want this to happen. Rather, we should be able to | 
 |   // detect all kinds of implicit accesses more cleanly. | 
 |   SourceLocation BaseStartLoc = getBase()->getLocStart(); | 
 |   if (BaseStartLoc.isValid()) | 
 |     return BaseStartLoc; | 
 |   return MemberLoc; | 
 | } | 
 | SourceLocation MemberExpr::getLocEnd() const { | 
 |   if (hasExplicitTemplateArgs()) | 
 |     return getRAngleLoc(); | 
 |   return getMemberNameInfo().getEndLoc(); | 
 | } | 
 |  | 
 | void CastExpr::CheckCastConsistency() const { | 
 |   switch (getCastKind()) { | 
 |   case CK_DerivedToBase: | 
 |   case CK_UncheckedDerivedToBase: | 
 |   case CK_DerivedToBaseMemberPointer: | 
 |   case CK_BaseToDerived: | 
 |   case CK_BaseToDerivedMemberPointer: | 
 |     assert(!path_empty() && "Cast kind should have a base path!"); | 
 |     break; | 
 |  | 
 |   case CK_CPointerToObjCPointerCast: | 
 |     assert(getType()->isObjCObjectPointerType()); | 
 |     assert(getSubExpr()->getType()->isPointerType()); | 
 |     goto CheckNoBasePath; | 
 |  | 
 |   case CK_BlockPointerToObjCPointerCast: | 
 |     assert(getType()->isObjCObjectPointerType()); | 
 |     assert(getSubExpr()->getType()->isBlockPointerType()); | 
 |     goto CheckNoBasePath; | 
 |  | 
 |   case CK_ReinterpretMemberPointer: | 
 |     assert(getType()->isMemberPointerType()); | 
 |     assert(getSubExpr()->getType()->isMemberPointerType()); | 
 |     goto CheckNoBasePath; | 
 |  | 
 |   case CK_BitCast: | 
 |     // Arbitrary casts to C pointer types count as bitcasts. | 
 |     // Otherwise, we should only have block and ObjC pointer casts | 
 |     // here if they stay within the type kind. | 
 |     if (!getType()->isPointerType()) { | 
 |       assert(getType()->isObjCObjectPointerType() ==  | 
 |              getSubExpr()->getType()->isObjCObjectPointerType()); | 
 |       assert(getType()->isBlockPointerType() ==  | 
 |              getSubExpr()->getType()->isBlockPointerType()); | 
 |     } | 
 |     goto CheckNoBasePath; | 
 |  | 
 |   case CK_AnyPointerToBlockPointerCast: | 
 |     assert(getType()->isBlockPointerType()); | 
 |     assert(getSubExpr()->getType()->isAnyPointerType() && | 
 |            !getSubExpr()->getType()->isBlockPointerType()); | 
 |     goto CheckNoBasePath; | 
 |  | 
 |   case CK_CopyAndAutoreleaseBlockObject: | 
 |     assert(getType()->isBlockPointerType()); | 
 |     assert(getSubExpr()->getType()->isBlockPointerType()); | 
 |     goto CheckNoBasePath; | 
 |        | 
 |   // These should not have an inheritance path. | 
 |   case CK_Dynamic: | 
 |   case CK_ToUnion: | 
 |   case CK_ArrayToPointerDecay: | 
 |   case CK_FunctionToPointerDecay: | 
 |   case CK_NullToMemberPointer: | 
 |   case CK_NullToPointer: | 
 |   case CK_ConstructorConversion: | 
 |   case CK_IntegralToPointer: | 
 |   case CK_PointerToIntegral: | 
 |   case CK_ToVoid: | 
 |   case CK_VectorSplat: | 
 |   case CK_IntegralCast: | 
 |   case CK_IntegralToFloating: | 
 |   case CK_FloatingToIntegral: | 
 |   case CK_FloatingCast: | 
 |   case CK_ObjCObjectLValueCast: | 
 |   case CK_FloatingRealToComplex: | 
 |   case CK_FloatingComplexToReal: | 
 |   case CK_FloatingComplexCast: | 
 |   case CK_FloatingComplexToIntegralComplex: | 
 |   case CK_IntegralRealToComplex: | 
 |   case CK_IntegralComplexToReal: | 
 |   case CK_IntegralComplexCast: | 
 |   case CK_IntegralComplexToFloatingComplex: | 
 |   case CK_ARCProduceObject: | 
 |   case CK_ARCConsumeObject: | 
 |   case CK_ARCReclaimReturnedObject: | 
 |   case CK_ARCExtendBlockObject: | 
 |     assert(!getType()->isBooleanType() && "unheralded conversion to bool"); | 
 |     goto CheckNoBasePath; | 
 |  | 
 |   case CK_Dependent: | 
 |   case CK_LValueToRValue: | 
 |   case CK_NoOp: | 
 |   case CK_AtomicToNonAtomic: | 
 |   case CK_NonAtomicToAtomic: | 
 |   case CK_PointerToBoolean: | 
 |   case CK_IntegralToBoolean: | 
 |   case CK_FloatingToBoolean: | 
 |   case CK_MemberPointerToBoolean: | 
 |   case CK_FloatingComplexToBoolean: | 
 |   case CK_IntegralComplexToBoolean: | 
 |   case CK_LValueBitCast:            // -> bool& | 
 |   case CK_UserDefinedConversion:    // operator bool() | 
 |   CheckNoBasePath: | 
 |     assert(path_empty() && "Cast kind should not have a base path!"); | 
 |     break; | 
 |   } | 
 | } | 
 |  | 
 | const char *CastExpr::getCastKindName() const { | 
 |   switch (getCastKind()) { | 
 |   case CK_Dependent: | 
 |     return "Dependent"; | 
 |   case CK_BitCast: | 
 |     return "BitCast"; | 
 |   case CK_LValueBitCast: | 
 |     return "LValueBitCast"; | 
 |   case CK_LValueToRValue: | 
 |     return "LValueToRValue"; | 
 |   case CK_NoOp: | 
 |     return "NoOp"; | 
 |   case CK_BaseToDerived: | 
 |     return "BaseToDerived"; | 
 |   case CK_DerivedToBase: | 
 |     return "DerivedToBase"; | 
 |   case CK_UncheckedDerivedToBase: | 
 |     return "UncheckedDerivedToBase"; | 
 |   case CK_Dynamic: | 
 |     return "Dynamic"; | 
 |   case CK_ToUnion: | 
 |     return "ToUnion"; | 
 |   case CK_ArrayToPointerDecay: | 
 |     return "ArrayToPointerDecay"; | 
 |   case CK_FunctionToPointerDecay: | 
 |     return "FunctionToPointerDecay"; | 
 |   case CK_NullToMemberPointer: | 
 |     return "NullToMemberPointer"; | 
 |   case CK_NullToPointer: | 
 |     return "NullToPointer"; | 
 |   case CK_BaseToDerivedMemberPointer: | 
 |     return "BaseToDerivedMemberPointer"; | 
 |   case CK_DerivedToBaseMemberPointer: | 
 |     return "DerivedToBaseMemberPointer"; | 
 |   case CK_ReinterpretMemberPointer: | 
 |     return "ReinterpretMemberPointer"; | 
 |   case CK_UserDefinedConversion: | 
 |     return "UserDefinedConversion"; | 
 |   case CK_ConstructorConversion: | 
 |     return "ConstructorConversion"; | 
 |   case CK_IntegralToPointer: | 
 |     return "IntegralToPointer"; | 
 |   case CK_PointerToIntegral: | 
 |     return "PointerToIntegral"; | 
 |   case CK_PointerToBoolean: | 
 |     return "PointerToBoolean"; | 
 |   case CK_ToVoid: | 
 |     return "ToVoid"; | 
 |   case CK_VectorSplat: | 
 |     return "VectorSplat"; | 
 |   case CK_IntegralCast: | 
 |     return "IntegralCast"; | 
 |   case CK_IntegralToBoolean: | 
 |     return "IntegralToBoolean"; | 
 |   case CK_IntegralToFloating: | 
 |     return "IntegralToFloating"; | 
 |   case CK_FloatingToIntegral: | 
 |     return "FloatingToIntegral"; | 
 |   case CK_FloatingCast: | 
 |     return "FloatingCast"; | 
 |   case CK_FloatingToBoolean: | 
 |     return "FloatingToBoolean"; | 
 |   case CK_MemberPointerToBoolean: | 
 |     return "MemberPointerToBoolean"; | 
 |   case CK_CPointerToObjCPointerCast: | 
 |     return "CPointerToObjCPointerCast"; | 
 |   case CK_BlockPointerToObjCPointerCast: | 
 |     return "BlockPointerToObjCPointerCast"; | 
 |   case CK_AnyPointerToBlockPointerCast: | 
 |     return "AnyPointerToBlockPointerCast"; | 
 |   case CK_ObjCObjectLValueCast: | 
 |     return "ObjCObjectLValueCast"; | 
 |   case CK_FloatingRealToComplex: | 
 |     return "FloatingRealToComplex"; | 
 |   case CK_FloatingComplexToReal: | 
 |     return "FloatingComplexToReal"; | 
 |   case CK_FloatingComplexToBoolean: | 
 |     return "FloatingComplexToBoolean"; | 
 |   case CK_FloatingComplexCast: | 
 |     return "FloatingComplexCast"; | 
 |   case CK_FloatingComplexToIntegralComplex: | 
 |     return "FloatingComplexToIntegralComplex"; | 
 |   case CK_IntegralRealToComplex: | 
 |     return "IntegralRealToComplex"; | 
 |   case CK_IntegralComplexToReal: | 
 |     return "IntegralComplexToReal"; | 
 |   case CK_IntegralComplexToBoolean: | 
 |     return "IntegralComplexToBoolean"; | 
 |   case CK_IntegralComplexCast: | 
 |     return "IntegralComplexCast"; | 
 |   case CK_IntegralComplexToFloatingComplex: | 
 |     return "IntegralComplexToFloatingComplex"; | 
 |   case CK_ARCConsumeObject: | 
 |     return "ARCConsumeObject"; | 
 |   case CK_ARCProduceObject: | 
 |     return "ARCProduceObject"; | 
 |   case CK_ARCReclaimReturnedObject: | 
 |     return "ARCReclaimReturnedObject"; | 
 |   case CK_ARCExtendBlockObject: | 
 |     return "ARCCExtendBlockObject"; | 
 |   case CK_AtomicToNonAtomic: | 
 |     return "AtomicToNonAtomic"; | 
 |   case CK_NonAtomicToAtomic: | 
 |     return "NonAtomicToAtomic"; | 
 |   case CK_CopyAndAutoreleaseBlockObject: | 
 |     return "CopyAndAutoreleaseBlockObject"; | 
 |   } | 
 |  | 
 |   llvm_unreachable("Unhandled cast kind!"); | 
 | } | 
 |  | 
 | Expr *CastExpr::getSubExprAsWritten() { | 
 |   Expr *SubExpr = 0; | 
 |   CastExpr *E = this; | 
 |   do { | 
 |     SubExpr = E->getSubExpr(); | 
 |  | 
 |     // Skip through reference binding to temporary. | 
 |     if (MaterializeTemporaryExpr *Materialize  | 
 |                                   = dyn_cast<MaterializeTemporaryExpr>(SubExpr)) | 
 |       SubExpr = Materialize->GetTemporaryExpr(); | 
 |          | 
 |     // Skip any temporary bindings; they're implicit. | 
 |     if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr)) | 
 |       SubExpr = Binder->getSubExpr(); | 
 |      | 
 |     // Conversions by constructor and conversion functions have a | 
 |     // subexpression describing the call; strip it off. | 
 |     if (E->getCastKind() == CK_ConstructorConversion) | 
 |       SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0); | 
 |     else if (E->getCastKind() == CK_UserDefinedConversion) | 
 |       SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument(); | 
 |      | 
 |     // If the subexpression we're left with is an implicit cast, look | 
 |     // through that, too. | 
 |   } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));   | 
 |    | 
 |   return SubExpr; | 
 | } | 
 |  | 
 | CXXBaseSpecifier **CastExpr::path_buffer() { | 
 |   switch (getStmtClass()) { | 
 | #define ABSTRACT_STMT(x) | 
 | #define CASTEXPR(Type, Base) \ | 
 |   case Stmt::Type##Class: \ | 
 |     return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1); | 
 | #define STMT(Type, Base) | 
 | #include "clang/AST/StmtNodes.inc" | 
 |   default: | 
 |     llvm_unreachable("non-cast expressions not possible here"); | 
 |   } | 
 | } | 
 |  | 
 | void CastExpr::setCastPath(const CXXCastPath &Path) { | 
 |   assert(Path.size() == path_size()); | 
 |   memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*)); | 
 | } | 
 |  | 
 | ImplicitCastExpr *ImplicitCastExpr::Create(ASTContext &C, QualType T, | 
 |                                            CastKind Kind, Expr *Operand, | 
 |                                            const CXXCastPath *BasePath, | 
 |                                            ExprValueKind VK) { | 
 |   unsigned PathSize = (BasePath ? BasePath->size() : 0); | 
 |   void *Buffer = | 
 |     C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*)); | 
 |   ImplicitCastExpr *E = | 
 |     new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK); | 
 |   if (PathSize) E->setCastPath(*BasePath); | 
 |   return E; | 
 | } | 
 |  | 
 | ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(ASTContext &C, | 
 |                                                 unsigned PathSize) { | 
 |   void *Buffer = | 
 |     C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*)); | 
 |   return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize); | 
 | } | 
 |  | 
 |  | 
 | CStyleCastExpr *CStyleCastExpr::Create(ASTContext &C, QualType T, | 
 |                                        ExprValueKind VK, CastKind K, Expr *Op, | 
 |                                        const CXXCastPath *BasePath, | 
 |                                        TypeSourceInfo *WrittenTy, | 
 |                                        SourceLocation L, SourceLocation R) { | 
 |   unsigned PathSize = (BasePath ? BasePath->size() : 0); | 
 |   void *Buffer = | 
 |     C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*)); | 
 |   CStyleCastExpr *E = | 
 |     new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R); | 
 |   if (PathSize) E->setCastPath(*BasePath); | 
 |   return E; | 
 | } | 
 |  | 
 | CStyleCastExpr *CStyleCastExpr::CreateEmpty(ASTContext &C, unsigned PathSize) { | 
 |   void *Buffer = | 
 |     C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*)); | 
 |   return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize); | 
 | } | 
 |  | 
 | /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it | 
 | /// corresponds to, e.g. "<<=". | 
 | const char *BinaryOperator::getOpcodeStr(Opcode Op) { | 
 |   switch (Op) { | 
 |   case BO_PtrMemD:   return ".*"; | 
 |   case BO_PtrMemI:   return "->*"; | 
 |   case BO_Mul:       return "*"; | 
 |   case BO_Div:       return "/"; | 
 |   case BO_Rem:       return "%"; | 
 |   case BO_Add:       return "+"; | 
 |   case BO_Sub:       return "-"; | 
 |   case BO_Shl:       return "<<"; | 
 |   case BO_Shr:       return ">>"; | 
 |   case BO_LT:        return "<"; | 
 |   case BO_GT:        return ">"; | 
 |   case BO_LE:        return "<="; | 
 |   case BO_GE:        return ">="; | 
 |   case BO_EQ:        return "=="; | 
 |   case BO_NE:        return "!="; | 
 |   case BO_And:       return "&"; | 
 |   case BO_Xor:       return "^"; | 
 |   case BO_Or:        return "|"; | 
 |   case BO_LAnd:      return "&&"; | 
 |   case BO_LOr:       return "||"; | 
 |   case BO_Assign:    return "="; | 
 |   case BO_MulAssign: return "*="; | 
 |   case BO_DivAssign: return "/="; | 
 |   case BO_RemAssign: return "%="; | 
 |   case BO_AddAssign: return "+="; | 
 |   case BO_SubAssign: return "-="; | 
 |   case BO_ShlAssign: return "<<="; | 
 |   case BO_ShrAssign: return ">>="; | 
 |   case BO_AndAssign: return "&="; | 
 |   case BO_XorAssign: return "^="; | 
 |   case BO_OrAssign:  return "|="; | 
 |   case BO_Comma:     return ","; | 
 |   } | 
 |  | 
 |   llvm_unreachable("Invalid OpCode!"); | 
 | } | 
 |  | 
 | BinaryOperatorKind | 
 | BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) { | 
 |   switch (OO) { | 
 |   default: llvm_unreachable("Not an overloadable binary operator"); | 
 |   case OO_Plus: return BO_Add; | 
 |   case OO_Minus: return BO_Sub; | 
 |   case OO_Star: return BO_Mul; | 
 |   case OO_Slash: return BO_Div; | 
 |   case OO_Percent: return BO_Rem; | 
 |   case OO_Caret: return BO_Xor; | 
 |   case OO_Amp: return BO_And; | 
 |   case OO_Pipe: return BO_Or; | 
 |   case OO_Equal: return BO_Assign; | 
 |   case OO_Less: return BO_LT; | 
 |   case OO_Greater: return BO_GT; | 
