| //===-- CGValue.h - LLVM CodeGen wrappers for llvm::Value* ------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // These classes implement wrappers around llvm::Value in order to |
| // fully represent the range of values for C L- and R- values. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef CLANG_CODEGEN_CGVALUE_H |
| #define CLANG_CODEGEN_CGVALUE_H |
| |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/Type.h" |
| |
| namespace llvm { |
| class Constant; |
| class Value; |
| } |
| |
| namespace clang { |
| class ObjCPropertyRefExpr; |
| |
| namespace CodeGen { |
| class CGBitFieldInfo; |
| |
| /// RValue - This trivial value class is used to represent the result of an |
| /// expression that is evaluated. It can be one of three things: either a |
| /// simple LLVM SSA value, a pair of SSA values for complex numbers, or the |
| /// address of an aggregate value in memory. |
| class RValue { |
| enum Flavor { Scalar, Complex, Aggregate }; |
| |
| // Stores first value and flavor. |
| llvm::PointerIntPair<llvm::Value *, 2, Flavor> V1; |
| // Stores second value and volatility. |
| llvm::PointerIntPair<llvm::Value *, 1, bool> V2; |
| |
| public: |
| bool isScalar() const { return V1.getInt() == Scalar; } |
| bool isComplex() const { return V1.getInt() == Complex; } |
| bool isAggregate() const { return V1.getInt() == Aggregate; } |
| |
| bool isVolatileQualified() const { return V2.getInt(); } |
| |
| /// getScalarVal() - Return the Value* of this scalar value. |
| llvm::Value *getScalarVal() const { |
| assert(isScalar() && "Not a scalar!"); |
| return V1.getPointer(); |
| } |
| |
| /// getComplexVal - Return the real/imag components of this complex value. |
| /// |
| std::pair<llvm::Value *, llvm::Value *> getComplexVal() const { |
| return std::make_pair(V1.getPointer(), V2.getPointer()); |
| } |
| |
| /// getAggregateAddr() - Return the Value* of the address of the aggregate. |
| llvm::Value *getAggregateAddr() const { |
| assert(isAggregate() && "Not an aggregate!"); |
| return V1.getPointer(); |
| } |
| |
| static RValue get(llvm::Value *V) { |
| RValue ER; |
| ER.V1.setPointer(V); |
| ER.V1.setInt(Scalar); |
| ER.V2.setInt(false); |
| return ER; |
| } |
| static RValue getComplex(llvm::Value *V1, llvm::Value *V2) { |
| RValue ER; |
| ER.V1.setPointer(V1); |
| ER.V2.setPointer(V2); |
| ER.V1.setInt(Complex); |
| ER.V2.setInt(false); |
| return ER; |
| } |
| static RValue getComplex(const std::pair<llvm::Value *, llvm::Value *> &C) { |
| return getComplex(C.first, C.second); |
| } |
| // FIXME: Aggregate rvalues need to retain information about whether they are |
| // volatile or not. Remove default to find all places that probably get this |
| // wrong. |
| static RValue getAggregate(llvm::Value *V, bool Volatile = false) { |
| RValue ER; |
| ER.V1.setPointer(V); |
| ER.V1.setInt(Aggregate); |
| ER.V2.setInt(Volatile); |
| return ER; |
| } |
| }; |
| |
| |
| /// LValue - This represents an lvalue references. Because C/C++ allow |
| /// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a |
| /// bitrange. |
| class LValue { |
| // FIXME: alignment? |
| |
| enum { |
| Simple, // This is a normal l-value, use getAddress(). |
| VectorElt, // This is a vector element l-value (V[i]), use getVector* |
| BitField, // This is a bitfield l-value, use getBitfield*. |
| ExtVectorElt, // This is an extended vector subset, use getExtVectorComp |
| PropertyRef // This is an Objective-C property reference, use |
| // getPropertyRefExpr |
| } LVType; |
| |
| llvm::Value *V; |
| |
| union { |
| // Index into a vector subscript: V[i] |
| llvm::Value *VectorIdx; |
| |
| // ExtVector element subset: V.xyx |
| llvm::Constant *VectorElts; |
| |
| // BitField start bit and size |
| const CGBitFieldInfo *BitFieldInfo; |
| |
| // Obj-C property reference expression |
| const ObjCPropertyRefExpr *PropertyRefExpr; |
| }; |
| |
| // 'const' is unused here |
| Qualifiers Quals; |
| |
| /// The alignment to use when accessing this lvalue. |
| unsigned short Alignment; |
| |
| // objective-c's ivar |