 |   case OO_PlusEqual: return BO_AddAssign; | 
 |   case OO_MinusEqual: return BO_SubAssign; | 
 |   case OO_StarEqual: return BO_MulAssign; | 
 |   case OO_SlashEqual: return BO_DivAssign; | 
 |   case OO_PercentEqual: return BO_RemAssign; | 
 |   case OO_CaretEqual: return BO_XorAssign; | 
 |   case OO_AmpEqual: return BO_AndAssign; | 
 |   case OO_PipeEqual: return BO_OrAssign; | 
 |   case OO_LessLess: return BO_Shl; | 
 |   case OO_GreaterGreater: return BO_Shr; | 
 |   case OO_LessLessEqual: return BO_ShlAssign; | 
 |   case OO_GreaterGreaterEqual: return BO_ShrAssign; | 
 |   case OO_EqualEqual: return BO_EQ; | 
 |   case OO_ExclaimEqual: return BO_NE; | 
 |   case OO_LessEqual: return BO_LE; | 
 |   case OO_GreaterEqual: return BO_GE; | 
 |   case OO_AmpAmp: return BO_LAnd; | 
 |   case OO_PipePipe: return BO_LOr; | 
 |   case OO_Comma: return BO_Comma; | 
 |   case OO_ArrowStar: return BO_PtrMemI; | 
 |   } | 
 | } | 
 |  | 
 | OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) { | 
 |   static const OverloadedOperatorKind OverOps[] = { | 
 |     /* .* Cannot be overloaded */OO_None, OO_ArrowStar, | 
 |     OO_Star, OO_Slash, OO_Percent, | 
 |     OO_Plus, OO_Minus, | 
 |     OO_LessLess, OO_GreaterGreater, | 
 |     OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual, | 
 |     OO_EqualEqual, OO_ExclaimEqual, | 
 |     OO_Amp, | 
 |     OO_Caret, | 
 |     OO_Pipe, | 
 |     OO_AmpAmp, | 
 |     OO_PipePipe, | 
 |     OO_Equal, OO_StarEqual, | 
 |     OO_SlashEqual, OO_PercentEqual, | 
 |     OO_PlusEqual, OO_MinusEqual, | 
 |     OO_LessLessEqual, OO_GreaterGreaterEqual, | 
 |     OO_AmpEqual, OO_CaretEqual, | 
 |     OO_PipeEqual, | 
 |     OO_Comma | 
 |   }; | 
 |   return OverOps[Opc]; | 
 | } | 
 |  | 
 | InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc, | 
 |                            Expr **initExprs, unsigned numInits, | 
 |                            SourceLocation rbraceloc) | 
 |   : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false, | 
 |          false, false), | 
 |     InitExprs(C, numInits), | 
 |     LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0) | 
 | { | 
 |   sawArrayRangeDesignator(false); | 
 |   setInitializesStdInitializerList(false); | 
 |   for (unsigned I = 0; I != numInits; ++I) { | 
 |     if (initExprs[I]->isTypeDependent()) | 
 |       ExprBits.TypeDependent = true; | 
 |     if (initExprs[I]->isValueDependent()) | 
 |       ExprBits.ValueDependent = true; | 
 |     if (initExprs[I]->isInstantiationDependent()) | 
 |       ExprBits.InstantiationDependent = true; | 
 |     if (initExprs[I]->containsUnexpandedParameterPack()) | 
 |       ExprBits.ContainsUnexpandedParameterPack = true; | 
 |   } | 
 |        | 
 |   InitExprs.insert(C, InitExprs.end(), initExprs, initExprs+numInits); | 
 | } | 
 |  | 
 | void InitListExpr::reserveInits(ASTContext &C, unsigned NumInits) { | 
 |   if (NumInits > InitExprs.size()) | 
 |     InitExprs.reserve(C, NumInits); | 
 | } | 
 |  | 
 | void InitListExpr::resizeInits(ASTContext &C, unsigned NumInits) { | 
 |   InitExprs.resize(C, NumInits, 0); | 
 | } | 
 |  | 
 | Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) { | 
 |   if (Init >= InitExprs.size()) { | 
 |     InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0); | 
 |     InitExprs.back() = expr; | 
 |     return 0; | 
 |   } | 
 |  | 
 |   Expr *Result = cast_or_null<Expr>(InitExprs[Init]); | 
 |   InitExprs[Init] = expr; | 
 |   return Result; | 
 | } | 
 |  | 
 | void InitListExpr::setArrayFiller(Expr *filler) { | 
 |   assert(!hasArrayFiller() && "Filler already set!"); | 
 |   ArrayFillerOrUnionFieldInit = filler; | 
 |   // Fill out any "holes" in the array due to designated initializers. | 
 |   Expr **inits = getInits(); | 
 |   for (unsigned i = 0, e = getNumInits(); i != e; ++i) | 
 |     if (inits[i] == 0) | 
 |       inits[i] = filler; | 
 | } | 
 |  | 
 | bool InitListExpr::isStringLiteralInit() const { | 
 |   if (getNumInits() != 1) | 
 |     return false; | 
 |   const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(getType()); | 
 |   if (!CAT || !CAT->getElementType()->isIntegerType()) | 
 |     return false; | 
 |   const Expr *Init = getInit(0)->IgnoreParenImpCasts(); | 
 |   return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init); | 
 | } | 
 |  | 
 | SourceRange InitListExpr::getSourceRange() const { | 
 |   if (SyntacticForm) | 
 |     return SyntacticForm->getSourceRange(); | 
 |   SourceLocation Beg = LBraceLoc, End = RBraceLoc; | 
 |   if (Beg.isInvalid()) { | 
 |     // Find the first non-null initializer. | 
 |     for (InitExprsTy::const_iterator I = InitExprs.begin(), | 
 |                                      E = InitExprs.end();  | 
 |       I != E; ++I) { | 
 |       if (Stmt *S = *I) { | 
 |         Beg = S->getLocStart(); | 
 |         break; | 
 |       }   | 
 |     } | 
 |   } | 
 |   if (End.isInvalid()) { | 
 |     // Find the first non-null initializer from the end. | 
 |     for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(), | 
 |                                              E = InitExprs.rend(); | 
 |       I != E; ++I) { | 
 |       if (Stmt *S = *I) { | 
 |         End = S->getSourceRange().getEnd(); | 
 |         break; | 
 |       }   | 
 |     } | 
 |   } | 
 |   return SourceRange(Beg, End); | 
 | } | 
 |  | 
 | /// getFunctionType - Return the underlying function type for this block. | 
 | /// | 
 | const FunctionProtoType *BlockExpr::getFunctionType() const { | 
 |   // The block pointer is never sugared, but the function type might be. | 
 |   return cast<BlockPointerType>(getType()) | 
 |            ->getPointeeType()->castAs<FunctionProtoType>(); | 
 | } | 
 |  | 
 | SourceLocation BlockExpr::getCaretLocation() const { | 
 |   return TheBlock->getCaretLocation(); | 
 | } | 
 | const Stmt *BlockExpr::getBody() const { | 
 |   return TheBlock->getBody(); | 
 | } | 
 | Stmt *BlockExpr::getBody() { | 
 |   return TheBlock->getBody(); | 
 | } | 
 |  | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Generic Expression Routines | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// isUnusedResultAWarning - Return true if this immediate expression should | 
 | /// be warned about if the result is unused.  If so, fill in Loc and Ranges | 
 | /// with location to warn on and the source range[s] to report with the | 
 | /// warning. | 
 | bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1, | 
 |                                   SourceRange &R2, ASTContext &Ctx) const { | 
 |   // Don't warn if the expr is type dependent. The type could end up | 
 |   // instantiating to void. | 
 |   if (isTypeDependent()) | 
 |     return false; | 
 |  | 
 |   switch (getStmtClass()) { | 
 |   default: | 
 |     if (getType()->isVoidType()) | 
 |       return false; | 
 |     Loc = getExprLoc(); | 
 |     R1 = getSourceRange(); | 
 |     return true; | 
 |   case ParenExprClass: | 
 |     return cast<ParenExpr>(this)->getSubExpr()-> | 
 |       isUnusedResultAWarning(Loc, R1, R2, Ctx); | 
 |   case GenericSelectionExprClass: | 
 |     return cast<GenericSelectionExpr>(this)->getResultExpr()-> | 
 |       isUnusedResultAWarning(Loc, R1, R2, Ctx); | 
 |   case UnaryOperatorClass: { | 
 |     const UnaryOperator *UO = cast<UnaryOperator>(this); | 
 |  | 
 |     switch (UO->getOpcode()) { | 
 |     default: break; | 
 |     case UO_PostInc: | 
 |     case UO_PostDec: | 
 |     case UO_PreInc: | 
 |     case UO_PreDec:                 // ++/-- | 
 |       return false;  // Not a warning. | 
 |     case UO_Deref: | 
 |       // Dereferencing a volatile pointer is a side-effect. | 
 |       if (Ctx.getCanonicalType(getType()).isVolatileQualified()) | 
 |         return false; | 
 |       break; | 
 |     case UO_Real: | 
 |     case UO_Imag: | 
 |       // accessing a piece of a volatile complex is a side-effect. | 
 |       if (Ctx.getCanonicalType(UO->getSubExpr()->getType()) | 
 |           .isVolatileQualified()) | 
 |         return false; | 
 |       break; | 
 |     case UO_Extension: | 
 |       return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx); | 
 |     } | 
 |     Loc = UO->getOperatorLoc(); | 
 |     R1 = UO->getSubExpr()->getSourceRange(); | 
 |     return true; | 
 |   } | 
 |   case BinaryOperatorClass: { | 
 |     const BinaryOperator *BO = cast<BinaryOperator>(this); | 
 |     switch (BO->getOpcode()) { | 
 |       default: | 
 |         break; | 
 |       // Consider the RHS of comma for side effects. LHS was checked by | 
 |       // Sema::CheckCommaOperands. | 
 |       case BO_Comma: | 
 |         // ((foo = <blah>), 0) is an idiom for hiding the result (and | 
 |         // lvalue-ness) of an assignment written in a macro. | 
 |         if (IntegerLiteral *IE = | 
 |               dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens())) | 
 |           if (IE->getValue() == 0) | 
 |             return false; | 
 |         return BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx); | 
 |       // Consider '||', '&&' to have side effects if the LHS or RHS does. | 
 |       case BO_LAnd: | 
 |       case BO_LOr: | 
 |         if (!BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) || | 
 |             !BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx)) | 
 |           return false; | 
 |         break; | 
 |     } | 
 |     if (BO->isAssignmentOp()) | 
 |       return false; | 
 |     Loc = BO->getOperatorLoc(); | 
 |     R1 = BO->getLHS()->getSourceRange(); | 
 |     R2 = BO->getRHS()->getSourceRange(); | 
 |     return true; | 
 |   } | 
 |   case CompoundAssignOperatorClass: | 
 |   case VAArgExprClass: | 
 |   case AtomicExprClass: | 
 |     return false; | 
 |  | 
 |   case ConditionalOperatorClass: { | 
 |     // If only one of the LHS or RHS is a warning, the operator might | 
 |     // be being used for control flow. Only warn if both the LHS and | 
 |     // RHS are warnings. | 
 |     const ConditionalOperator *Exp = cast<ConditionalOperator>(this); | 
 |     if (!Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx)) | 
 |       return false; | 
 |     if (!Exp->getLHS()) | 
 |       return true; | 
 |     return Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx); | 
 |   } | 
 |  | 
 |   case MemberExprClass: | 
 |     // If the base pointer or element is to a volatile pointer/field, accessing | 
 |     // it is a side effect. | 
 |     if (Ctx.getCanonicalType(getType()).isVolatileQualified()) | 
 |       return false; | 
 |     Loc = cast<MemberExpr>(this)->getMemberLoc(); | 
 |     R1 = SourceRange(Loc, Loc); | 
 |     R2 = cast<MemberExpr>(this)->getBase()->getSourceRange(); | 
 |     return true; | 
 |  | 
 |   case ArraySubscriptExprClass: | 
 |     // If the base pointer or element is to a volatile pointer/field, accessing | 
 |     // it is a side effect. | 
 |     if (Ctx.getCanonicalType(getType()).isVolatileQualified()) | 
 |       return false; | 
 |     Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc(); | 
 |     R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange(); | 
 |     R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange(); | 
 |     return true; | 
 |  | 
 |   case CXXOperatorCallExprClass: { | 
 |     // We warn about operator== and operator!= even when user-defined operator | 
 |     // overloads as there is no reasonable way to define these such that they | 
 |     // have non-trivial, desirable side-effects. See the -Wunused-comparison | 
 |     // warning: these operators are commonly typo'ed, and so warning on them | 
 |     // provides additional value as well. If this list is updated, | 
 |     // DiagnoseUnusedComparison should be as well. | 
 |     const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this); | 
 |     if (Op->getOperator() == OO_EqualEqual || | 
 |         Op->getOperator() == OO_ExclaimEqual) { | 
 |       Loc = Op->getOperatorLoc(); | 
 |       R1 = Op->getSourceRange(); | 
 |       return true; | 
 |     } | 
 |  | 
 |     // Fallthrough for generic call handling. | 
 |   } | 
 |   case CallExprClass: | 
 |   case CXXMemberCallExprClass: | 
 |   case UserDefinedLiteralClass: { | 
 |     // If this is a direct call, get the callee. | 
 |     const CallExpr *CE = cast<CallExpr>(this); | 
 |     if (const Decl *FD = CE->getCalleeDecl()) { | 
 |       // If the callee has attribute pure, const, or warn_unused_result, warn | 
 |       // about it. void foo() { strlen("bar"); } should warn. | 
 |       // | 
 |       // Note: If new cases are added here, DiagnoseUnusedExprResult should be | 
 |       // updated to match for QoI. | 
 |       if (FD->getAttr<WarnUnusedResultAttr>() || | 
 |           FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) { | 
 |         Loc = CE->getCallee()->getLocStart(); | 
 |         R1 = CE->getCallee()->getSourceRange(); | 
 |  | 
 |         if (unsigned NumArgs = CE->getNumArgs()) | 
 |           R2 = SourceRange(CE->getArg(0)->getLocStart(), | 
 |                            CE->getArg(NumArgs-1)->getLocEnd()); | 
 |         return true; | 
 |       } | 
 |     } | 
 |     return false; | 
 |   } | 
 |  | 
 |   case CXXTemporaryObjectExprClass: | 
 |   case CXXConstructExprClass: | 
 |     return false; | 
 |  | 
 |   case ObjCMessageExprClass: { | 
 |     const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this); | 
 |     if (Ctx.getLangOpts().ObjCAutoRefCount && | 
 |         ME->isInstanceMessage() && | 
 |         !ME->getType()->isVoidType() && | 
 |         ME->getSelector().getIdentifierInfoForSlot(0) && | 
 |         ME->getSelector().getIdentifierInfoForSlot(0) | 
 |                                                ->getName().startswith("init")) { | 
 |       Loc = getExprLoc(); | 
 |       R1 = ME->getSourceRange(); | 
 |       return true; | 
 |     } | 
 |  | 
 |     const ObjCMethodDecl *MD = ME->getMethodDecl(); | 
 |     if (MD && MD->getAttr<WarnUnusedResultAttr>()) { | 
 |       Loc = getExprLoc(); | 
 |       return true; | 
 |     } | 
 |     return false; | 
 |   } | 
 |  | 
 |   case ObjCPropertyRefExprClass: | 
 |     Loc = getExprLoc(); | 
 |     R1 = getSourceRange(); | 
 |     return true; | 
 |  | 
 |   case PseudoObjectExprClass: { | 
 |     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this); | 
 |  | 
 |     // Only complain about things that have the form of a getter. | 
 |     if (isa<UnaryOperator>(PO->getSyntacticForm()) || | 
 |         isa<BinaryOperator>(PO->getSyntacticForm())) | 
 |       return false; | 
 |  | 
 |     Loc = getExprLoc(); | 
 |     R1 = getSourceRange(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   case StmtExprClass: { | 
 |     // Statement exprs don't logically have side effects themselves, but are | 
 |     // sometimes used in macros in ways that give them a type that is unused. | 
 |     // For example ({ blah; foo(); }) will end up with a type if foo has a type. | 
 |     // however, if the result of the stmt expr is dead, we don't want to emit a | 
 |     // warning. | 
 |     const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt(); | 
 |     if (!CS->body_empty()) { | 
 |       if (const Expr *E = dyn_cast<Expr>(CS->body_back())) | 
 |         return E->isUnusedResultAWarning(Loc, R1, R2, Ctx); | 
 |       if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back())) | 
 |         if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt())) | 
 |           return E->isUnusedResultAWarning(Loc, R1, R2, Ctx); | 
 |     } | 
 |  | 
 |     if (getType()->isVoidType()) | 
 |       return false; | 
 |     Loc = cast<StmtExpr>(this)->getLParenLoc(); | 
 |     R1 = getSourceRange(); | 
 |     return true; | 
 |   } | 
 |   case CStyleCastExprClass: | 
 |     // If this is an explicit cast to void, allow it.  People do this when they | 
 |     // think they know what they're doing :). | 
 |     if (getType()->isVoidType()) | 
 |       return false; | 
 |     Loc = cast<CStyleCastExpr>(this)->getLParenLoc(); | 
 |     R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange(); | 
 |     return true; | 
 |   case CXXFunctionalCastExprClass: { | 
 |     if (getType()->isVoidType()) | 
 |       return false; | 
 |     const CastExpr *CE = cast<CastExpr>(this); | 
 |      | 
 |     // If this is a cast to void or a constructor conversion, check the operand. | 
 |     // Otherwise, the result of the cast is unused. | 
 |     if (CE->getCastKind() == CK_ToVoid || | 
 |         CE->getCastKind() == CK_ConstructorConversion) | 
 |       return (cast<CastExpr>(this)->getSubExpr() | 
 |               ->isUnusedResultAWarning(Loc, R1, R2, Ctx)); | 
 |     Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc(); | 
 |     R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   case ImplicitCastExprClass: | 
 |     // Check the operand, since implicit casts are inserted by Sema | 
 |     return (cast<ImplicitCastExpr>(this) | 
 |             ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); | 
 |  | 
 |   case CXXDefaultArgExprClass: | 
 |     return (cast<CXXDefaultArgExpr>(this) | 
 |             ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); | 
 |  | 
 |   case CXXNewExprClass: | 
 |     // FIXME: In theory, there might be new expressions that don't have side | 
 |     // effects (e.g. a placement new with an uninitialized POD). | 
 |   case CXXDeleteExprClass: | 
 |     return false; | 
 |   case CXXBindTemporaryExprClass: | 
 |     return (cast<CXXBindTemporaryExpr>(this) | 
 |             ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); | 
 |   case ExprWithCleanupsClass: | 
 |     return (cast<ExprWithCleanups>(this) | 
 |             ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); | 
 |   } | 
 | } | 
 |  | 
 | /// isOBJCGCCandidate - Check if an expression is objc gc'able. | 
 | /// returns true, if it is; false otherwise. | 
 | bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const { | 
 |   const Expr *E = IgnoreParens(); | 
 |   switch (E->getStmtClass()) { | 
 |   default: | 
 |     return false; | 
 |   case ObjCIvarRefExprClass: | 
 |     return true; | 
 |   case Expr::UnaryOperatorClass: | 
 |     return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); | 
 |   case ImplicitCastExprClass: | 
 |     return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); | 
 |   case MaterializeTemporaryExprClass: | 
 |     return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr() | 
 |                                                       ->isOBJCGCCandidate(Ctx); | 
 |   case CStyleCastExprClass: | 
 |     return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); | 
 |   case DeclRefExprClass: { | 
 |     const Decl *D = cast<DeclRefExpr>(E)->getDecl(); | 
 |          | 
 |     if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { | 
 |       if (VD->hasGlobalStorage()) | 
 |         return true; | 
 |       QualType T = VD->getType(); | 
 |       // dereferencing to a  pointer is always a gc'able candidate, | 
 |       // unless it is __weak. | 
 |       return T->isPointerType() && | 
 |              (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak); | 
 |     } | 
 |     return false; | 
 |   } | 
 |   case MemberExprClass: { | 
 |     const MemberExpr *M = cast<MemberExpr>(E); | 
 |     return M->getBase()->isOBJCGCCandidate(Ctx); | 
 |   } | 
 |   case ArraySubscriptExprClass: | 
 |     return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx); | 
 |   } | 
 | } | 
 |  | 
 | bool Expr::isBoundMemberFunction(ASTContext &Ctx) const { | 
 |   if (isTypeDependent()) | 
 |     return false; | 
 |   return ClassifyLValue(Ctx) == Expr::LV_MemberFunction; | 
 | } | 
 |  | 
 | QualType Expr::findBoundMemberType(const Expr *expr) { | 
 |   assert(expr->hasPlaceholderType(BuiltinType::BoundMember)); | 
 |  | 
 |   // Bound member expressions are always one of these possibilities: | 
 |   //   x->m      x.m      x->*y      x.*y | 
 |   // (possibly parenthesized) | 
 |  | 
 |   expr = expr->IgnoreParens(); | 
 |   if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) { | 
 |     assert(isa<CXXMethodDecl>(mem->getMemberDecl())); | 
 |     return mem->getMemberDecl()->getType(); | 
 |   } | 
 |  | 
 |   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) { | 
 |     QualType type = op->getRHS()->getType()->castAs<MemberPointerType>() | 
 |                       ->getPointeeType(); | 
 |     assert(type->isFunctionType()); | 
 |     return type; | 
 |   } | 
 |  | 
 |   assert(isa<UnresolvedMemberExpr>(expr)); | 
 |   return QualType(); | 
 | } | 
 |  | 
 | static Expr::CanThrowResult MergeCanThrow(Expr::CanThrowResult CT1, | 
 |                                           Expr::CanThrowResult CT2) { | 
 |   // CanThrowResult constants are ordered so that the maximum is the correct | 
 |   // merge result. | 
 |   return CT1 > CT2 ? CT1 : CT2; | 
 | } | 
 |  | 
 | static Expr::CanThrowResult CanSubExprsThrow(ASTContext &C, const Expr *CE) { | 
 |   Expr *E = const_cast<Expr*>(CE); | 
 |   Expr::CanThrowResult R = Expr::CT_Cannot; | 
 |   for (Expr::child_range I = E->children(); I && R != Expr::CT_Can; ++I) { | 
 |     R = MergeCanThrow(R, cast<Expr>(*I)->CanThrow(C)); | 
 |   } | 
 |   return R; | 
 | } | 
 |  | 
 | static Expr::CanThrowResult CanCalleeThrow(ASTContext &Ctx, const Expr *E, | 
 |                                            const Decl *D, | 
 |                                            bool NullThrows = true) { | 
 |   if (!D) | 
 |     return NullThrows ? Expr::CT_Can : Expr::CT_Cannot; | 
 |  | 
 |   // See if we can get a function type from the decl somehow. | 
 |   const ValueDecl *VD = dyn_cast<ValueDecl>(D); | 
 |   if (!VD) // If we have no clue what we're calling, assume the worst. | 
 |     return Expr::CT_Can; | 
 |  | 
 |   // As an extension, we assume that __attribute__((nothrow)) functions don't | 
 |   // throw. | 
 |   if (isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>()) | 
 |     return Expr::CT_Cannot; | 
 |  | 
 |   QualType T = VD->getType(); | 
 |   const FunctionProtoType *FT; | 
 |   if ((FT = T->getAs<FunctionProtoType>())) { | 
 |   } else if (const PointerType *PT = T->getAs<PointerType>()) | 
 |     FT = PT->getPointeeType()->getAs<FunctionProtoType>(); | 
 |   else if (const ReferenceType *RT = T->getAs<ReferenceType>()) | 
 |     FT = RT->getPointeeType()->getAs<FunctionProtoType>(); | 
 |   else if (const MemberPointerType *MT = T->getAs<MemberPointerType>()) | 
 |     FT = MT->getPointeeType()->getAs<FunctionProtoType>(); | 
 |   else if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) | 
 |     FT = BT->getPointeeType()->getAs<FunctionProtoType>(); | 
 |  | 
 |   if (!FT) | 
 |     return Expr::CT_Can; | 
 |  | 
 |   if (FT->getExceptionSpecType() == EST_Delayed) { | 
 |     assert(isa<CXXConstructorDecl>(D) && | 
 |            "only constructor exception specs can be unknown"); | 
 |     Ctx.getDiagnostics().Report(E->getLocStart(), | 
 |                                 diag::err_exception_spec_unknown) | 
 |       << E->getSourceRange(); | 
 |     return Expr::CT_Can; | 
 |   } | 
 |  | 
 |   return FT->isNothrow(Ctx) ? Expr::CT_Cannot : Expr::CT_Can; | 
 | } | 
 |  | 
 | static Expr::CanThrowResult CanDynamicCastThrow(const CXXDynamicCastExpr *DC) { | 
 |   if (DC->isTypeDependent()) | 
 |     return Expr::CT_Dependent; | 
 |  | 
 |   if (!DC->getTypeAsWritten()->isReferenceType()) | 
 |     return Expr::CT_Cannot; | 
 |  | 
 |   if (DC->getSubExpr()->isTypeDependent()) | 
 |     return Expr::CT_Dependent; | 
 |  | 
 |   return DC->getCastKind() == clang::CK_Dynamic? Expr::CT_Can : Expr::CT_Cannot; | 
 | } | 
 |  | 
 | static Expr::CanThrowResult CanTypeidThrow(ASTContext &C, | 
 |                                            const CXXTypeidExpr *DC) { | 
 |   if (DC->isTypeOperand()) | 
 |     return Expr::CT_Cannot; | 
 |  | 
 |   Expr *Op = DC->getExprOperand(); | 
 |   if (Op->isTypeDependent()) | 
 |     return Expr::CT_Dependent; | 
 |  | 
 |   const RecordType *RT = Op->getType()->getAs<RecordType>(); | 
 |   if (!RT) | 
 |     return Expr::CT_Cannot; | 
 |  | 
 |   if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic()) | 
 |     return Expr::CT_Cannot; | 
 |  | 
 |   if (Op->Classify(C).isPRValue()) | 
 |     return Expr::CT_Cannot; | 
 |  | 
 |   return Expr::CT_Can; | 
 | } | 
 |  | 
 | Expr::CanThrowResult Expr::CanThrow(ASTContext &C) const { | 
 |   // C++ [expr.unary.noexcept]p3: | 
 |   //   [Can throw] if in a potentially-evaluated context the expression would | 
 |   //   contain: | 
 |   switch (getStmtClass()) { | 
 |   case CXXThrowExprClass: | 
 |     //   - a potentially evaluated throw-expression | 
 |     return CT_Can; | 
 |  | 
 |   case CXXDynamicCastExprClass: { | 
 |     //   - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v), | 
 |     //     where T is a reference type, that requires a run-time check | 
 |     CanThrowResult CT = CanDynamicCastThrow(cast<CXXDynamicCastExpr>(this)); | 
 |     if (CT == CT_Can) | 
 |       return CT; | 
 |     return MergeCanThrow(CT, CanSubExprsThrow(C, this)); | 
 |   } | 
 |  | 
 |   case CXXTypeidExprClass: | 
 |     //   - a potentially evaluated typeid expression applied to a glvalue | 
 |     //     expression whose type is a polymorphic class type | 
 |     return CanTypeidThrow(C, cast<CXXTypeidExpr>(this)); | 
 |  | 
 |     //   - a potentially evaluated call to a function, member function, function | 
 |     //     pointer, or member function pointer that does not have a non-throwing | 
 |     //     exception-specification | 
 |   case CallExprClass: | 
 |   case CXXMemberCallExprClass: | 
 |   case CXXOperatorCallExprClass: | 
 |   case UserDefinedLiteralClass: { | 
 |     const CallExpr *CE = cast<CallExpr>(this); | 
 |     CanThrowResult CT; | 
 |     if (isTypeDependent()) | 
 |       CT = CT_Dependent; | 
 |     else if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) | 
 |       CT = CT_Cannot; | 
 |     else | 
 |       CT = CanCalleeThrow(C, this, CE->getCalleeDecl()); | 
 |     if (CT == CT_Can) | 
 |       return CT; | 
 |     return MergeCanThrow(CT, CanSubExprsThrow(C, this)); | 
 |   } | 
 |  | 
 |   case CXXConstructExprClass: | 
 |   case CXXTemporaryObjectExprClass: { | 
 |     CanThrowResult CT = CanCalleeThrow(C, this, | 
 |         cast<CXXConstructExpr>(this)->getConstructor()); | 
 |     if (CT == CT_Can) | 
 |       return CT; | 
 |     return MergeCanThrow(CT, CanSubExprsThrow(C, this)); | 
 |   } | 
 |  | 
 |   case LambdaExprClass: { | 
 |     const LambdaExpr *Lambda = cast<LambdaExpr>(this); | 
 |     CanThrowResult CT = Expr::CT_Cannot; | 
 |     for (LambdaExpr::capture_init_iterator Cap = Lambda->capture_init_begin(), | 
 |                                         CapEnd = Lambda->capture_init_end(); | 
 |          Cap != CapEnd; ++Cap) | 
 |       CT = MergeCanThrow(CT, (*Cap)->CanThrow(C)); | 
 |     return CT; | 
 |   } | 
 |  | 
 |   case CXXNewExprClass: { | 
 |     CanThrowResult CT; | 
 |     if (isTypeDependent()) | 
 |       CT = CT_Dependent; | 
 |     else | 
 |       CT = CanCalleeThrow(C, this, cast<CXXNewExpr>(this)->getOperatorNew()); | 
 |     if (CT == CT_Can) | 
 |       return CT; | 
 |     return MergeCanThrow(CT, CanSubExprsThrow(C, this)); | 
 |   } | 
 |  | 
 |   case CXXDeleteExprClass: { | 
 |     CanThrowResult CT; | 
 |     QualType DTy = cast<CXXDeleteExpr>(this)->getDestroyedType(); | 
 |     if (DTy.isNull() || DTy->isDependentType()) { | 
 |       CT = CT_Dependent; | 
 |     } else { | 
 |       CT = CanCalleeThrow(C, this, | 
 |                           cast<CXXDeleteExpr>(this)->getOperatorDelete()); | 
 |       if (const RecordType *RT = DTy->getAs<RecordType>()) { | 
 |         const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); | 
 |         CT = MergeCanThrow(CT, CanCalleeThrow(C, this, RD->getDestructor())); | 
 |       } | 
 |       if (CT == CT_Can) | 
 |         return CT; | 
 |     } | 
 |     return MergeCanThrow(CT, CanSubExprsThrow(C, this)); | 
 |   } | 
 |  | 
 |   case CXXBindTemporaryExprClass: { | 
 |     // The bound temporary has to be destroyed again, which might throw. | 
 |     CanThrowResult CT = CanCalleeThrow(C, this, | 
 |       cast<CXXBindTemporaryExpr>(this)->getTemporary()->getDestructor()); | 
 |     if (CT == CT_Can) | 
 |       return CT; | 
 |     return MergeCanThrow(CT, CanSubExprsThrow(C, this)); | 
 |   } | 
 |  | 
 |     // ObjC message sends are like function calls, but never have exception | 
 |     // specs. | 
 |   case ObjCMessageExprClass: | 
 |   case ObjCPropertyRefExprClass: | 
 |   case ObjCSubscriptRefExprClass: | 
 |     return CT_Can; | 
 |  | 
 |     // All the ObjC literals that are implemented as calls are | 
 |     // potentially throwing unless we decide to close off that | 