| bool Ivar:1; |
| |
| // objective-c's ivar is an array |
| bool ObjIsArray:1; |
| |
| // LValue is non-gc'able for any reason, including being a parameter or local |
| // variable. |
| bool NonGC: 1; |
| |
| // Lvalue is a global reference of an objective-c object |
| bool GlobalObjCRef : 1; |
| |
| // Lvalue is a thread local reference |
| bool ThreadLocalRef : 1; |
| |
| Expr *BaseIvarExp; |
| |
| /// TBAAInfo - TBAA information to attach to dereferences of this LValue. |
| llvm::MDNode *TBAAInfo; |
| |
| private: |
| void Initialize(Qualifiers Quals, unsigned Alignment = 0, |
| llvm::MDNode *TBAAInfo = 0) { |
| this->Quals = Quals; |
| this->Alignment = Alignment; |
| assert(this->Alignment == Alignment && "Alignment exceeds allowed max!"); |
| |
| // Initialize Objective-C flags. |
| this->Ivar = this->ObjIsArray = this->NonGC = this->GlobalObjCRef = false; |
| this->ThreadLocalRef = false; |
| this->BaseIvarExp = 0; |
| this->TBAAInfo = TBAAInfo; |
| } |
| |
| public: |
| bool isSimple() const { return LVType == Simple; } |
| bool isVectorElt() const { return LVType == VectorElt; } |
| bool isBitField() const { return LVType == BitField; } |
| bool isExtVectorElt() const { return LVType == ExtVectorElt; } |
| bool isPropertyRef() const { return LVType == PropertyRef; } |
| |
| bool isVolatileQualified() const { return Quals.hasVolatile(); } |
| bool isRestrictQualified() const { return Quals.hasRestrict(); } |
| unsigned getVRQualifiers() const { |
| return Quals.getCVRQualifiers() & ~Qualifiers::Const; |
| } |
| |
| bool isObjCIvar() const { return Ivar; } |
| void setObjCIvar(bool Value) { Ivar = Value; } |
| |
| bool isObjCArray() const { return ObjIsArray; } |
| void setObjCArray(bool Value) { ObjIsArray = Value; } |
| |
| bool isNonGC () const { return NonGC; } |
| void setNonGC(bool Value) { NonGC = Value; } |
| |
| bool isGlobalObjCRef() const { return GlobalObjCRef; } |
| void setGlobalObjCRef(bool Value) { GlobalObjCRef = Value; } |
| |
| bool isThreadLocalRef() const { return ThreadLocalRef; } |
| void setThreadLocalRef(bool Value) { ThreadLocalRef = Value;} |
| |
| bool isObjCWeak() const { |
| return Quals.getObjCGCAttr() == Qualifiers::Weak; |
| } |
| bool isObjCStrong() const { |
| return Quals.getObjCGCAttr() == Qualifiers::Strong; |
| } |
| |
| Expr *getBaseIvarExp() const { return BaseIvarExp; } |
| void setBaseIvarExp(Expr *V) { BaseIvarExp = V; } |
| |
| llvm::MDNode *getTBAAInfo() const { return TBAAInfo; } |
| void setTBAAInfo(llvm::MDNode *N) { TBAAInfo = N; } |
| |
| const Qualifiers &getQuals() const { return Quals; } |
| Qualifiers &getQuals() { return Quals; } |
| |
| unsigned getAddressSpace() const { return Quals.getAddressSpace(); } |
| |
| unsigned getAlignment() const { return Alignment; } |
| |
| // simple lvalue |
| llvm::Value *getAddress() const { assert(isSimple()); return V; } |
| |
| // vector elt lvalue |
| llvm::Value *getVectorAddr() const { assert(isVectorElt()); return V; } |
| llvm::Value *getVectorIdx() const { assert(isVectorElt()); return VectorIdx; } |
| |
| // extended vector elements. |
| llvm::Value *getExtVectorAddr() const { assert(isExtVectorElt()); return V; } |
| llvm::Constant *getExtVectorElts() const { |
| assert(isExtVectorElt()); |
| return VectorElts; |
| } |
| |
| // bitfield lvalue |
| llvm::Value *getBitFieldBaseAddr() const { |
| assert(isBitField()); |
| return V; |
| } |
| const CGBitFieldInfo &getBitFieldInfo() const { |
| assert(isBitField()); |
| return *BitFieldInfo; |
| } |
| |
| // property ref lvalue |
| llvm::Value *getPropertyRefBaseAddr() const { |
| assert(isPropertyRef()); |
| return V; |
| } |
| const ObjCPropertyRefExpr *getPropertyRefExpr() const { |
| assert(isPropertyRef()); |
| return PropertyRefExpr; |
| } |
| |
| static LValue MakeAddr(llvm::Value *V, QualType T, unsigned Alignment, |
| ASTContext &Context, |
| llvm::MDNode *TBAAInfo = 0) { |
| Qualifiers Quals = T.getQualifiers(); |
| Quals.setObjCGCAttr(Context.getObjCGCAttrKind(T)); |
| |
| LValue R; |
| R.LVType = Simple; |
| R.V = V; |