 |     // possibility. | 
 |   case ObjCArrayLiteralClass: | 
 |   case ObjCDictionaryLiteralClass: | 
 |   case ObjCNumericLiteralClass: | 
 |     return CT_Can; | 
 |  | 
 |     // Many other things have subexpressions, so we have to test those. | 
 |     // Some are simple: | 
 |   case ConditionalOperatorClass: | 
 |   case CompoundLiteralExprClass: | 
 |   case CXXConstCastExprClass: | 
 |   case CXXDefaultArgExprClass: | 
 |   case CXXReinterpretCastExprClass: | 
 |   case DesignatedInitExprClass: | 
 |   case ExprWithCleanupsClass: | 
 |   case ExtVectorElementExprClass: | 
 |   case InitListExprClass: | 
 |   case MemberExprClass: | 
 |   case ObjCIsaExprClass: | 
 |   case ObjCIvarRefExprClass: | 
 |   case ParenExprClass: | 
 |   case ParenListExprClass: | 
 |   case ShuffleVectorExprClass: | 
 |   case VAArgExprClass: | 
 |     return CanSubExprsThrow(C, this); | 
 |  | 
 |     // Some might be dependent for other reasons. | 
 |   case ArraySubscriptExprClass: | 
 |   case BinaryOperatorClass: | 
 |   case CompoundAssignOperatorClass: | 
 |   case CStyleCastExprClass: | 
 |   case CXXStaticCastExprClass: | 
 |   case CXXFunctionalCastExprClass: | 
 |   case ImplicitCastExprClass: | 
 |   case MaterializeTemporaryExprClass: | 
 |   case UnaryOperatorClass: { | 
 |     CanThrowResult CT = isTypeDependent() ? CT_Dependent : CT_Cannot; | 
 |     return MergeCanThrow(CT, CanSubExprsThrow(C, this)); | 
 |   } | 
 |  | 
 |     // FIXME: We should handle StmtExpr, but that opens a MASSIVE can of worms. | 
 |   case StmtExprClass: | 
 |     return CT_Can; | 
 |  | 
 |   case ChooseExprClass: | 
 |     if (isTypeDependent() || isValueDependent()) | 
 |       return CT_Dependent; | 
 |     return cast<ChooseExpr>(this)->getChosenSubExpr(C)->CanThrow(C); | 
 |  | 
 |   case GenericSelectionExprClass: | 
 |     if (cast<GenericSelectionExpr>(this)->isResultDependent()) | 
 |       return CT_Dependent; | 
 |     return cast<GenericSelectionExpr>(this)->getResultExpr()->CanThrow(C); | 
 |  | 
 |     // Some expressions are always dependent. | 
 |   case CXXDependentScopeMemberExprClass: | 
 |   case CXXUnresolvedConstructExprClass: | 
 |   case DependentScopeDeclRefExprClass: | 
 |     return CT_Dependent; | 
 |  | 
 |   case AtomicExprClass: | 
 |   case AsTypeExprClass: | 
 |   case BinaryConditionalOperatorClass: | 
 |   case BlockExprClass: | 
 |   case CUDAKernelCallExprClass: | 
 |   case DeclRefExprClass: | 
 |   case ObjCBridgedCastExprClass: | 
 |   case ObjCIndirectCopyRestoreExprClass: | 
 |   case ObjCProtocolExprClass: | 
 |   case ObjCSelectorExprClass: | 
 |   case OffsetOfExprClass: | 
 |   case PackExpansionExprClass: | 
 |   case PseudoObjectExprClass: | 
 |   case SubstNonTypeTemplateParmExprClass: | 
 |   case SubstNonTypeTemplateParmPackExprClass: | 
 |   case UnaryExprOrTypeTraitExprClass: | 
 |   case UnresolvedLookupExprClass: | 
 |   case UnresolvedMemberExprClass: | 
 |     // FIXME: Can any of the above throw?  If so, when? | 
 |     return CT_Cannot; | 
 |  | 
 |   case AddrLabelExprClass: | 
 |   case ArrayTypeTraitExprClass: | 
 |   case BinaryTypeTraitExprClass: | 
 |   case TypeTraitExprClass: | 
 |   case CXXBoolLiteralExprClass: | 
 |   case CXXNoexceptExprClass: | 
 |   case CXXNullPtrLiteralExprClass: | 
 |   case CXXPseudoDestructorExprClass: | 
 |   case CXXScalarValueInitExprClass: | 
 |   case CXXThisExprClass: | 
 |   case CXXUuidofExprClass: | 
 |   case CharacterLiteralClass: | 
 |   case ExpressionTraitExprClass: | 
 |   case FloatingLiteralClass: | 
 |   case GNUNullExprClass: | 
 |   case ImaginaryLiteralClass: | 
 |   case ImplicitValueInitExprClass: | 
 |   case IntegerLiteralClass: | 
 |   case ObjCEncodeExprClass: | 
 |   case ObjCStringLiteralClass: | 
 |   case ObjCBoolLiteralExprClass: | 
 |   case OpaqueValueExprClass: | 
 |   case PredefinedExprClass: | 
 |   case SizeOfPackExprClass: | 
 |   case StringLiteralClass: | 
 |   case UnaryTypeTraitExprClass: | 
 |     // These expressions can never throw. | 
 |     return CT_Cannot; | 
 |  | 
 | #define STMT(CLASS, PARENT) case CLASS##Class: | 
 | #define STMT_RANGE(Base, First, Last) | 
 | #define LAST_STMT_RANGE(BASE, FIRST, LAST) | 
 | #define EXPR(CLASS, PARENT) | 
 | #define ABSTRACT_STMT(STMT) | 
 | #include "clang/AST/StmtNodes.inc" | 
 |   case NoStmtClass: | 
 |     llvm_unreachable("Invalid class for expression"); | 
 |   } | 
 |   llvm_unreachable("Bogus StmtClass"); | 
 | } | 
 |  | 
 | Expr* Expr::IgnoreParens() { | 
 |   Expr* E = this; | 
 |   while (true) { | 
 |     if (ParenExpr* P = dyn_cast<ParenExpr>(E)) { | 
 |       E = P->getSubExpr(); | 
 |       continue; | 
 |     } | 
 |     if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) { | 
 |       if (P->getOpcode() == UO_Extension) { | 
 |         E = P->getSubExpr(); | 
 |         continue; | 
 |       } | 
 |     } | 
 |     if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) { | 
 |       if (!P->isResultDependent()) { | 
 |         E = P->getResultExpr(); | 
 |         continue; | 
 |       } | 
 |     } | 
 |     return E; | 
 |   } | 
 | } | 
 |  | 
 | /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr | 
 | /// or CastExprs or ImplicitCastExprs, returning their operand. | 
 | Expr *Expr::IgnoreParenCasts() { | 
 |   Expr *E = this; | 
 |   while (true) { | 
 |     if (ParenExpr* P = dyn_cast<ParenExpr>(E)) { | 
 |       E = P->getSubExpr(); | 
 |       continue; | 
 |     } | 
 |     if (CastExpr *P = dyn_cast<CastExpr>(E)) { | 
 |       E = P->getSubExpr(); | 
 |       continue; | 
 |     } | 
 |     if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) { | 
 |       if (P->getOpcode() == UO_Extension) { | 
 |         E = P->getSubExpr(); | 
 |         continue; | 
 |       } | 
 |     } | 
 |     if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) { | 
 |       if (!P->isResultDependent()) { | 
 |         E = P->getResultExpr(); | 
 |         continue; | 
 |       } | 
 |     } | 
 |     if (MaterializeTemporaryExpr *Materialize  | 
 |                                       = dyn_cast<MaterializeTemporaryExpr>(E)) { | 
 |       E = Materialize->GetTemporaryExpr(); | 
 |       continue; | 
 |     } | 
 |     if (SubstNonTypeTemplateParmExpr *NTTP | 
 |                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { | 
 |       E = NTTP->getReplacement(); | 
 |       continue; | 
 |     }       | 
 |     return E; | 
 |   } | 
 | } | 
 |  | 
 | /// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue | 
 | /// casts.  This is intended purely as a temporary workaround for code | 
 | /// that hasn't yet been rewritten to do the right thing about those | 
 | /// casts, and may disappear along with the last internal use. | 
 | Expr *Expr::IgnoreParenLValueCasts() { | 
 |   Expr *E = this; | 
 |   while (true) { | 
 |     if (ParenExpr *P = dyn_cast<ParenExpr>(E)) { | 
 |       E = P->getSubExpr(); | 
 |       continue; | 
 |     } else if (CastExpr *P = dyn_cast<CastExpr>(E)) { | 
 |       if (P->getCastKind() == CK_LValueToRValue) { | 
 |         E = P->getSubExpr(); | 
 |         continue; | 
 |       } | 
 |     } else if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) { | 
 |       if (P->getOpcode() == UO_Extension) { | 
 |         E = P->getSubExpr(); | 
 |         continue; | 
 |       } | 
 |     } else if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) { | 
 |       if (!P->isResultDependent()) { | 
 |         E = P->getResultExpr(); | 
 |         continue; | 
 |       } | 
 |     } else if (MaterializeTemporaryExpr *Materialize  | 
 |                                       = dyn_cast<MaterializeTemporaryExpr>(E)) { | 
 |       E = Materialize->GetTemporaryExpr(); | 
 |       continue; | 
 |     } else if (SubstNonTypeTemplateParmExpr *NTTP | 
 |                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { | 
 |       E = NTTP->getReplacement(); | 
 |       continue; | 
 |     } | 
 |     break; | 
 |   } | 
 |   return E; | 
 | } | 
 |    | 
 | Expr *Expr::IgnoreParenImpCasts() { | 
 |   Expr *E = this; | 
 |   while (true) { | 
 |     if (ParenExpr *P = dyn_cast<ParenExpr>(E)) { | 
 |       E = P->getSubExpr(); | 
 |       continue; | 
 |     } | 
 |     if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) { | 
 |       E = P->getSubExpr(); | 
 |       continue; | 
 |     } | 
 |     if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) { | 
 |       if (P->getOpcode() == UO_Extension) { | 
 |         E = P->getSubExpr(); | 
 |         continue; | 
 |       } | 
 |     } | 
 |     if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) { | 
 |       if (!P->isResultDependent()) { | 
 |         E = P->getResultExpr(); | 
 |         continue; | 
 |       } | 
 |     } | 
 |     if (MaterializeTemporaryExpr *Materialize  | 
 |                                       = dyn_cast<MaterializeTemporaryExpr>(E)) { | 
 |       E = Materialize->GetTemporaryExpr(); | 
 |       continue; | 
 |     } | 
 |     if (SubstNonTypeTemplateParmExpr *NTTP | 
 |                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { | 
 |       E = NTTP->getReplacement(); | 
 |       continue; | 
 |     } | 
 |     return E; | 
 |   } | 
 | } | 
 |  | 
 | Expr *Expr::IgnoreConversionOperator() { | 
 |   if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) { | 
 |     if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl())) | 
 |       return MCE->getImplicitObjectArgument(); | 
 |   } | 
 |   return this; | 
 | } | 
 |  | 
 | /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the | 
 | /// value (including ptr->int casts of the same size).  Strip off any | 
 | /// ParenExpr or CastExprs, returning their operand. | 
 | Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) { | 
 |   Expr *E = this; | 
 |   while (true) { | 
 |     if (ParenExpr *P = dyn_cast<ParenExpr>(E)) { | 
 |       E = P->getSubExpr(); | 
 |       continue; | 
 |     } | 
 |  | 
 |     if (CastExpr *P = dyn_cast<CastExpr>(E)) { | 
 |       // We ignore integer <-> casts that are of the same width, ptr<->ptr and | 
 |       // ptr<->int casts of the same width.  We also ignore all identity casts. | 
 |       Expr *SE = P->getSubExpr(); | 
 |  | 
 |       if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) { | 
 |         E = SE; | 
 |         continue; | 
 |       } | 
 |  | 
 |       if ((E->getType()->isPointerType() || | 
 |            E->getType()->isIntegralType(Ctx)) && | 
 |           (SE->getType()->isPointerType() || | 
 |            SE->getType()->isIntegralType(Ctx)) && | 
 |           Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) { | 
 |         E = SE; | 
 |         continue; | 
 |       } | 
 |     } | 
 |  | 
 |     if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) { | 
 |       if (P->getOpcode() == UO_Extension) { | 
 |         E = P->getSubExpr(); | 
 |         continue; | 
 |       } | 
 |     } | 
 |  | 
 |     if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) { | 
 |       if (!P->isResultDependent()) { | 
 |         E = P->getResultExpr(); | 
 |         continue; | 
 |       } | 
 |     } | 
 |  | 
 |     if (SubstNonTypeTemplateParmExpr *NTTP | 
 |                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { | 
 |       E = NTTP->getReplacement(); | 
 |       continue; | 
 |     } | 
 |      | 
 |     return E; | 
 |   } | 
 | } | 
 |  | 
 | bool Expr::isDefaultArgument() const { | 
 |   const Expr *E = this; | 
 |   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) | 
 |     E = M->GetTemporaryExpr(); | 
 |  | 
 |   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) | 
 |     E = ICE->getSubExprAsWritten(); | 
 |    | 
 |   return isa<CXXDefaultArgExpr>(E); | 
 | } | 
 |  | 
 | /// \brief Skip over any no-op casts and any temporary-binding | 
 | /// expressions. | 
 | static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) { | 
 |   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) | 
 |     E = M->GetTemporaryExpr(); | 
 |  | 
 |   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { | 
 |     if (ICE->getCastKind() == CK_NoOp) | 
 |       E = ICE->getSubExpr(); | 
 |     else | 
 |       break; | 
 |   } | 
 |  | 
 |   while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E)) | 
 |     E = BE->getSubExpr(); | 
 |  | 
 |   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { | 
 |     if (ICE->getCastKind() == CK_NoOp) | 
 |       E = ICE->getSubExpr(); | 
 |     else | 
 |       break; | 
 |   } | 
 |  | 
 |   return E->IgnoreParens(); | 
 | } | 
 |  | 
 | /// isTemporaryObject - Determines if this expression produces a | 
 | /// temporary of the given class type. | 
 | bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const { | 
 |   if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy))) | 
 |     return false; | 
 |  | 
 |   const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this); | 
 |  | 
 |   // Temporaries are by definition pr-values of class type. | 
 |   if (!E->Classify(C).isPRValue()) { | 
 |     // In this context, property reference is a message call and is pr-value. | 
 |     if (!isa<ObjCPropertyRefExpr>(E)) | 
 |       return false; | 
 |   } | 
 |  | 
 |   // Black-list a few cases which yield pr-values of class type that don't | 
 |   // refer to temporaries of that type: | 
 |  | 
 |   // - implicit derived-to-base conversions | 
 |   if (isa<ImplicitCastExpr>(E)) { | 
 |     switch (cast<ImplicitCastExpr>(E)->getCastKind()) { | 
 |     case CK_DerivedToBase: | 
 |     case CK_UncheckedDerivedToBase: | 
 |       return false; | 
 |     default: | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   // - member expressions (all) | 
 |   if (isa<MemberExpr>(E)) | 
 |     return false; | 
 |  | 
 |   // - opaque values (all) | 
 |   if (isa<OpaqueValueExpr>(E)) | 
 |     return false; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool Expr::isImplicitCXXThis() const { | 
 |   const Expr *E = this; | 
 |    | 
 |   // Strip away parentheses and casts we don't care about. | 
 |   while (true) { | 
 |     if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) { | 
 |       E = Paren->getSubExpr(); | 
 |       continue; | 
 |     } | 
 |      | 
 |     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { | 
 |       if (ICE->getCastKind() == CK_NoOp || | 
 |           ICE->getCastKind() == CK_LValueToRValue || | 
 |           ICE->getCastKind() == CK_DerivedToBase ||  | 
 |           ICE->getCastKind() == CK_UncheckedDerivedToBase) { | 
 |         E = ICE->getSubExpr(); | 
 |         continue; | 
 |       } | 
 |     } | 
 |      | 
 |     if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) { | 
 |       if (UnOp->getOpcode() == UO_Extension) { | 
 |         E = UnOp->getSubExpr(); | 
 |         continue; | 
 |       } | 
 |     } | 
 |      | 
 |     if (const MaterializeTemporaryExpr *M | 
 |                                       = dyn_cast<MaterializeTemporaryExpr>(E)) { | 
 |       E = M->GetTemporaryExpr(); | 
 |       continue; | 
 |     } | 
 |      | 
 |     break; | 
 |   } | 
 |    | 
 |   if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E)) | 
 |     return This->isImplicit(); | 
 |    | 
 |   return false; | 
 | } | 
 |  | 
 | /// hasAnyTypeDependentArguments - Determines if any of the expressions | 
 | /// in Exprs is type-dependent. | 
 | bool Expr::hasAnyTypeDependentArguments(llvm::ArrayRef<Expr *> Exprs) { | 
 |   for (unsigned I = 0; I < Exprs.size(); ++I) | 
 |     if (Exprs[I]->isTypeDependent()) | 
 |       return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef) const { | 
 |   // This function is attempting whether an expression is an initializer | 
 |   // which can be evaluated at compile-time.  isEvaluatable handles most | 
 |   // of the cases, but it can't deal with some initializer-specific | 
 |   // expressions, and it can't deal with aggregates; we deal with those here, | 
 |   // and fall back to isEvaluatable for the other cases. | 
 |  | 
 |   // If we ever capture reference-binding directly in the AST, we can | 
 |   // kill the second parameter. | 
 |  | 
 |   if (IsForRef) { | 
 |     EvalResult Result; | 
 |     return EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects; | 
 |   } | 
 |  | 
 |   switch (getStmtClass()) { | 
 |   default: break; | 
 |   case IntegerLiteralClass: | 
 |   case FloatingLiteralClass: | 
 |   case StringLiteralClass: | 
 |   case ObjCStringLiteralClass: | 
 |   case ObjCEncodeExprClass: | 
 |     return true; | 
 |   case CXXTemporaryObjectExprClass: | 
 |   case CXXConstructExprClass: { | 
 |     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); | 
 |  | 
 |     // Only if it's | 
 |     if (CE->getConstructor()->isTrivial()) { | 
 |       // 1) an application of the trivial default constructor or | 
 |       if (!CE->getNumArgs()) return true; | 
 |  | 
 |       // 2) an elidable trivial copy construction of an operand which is | 
 |       //    itself a constant initializer.  Note that we consider the | 
 |       //    operand on its own, *not* as a reference binding. | 
 |       if (CE->isElidable() && | 
 |           CE->getArg(0)->isConstantInitializer(Ctx, false)) | 
 |         return true; | 
 |     } | 
 |  | 
 |     // 3) a foldable constexpr constructor. | 
 |     break; | 
 |   } | 
 |   case CompoundLiteralExprClass: { | 
 |     // This handles gcc's extension that allows global initializers like | 
 |     // "struct x {int x;} x = (struct x) {};". | 
 |     // FIXME: This accepts other cases it shouldn't! | 
 |     const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer(); | 
 |     return Exp->isConstantInitializer(Ctx, false); | 
 |   } | 
 |   case InitListExprClass: { | 
 |     // FIXME: This doesn't deal with fields with reference types correctly. | 
 |     // FIXME: This incorrectly allows pointers cast to integers to be assigned | 
 |     // to bitfields. | 
 |     const InitListExpr *Exp = cast<InitListExpr>(this); | 
 |     unsigned numInits = Exp->getNumInits(); | 
 |     for (unsigned i = 0; i < numInits; i++) { | 
 |       if (!Exp->getInit(i)->isConstantInitializer(Ctx, false)) | 
 |         return false; | 
 |     } | 
 |     return true; | 
 |   } | 
 |   case ImplicitValueInitExprClass: | 
 |     return true; | 
 |   case ParenExprClass: | 
 |     return cast<ParenExpr>(this)->getSubExpr() | 
 |       ->isConstantInitializer(Ctx, IsForRef); | 
 |   case GenericSelectionExprClass: | 
 |     if (cast<GenericSelectionExpr>(this)->isResultDependent()) | 
 |       return false; | 
 |     return cast<GenericSelectionExpr>(this)->getResultExpr() | 
 |       ->isConstantInitializer(Ctx, IsForRef); | 
 |   case ChooseExprClass: | 
 |     return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx) | 
 |       ->isConstantInitializer(Ctx, IsForRef); | 
 |   case UnaryOperatorClass: { | 
 |     const UnaryOperator* Exp = cast<UnaryOperator>(this); | 
 |     if (Exp->getOpcode() == UO_Extension) | 
 |       return Exp->getSubExpr()->isConstantInitializer(Ctx, false); | 
 |     break; | 
 |   } | 
 |   case CXXFunctionalCastExprClass: | 
 |   case CXXStaticCastExprClass: | 
 |   case ImplicitCastExprClass: | 
 |   case CStyleCastExprClass: { | 
 |     const CastExpr *CE = cast<CastExpr>(this); | 
 |  | 
 |     // If we're promoting an integer to an _Atomic type then this is constant | 
 |     // if the integer is constant.  We also need to check the converse in case | 
 |     // someone does something like: | 
 |     // | 
 |     // int a = (_Atomic(int))42; | 
 |     // | 
 |     // I doubt anyone would write code like this directly, but it's quite | 
 |     // possible as the result of macro expansions. | 
 |     if (CE->getCastKind() == CK_NonAtomicToAtomic || | 
 |         CE->getCastKind() == CK_AtomicToNonAtomic) | 
 |       return CE->getSubExpr()->isConstantInitializer(Ctx, false); | 
 |  | 
 |     // Handle bitcasts of vector constants. | 
 |     if (getType()->isVectorType() && CE->getCastKind() == CK_BitCast) | 
 |       return CE->getSubExpr()->isConstantInitializer(Ctx, false); | 
 |  | 
 |     // Handle misc casts we want to ignore. | 
 |     // FIXME: Is it really safe to ignore all these? | 
 |     if (CE->getCastKind() == CK_NoOp || | 
 |         CE->getCastKind() == CK_LValueToRValue || | 
 |         CE->getCastKind() == CK_ToUnion || | 
 |         CE->getCastKind() == CK_ConstructorConversion) | 
 |       return CE->getSubExpr()->isConstantInitializer(Ctx, false); | 
 |  | 
 |     break; | 
 |   } | 
 |   case MaterializeTemporaryExprClass: | 
 |     return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr() | 
 |                                             ->isConstantInitializer(Ctx, false); | 
 |   } | 
 |   return isEvaluatable(Ctx); | 
 | } | 
 |  | 
 | namespace { | 
 |   /// \brief Look for a call to a non-trivial function within an expression. | 
 |   class NonTrivialCallFinder : public EvaluatedExprVisitor<NonTrivialCallFinder> | 
 |   { | 
 |     typedef EvaluatedExprVisitor<NonTrivialCallFinder> Inherited; | 
 |      | 
 |     bool NonTrivial; | 
 |      | 
 |   public: | 
 |     explicit NonTrivialCallFinder(ASTContext &Context)  | 
 |       : Inherited(Context), NonTrivial(false) { } | 
 |      | 
 |     bool hasNonTrivialCall() const { return NonTrivial; } | 
 |      | 
 |     void VisitCallExpr(CallExpr *E) { | 
 |       if (CXXMethodDecl *Method | 
 |           = dyn_cast_or_null<CXXMethodDecl>(E->getCalleeDecl())) { | 
 |         if (Method->isTrivial()) { | 
 |           // Recurse to children of the call. | 
 |           Inherited::VisitStmt(E); | 
 |           return; | 
 |         } | 
 |       } | 
 |        | 
 |       NonTrivial = true; | 
 |     } | 
 |      | 
 |     void VisitCXXConstructExpr(CXXConstructExpr *E) { | 
 |       if (E->getConstructor()->isTrivial()) { | 
 |         // Recurse to children of the call. | 
 |         Inherited::VisitStmt(E); | 
 |         return; | 
 |       } | 
 |        | 
 |       NonTrivial = true; | 
 |     } | 
 |      | 
 |     void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { | 
 |       if (E->getTemporary()->getDestructor()->isTrivial()) { | 
 |         Inherited::VisitStmt(E); | 
 |         return; | 
 |       } | 
 |        | 
 |       NonTrivial = true; | 
 |     } | 
 |   }; | 
 | } | 
 |  | 
 | bool Expr::hasNonTrivialCall(ASTContext &Ctx) { | 
 |   NonTrivialCallFinder Finder(Ctx); | 
 |   Finder.Visit(this); | 
 |   return Finder.hasNonTrivialCall();   | 
 | } | 
 |  | 
 | /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null  | 
 | /// pointer constant or not, as well as the specific kind of constant detected. | 
 | /// Null pointer constants can be integer constant expressions with the | 
 | /// value zero, casts of zero to void*, nullptr (C++0X), or __null | 
 | /// (a GNU extension). | 
 | Expr::NullPointerConstantKind | 
 | Expr::isNullPointerConstant(ASTContext &Ctx, | 
 |                             NullPointerConstantValueDependence NPC) const { | 
 |   if (isValueDependent()) { | 
 |     switch (NPC) { | 
 |     case NPC_NeverValueDependent: | 
 |       llvm_unreachable("Unexpected value dependent expression!"); | 
 |     case NPC_ValueDependentIsNull: | 
 |       if (isTypeDependent() || getType()->isIntegralType(Ctx)) | 
 |         return NPCK_ZeroInteger; | 
 |       else | 
 |         return NPCK_NotNull; | 
 |          | 
 |     case NPC_ValueDependentIsNotNull: | 
 |       return NPCK_NotNull; | 
 |     } | 
 |   } | 
 |  | 
 |   // Strip off a cast to void*, if it exists. Except in C++. | 
 |   if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) { | 
 |     if (!Ctx.getLangOpts().CPlusPlus) { | 
 |       // Check that it is a cast to void*. | 
 |       if (const PointerType *PT = CE->getType()->getAs<PointerType>()) { | 
 |         QualType Pointee = PT->getPointeeType(); | 
 |         if (!Pointee.hasQualifiers() && | 
 |             Pointee->isVoidType() &&                              // to void* | 
 |             CE->getSubExpr()->getType()->isIntegerType())         // from int. | 
 |           return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC); | 
 |       } | 
 |     } | 
 |   } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) { | 
 |     // Ignore the ImplicitCastExpr type entirely. | 
 |     return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC); | 
 |   } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) { | 
 |     // Accept ((void*)0) as a null pointer constant, as many other | 
 |     // implementations do. | 
 |     return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC); | 
 |   } else if (const GenericSelectionExpr *GE = | 
 |                dyn_cast<GenericSelectionExpr>(this)) { | 
 |     return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC); | 
 |   } else if (const CXXDefaultArgExpr *DefaultArg | 
 |                = dyn_cast<CXXDefaultArgExpr>(this)) { | 
 |     // See through default argument expressions | 
 |     return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC); | 
 |   } else if (isa<GNUNullExpr>(this)) { | 
 |     // The GNU __null extension is always a null pointer constant. | 
 |     return NPCK_GNUNull; | 
 |   } else if (const MaterializeTemporaryExpr *M  | 
 |                                    = dyn_cast<MaterializeTemporaryExpr>(this)) { | 
 |     return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC); | 
 |   } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) { | 
 |     if (const Expr *Source = OVE->getSourceExpr()) | 
 |       return Source->isNullPointerConstant(Ctx, NPC); | 
 |   } | 
 |  | 
 |   // C++0x nullptr_t is always a null pointer constant. | 
 |   if (getType()->isNullPtrType()) | 
 |     return NPCK_CXX0X_nullptr; | 
 |  | 
 |   if (const RecordType *UT = getType()->getAsUnionType()) | 
 |     if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) | 
 |       if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){ | 
 |         const Expr *InitExpr = CLE->getInitializer(); | 
 |         if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr)) | 
 |           return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC); | 
 |       } | 
 |   // This expression must be an integer type. | 
 |   if (!getType()->isIntegerType() ||  | 
 |       (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType())) | 
 |     return NPCK_NotNull; | 
 |  | 
 |   // If we have an integer constant expression, we need to *evaluate* it and | 
 |   // test for the value 0. Don't use the C++11 constant expression semantics | 
 |   // for this, for now; once the dust settles on core issue 903, we might only | 
 |   // allow a literal 0 here in C++11 mode. | 
 |   if (Ctx.getLangOpts().CPlusPlus0x) { | 
 |     if (!isCXX98IntegralConstantExpr(Ctx)) | 
 |       return NPCK_NotNull; | 
 |   } else { | 
 |     if (!isIntegerConstantExpr(Ctx)) | 
 |       return NPCK_NotNull; | 
 |   } | 
 |  | 
 |   return (EvaluateKnownConstInt(Ctx) == 0) ? NPCK_ZeroInteger : NPCK_NotNull; | 
 | } | 
 |  | 
 | /// \brief If this expression is an l-value for an Objective C | 
 | /// property, find the underlying property reference expression. | 
 | const ObjCPropertyRefExpr *Expr::getObjCProperty() const { | 
 |   const Expr *E = this; | 
 |   while (true) { | 
 |     assert((E->getValueKind() == VK_LValue && | 
 |             E->getObjectKind() == OK_ObjCProperty) && | 
 |            "expression is not a property reference"); | 
 |     E = E->IgnoreParenCasts(); | 
 |     if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { | 
 |       if (BO->getOpcode() == BO_Comma) { | 
 |         E = BO->getRHS(); | 
 |         continue; | 
 |       } | 
 |     } | 
 |  | 
 |     break; | 
 |   } | 
 |  | 
 |   return cast<ObjCPropertyRefExpr>(E); | 
 | } | 
 |  | 
 | FieldDecl *Expr::getBitField() { | 
 |   Expr *E = this->IgnoreParens(); | 
 |  | 
 |   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { | 
 |     if (ICE->getCastKind() == CK_LValueToRValue || | 
 |         (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp)) | 
 |       E = ICE->getSubExpr()->IgnoreParens(); | 
 |     else | 
 |       break; | 
 |   } | 
 |  | 
 |   if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E)) | 
 |     if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) | 
 |       if (Field->isBitField()) | 
 |         return Field; | 
 |  | 
 |   if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) | 
 |     if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl())) | 
 |       if (Field->isBitField()) | 
 |         return Field; | 
 |  | 
 |   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) { | 
 |     if (BinOp->isAssignmentOp() && BinOp->getLHS()) | 
 |       return BinOp->getLHS()->getBitField(); | 
 |  | 