| R.Initialize(Quals, Alignment, TBAAInfo); |
| return R; |
| } |
| |
| static LValue MakeVectorElt(llvm::Value *Vec, llvm::Value *Idx, |
| unsigned CVR) { |
| LValue R; |
| R.LVType = VectorElt; |
| R.V = Vec; |
| R.VectorIdx = Idx; |
| R.Initialize(Qualifiers::fromCVRMask(CVR)); |
| return R; |
| } |
| |
| static LValue MakeExtVectorElt(llvm::Value *Vec, llvm::Constant *Elts, |
| unsigned CVR) { |
| LValue R; |
| R.LVType = ExtVectorElt; |
| R.V = Vec; |
| R.VectorElts = Elts; |
| R.Initialize(Qualifiers::fromCVRMask(CVR)); |
| return R; |
| } |
| |
| /// \brief Create a new object to represent a bit-field access. |
| /// |
| /// \param BaseValue - The base address of the structure containing the |
| /// bit-field. |
| /// \param Info - The information describing how to perform the bit-field |
| /// access. |
| static LValue MakeBitfield(llvm::Value *BaseValue, const CGBitFieldInfo &Info, |
| unsigned CVR) { |
| LValue R; |
| R.LVType = BitField; |
| R.V = BaseValue; |
| R.BitFieldInfo = &Info; |
| R.Initialize(Qualifiers::fromCVRMask(CVR)); |
| return R; |
| } |
| |
| // FIXME: It is probably bad that we aren't emitting the target when we build |
| // the lvalue. However, this complicates the code a bit, and I haven't figured |
| // out how to make it go wrong yet. |
| static LValue MakePropertyRef(const ObjCPropertyRefExpr *E, |
| llvm::Value *Base) { |
| LValue R; |
| R.LVType = PropertyRef; |
| R.V = Base; |
| R.PropertyRefExpr = E; |
| R.Initialize(Qualifiers()); |
| return R; |
| } |
| }; |
| |
| /// An aggregate value slot. |
| class AggValueSlot { |
| /// The address. |
| llvm::Value *Addr; |
| |
| // Associated flags. |
| bool VolatileFlag : 1; |
| bool LifetimeFlag : 1; |
| bool RequiresGCollection : 1; |
| |
| /// IsZeroed - This is set to true if the destination is known to be zero |
| /// before the assignment into it. This means that zero fields don't need to |
| /// be set. |
| bool IsZeroed : 1; |
| |
| public: |
| /// ignored - Returns an aggregate value slot indicating that the |
| /// aggregate value is being ignored. |
| static AggValueSlot ignored() { |
| AggValueSlot AV; |
| AV.Addr = 0; |
| AV.VolatileFlag = AV.LifetimeFlag = AV.RequiresGCollection = AV.IsZeroed =0; |
| return AV; |
| } |
| |
| /// forAddr - Make a slot for an aggregate value. |
| /// |
| /// \param Volatile - true if the slot should be volatile-initialized |
| /// \param LifetimeExternallyManaged - true if the slot's lifetime |
| /// is being externally managed; false if a destructor should be |
| /// registered for any temporaries evaluated into the slot |
| /// \param RequiresGCollection - true if the slot is located |
| /// somewhere that ObjC GC calls should be emitted for |
| static AggValueSlot forAddr(llvm::Value *Addr, bool Volatile, |
| bool LifetimeExternallyManaged, |
| bool RequiresGCollection = false, |
| bool IsZeroed = false) { |
| AggValueSlot AV; |
| AV.Addr = Addr; |
| AV.VolatileFlag = Volatile; |
| AV.LifetimeFlag = LifetimeExternallyManaged; |
| AV.RequiresGCollection = RequiresGCollection; |
| AV.IsZeroed = IsZeroed; |
| return AV; |
| } |
| |
| static AggValueSlot forLValue(LValue LV, bool LifetimeExternallyManaged, |
| bool RequiresGCollection = false) { |
| return forAddr(LV.getAddress(), LV.isVolatileQualified(), |
| LifetimeExternallyManaged, RequiresGCollection); |
| } |
| |
| bool isLifetimeExternallyManaged() const { |
| return LifetimeFlag; |
| } |
| void setLifetimeExternallyManaged(bool Managed = true) { |
| LifetimeFlag = Managed; |
| } |
| |
| bool isVolatile() const { |
| return VolatileFlag; |
| } |
| |
| bool requiresGCollection() const { |
| return RequiresGCollection; |
| } |
| |
| llvm::Value *getAddr() const { |
| return Addr; |
| } |
| |
| bool isIgnored() const { |
| return Addr == 0; |
| } |
| |
| RValue asRValue() const { |
| return RValue::getAggregate(getAddr(), isVolatile()); |
| } |
| |
| void setZeroed(bool V = true) { IsZeroed = V; } |
| bool isZeroed() const { |
| return IsZeroed; |
| } |
| }; |
| |
| } // end namespace CodeGen |
| } // end namespace clang |
| |
| #endif |