 |     if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS()) | 
 |       return BinOp->getRHS()->getBitField(); | 
 |   } | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | bool Expr::refersToVectorElement() const { | 
 |   const Expr *E = this->IgnoreParens(); | 
 |    | 
 |   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { | 
 |     if (ICE->getValueKind() != VK_RValue && | 
 |         ICE->getCastKind() == CK_NoOp) | 
 |       E = ICE->getSubExpr()->IgnoreParens(); | 
 |     else | 
 |       break; | 
 |   } | 
 |    | 
 |   if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) | 
 |     return ASE->getBase()->getType()->isVectorType(); | 
 |  | 
 |   if (isa<ExtVectorElementExpr>(E)) | 
 |     return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// isArrow - Return true if the base expression is a pointer to vector, | 
 | /// return false if the base expression is a vector. | 
 | bool ExtVectorElementExpr::isArrow() const { | 
 |   return getBase()->getType()->isPointerType(); | 
 | } | 
 |  | 
 | unsigned ExtVectorElementExpr::getNumElements() const { | 
 |   if (const VectorType *VT = getType()->getAs<VectorType>()) | 
 |     return VT->getNumElements(); | 
 |   return 1; | 
 | } | 
 |  | 
 | /// containsDuplicateElements - Return true if any element access is repeated. | 
 | bool ExtVectorElementExpr::containsDuplicateElements() const { | 
 |   // FIXME: Refactor this code to an accessor on the AST node which returns the | 
 |   // "type" of component access, and share with code below and in Sema. | 
 |   StringRef Comp = Accessor->getName(); | 
 |  | 
 |   // Halving swizzles do not contain duplicate elements. | 
 |   if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd") | 
 |     return false; | 
 |  | 
 |   // Advance past s-char prefix on hex swizzles. | 
 |   if (Comp[0] == 's' || Comp[0] == 'S') | 
 |     Comp = Comp.substr(1); | 
 |  | 
 |   for (unsigned i = 0, e = Comp.size(); i != e; ++i) | 
 |     if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos) | 
 |         return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray. | 
 | void ExtVectorElementExpr::getEncodedElementAccess( | 
 |                                   SmallVectorImpl<unsigned> &Elts) const { | 
 |   StringRef Comp = Accessor->getName(); | 
 |   if (Comp[0] == 's' || Comp[0] == 'S') | 
 |     Comp = Comp.substr(1); | 
 |  | 
 |   bool isHi =   Comp == "hi"; | 
 |   bool isLo =   Comp == "lo"; | 
 |   bool isEven = Comp == "even"; | 
 |   bool isOdd  = Comp == "odd"; | 
 |  | 
 |   for (unsigned i = 0, e = getNumElements(); i != e; ++i) { | 
 |     uint64_t Index; | 
 |  | 
 |     if (isHi) | 
 |       Index = e + i; | 
 |     else if (isLo) | 
 |       Index = i; | 
 |     else if (isEven) | 
 |       Index = 2 * i; | 
 |     else if (isOdd) | 
 |       Index = 2 * i + 1; | 
 |     else | 
 |       Index = ExtVectorType::getAccessorIdx(Comp[i]); | 
 |  | 
 |     Elts.push_back(Index); | 
 |   } | 
 | } | 
 |  | 
 | ObjCMessageExpr::ObjCMessageExpr(QualType T, | 
 |                                  ExprValueKind VK, | 
 |                                  SourceLocation LBracLoc, | 
 |                                  SourceLocation SuperLoc, | 
 |                                  bool IsInstanceSuper, | 
 |                                  QualType SuperType, | 
 |                                  Selector Sel,  | 
 |                                  ArrayRef<SourceLocation> SelLocs, | 
 |                                  SelectorLocationsKind SelLocsK, | 
 |                                  ObjCMethodDecl *Method, | 
 |                                  ArrayRef<Expr *> Args, | 
 |                                  SourceLocation RBracLoc, | 
 |                                  bool isImplicit) | 
 |   : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, | 
 |          /*TypeDependent=*/false, /*ValueDependent=*/false, | 
 |          /*InstantiationDependent=*/false, | 
 |          /*ContainsUnexpandedParameterPack=*/false), | 
 |     SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method | 
 |                                                        : Sel.getAsOpaquePtr())), | 
 |     Kind(IsInstanceSuper? SuperInstance : SuperClass), | 
 |     HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit), | 
 |     SuperLoc(SuperLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)  | 
 | { | 
 |   initArgsAndSelLocs(Args, SelLocs, SelLocsK); | 
 |   setReceiverPointer(SuperType.getAsOpaquePtr()); | 
 | } | 
 |  | 
 | ObjCMessageExpr::ObjCMessageExpr(QualType T, | 
 |                                  ExprValueKind VK, | 
 |                                  SourceLocation LBracLoc, | 
 |                                  TypeSourceInfo *Receiver, | 
 |                                  Selector Sel, | 
 |                                  ArrayRef<SourceLocation> SelLocs, | 
 |                                  SelectorLocationsKind SelLocsK, | 
 |                                  ObjCMethodDecl *Method, | 
 |                                  ArrayRef<Expr *> Args, | 
 |                                  SourceLocation RBracLoc, | 
 |                                  bool isImplicit) | 
 |   : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(), | 
 |          T->isDependentType(), T->isInstantiationDependentType(), | 
 |          T->containsUnexpandedParameterPack()), | 
 |     SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method | 
 |                                                        : Sel.getAsOpaquePtr())), | 
 |     Kind(Class), | 
 |     HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit), | 
 |     LBracLoc(LBracLoc), RBracLoc(RBracLoc)  | 
 | { | 
 |   initArgsAndSelLocs(Args, SelLocs, SelLocsK); | 
 |   setReceiverPointer(Receiver); | 
 | } | 
 |  | 
 | ObjCMessageExpr::ObjCMessageExpr(QualType T, | 
 |                                  ExprValueKind VK, | 
 |                                  SourceLocation LBracLoc, | 
 |                                  Expr *Receiver, | 
 |                                  Selector Sel,  | 
 |                                  ArrayRef<SourceLocation> SelLocs, | 
 |                                  SelectorLocationsKind SelLocsK, | 
 |                                  ObjCMethodDecl *Method, | 
 |                                  ArrayRef<Expr *> Args, | 
 |                                  SourceLocation RBracLoc, | 
 |                                  bool isImplicit) | 
 |   : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(), | 
 |          Receiver->isTypeDependent(), | 
 |          Receiver->isInstantiationDependent(), | 
 |          Receiver->containsUnexpandedParameterPack()), | 
 |     SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method | 
 |                                                        : Sel.getAsOpaquePtr())), | 
 |     Kind(Instance), | 
 |     HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit), | 
 |     LBracLoc(LBracLoc), RBracLoc(RBracLoc)  | 
 | { | 
 |   initArgsAndSelLocs(Args, SelLocs, SelLocsK); | 
 |   setReceiverPointer(Receiver); | 
 | } | 
 |  | 
 | void ObjCMessageExpr::initArgsAndSelLocs(ArrayRef<Expr *> Args, | 
 |                                          ArrayRef<SourceLocation> SelLocs, | 
 |                                          SelectorLocationsKind SelLocsK) { | 
 |   setNumArgs(Args.size()); | 
 |   Expr **MyArgs = getArgs(); | 
 |   for (unsigned I = 0; I != Args.size(); ++I) { | 
 |     if (Args[I]->isTypeDependent()) | 
 |       ExprBits.TypeDependent = true; | 
 |     if (Args[I]->isValueDependent()) | 
 |       ExprBits.ValueDependent = true; | 
 |     if (Args[I]->isInstantiationDependent()) | 
 |       ExprBits.InstantiationDependent = true; | 
 |     if (Args[I]->containsUnexpandedParameterPack()) | 
 |       ExprBits.ContainsUnexpandedParameterPack = true; | 
 |    | 
 |     MyArgs[I] = Args[I]; | 
 |   } | 
 |  | 
 |   SelLocsKind = SelLocsK; | 
 |   if (!isImplicit()) { | 
 |     if (SelLocsK == SelLoc_NonStandard) | 
 |       std::copy(SelLocs.begin(), SelLocs.end(), getStoredSelLocs()); | 
 |   } | 
 | } | 
 |  | 
 | ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T, | 
 |                                          ExprValueKind VK, | 
 |                                          SourceLocation LBracLoc, | 
 |                                          SourceLocation SuperLoc, | 
 |                                          bool IsInstanceSuper, | 
 |                                          QualType SuperType, | 
 |                                          Selector Sel,  | 
 |                                          ArrayRef<SourceLocation> SelLocs, | 
 |                                          ObjCMethodDecl *Method, | 
 |                                          ArrayRef<Expr *> Args, | 
 |                                          SourceLocation RBracLoc, | 
 |                                          bool isImplicit) { | 
 |   assert((!SelLocs.empty() || isImplicit) && | 
 |          "No selector locs for non-implicit message"); | 
 |   ObjCMessageExpr *Mem; | 
 |   SelectorLocationsKind SelLocsK = SelectorLocationsKind(); | 
 |   if (isImplicit) | 
 |     Mem = alloc(Context, Args.size(), 0); | 
 |   else | 
 |     Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK); | 
 |   return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper, | 
 |                                    SuperType, Sel, SelLocs, SelLocsK, | 
 |                                    Method, Args, RBracLoc, isImplicit); | 
 | } | 
 |  | 
 | ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T, | 
 |                                          ExprValueKind VK, | 
 |                                          SourceLocation LBracLoc, | 
 |                                          TypeSourceInfo *Receiver, | 
 |                                          Selector Sel,  | 
 |                                          ArrayRef<SourceLocation> SelLocs, | 
 |                                          ObjCMethodDecl *Method, | 
 |                                          ArrayRef<Expr *> Args, | 
 |                                          SourceLocation RBracLoc, | 
 |                                          bool isImplicit) { | 
 |   assert((!SelLocs.empty() || isImplicit) && | 
 |          "No selector locs for non-implicit message"); | 
 |   ObjCMessageExpr *Mem; | 
 |   SelectorLocationsKind SelLocsK = SelectorLocationsKind(); | 
 |   if (isImplicit) | 
 |     Mem = alloc(Context, Args.size(), 0); | 
 |   else | 
 |     Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK); | 
 |   return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel, | 
 |                                    SelLocs, SelLocsK, Method, Args, RBracLoc, | 
 |                                    isImplicit); | 
 | } | 
 |  | 
 | ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T, | 
 |                                          ExprValueKind VK, | 
 |                                          SourceLocation LBracLoc, | 
 |                                          Expr *Receiver, | 
 |                                          Selector Sel, | 
 |                                          ArrayRef<SourceLocation> SelLocs, | 
 |                                          ObjCMethodDecl *Method, | 
 |                                          ArrayRef<Expr *> Args, | 
 |                                          SourceLocation RBracLoc, | 
 |                                          bool isImplicit) { | 
 |   assert((!SelLocs.empty() || isImplicit) && | 
 |          "No selector locs for non-implicit message"); | 
 |   ObjCMessageExpr *Mem; | 
 |   SelectorLocationsKind SelLocsK = SelectorLocationsKind(); | 
 |   if (isImplicit) | 
 |     Mem = alloc(Context, Args.size(), 0); | 
 |   else | 
 |     Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK); | 
 |   return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel, | 
 |                                    SelLocs, SelLocsK, Method, Args, RBracLoc, | 
 |                                    isImplicit); | 
 | } | 
 |  | 
 | ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(ASTContext &Context,  | 
 |                                               unsigned NumArgs, | 
 |                                               unsigned NumStoredSelLocs) { | 
 |   ObjCMessageExpr *Mem = alloc(Context, NumArgs, NumStoredSelLocs); | 
 |   return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs); | 
 | } | 
 |  | 
 | ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C, | 
 |                                         ArrayRef<Expr *> Args, | 
 |                                         SourceLocation RBraceLoc, | 
 |                                         ArrayRef<SourceLocation> SelLocs, | 
 |                                         Selector Sel, | 
 |                                         SelectorLocationsKind &SelLocsK) { | 
 |   SelLocsK = hasStandardSelectorLocs(Sel, SelLocs, Args, RBraceLoc); | 
 |   unsigned NumStoredSelLocs = (SelLocsK == SelLoc_NonStandard) ? SelLocs.size() | 
 |                                                                : 0; | 
 |   return alloc(C, Args.size(), NumStoredSelLocs); | 
 | } | 
 |  | 
 | ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C, | 
 |                                         unsigned NumArgs, | 
 |                                         unsigned NumStoredSelLocs) { | 
 |   unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +  | 
 |     NumArgs * sizeof(Expr *) + NumStoredSelLocs * sizeof(SourceLocation); | 
 |   return (ObjCMessageExpr *)C.Allocate(Size, | 
 |                                      llvm::AlignOf<ObjCMessageExpr>::Alignment); | 
 | } | 
 |  | 
 | void ObjCMessageExpr::getSelectorLocs( | 
 |                                SmallVectorImpl<SourceLocation> &SelLocs) const { | 
 |   for (unsigned i = 0, e = getNumSelectorLocs(); i != e; ++i) | 
 |     SelLocs.push_back(getSelectorLoc(i)); | 
 | } | 
 |  | 
 | SourceRange ObjCMessageExpr::getReceiverRange() const { | 
 |   switch (getReceiverKind()) { | 
 |   case Instance: | 
 |     return getInstanceReceiver()->getSourceRange(); | 
 |  | 
 |   case Class: | 
 |     return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange(); | 
 |  | 
 |   case SuperInstance: | 
 |   case SuperClass: | 
 |     return getSuperLoc(); | 
 |   } | 
 |  | 
 |   llvm_unreachable("Invalid ReceiverKind!"); | 
 | } | 
 |  | 
 | Selector ObjCMessageExpr::getSelector() const { | 
 |   if (HasMethod) | 
 |     return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod) | 
 |                                                                ->getSelector(); | 
 |   return Selector(SelectorOrMethod);  | 
 | } | 
 |  | 
 | ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const { | 
 |   switch (getReceiverKind()) { | 
 |   case Instance: | 
 |     if (const ObjCObjectPointerType *Ptr | 
 |           = getInstanceReceiver()->getType()->getAs<ObjCObjectPointerType>()) | 
 |       return Ptr->getInterfaceDecl(); | 
 |     break; | 
 |  | 
 |   case Class: | 
 |     if (const ObjCObjectType *Ty | 
 |           = getClassReceiver()->getAs<ObjCObjectType>()) | 
 |       return Ty->getInterface(); | 
 |     break; | 
 |  | 
 |   case SuperInstance: | 
 |     if (const ObjCObjectPointerType *Ptr | 
 |           = getSuperType()->getAs<ObjCObjectPointerType>()) | 
 |       return Ptr->getInterfaceDecl(); | 
 |     break; | 
 |  | 
 |   case SuperClass: | 
 |     if (const ObjCObjectType *Iface | 
 |           = getSuperType()->getAs<ObjCObjectType>()) | 
 |       return Iface->getInterface(); | 
 |     break; | 
 |   } | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | StringRef ObjCBridgedCastExpr::getBridgeKindName() const { | 
 |   switch (getBridgeKind()) { | 
 |   case OBC_Bridge: | 
 |     return "__bridge"; | 
 |   case OBC_BridgeTransfer: | 
 |     return "__bridge_transfer"; | 
 |   case OBC_BridgeRetained: | 
 |     return "__bridge_retained"; | 
 |   } | 
 |  | 
 |   llvm_unreachable("Invalid BridgeKind!"); | 
 | } | 
 |  | 
 | bool ChooseExpr::isConditionTrue(const ASTContext &C) const { | 
 |   return getCond()->EvaluateKnownConstInt(C) != 0; | 
 | } | 
 |  | 
 | ShuffleVectorExpr::ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr, | 
 |                                      QualType Type, SourceLocation BLoc, | 
 |                                      SourceLocation RP)  | 
 |    : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary, | 
 |           Type->isDependentType(), Type->isDependentType(), | 
 |           Type->isInstantiationDependentType(), | 
 |           Type->containsUnexpandedParameterPack()), | 
 |      BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr)  | 
 | { | 
 |   SubExprs = new (C) Stmt*[nexpr]; | 
 |   for (unsigned i = 0; i < nexpr; i++) { | 
 |     if (args[i]->isTypeDependent()) | 
 |       ExprBits.TypeDependent = true; | 
 |     if (args[i]->isValueDependent()) | 
 |       ExprBits.ValueDependent = true; | 
 |     if (args[i]->isInstantiationDependent()) | 
 |       ExprBits.InstantiationDependent = true; | 
 |     if (args[i]->containsUnexpandedParameterPack()) | 
 |       ExprBits.ContainsUnexpandedParameterPack = true; | 
 |  | 
 |     SubExprs[i] = args[i]; | 
 |   } | 
 | } | 
 |  | 
 | void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs, | 
 |                                  unsigned NumExprs) { | 
 |   if (SubExprs) C.Deallocate(SubExprs); | 
 |  | 
 |   SubExprs = new (C) Stmt* [NumExprs]; | 
 |   this->NumExprs = NumExprs; | 
 |   memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs); | 
 | } | 
 |  | 
 | GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context, | 
 |                                SourceLocation GenericLoc, Expr *ControllingExpr, | 
 |                                TypeSourceInfo **AssocTypes, Expr **AssocExprs, | 
 |                                unsigned NumAssocs, SourceLocation DefaultLoc, | 
 |                                SourceLocation RParenLoc, | 
 |                                bool ContainsUnexpandedParameterPack, | 
 |                                unsigned ResultIndex) | 
 |   : Expr(GenericSelectionExprClass, | 
 |          AssocExprs[ResultIndex]->getType(), | 
 |          AssocExprs[ResultIndex]->getValueKind(), | 
 |          AssocExprs[ResultIndex]->getObjectKind(), | 
 |          AssocExprs[ResultIndex]->isTypeDependent(), | 
 |          AssocExprs[ResultIndex]->isValueDependent(), | 
 |          AssocExprs[ResultIndex]->isInstantiationDependent(), | 
 |          ContainsUnexpandedParameterPack), | 
 |     AssocTypes(new (Context) TypeSourceInfo*[NumAssocs]), | 
 |     SubExprs(new (Context) Stmt*[END_EXPR+NumAssocs]), NumAssocs(NumAssocs), | 
 |     ResultIndex(ResultIndex), GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), | 
 |     RParenLoc(RParenLoc) { | 
 |   SubExprs[CONTROLLING] = ControllingExpr; | 
 |   std::copy(AssocTypes, AssocTypes+NumAssocs, this->AssocTypes); | 
 |   std::copy(AssocExprs, AssocExprs+NumAssocs, SubExprs+END_EXPR); | 
 | } | 
 |  | 
 | GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context, | 
 |                                SourceLocation GenericLoc, Expr *ControllingExpr, | 
 |                                TypeSourceInfo **AssocTypes, Expr **AssocExprs, | 
 |                                unsigned NumAssocs, SourceLocation DefaultLoc, | 
 |                                SourceLocation RParenLoc, | 
 |                                bool ContainsUnexpandedParameterPack) | 
 |   : Expr(GenericSelectionExprClass, | 
 |          Context.DependentTy, | 
 |          VK_RValue, | 
 |          OK_Ordinary, | 
 |          /*isTypeDependent=*/true, | 
 |          /*isValueDependent=*/true, | 
 |          /*isInstantiationDependent=*/true, | 
 |          ContainsUnexpandedParameterPack), | 
 |     AssocTypes(new (Context) TypeSourceInfo*[NumAssocs]), | 
 |     SubExprs(new (Context) Stmt*[END_EXPR+NumAssocs]), NumAssocs(NumAssocs), | 
 |     ResultIndex(-1U), GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), | 
 |     RParenLoc(RParenLoc) { | 
 |   SubExprs[CONTROLLING] = ControllingExpr; | 
 |   std::copy(AssocTypes, AssocTypes+NumAssocs, this->AssocTypes); | 
 |   std::copy(AssocExprs, AssocExprs+NumAssocs, SubExprs+END_EXPR); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //  DesignatedInitExpr | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const { | 
 |   assert(Kind == FieldDesignator && "Only valid on a field designator"); | 
 |   if (Field.NameOrField & 0x01) | 
 |     return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01); | 
 |   else | 
 |     return getField()->getIdentifier(); | 
 | } | 
 |  | 
 | DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,  | 
 |                                        unsigned NumDesignators, | 
 |                                        const Designator *Designators, | 
 |                                        SourceLocation EqualOrColonLoc, | 
 |                                        bool GNUSyntax, | 
 |                                        Expr **IndexExprs, | 
 |                                        unsigned NumIndexExprs, | 
 |                                        Expr *Init) | 
 |   : Expr(DesignatedInitExprClass, Ty, | 
 |          Init->getValueKind(), Init->getObjectKind(), | 
 |          Init->isTypeDependent(), Init->isValueDependent(), | 
 |          Init->isInstantiationDependent(), | 
 |          Init->containsUnexpandedParameterPack()), | 
 |     EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax), | 
 |     NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) { | 
 |   this->Designators = new (C) Designator[NumDesignators]; | 
 |  | 
 |   // Record the initializer itself. | 
 |   child_range Child = children(); | 
 |   *Child++ = Init; | 
 |  | 
 |   // Copy the designators and their subexpressions, computing | 
 |   // value-dependence along the way. | 
 |   unsigned IndexIdx = 0; | 
 |   for (unsigned I = 0; I != NumDesignators; ++I) { | 
 |     this->Designators[I] = Designators[I]; | 
 |  | 
 |     if (this->Designators[I].isArrayDesignator()) { | 
 |       // Compute type- and value-dependence. | 
 |       Expr *Index = IndexExprs[IndexIdx]; | 
 |       if (Index->isTypeDependent() || Index->isValueDependent()) | 
 |         ExprBits.ValueDependent = true; | 
 |       if (Index->isInstantiationDependent()) | 
 |         ExprBits.InstantiationDependent = true; | 
 |       // Propagate unexpanded parameter packs. | 
 |       if (Index->containsUnexpandedParameterPack()) | 
 |         ExprBits.ContainsUnexpandedParameterPack = true; | 
 |  | 
 |       // Copy the index expressions into permanent storage. | 
 |       *Child++ = IndexExprs[IndexIdx++]; | 
 |     } else if (this->Designators[I].isArrayRangeDesignator()) { | 
 |       // Compute type- and value-dependence. | 
 |       Expr *Start = IndexExprs[IndexIdx]; | 
 |       Expr *End = IndexExprs[IndexIdx + 1]; | 
 |       if (Start->isTypeDependent() || Start->isValueDependent() || | 
 |           End->isTypeDependent() || End->isValueDependent()) { | 
 |         ExprBits.ValueDependent = true; | 
 |         ExprBits.InstantiationDependent = true; | 
 |       } else if (Start->isInstantiationDependent() ||  | 
 |                  End->isInstantiationDependent()) { | 
 |         ExprBits.InstantiationDependent = true; | 
 |       } | 
 |                   | 
 |       // Propagate unexpanded parameter packs. | 
 |       if (Start->containsUnexpandedParameterPack() || | 
 |           End->containsUnexpandedParameterPack()) | 
 |         ExprBits.ContainsUnexpandedParameterPack = true; | 
 |  | 
 |       // Copy the start/end expressions into permanent storage. | 
 |       *Child++ = IndexExprs[IndexIdx++]; | 
 |       *Child++ = IndexExprs[IndexIdx++]; | 
 |     } | 
 |   } | 
 |  | 
 |   assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions"); | 
 | } | 
 |  | 
 | DesignatedInitExpr * | 
 | DesignatedInitExpr::Create(ASTContext &C, Designator *Designators, | 
 |                            unsigned NumDesignators, | 
 |                            Expr **IndexExprs, unsigned NumIndexExprs, | 
 |                            SourceLocation ColonOrEqualLoc, | 
 |                            bool UsesColonSyntax, Expr *Init) { | 
 |   void *Mem = C.Allocate(sizeof(DesignatedInitExpr) + | 
 |                          sizeof(Stmt *) * (NumIndexExprs + 1), 8); | 
 |   return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators, | 
 |                                       ColonOrEqualLoc, UsesColonSyntax, | 
 |                                       IndexExprs, NumIndexExprs, Init); | 
 | } | 
 |  | 
 | DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C, | 
 |                                                     unsigned NumIndexExprs) { | 
 |   void *Mem = C.Allocate(sizeof(DesignatedInitExpr) + | 
 |                          sizeof(Stmt *) * (NumIndexExprs + 1), 8); | 
 |   return new (Mem) DesignatedInitExpr(NumIndexExprs + 1); | 
 | } | 
 |  | 
 | void DesignatedInitExpr::setDesignators(ASTContext &C, | 
 |                                         const Designator *Desigs, | 
 |                                         unsigned NumDesigs) { | 
 |   Designators = new (C) Designator[NumDesigs]; | 
 |   NumDesignators = NumDesigs; | 
 |   for (unsigned I = 0; I != NumDesigs; ++I) | 
 |     Designators[I] = Desigs[I]; | 
 | } | 
 |  | 
 | SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const { | 
 |   DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this); | 
 |   if (size() == 1) | 
 |     return DIE->getDesignator(0)->getSourceRange(); | 
 |   return SourceRange(DIE->getDesignator(0)->getStartLocation(), | 
 |                      DIE->getDesignator(size()-1)->getEndLocation()); | 
 | } | 
 |  | 
 | SourceRange DesignatedInitExpr::getSourceRange() const { | 
 |   SourceLocation StartLoc; | 
 |   Designator &First = | 
 |     *const_cast<DesignatedInitExpr*>(this)->designators_begin(); | 
 |   if (First.isFieldDesignator()) { | 
 |     if (GNUSyntax) | 
 |       StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc); | 
 |     else | 
 |       StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc); | 
 |   } else | 
 |     StartLoc = | 
 |       SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc); | 
 |   return SourceRange(StartLoc, getInit()->getSourceRange().getEnd()); | 
 | } | 
 |  | 
 | Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) { | 
 |   assert(D.Kind == Designator::ArrayDesignator && "Requires array designator"); | 
 |   char* Ptr = static_cast<char*>(static_cast<void *>(this)); | 
 |   Ptr += sizeof(DesignatedInitExpr); | 
 |   Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr)); | 
 |   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1)); | 
 | } | 
 |  | 
 | Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) { | 
 |   assert(D.Kind == Designator::ArrayRangeDesignator && | 
 |          "Requires array range designator"); | 
 |   char* Ptr = static_cast<char*>(static_cast<void *>(this)); | 
 |   Ptr += sizeof(DesignatedInitExpr); | 
 |   Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr)); | 
 |   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1)); | 
 | } | 
 |  | 
 | Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) { | 
 |   assert(D.Kind == Designator::ArrayRangeDesignator && | 
 |          "Requires array range designator"); | 
 |   char* Ptr = static_cast<char*>(static_cast<void *>(this)); | 
 |   Ptr += sizeof(DesignatedInitExpr); | 
 |   Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr)); | 
 |   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2)); | 
 | } | 
 |  | 
 | /// \brief Replaces the designator at index @p Idx with the series | 
 | /// of designators in [First, Last). | 
 | void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx, | 
 |                                           const Designator *First, | 
 |                                           const Designator *Last) { | 
 |   unsigned NumNewDesignators = Last - First; | 
 |   if (NumNewDesignators == 0) { | 
 |     std::copy_backward(Designators + Idx + 1, | 
 |                        Designators + NumDesignators, | 
 |                        Designators + Idx); | 
 |     --NumNewDesignators; | 
 |     return; | 
 |   } else if (NumNewDesignators == 1) { | 
 |     Designators[Idx] = *First; | 
 |     return; | 
 |   } | 
 |  | 
 |   Designator *NewDesignators | 
 |     = new (C) Designator[NumDesignators - 1 + NumNewDesignators]; | 
 |   std::copy(Designators, Designators + Idx, NewDesignators); | 
 |   std::copy(First, Last, NewDesignators + Idx); | 
 |   std::copy(Designators + Idx + 1, Designators + NumDesignators, | 
 |             NewDesignators + Idx + NumNewDesignators); | 
 |   Designators = NewDesignators; | 
 |   NumDesignators = NumDesignators - 1 + NumNewDesignators; | 
 | } | 
 |  | 
 | ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc, | 
 |                              Expr **exprs, unsigned nexprs, | 
 |                              SourceLocation rparenloc) | 
 |   : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary, | 
 |          false, false, false, false), | 
 |     NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) { | 
 |   Exprs = new (C) Stmt*[nexprs]; | 
 |   for (unsigned i = 0; i != nexprs; ++i) { | 
 |     if (exprs[i]->isTypeDependent()) | 
 |       ExprBits.TypeDependent = true; | 
 |     if (exprs[i]->isValueDependent()) | 
 |       ExprBits.ValueDependent = true; | 
 |     if (exprs[i]->isInstantiationDependent()) | 
 |       ExprBits.InstantiationDependent = true; | 
 |     if (exprs[i]->containsUnexpandedParameterPack()) | 
 |       ExprBits.ContainsUnexpandedParameterPack = true; | 
 |  | 
 |     Exprs[i] = exprs[i]; | 
 |   } | 
 | } | 
 |  | 
 | const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) { | 
 |   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e)) | 
 |     e = ewc->getSubExpr(); | 
 |   if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e)) | 
 |     e = m->GetTemporaryExpr(); | 
 |   e = cast<CXXConstructExpr>(e)->getArg(0); | 
 |   while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e)) | 
 |     e = ice->getSubExpr(); | 
 |   return cast<OpaqueValueExpr>(e); | 
 | } | 
 |  | 
 | PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &Context, EmptyShell sh, | 
 |                                            unsigned numSemanticExprs) { | 
 |   void *buffer = Context.Allocate(sizeof(PseudoObjectExpr) + | 
 |                                     (1 + numSemanticExprs) * sizeof(Expr*), | 
 |                                   llvm::alignOf<PseudoObjectExpr>()); | 
 |   return new(buffer) PseudoObjectExpr(sh, numSemanticExprs); | 
 | } | 
 |  | 
 | PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs) | 
 |   : Expr(PseudoObjectExprClass, shell) { | 
 |   PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1; | 
 | } | 
 |  | 
 | PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &C, Expr *syntax, | 
 |                                            ArrayRef<Expr*> semantics, | 
 |                                            unsigned resultIndex) { | 
 |   assert(syntax && "no syntactic expression!"); | 
 |   assert(semantics.size() && "no semantic expressions!"); | 
 |  | 
 |   QualType type; | 
 |   ExprValueKind VK; | 
 |   if (resultIndex == NoResult) { | 
 |     type = C.VoidTy; | 
 |     VK = VK_RValue; | 
 |   } else { | 
 |     assert(resultIndex < semantics.size()); | 
 |     type = semantics[resultIndex]->getType(); | 
 |     VK = semantics[resultIndex]->getValueKind(); | 
 |     assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary); | 
 |   } | 
 |  | 
 |   void *buffer = C.Allocate(sizeof(PseudoObjectExpr) + | 
 |                               (1 + semantics.size()) * sizeof(Expr*), | 
 |                             llvm::alignOf<PseudoObjectExpr>()); | 
 |   return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics, | 
 |                                       resultIndex); | 
 | } | 
 |  | 
 | PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK, | 
 |                                    Expr *syntax, ArrayRef<Expr*> semantics, | 
 |                                    unsigned resultIndex) | 
 |   : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary, | 
 |          /*filled in at end of ctor*/ false, false, false, false) { | 
 |   PseudoObjectExprBits.NumSubExprs = semantics.size() + 1; | 
 |   PseudoObjectExprBits.ResultIndex = resultIndex + 1; | 
 |  | 
 |   for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) { | 
 |     Expr *E = (i == 0 ? syntax : semantics[i-1]); | 
 |     getSubExprsBuffer()[i] = E; | 
 |  | 
 |     if (E->isTypeDependent()) | 
 |       ExprBits.TypeDependent = true; | 
 |     if (E->isValueDependent()) | 
 |       ExprBits.ValueDependent = true; | 
 |     if (E->isInstantiationDependent()) | 
 |       ExprBits.InstantiationDependent = true; | 
 |     if (E->containsUnexpandedParameterPack()) | 
 |       ExprBits.ContainsUnexpandedParameterPack = true; | 
 |  | 
 |     if (isa<OpaqueValueExpr>(E)) | 
 |       assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != 0 && | 
 |              "opaque-value semantic expressions for pseudo-object " | 
 |              "operations must have sources"); | 
 |   } | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //  ExprIterator. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); } | 
 | Expr* ExprIterator::operator*() const { return cast<Expr>(*I); } | 
 | Expr* ExprIterator::operator->() const { return cast<Expr>(*I); } | 
 | const Expr* ConstExprIterator::operator[](size_t idx) const { | 
 |   return cast<Expr>(I[idx]); | 
 | } | 
 | const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); } | 
 | const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //  Child Iterators for iterating over subexpressions/substatements | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | // UnaryExprOrTypeTraitExpr | 
 | Stmt::child_range UnaryExprOrTypeTraitExpr::children() { | 
 |   // If this is of a type and the type is a VLA type (and not a typedef), the | 
 |   // size expression of the VLA needs to be treated as an executable expression. | 
 |   // Why isn't this weirdness documented better in StmtIterator? | 
 |   if (isArgumentType()) { | 
 |     if (const VariableArrayType* T = dyn_cast<VariableArrayType>( | 
 |                                    getArgumentType().getTypePtr())) | 
 |       return child_range(child_iterator(T), child_iterator()); | 
 |     return child_range(); | 
 |   } | 
 |   return child_range(&Argument.Ex, &Argument.Ex + 1); | 
 | } | 
 |  | 
 | // ObjCMessageExpr | 
 | Stmt::child_range ObjCMessageExpr::children() { | 
 |   Stmt **begin; | 
 |   if (getReceiverKind() == Instance) | 
 |     begin = reinterpret_cast<Stmt **>(this + 1); | 
 |   else | 
 |     begin = reinterpret_cast<Stmt **>(getArgs()); | 
 |   return child_range(begin, | 
 |                      reinterpret_cast<Stmt **>(getArgs() + getNumArgs())); | 
 | } | 
 |  | 
 | ObjCArrayLiteral::ObjCArrayLiteral(llvm::ArrayRef<Expr *> Elements,  | 
 |                                    QualType T, ObjCMethodDecl *Method, | 
 |                                    SourceRange SR) | 
 |   : Expr(ObjCArrayLiteralClass, T, VK_RValue, OK_Ordinary,  | 
 |          false, false, false, false),  | 
 |     NumElements(Elements.size()), Range(SR), ArrayWithObjectsMethod(Method) | 
 | { | 
 |   Expr **SaveElements = getElements(); | 
 |   for (unsigned I = 0, N = Elements.size(); I != N; ++I) { | 
 |     if (Elements[I]->isTypeDependent() || Elements[I]->isValueDependent()) | 
 |       ExprBits.ValueDependent = true; | 
 |     if (Elements[I]->isInstantiationDependent()) | 
 |       ExprBits.InstantiationDependent = true; | 
 |     if (Elements[I]->containsUnexpandedParameterPack()) | 
 |       ExprBits.ContainsUnexpandedParameterPack = true; | 
 |      | 
 |     SaveElements[I] = Elements[I]; | 
 |   } | 
 | } | 
 |  | 
 | ObjCArrayLiteral *ObjCArrayLiteral::Create(ASTContext &C,  | 
 |                                            llvm::ArrayRef<Expr *> Elements, | 
 |                                            QualType T, ObjCMethodDecl * Method, | 
 |                                            SourceRange SR) { | 
 |   void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)  | 
 |                          + Elements.size() * sizeof(Expr *)); | 
 |   return new (Mem) ObjCArrayLiteral(Elements, T, Method, SR); | 
 | } | 
 |  | 
 | ObjCArrayLiteral *ObjCArrayLiteral::CreateEmpty(ASTContext &C,  | 
 |                                                 unsigned NumElements) { | 
 |    | 
 |   void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)  | 
 |                          + NumElements * sizeof(Expr *)); | 
 |   return new (Mem) ObjCArrayLiteral(EmptyShell(), NumElements); | 
 | } | 
 |  | 
 | ObjCDictionaryLiteral::ObjCDictionaryLiteral( | 
 |                                              ArrayRef<ObjCDictionaryElement> VK,  | 
 |                                              bool HasPackExpansions, | 
 |                                              QualType T, ObjCMethodDecl *method, | 
 |                                              SourceRange SR) | 
 |   : Expr(ObjCDictionaryLiteralClass, T, VK_RValue, OK_Ordinary, false, false, | 
 |          false, false), | 
 |     NumElements(VK.size()), HasPackExpansions(HasPackExpansions), Range(SR),  | 
 |     DictWithObjectsMethod(method) | 
 | { | 
 |   KeyValuePair *KeyValues = getKeyValues(); | 
 |   ExpansionData *Expansions = getExpansionData(); | 
 |   for (unsigned I = 0; I < NumElements; I++) { | 
 |     if (VK[I].Key->isTypeDependent() || VK[I].Key->isValueDependent() || | 
 |         VK[I].Value->isTypeDependent() || VK[I].Value->isValueDependent()) | 
 |       ExprBits.ValueDependent = true; | 
 |     if (VK[I].Key->isInstantiationDependent() || | 
 |         VK[I].Value->isInstantiationDependent()) | 
 |       ExprBits.InstantiationDependent = true; | 
 |     if (VK[I].EllipsisLoc.isInvalid() && | 
 |         (VK[I].Key->containsUnexpandedParameterPack() || | 
 |          VK[I].Value->containsUnexpandedParameterPack())) | 
 |       ExprBits.ContainsUnexpandedParameterPack = true; | 
 |  | 
 |     KeyValues[I].Key = VK[I].Key; | 
 |     KeyValues[I].Value = VK[I].Value;  | 
 |     if (Expansions) { | 
 |       Expansions[I].EllipsisLoc = VK[I].EllipsisLoc; | 
 |       if (VK[I].NumExpansions) | 
 |         Expansions[I].NumExpansionsPlusOne = *VK[I].NumExpansions + 1; | 
 |       else | 
 |         Expansions[I].NumExpansionsPlusOne = 0; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | ObjCDictionaryLiteral * | 
 | ObjCDictionaryLiteral::Create(ASTContext &C, | 
 |                               ArrayRef<ObjCDictionaryElement> VK,  | 
 |                               bool HasPackExpansions, | 
 |                               QualType T, ObjCMethodDecl *method, | 
 |                               SourceRange SR) { | 
 |   unsigned ExpansionsSize = 0; | 
 |   if (HasPackExpansions) | 
 |     ExpansionsSize = sizeof(ExpansionData) * VK.size(); | 
 |      | 
 |   void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +  | 
 |                          sizeof(KeyValuePair) * VK.size() + ExpansionsSize); | 
 |   return new (Mem) ObjCDictionaryLiteral(VK, HasPackExpansions, T, method, SR); | 
 | } | 
 |  | 
 | ObjCDictionaryLiteral * | 
 | ObjCDictionaryLiteral::CreateEmpty(ASTContext &C, unsigned NumElements, | 
 |                                    bool HasPackExpansions) { | 
 |   unsigned ExpansionsSize = 0; | 
 |   if (HasPackExpansions) | 
 |     ExpansionsSize = sizeof(ExpansionData) * NumElements; | 
 |   void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +  | 
 |                          sizeof(KeyValuePair) * NumElements + ExpansionsSize); | 
 |   return new (Mem) ObjCDictionaryLiteral(EmptyShell(), NumElements,  | 
 |                                          HasPackExpansions); | 
 | } | 
 |  | 
 | ObjCSubscriptRefExpr *ObjCSubscriptRefExpr::Create(ASTContext &C, | 
 |                                                    Expr *base, | 
 |                                                    Expr *key, QualType T,  | 
 |                                                    ObjCMethodDecl *getMethod, | 
 |                                                    ObjCMethodDecl *setMethod,  | 
 |                                                    SourceLocation RB) { | 
 |   void *Mem = C.Allocate(sizeof(ObjCSubscriptRefExpr)); | 
 |   return new (Mem) ObjCSubscriptRefExpr(base, key, T, VK_LValue,  | 
 |                                         OK_ObjCSubscript, | 
 |                                         getMethod, setMethod, RB); | 
 | } | 
 |  | 
 | AtomicExpr::AtomicExpr(SourceLocation BLoc, Expr **args, unsigned nexpr, | 
 |                        QualType t, AtomicOp op, SourceLocation RP) | 
 |   : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary, | 
 |          false, false, false, false), | 
 |     NumSubExprs(nexpr), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) | 
 | { | 
 |   assert(nexpr == getNumSubExprs(op) && "wrong number of subexpressions"); | 
 |   for (unsigned i = 0; i < nexpr; i++) { | 
 |     if (args[i]->isTypeDependent()) | 
 |       ExprBits.TypeDependent = true; | 
 |     if (args[i]->isValueDependent()) | 
 |       ExprBits.ValueDependent = true; | 
 |     if (args[i]->isInstantiationDependent()) | 
 |       ExprBits.InstantiationDependent = true; | 
 |     if (args[i]->containsUnexpandedParameterPack()) | 
 |       ExprBits.ContainsUnexpandedParameterPack = true; | 
 |  | 
 |     SubExprs[i] = args[i]; | 
 |   } | 
 | } | 
 |  | 
 | unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) { | 
 |   switch (Op) { | 
 |   case AO__c11_atomic_init: | 
 |   case AO__c11_atomic_load: | 
 |   case AO__atomic_load_n: | 
 |     return 2; | 
 |  | 
 |   case AO__c11_atomic_store: | 
 |   case AO__c11_atomic_exchange: | 
 |   case AO__atomic_load: | 
 |   case AO__atomic_store: | 
 |   case AO__atomic_store_n: | 
 |   case AO__atomic_exchange_n: | 
 |   case AO__c11_atomic_fetch_add: | 
 |   case AO__c11_atomic_fetch_sub: | 
 |   case AO__c11_atomic_fetch_and: | 
 |   case AO__c11_atomic_fetch_or: | 
 |   case AO__c11_atomic_fetch_xor: | 
 |   case AO__atomic_fetch_add: | 
 |   case AO__atomic_fetch_sub: | 
 |   case AO__atomic_fetch_and: | 
 |   case AO__atomic_fetch_or: | 
 |   case AO__atomic_fetch_xor: | 
 |   case AO__atomic_fetch_nand: | 
 |   case AO__atomic_add_fetch: | 
 |   case AO__atomic_sub_fetch: | 
 |   case AO__atomic_and_fetch: | 
 |   case AO__atomic_or_fetch: | 
 |   case AO__atomic_xor_fetch: | 
 |   case AO__atomic_nand_fetch: | 
 |     return 3; | 
 |  | 
 |   case AO__atomic_exchange: | 
 |     return 4; | 
 |  | 
 |   case AO__c11_atomic_compare_exchange_strong: | 
 |   case AO__c11_atomic_compare_exchange_weak: | 
 |     return 5; | 
 |  | 
 |   case AO__atomic_compare_exchange: | 
 |   case AO__atomic_compare_exchange_n: | 
 |     return 6; | 
 |   } | 
 |   llvm_unreachable("unknown atomic op"); | 
 | } |